Schnytzer, Adi; Westreich, Sara

Working Paper
Attitudes to risk and roulette

Working Paper, No. 2010-14

Provided in Cooperation with:
Department of Economics, Bar-Ilan University

Suggested Citation: Schnytzer, Adi; Westreich, Sara (2010) : Attitudes to risk and roulette, Working Paper, No. 2010-14, Bar-Ilan University, Department of Economics, Ramat-Gan

This Version is available at:
http://hdl.handle.net/10419/96048

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Attitudes to Risk and Roulette

By

Adi Schnytzer and Sara Westreich

June 8, 2010

Introduction

Who plays roulette in a casino? Since the expected return to playing is negative, the obvious answer would appear to be risk lovers. But this is not necessarily the case. Thus, a risk averse consumer may decide to set aside a given sum as a conceptual “entrance fee”, enter the casino (where there is no entrance fee) and play with his entrance money either until he loses it all or until he decides to leave with money left over or even a profit, whichever occurs first. It has even been suggested by Mobilia (1993), using a rational addiction framework, that such risk averse gamblers may even be addicted. Since Mobilia’s model does not involve any explicit considerations of risk, we do not deal with the addiction issue here. In this paper, we present an empirical framework for determining whether or not customers at the roulette wheel are risk averse or risk loving.

We proceed as follows. In section 1, we present a summary of the Aumann-Serrano risk index (Aumann and Serrano (2007), hereafter [AS]), as generalized to allow for the presence of risk lovers by Schnytzer and Westreich (2010) (hereafter [SW]). We show that, for any gamble, whereas riskiness increases for gambles with positive expected return as the amount placed on a given gamble is increased, the opposite is the case for gambles with negative expected return. Since roulette involves binary gambles, we restrict our attention to such gambles exclusively and derive empirically testable hypotheses in section 2. In particular, we show that, all other things being equal, for gambles with a negative expected return, riskiness decreases as the size of the contingent payout increases. On the other hand, riskiness increases if the gamble has a positive expected return. We also prove that, for positive return gambles, riskiness increases, ceteris paribus, in the variance of the gamble while the reverse is true for gambles with negative expected returns. In section 3, we apply these results to the specific gambles involved in American roulette and discuss how we might distinguish between casino visitors who are risk averse and those who are risk loving as well as those who may suffer from gambling addictions.

1 Departments of Economics and Management, respectively, Bar Ilan University, Israel.

1 The Generalized Aumann and Serrano Index of Riskiness

Following [AS] and [SW] we outline the notion of a generalized index of inherent riskiness, with no a priori assumptions about attitudes toward risk. A utility function is a strictly monotonic twice continuously differentiable function \(u \) defined over the entire line. We normalize \(u \) so that

\[
\begin{align*}
 u(0) &= 0 \quad \text{and} \quad u'(0) = 1
\end{align*}
\]

If \(u \) is concave then an agent with a utility function \(u \) is risk averse, while if \(u \) is convex, then an agent with a utility function \(u \) is risk lover.

The following definition is due to Arrow (1965 and 1971) and Pratt (1964):

Definition 1.1 The coefficient of absolute risk of an agent \(i \) with utility function \(u_i \) and wealth \(w \) is given by:

\[
\rho_i(w) = \rho_i(w, u_i) = -u_i''(w)/u'_i(w)
\]

Note \(u_i(x) \) is concave in a neighborhood of \(w \) if and only if \(\rho_i(w) > 0 \), while if it is convex if and only if \(\rho_i(w) < 0 \).

Definition 1.2 Call \(i \) at least risk averse or no more risk loving than \(j \) (written \(i \gtrsim j \)) if for all levels \(w_i \) and \(w_j \) of wealth, \(j \) accepts at \(w_j \) any gamble that \(i \) accepts at \(w_i \). Call \(i \) more risk averse or less risk loving than \(j \) (written \(i \succ j \)) if \(i \gtrsim j \) and \(j \not\sim i. \)

We have:

Corollary 1.3 Given agents \(i \) and \(j \), then

\[
i \gtrsim j \iff \rho_i(w_i) \geq \rho_j(w_j)
\]

for all \(w_i \) and \(w_j \).

Definition 1.4 An agent is said to have Constant Absolute Risk (CAR) utility function if his normalized utility function \(u(x) \) is given by

\[
\rho(x) = \rho(x, u(x)) = -u''(x)/u'(x)
\]

Note that in [AS] the above is defined for risk averse agents only, and is denoted by \(^* i \) is at least as risk averse as \(j \) ".
\[u_\alpha(x) = \begin{cases} \alpha^{-1}(1-e^{-\alpha x}), & \alpha \neq 0 \\ x & \alpha = 0 \end{cases} \]

If \(\alpha > 0 \) then the agent is risk-averse with a CARA utility function, while if \(\alpha < 0 \) then the agent is risk-loving with a CARL - Constant Absolute Risk-Loving - utility function. If \(\alpha = 0 \) then the agent is risk neutral. The notion of "CAR" is justified since for any \(\alpha \), the coefficient of absolute risk \(\rho \) defined in Def.1.1, satisfies \(\rho(w) = \alpha \) for all \(w \), that is, the Arrow-Pratt coefficient is a constant that does not depend on \(w \).

