
Milchtaich, Igal

Working Paper

Implementability of correlated and communication
equilibrium outcomes in incomplete information games

Working Paper, No. 2009-27

Provided in Cooperation with:
Department of Economics, Bar-Ilan University

Suggested Citation: Milchtaich, Igal (2009) : Implementability of correlated and communication
equilibrium outcomes in incomplete information games, Working Paper, No. 2009-27, Bar-Ilan
University, Department of Economics, Ramat-Gan

This Version is available at:
https://hdl.handle.net/10419/96036

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/96036
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Implementability of Correlated and 
Communication Equilibrium 
Outcomes in Incomplete 
Information Games 

Igal Milchtaich 

Bar-Ilan University, Ramat Gan 52900, Israel 
milchti@mail.biu.ac.il 
http://faculty.biu.ac.il/~milchti 

November 2009 

Abstract 

In a correlated equilibrium, the players’ choice of actions is affected by random, correlated 

messages that they receive from an outside source, or mechanism. This allows for more 

equilibrium outcomes than without such messages (pure-strategy equilibrium) or with 

statistically independent ones (mixed-strategy equilibrium). In an incomplete information 

game, the messages may also convey information about the types of the other players, 

either because they reflect extraneous events that affect the types (correlated equilibrium) 

or because the players themselves report their types to the mechanism (communication 

equilibrium). Thus, mechanisms can be classified by the connections between the messages 

that the players receive and their own and the other players’ types, the dependence or 

independence of the messages, and whether randomness is involved. These properties may 

affect the achievable equilibrium outcomes, i.e., the payoffs and joint distributions of type 

and action profiles. Whereas for complete information games there are only three classes of 

equilibrium outcomes, with incomplete information the number is 14–15 for correlated 

equilibria and 15–17 for communication equilibria. Each class is characterized by the 

properties of the mechanisms that implement its members. The majority of these classes 

have not been described before. JEL Classification: C72. 

Keywords: Correlated equilibrium; Communication equilibrium; Incomplete information; 

Bayesian games; Mechanism; Correlation device; Implementation  

1 Introduction 
A pure-strategy Nash equilibrium in a strategic complete information game represents a 

possible outcome for rational players who do not randomize over actions. Adding the 

possibility to randomize extends the set of equilibrium outcomes by facilitating mixed-

strategy equilibria. For a correlated equilibrium, independent randomization devices are not 

sufficient – an external correlation device is required. Thus the set of feasible equilibrium 

outcomes expands when more general mechanisms are allowed. A similar relation between 

equilibrium outcomes and mechanisms holds for incomplete information games. However, 

the relation in this case is more complex than for complete information games. This is 
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because the set of equilibrium outcomes implementable by a mechanism depends on the 

extent to which its output reflects the players’ types. Implementability may depend, for 

example, on whether the messages that the mechanism sends to the players provide them 

with information about the other players’ types, and on whether each message depends on 

the receiving player’s type. The former affects the mechanism’s ability to implement type-

dependent coordinated actions, and the latter affects its ability to transmit information 

selectively, that is, to certain types of players only.  

A mechanism may facilitate type-dependent coordinated actions if it is affected by factors 

that also affect the players’ types. For example, whether the economy is booming of 

slumping may affect both the types of firms that enter an auction and the various 

macroeconomic indicators (e.g., the CPI) that these firms factor in when deciding on their 

respective bids. By contrast, for selectivity, “knowledge” of the players’ types is not 

necessary: type-dependent perceptual abilities may suffice. For example, different 

recommendations may be issued to unilingual English and French readers simply by handing 

out a bilingual sheet with English and French texts that do not match. 

A straightforward way to implement type-dependent coordinated actions is simply to ask 

the players to report their types. However, for this to work, the actions have to be such that 

truthful type reports are incentive compatible. This requirement distinguishes 

communication equilibrium from correlated equilibrium. The latter only requires the actions 

to be incentive compatible, and it involves only one-way communication: messages from the 

mechanism to the players.  

The main objective of this paper is to chart the connections between properties of 

mechanisms and the kinds of correlated and communication equilibrium outcomes 

implementable by them in incomplete information games. These connections form a rich 

and intricate structure, and they are not always obvious or perfectly intuitive. The subject 

matter is quite different – both in substance and in the relevant techniques – from issues 

studied in the context of complete information games. It has some similarity to the problem 

of implementability of social choice functions studied in mechanism-design theory, which is 

reflected by the similar terminology. However, implementability of correlated and 

communication equilibrium outcomes is not a special case of implementability of social 

choice functions (see also Kar et al., 2008).   