Proposition 1.5 An agent \(i \) has CAR utility function if and only if for any gamble \(g \) and any two wealth levels, \(i \) either accepts \(g \) at both wealth levels, or rejects \(g \) at both wealth levels.

The next theorem appears in [SW] extending the original idea of [AS]. It verifies the existence of the general index for the following class of gambles. A gamble \(g \) is gameable if it results in possible losses and possible gains. If \(g \) has a continuous distribution function, then it is gameable if it is bounded from above and below, that is, its distribution function is truncated.

Theorem 1.6 [AS,SW] Let \(g \) be a gameable gamble and let \(\alpha \) be the unique nonzero root of the equation

\[Ee^{-\alpha g} - 1 = 0 \]

Then for any wealth, a person with utility function \(u_\alpha \) is indifferent between taking and not taking \(g \). In other words, the CAR utility function \(u_\alpha \) satisfies for all \(x \),

\[Eu_\alpha(g + x) = u_\alpha(x). \]

Moreover, \(\alpha \) is positive (negative) if and only if \(Eg \) is positive (resp. negative).

Definition 1.7 Given a gamble \(g \), denote the number \(\alpha \) obtained in Th.1.6 by the upper limit of taking \(g \).

The notation upper limit is justified by the following:

Theorem 1.8 Let \(\alpha \) be the upper limit of taking a gamble \(g \). Then:

1. If \(Eg > 0 \) then all CARL accept \(g \) and a CARA person with a utility function \(u_\beta \) accepts \(g \) if and only if \(0 < \beta < \alpha \)

2. If \(Eg < 0 \) then all CARA reject \(g \) and a CARL person with a utility function \(u_\beta \) accepts \(g \) if and only if \(\beta < \alpha < 0 \)

3. If \(E(g) = 0 \) the all CARA people reject \(g \) while all CARL people accept \(g \).
We propose here the following general index of inherent riskiness. Given a gamble g and its upper limit α define its index $Q(g)$ by:

$$Q(g) = e^{-\alpha}$$

Th. 1.8 and the fact that Q is a monotonic decreasing function of α, imply that:

Corollary 1.9 An increase in riskiness corresponds to a decrease in the set of constant risk-attitude agents that will accept the gamble.

Caution: The corollary above does not say that constant risk-attitude agents prefer less risky gambles. It says that they are more likely to accept them.

It is straightforward to check the following properties:

Corollary 1.10 The generalized index $Q(g)$ given in (6) satisfies:

1. $Q(g) > 0$ for all g.
2. If $E_g > 0$ then $Q(g) < 1$ and if $E_g < 0$ then $Q(g) > 1$. When $E_g = 0$ then $Q(g) = 1$.
3. $Q(Ng) = Q(g)^{1/N}$. In particular

$$Q(-g) = Q(g)^{-1}$$

Remark 1.11 Unlike the case of the [AS]-index, homogeneity of degree 1 does not hold. However, when $E(g) > 0$ then it is replaced by (increasing) monotonicity. This follows since in this case $Q(g) < 1$, hence if $t < 1$ then $Q(tg) = (Q(g))^{1/t} < Q(g)$, while if $t > 1$ then $(Q(q))^{1/t} > Q(g)$. This is no longer true for gambles with negative positive return. If $E(g) < 0$ then $Q(g) > 1$ and Q is monotonically decreasing with respect to multiplication by t. This follows by the same argument as above, with the reverse inequalities.

Put simply, the remark says that, for a risk averse person, the greater the stake the riskier the gamble, whereas for a risk lover the more money invested in a particular gamble, the less the risk! Following Cor. 1.9, consider the suggested index of riskiness as the opposite to the number of constant risk attitude gamblers who will accept it. Now, the intuition for the risk averse person is straight-forward: placing more money in situation of risk is undesirable since the marginal utility of money is falling and this kind of individual wants to sleep at night. So, as the amount at stake rises, the riskiness rises and there are fewer constant risk attitude risk averse gamblers who will accept it.

For the risk lover, on the other hand, the marginal utility of money is rising. Thus, the more money he stands to win, *ceteris paribus*, the better of he is. Besides which, the risk lover
gets utility from the adrenalin rush that accompanies gambling. Accordingly, as the amount
waged on a given gamble increases, there will be more constant risk attitude risk loving gamblers
who will accept it. In other words, the gamble is less risky.

2 Binary Gambles

In this section we further turn to a discussion of specific properties of the index of
inherent risk as it applies to binary gambles. For this case, we prove that our index is a monotonic
function of \(\text{Var}(g) \), which is increasing for gambles with \(\text{Eg} > 0 \) and decreasing otherwise.

Let \(g \) be a gamble that results in a gain of \(M \) with probability \(p \) and a loss of \(L \) with probability
\(q = 1 - p \). We assume \(M \) and \(L \) are positive real numbers. Note that:

\[
\text{Eg} = p(M + L) - L \\
\sigma^2(g) = p(1 - p)(M + L)^2
\]

(1)

In order to generate the empirically testable hypotheses discussed in the next section, we
summarize partial relations between expected utilities, expectations of gambles, chances to win
and riskiness. We start with expected utilities of Constant Absolute Risk (CAR) utility functions.
Consider \(E_{u_\alpha}(g) = E_{u_\alpha}(L, M, \text{Eg}) \) as a function of the independent variables \(L, M \) and \(\text{Eg} \).

Proposition 2.1 Assume \(g \) results in a gain of \(M \) with probability \(p \) and a loss of \(L \) otherwise.

Let \(u_\alpha(x) = \alpha^{-1}(1 - e^{-\alpha x}) \), \(\alpha \neq 0 \), be a CAR utility function. Then:

\(\alpha > 0 \) implies \(\frac{\partial E_{u_\alpha}}{\partial M} < 0 \) and \(\alpha < 0 \) implies \(\frac{\partial E_{u_\alpha}}{\partial M} > 0 \).

Proof. By (1) we have

\[
p = \frac{\text{Eg} + L}{M + L}.
\]

Hence

\[
E_{u_\alpha}(g) = \alpha^{-1}(1 - pe^{-\alpha M} - (1 - p)e^{\alpha L}) = \alpha^{-1}(1 - \frac{\text{Eg} + L}{M + L}(e^{-\alpha M} - e^{\alpha L}) - e^{\alpha L})
\]

A straightforward computation gives:
\[\frac{\partial E_u_{\alpha}}{\partial M} = \frac{e^{-\alpha M} \alpha^{-1} p}{L + M} 1 + \alpha(L + M) - e^{\alpha(L+M)} \]

We claim that \(f(\alpha) = 1 + \alpha(L + M) - e^{\alpha(L+M)} \) is negative for all \(\alpha \neq 0 \). Indeed,

\[f'(\alpha) = L + M - (L + M)e^{\alpha(L+M)} = (L + M)(1 - e^{\alpha(L+M)}) \]

If \(\alpha > 0 \) then \(f'(\alpha) < 0 \) while if \(\alpha < 0 \) then \(f'(\alpha) > 0 \). Since \(f(0) = f'(0) = 0 \), our claim follows. Since \(Eu_{\alpha}(g) = f(\alpha) \) multiplied by a positive value, the desired result follows. QED

We consider now how \(Q = Q(g) \) is related to the other variables. Following Th.1.6 we need to solve \(Ee^{-\alpha g} - 1 = 0 \). That is:

\[0 = pe^{-\alpha M} + qe^{\alpha l} - 1 \]

The following is quite intuitive.

Proposition 2.2 Let \(g \) be a gamble that results in a gain \(M \) with probability \(p \) and a loss \(L \) otherwise. Consider \(Q(g) \) as a function of the independent variables \(L, M \) and \(Eg \). Then we have:

If \(Eg < 0 \) then \(\frac{\partial Q(g)}{\partial M} < 0 \) and if \(Eg > 0 \) then \(\frac{\partial Q(g)}{\partial M} > 0 \). Finally, if \(Eg = 0 \) then \(\frac{\partial Q(g)}{\partial M} = 0 \).

Proof. Assume \(M_1 < M_2 \). Let \(g_1 \) be the gamble resulting in \(M_1 \) and \(g_2 \) resulting in \(M_2 \). Let \(\alpha_1 \) satisfies \(Eu_{\alpha_1}(g_1) = 0 \). By Th.1.8, if \(Eg < 0 \) then \(\alpha_1 < 0 \) and since \(M_1 < M_2 \) it follows by Prop. 2.1 that \(Eu_{\alpha_1}(g_1) < Eu_{\alpha_1}(g_2) \). Hence an agent with utility function \(u_{\alpha_1} \) accepts \(g_2 \). This implies by Th.1.8 that \(\alpha_1 < \alpha_2 \), where \(\alpha_2 < 0 \) is the upper limit of taking \(g_2 \). Since \(Q = e^{-\alpha} \) we have \(Q(g_1) > Q(g_2) \) and we are done. When \(Eg > 0 \) then by \(\alpha_1 > 0 \), and by Prop. 2.1,

\[0 = Eu_{\alpha_1}(g_1) > Eu_{\alpha_1}(g_2) \]

Hence \(\alpha_1 \) rejects \(g_2 \) and thus \(\alpha_2 < \alpha_1 \) and \(Q(g_1) < Q(g_2) \). If \(Eg = 0 \) then \(Q(g) = 1 \) and the result follows. QED

For binary gambles, fixing \(Eg \) and increasing \(M \), means increasing \(V_g = \text{Var}(g) \). Thus Prop.2.2 implies that for a given \(Eg > 0 \), \(\frac{\partial Q(g)}{\partial V_g} > 0 \) and for a given \(Eg < 0 \), \(\frac{\partial Q(g)}{\partial V_g} < 0 \).
Since \(\frac{\partial E_{U_a}}{\partial Q} = \frac{\partial E_{U_a}}{\partial M} \frac{\partial M}{\partial Q} \) we have by Proposition 2.1 and 2.2 that:

Corollary 2.3 If \(E_g > 0 \) then for a risk lover \(\frac{\partial E_{U_a}}{\partial Q} > 0 \), and for a risk averse \(\frac{\partial E_{U_a}}{\partial Q} < 0 \).

If \(E_g < 0 \) then for a risk lover \(\frac{\partial E_{U_a}}{\partial Q} < 0 \).

3 Roulette

The casino game of roulette is probably the simplest practical example of the inherent risk index. In this case, every possible bet is a binary gamble where the return to a losing bet is always the outlay and both the probability of success and the concomitant payout are known. There is thus no uncertainty here, merely risk. Accordingly, roulette also provides the simplest case for a study of attitudes towards risk of casino gamblers. In the absence of data, we are restricted to proving some potentially interesting empirically testable hypotheses. We hope to be able to test these when/if data are forthcoming.

Table I provides complete details for the different kinds of bets available in the American version of the game\(^4\).

<table>
<thead>
<tr>
<th>Bet name</th>
<th>Winning spaces</th>
<th>Payout M</th>
<th>Odds (p=1/(\text{odds}+1))</th>
<th>Expected value (on a $1 bet) = (E_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>35 to 1</td>
<td>37 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>00</td>
<td>0, 00</td>
<td>35 to 1</td>
<td>37 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>Straight up</td>
<td>Any single number</td>
<td>35 to 1</td>
<td>37 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>Row 00</td>
<td>0, 00</td>
<td>17 to 1</td>
<td>18 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>Split</td>
<td>any two adjoining numbers vertical or horizontal</td>
<td>17 to 1</td>
<td>18 to 1</td>
<td>−$0.053</td>
</tr>
</tbody>
</table>

\(^4\) In the European version, the setup of the wheel is slightly different.
<table>
<thead>
<tr>
<th>Bet Type</th>
<th>Numbers</th>
<th>Payout</th>
<th>ODDS</th>
<th>Contingency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trio Street</td>
<td>0, 1, 2 or 00, 2, 3</td>
<td>11 to 1</td>
<td>11.667 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>Corner</td>
<td>any four adjoining numbers in a block</td>
<td>8 to 1</td>
<td>8.5 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>Corner</td>
<td>any six numbers from two horizontal rows</td>
<td>5 to 1</td>
<td>5.33 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>1st Column</td>
<td>1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34</td>
<td>2 to 1</td>
<td>2.167 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>2nd Column</td>
<td>2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35</td>
<td>2 to 1</td>
<td>2.167 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>3rd Column</td>
<td>3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36</td>
<td>2 to 1</td>
<td>2.167 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>1st Dozen</td>
<td>1 through 12</td>
<td>2 to 1</td>
<td>2.167 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>2nd Dozen</td>
<td>13 through 24</td>
<td>2 to 1</td>
<td>2.167 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>3rd Dozen</td>
<td>25 through 36</td>
<td>2 to 1</td>
<td>2.167 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>Odd</td>
<td>1, 3, 5, ..., 35</td>
<td>1 to 1</td>
<td>1.111 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>Even Red</td>
<td>2, 4, 6, ..., 36</td>
<td>1 to 1</td>
<td>1.111 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td></td>
<td>1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36</td>
<td>1 to 1</td>
<td>1.111 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>Black</td>
<td>2, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 26, 28, 29, 31, 33, 35</td>
<td>1 to 1</td>
<td>1.111 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>1 to 18</td>
<td>1, 2, 3, ..., 18</td>
<td>1 to 1</td>
<td>1.111 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>19 to 36</td>
<td>19, 20, 21, ..., 36</td>
<td>1 to 1</td>
<td>1.111 to 1</td>
<td>−$0.053</td>
</tr>
<tr>
<td>Five Number</td>
<td>0, 00, 1, 2, 3</td>
<td>6 to 1</td>
<td>6.6 to 1</td>
<td>−$0.079</td>
</tr>
</tbody>
</table>

The initial bet is returned in addition to the mentioned payout. Note also that 0 and 00 are neither odd nor even in this game.

The crucial questions are: what kinds of gamblers play roulette and can we determine their attitudes to risk based on the kinds of bets they place? Are they all risk-lovers? Or perhaps some of them are people who pay a certain amount of money for fun, this being the amount they are willing to lose when gambling and which they view as an “entrance fee” or some such and then bet as risk-averse gamblers so that any losing bets provide zero utility while winning bets provide positive utility?

Indeed, according to the rational addiction model of Mobilia (1993), as farfetched as it may seem when simple intuition is applied, there may even be risk averse gamblers who are addicted! Thus, a rational risk averse gambler who obtains utility from the act of gambling (as he might from smoking a cigarette) may be shown to be rationally addicted if the quantity of gambling demanded today is a function of gambling in the future. But this requires the very strange assumption that such a gambler obtains actual (as distinct from positive expected) utility from even losing gambles. Finally, it should be stressed that attitude towards risk nowhere comes into the Mobilia model. On the other hand, her utility function adopted permits a far wider interpretation than our own.

Be all of this as it may, it seems clear that in principle there may be both risk lovers and risk averse gamblers to be seen in a casino (and among them will be those who are addicted and those
who are not)\footnote{We are unaware of any formal model explaining gambling addiction for risk lovers, but there seems no reason to rule out such a possibility \textit{a priori}.}. Now, since our utility functions are static, we can shed no light on addiction but we can generate some testable hypotheses regarding attitudes to risk.

The two different points of view yield different ways of calculating the index of riskiness. We can either assume that each gamble yields a possible loss of 1 and a possible gain of M. In this case only risk lovers bet. We will denote this gamble by g_1 and calculate Q_1 according to these assumptions.

To allow for risk averse players, let’s assume that the gambler is ready to pay $0.5 for the fun (his entrance fee). Let now g_2 be the gamble where one can either lose $0.5 or win M+0.5. From table I, it follows that the expected return for g_2 is:

$$E(g_2)=E(g_1+0.5)=0.447.$$ Let Q_2 be the corresponding index of risk. Note that the two indexes are different, and by the previous section, one is a monotonic decreasing function of M and the other is increasing.

We suggest that data on bets can shed light on gambler type. If most gamblers are risk averse who willingly spend some money on gambling for fun, they will choose the smaller M. If they are “big” risk lovers they will choose the greater M, but if they are “small” risk lovers they can choose other gambles.
Table II: Two possible calculations for the Risk Index (Q)

<table>
<thead>
<tr>
<th>Bet name</th>
<th>Payout = M</th>
<th>Q₁(g)</th>
<th>Q₂(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35 to 1</td>
<td>1.003065</td>
<td>0.959765</td>
</tr>
<tr>
<td>00</td>
<td>35 to 1</td>
<td>1.003065</td>
<td>0.959765</td>
</tr>
<tr>
<td>Straight up</td>
<td>35 to 1</td>
<td>1.003065</td>
<td>0.959765</td>
</tr>
<tr>
<td>Row 00</td>
<td>17 to 1</td>
<td>1.006318</td>
<td>0.919738</td>
</tr>
<tr>
<td>Split</td>
<td>17 to 1</td>
<td>1.006318</td>
<td>0.919738</td>
</tr>
<tr>
<td>Trio</td>
<td>11 to 1</td>
<td>1.00978</td>
<td>0.880007</td>
</tr>
<tr>
<td>Street</td>
<td>11 to 1</td>
<td>1.00978</td>
<td>0.880007</td>
</tr>
<tr>
<td>Corner</td>
<td>8 to 1</td>
<td>1.013457</td>
<td>0.840812</td>
</tr>
<tr>
<td>Six Line</td>
<td>5 to 1</td>
<td>1.02138</td>
<td>0.805094</td>
</tr>
<tr>
<td>1st Column</td>
<td>2 to 1</td>
<td>1.05467</td>
<td>0.76214</td>
</tr>
<tr>
<td>2nd Column</td>
<td>2 to 1</td>
<td>1.05467</td>
<td>0.76214</td>
</tr>
<tr>
<td>3rd Column</td>
<td>2 to 1</td>
<td>1.05467</td>
<td>0.76214</td>
</tr>
<tr>
<td>1st Dozen</td>
<td>2 to 1</td>
<td>1.05467</td>
<td>0.76214</td>
</tr>
<tr>
<td>2nd Dozen</td>
<td>2 to 1</td>
<td>1.05467</td>
<td>0.76214</td>
</tr>
<tr>
<td>3rd Dozen</td>
<td>2 to 1</td>
<td>1.05467</td>
<td>0.76214</td>
</tr>
<tr>
<td>Odd</td>
<td>1 to 1</td>
<td>1.111</td>
<td>0.538585</td>
</tr>
<tr>
<td>Even</td>
<td>1 to 1</td>
<td>1.111</td>
<td>0.538585</td>
</tr>
<tr>
<td>Red</td>
<td>1 to 1</td>
<td>1.111</td>
<td>0.538585</td>
</tr>
<tr>
<td>Black</td>
<td>1 to 1</td>
<td>1.111</td>
<td>0.538585</td>
</tr>
<tr>
<td>1 to 18</td>
<td>1 to 1</td>
<td>1.111</td>
<td>0.538585</td>
</tr>
<tr>
<td>19 to 36</td>
<td>1 to 1</td>
<td>1.111</td>
<td>0.538585</td>
</tr>
<tr>
<td>Five Number</td>
<td>6 to 1</td>
<td>1.027295</td>
<td>0.33569</td>
</tr>
</tbody>
</table>

Comments:

1. We have by Prop. 2.2, that \(Eg < 0 \Rightarrow \frac{\partial Q(g)}{\partial M} < 0 \). This is demonstrated in the table in the column of \(Q_1 \). The case when \(Eg > 0 \) is demonstrated in \(Q_2 \).

2. Based upon these observations, we would predict that if most players are “big” risk-lovers then more roulette players choose to play 35 to 1 gambles and fewest would chooses even money gambles. Unfortunately, we have no data that would permit us to test this hypothesis formally, but we have been told that the following holds in casinos operated by HIT in Slovenia and elsewhere in Southern Europe. First, less than 5 percent of all gamblers play 2 to 1 or even money gambles. Second, in most instances there are multiple bets on one spin of the wheel. Thus, most of the gamblers choose 17 to 1 or 35 to 1 gambles, but most of the customers will cover, with such bets, approximately 12 of the available numbers (out of 37) on one roulette spin. Finally, following

6 This information was provided by Igor Rus of HIT.
winning bets, gamblers will proceed to cover more numbers in a subsequent bet. There is no observable trend following losing bets.

Note that by Prop. 2.1, CAR agents will always choose the extreme options, risk lovers will choose the maximal M, while risk averse will choose the minimal. This is not always true, as can be seen in the following example.

Example: Assume an agent with a utility function \(u(x) = -x^2 + 100x \) for \(x < 50 \). This is a concave utility function in this domain. Consider the following gambles:

- \(g_1 \) yields loss of 0.5 with probability 0.5 and gain of 1.5 with probability 0.5. \(E(g_1) = 0.5 \) and \(E(u(g_1)) = 51.25 \).
- \(g_2 \) yields loss of 0.5 with probability 0.9 and gain of 19.5 with probability 0.1. \(E(g_2) = 0.5 \) as well and \(E(u(g_2)) = 188.25 \). Hence the risk averse gambler will prefer \(g_2 \) to \(g_1 \).

4 Bibliography

Arrow, K. J. (1965), "Aspects of the Theory of Risk-Bearing", Helsinki: Yrjö Jahnssonin Säätiö

Electronic versions of the papers are available at

http://www.biu.ac.il/soc/ec/wp/working_papers.html
12-01 Network Topology and the Efficiency of Equilibrium

13-01 General Equilibrium Pricing of Trading Strategy Risk

14-01 Social Conformity and Child Labor

15-01 Determinants of Railroad Capital Structure, 1830–1885

16-01 Political-Legal Institutions and the Railroad Financing Mix, 1885–1929

17-01 Macroeconomic Instability, Migration, and the Option Value of Education

18-01 Property Rights, Theft, and Efficiency: The Biblical Waiver of Fines in the
 Case of Confessed Theft
 Eliakim Katz and Jacob Rosenberg, November 2001.

19-01 Ethnic Discrimination and the Migration of Skilled Labor
 Frédéric Docquier and Hillel Rapoport, December 2001.

1-02 Can Vocational Education Improve the Wages of Minorities and
 Disadvantaged Groups? The Case of Israel
 Shoshana Neuman and Adrian Ziderman, February 2002.

2-02 What Can the Price Gap between Branded and Private Label Products Tell
 Us about Markups?

3-02 Holiday Price Rigidity and Cost of Price Adjustment

4-02 Computation of Completely Mixed Equilibrium Payoffs
 Igal Milchtaich, March 2002.

5-02 Coordination and Critical Mass in a Network Market – An Experimental
 Evaluation
6-02 Inviting Competition to Achieve Critical Mass
Amir Etziony and Avi Weiss, April 2002.

7-02 Credibility, Pre-Production and Inviting Competition in a Network Market
Amir Etziony and Avi Weiss, April 2002.

8-02 Brain Drain and LDCs’ Growth: Winners and Losers
Michel Beine, Frédéric Docquier, and Hillel Rapoport, April 2002.

9-02 Heterogeneity in Price Rigidity: Evidence from a Case Study Using Micro-Level Data

10-02 Price Flexibility in Channels of Distribution: Evidence from Scanner Data

11-02 Acquired Cooperation in Finite-Horizon Dynamic Games
Igal Milchtaich and Avi Weiss, April 2002.

12-02 Cointegration in Frequency Domain

13-02 Which Voting Rules Elicit Informative Voting?
Ruth Ben-Yashar and Igal Milchtaich, May 2002.

14-02 Fertility, Non-Altruism and Economic Growth: Industrialization in the Nineteenth Century
Elise S. Brezis, October 2002.

15-02 Changes in the Recruitment and Education of the Power Elites in Twentieth Century Western Democracies
Elise S. Brezis and François Crouzet, November 2002.

16-02 On the Typical Spectral Shape of an Economic Variable

17-02 International Evidence on Output Fluctuation and Shock Persistence

1-03 Topological Conditions for Uniqueness of Equilibrium in Networks
Igal Milchtaich, March 2003.

2-03 Is the Feldstein-Horioka Puzzle Really a Puzzle?
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-03</td>
<td>Growth and Convergence across the US: Evidence from County-Level Data</td>
<td>Matthew Higgins, Daniel Levy, and Andrew Young</td>
<td>June 2003</td>
</tr>
<tr>
<td>4-03</td>
<td>Economic Growth and Endogenous Intergenerational Altruism</td>
<td>Hillel Rapoport and Jean-Pierre Vidal</td>
<td>June 2003</td>
</tr>
<tr>
<td>5-03</td>
<td>Remittances and Inequality: A Dynamic Migration Model</td>
<td>Frédéric Docquier and Hillel Rapoport</td>
<td>June 2003</td>
</tr>
<tr>
<td>6-03</td>
<td>Sigma Convergence Versus Beta Convergence: Evidence from U.S. County-Level Data</td>
<td>Andrew T. Young, Matthew J. Higgins, and Daniel Levy</td>
<td>September 2003</td>
</tr>
<tr>
<td>7-03</td>
<td>Managerial and Customer Costs of Price Adjustment: Direct Evidence from Industrial Markets</td>
<td>Mark J. Zbaracki, Mark Ritson, Daniel Levy, Shantanu Dutta, and Mark Bergen</td>
<td>September 2003</td>
</tr>
<tr>
<td>8-03</td>
<td>First and Second Best Voting Rules in Committees</td>
<td>Ruth Ben-Yashar and Igal Milchtaich</td>
<td>October 2003</td>
</tr>
<tr>
<td>9-03</td>
<td>Shattering the Myth of Costless Price Changes: Emerging Perspectives on Dynamic Pricing</td>
<td>Mark Bergen, Shantanu Dutta, Daniel Levy, Mark Ritson, and Mark J. Zbaracki</td>
<td>November 2003</td>
</tr>
<tr>
<td>1-04</td>
<td>Heterogeneity in Convergence Rates and Income Determination across U.S. States: Evidence from County-Level Data</td>
<td>Andrew T. Young, Matthew J. Higgins, and Daniel Levy</td>
<td>January 2004</td>
</tr>
<tr>
<td>2-04</td>
<td>“The Real Thing:” Nominal Price Rigidity of the Nickel Coke, 1886-1959</td>
<td>Daniel Levy and Andrew T. Young</td>
<td>February 2004</td>
</tr>
<tr>
<td>3-04</td>
<td>Network Effects and the Dynamics of Migration and Inequality: Theory and Evidence from Mexico</td>
<td>David Mckenzie and Hillel Rapoport</td>
<td>March 2004</td>
</tr>
<tr>
<td>4-04</td>
<td>Migration Selectivity and the Evolution of Spatial Inequality</td>
<td>Ravi Kanbur and Hillel Rapoport</td>
<td>March 2004</td>
</tr>
<tr>
<td>5-04</td>
<td>Many Types of Human Capital and Many Roles in U.S. Growth: Evidence from County-Level Educational Attainment Data</td>
<td>Andrew T. Young, Daniel Levy and Matthew J. Higgins</td>
<td>March 2004</td>
</tr>
</tbody>
</table>
6-04 When Little Things Mean a Lot: On the Inefficiency of Item Pricing Laws

7-04 Comparative Statics of Altruism and Spite
Igal Milchtaich, June 2004.

8-04 Asymmetric Price Adjustment in the Small: An Implication of Rational Inattention

1-05 Private Label Price Rigidity during Holiday Periods

2-05 Asymmetric Wholesale Pricing: Theory and Evidence

3-05 Beyond the Cost of Price Adjustment: Investments in Pricing Capital

4-05 Explicit Evidence on an Implicit Contract
Andrew T. Young and Daniel Levy, June 2005.

5-05 Popular Perceptions and Political Economy in the Contrived World of Harry Potter

6-05 Growth and Convergence across the US: Evidence from County-Level Data (revised version)

1-06 Sigma Convergence Versus Beta Convergence: Evidence from U.S. County-Level Data (revised version)
Andrew T. Young, Matthew J. Higgins, and Daniel Levy, June 2006.

2-06 Price Rigidity and Flexibility: Recent Theoretical Developments

3-06 The Anatomy of a Price Cut: Discovering Organizational Sources of the Costs of Price Adjustment
4-06 **Holiday Non-Price Rigidity and Cost of Adjustment**
Georg Müller, Mark Bergen, Shantanu Dutta, and Daniel Levy.
September 2006.

2008-01 **Weighted Congestion Games With Separable Preferences**
Igal Milchtaich, October 2008.

2008-02 **Federal, State, and Local Governments: Evaluating their Separate Roles in US Growth**

2008-03 **Political Profit and the Invention of Modern Currency**
Dror Goldberg, December 2008.

2008-04 **Static Stability in Games**
Igal Milchtaich, December 2008.

2008-05 **Comparative Statics of Altruism and Spite**
Igal Milchtaich, December 2008.

2008-06 **Abortion and Human Capital Accumulation: A Contribution to the Understanding of the Gender Gap in Education**

2008-07 **Involuntary Integration in Public Education, Fertility and Human Capital**

2009-01 **Inter-Ethnic Redistribution and Human Capital Investments**
Leonid V. Azarnert, January 2009.

2009-02 **Group Specific Public Goods, Orchestration of Interest Groups and Free Riding**
Gil S. Epstein and Yosef Mealem, January 2009.

2009-03 **Holiday Price Rigidity and Cost of Price Adjustment**

2009-04 **Legal Tender**
Dror Goldberg, April 2009.

2009-05 **The Tax-Foundation Theory of Fiat Money**
Dror Goldberg, April 2009.
2009-06 The Inventions and Diffusion of Hyperinflatable Currency
 Dror Goldberg, April 2009.
2009-07 The Rise and Fall of America’s First Bank
 Dror Goldberg, April 2009.
2009-08 Judicial Independence and the Validity of Controverted Elections
 Raphaël Franck, April 2009.
2009-09 A General Index of Inherent Risk
 Adi Schnytzer and Sara Westreich, April 2009.
2009-10 Measuring the Extent of Inside Trading in Horse Betting Markets
 Adi Schnytzer, Martien Lamers and Vasiliki Makropoulou, April 2009.
2009-11 The Impact of Insider Trading on Forecasting in a Bookmakers’ Horse
 Betting Market
 Adi Schnytzer, Martien Lamers and Vasiliki Makropoulou, April 2009.
2009-12 Foreign Aid, Fertility and Population Growth: Evidence from Africa
 Leonid V. Azarnert, April 2009.
2009-13 A Reevaluation of the Role of Family in Immigrants’ Labor Market
 Activity: Evidence from a Comparison of Single and Married Immigrants
2009-14 The Efficient and Fair Approval of “Multiple-Cost–Single-Benefit”
 Projects Under Unilateral Information
 Nava Kahanaa, Yosef Mealem and Shmuel Nitzan, May 2009.
2009-15 Après nous le Déluge: Fertility and the Intensity of Struggle against
 Immigration
 Leonid V. Azarnert, June 2009.
2009-16 Is Specialization Desirable in Committee Decision Making?
2009-17 Framing-Based Choice: A Model of Decision-Making Under Risk
 Kobi Kriesler and Shmuel Nitzan, June 2009.
2009-18 Demystifying the ‘Metric Approach to Social Compromise with the
 Unanimity Criterion’
 Shmuel Nitzan, June 2009.
2009-19 **On the Robustness of Brain Gain Estimates**
Michel Beine, Frédéric Docquier and Hillel Rapoport, July 2009.

2009-20 **Wage Mobility in Israel: The Effect of Sectoral Concentration**
Ana Rute Cardoso, Shoshana Neuman and Adrian Ziderman, July 2009.

Shoshana Neuman and Adrian Ziderman, July 2009.

2009-22 **National Aggregates and Individual Disaffiliation: An International Study**

2009-23 **The Big Carrot: High-Stakes Incentives Revisited**

2009-24 **The Why, When and How of Immigration Amnesties**
Gil S. Epstein and Avi Weiss, September 2009.

2009-25 **Documenting the Brain Drain of «la Crème de la Crème»: Three Case-Studies on International Migration at the Upper Tail of the Education Distribution**
Frédéric Docquier and Hillel Rapoport, October 2009.

2009-26 **Remittances and the Brain Drain Revisited: The Microdata Show That More Educated Migrants Remit More**
Albert Bollard, David McKenzie, Melanie Morten and Hillel Rapoport, October 2009.

2009-27 **Implementability of Correlated and Communication Equilibrium Outcomes in Incomplete Information Games**
Igal Milchtaich, November 2009.

2010-01 **The Ultimatum Game and Expected Utility Maximization – In View of Attachment Theory**
Shaul Almakias and Avi Weiss, January 2010.

2010-02 **A Model of Fault Allocation in Contract Law – Moving From Dividing Liability to Dividing Costs**
Osnat Jacobi and Avi Weiss, January 2010.
2010-03 Coordination and Critical Mass in a Network Market: An Experimental Investigation

2010-04 Immigration, fertility and human capital: A model of economic decline of the West
Leonid V. Azarnert, April 2010.

2010-05 Is Skilled Immigration Always Good for Growth in the Receiving Economy?
Leonid V. Azarnert, April 2010.

2010-06 The Effect of Limited Search Ability on the Quality of Competitive Rent-Seeking Clubs

2010-07 Condorcet vs. Borda in Light of a Dual Majoritarian Approach
Eyal Baharad and Shmuel Nitzan, April 2010.

2010-08 Prize Sharing in Collective Contests
Shmuel Nitzan and Kaoru Ueda, April 2010.

2010-09 Network Topology and Equilibrium Existence in Weighted Network Congestion Games
Igal Milchtaich, May 2010.

2010-10 The Evolution of Secularization: Cultural Transmission, Religion and Fertility Theory, Simulations and Evidence

2010-11 The Economics of Collective Brands

2010-12 Interactions Between Local and Migrant Workers at the Workplace
Gil S. Epstein and Yosef Mealem, August 2010.

2010-13 A Political Economy of the Immigrant Assimilation: Internal Dynamics
Gil S. Epstein and Ira N. Gang, August 2010.

2010-14 Attitudes to Risk and Roulette
Adi Schnytzer and Sara Westreich, August 2010.
2010-15 Life Satisfaction and Income Inequality
Paolo Verme, August 2010.

2010-16 The Poverty Reduction Capacity of Private and Public Transfers in Transition
Paolo Verme, August 2010.