A second, auxiliary objective is to present a single framework that accommodates the 

majority of the previously described varieties of correlated strategies, correlated equilibria 

and communication equilibria in incomplete information games, in that each variety 

corresponds to a particular set of structural limitations on the allowed mechanisms. The 

limitations affect the mechanisms’ ability to orchestrate certain joint actions, make the 

actions incentive incompatible, or elicit truthful type reports.   

The paper’s plan of attack is to separate the implementability problem into three related 

problems. The first one is the implementability of correlated strategy distributions. Here, 

only the joint distribution of the players’ types and actions matters, and payoffs are 

irrelevant. The second problem, which does take payoffs and incentive compatibility into 

account, is the implementability of correlated and communication equilibrium distributions. 
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The third and ultimate problem is the implementability of payoff vectors. The payoffs are 

uniquely determined by the joint distribution of types and actions, but not conversely. The 

advantages of this three-part approach in comparison with directly addressing the third 

problem are that it makes certain issues significantly more manageable and provides insights 

about the roots of non-implementability where it occurs.  

The presentation of the results is divided into two parts. Following the layout of the basic 

framework in Section 2, Section 3 gives an overview of the results, mainly in the form of 

Hesse diagrams that present the different classes of correlated strategy outcomes, 

correlated equilibrium outcomes and communication equilibrium outcomes and the 

connections between the various classes. Section 3 also includes several examples that 

illustrate the results and the various issues involved. The subsequent four sections give the 

details and the proofs, and Section 8 summarizes.  

1.1 Related literature 
Aumann (1987) demonstrated that correlated equilibrium can be viewed as an expression of 

Bayesian rationality. A rational player’s choice of action reflects his knowledge of the state of 

the world. The state includes a specification of the knowledge, and hence also the actions, of 

the other players. Bayesian rationality means that each player’s action is a best reply to what 

he knows about the others’ actions. Aumann’s paper only concerned complete information 

games. Types of players and type-dependent payoffs were not part of the setting. However, 

since the state-space formulation is a standard model for Bayesian games, the paper pointed 

to the logical next step, which was to merge the two settings by allowing the states of the 

world to determine the players’ types as well as any additional information they have that 

may be used for choosing an action. Crucially, this additional information is not specified by 

the game – it is part of the solution concept.   

Two models of this kind were proposed by Cotter (1991, 1994). They differ from one another 

in the restrictions they put on the players’ information. In a strategy correlated equilibrium 

(Cotter, 1991), the additional information takes the form of random messages that the 

players receive from an outside correlation mechanism, which is ignorant of their types. A 

correlated strategy with such a mechanism is a rule that maps the message each player 

receives to a strategy for that player, i.e., a prescription of a pure or randomized action for 

each of the player’s types. The equilibrium condition is that acting accordingly is incentive 

compatible in that no player can increase his expected payoff by associating different 

strategies with the messages he receives. A type correlated equilibrium (Cotter, 1994; see 

also Samuelson and Zhang, 1989) can be described as a strategy correlated equilibrium in a 

version of the game in which each type of each player is viewed as an independent agent. 

This means that the mechanism sends to each player not a complete strategy but only the 

action it prescribes to the player’s actual type. The message may thus depend on the 

player’s type, unlike in a strategy correlated equilibrium, but it is still unaffected by the other 

players’ types. Consequently, the player’s action is conditionally independent of the other 

players’ types, given the player’s own type. Cotter stated that this so-called conditional 

independence property of the joint distribution of types and actions is characteristic of type 

correlated equilibria, in that any distribution with this property can be implemented by a 
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mechanism as above. However, it was later shown that this assertion is incorrect 

(Milchtaich, 2004, Example 6).  

A different extension of correlated equilibrium to games with incomplete information is 

communication, or mediated, equilibrium (Myerson, 1994). This solution concept differs 

from those considered above in that communication is two-way. The players first send 

private messages to, and then receive such messages from, a particular mechanism, which 

thus serves as a mediator as well as a correlation device. According to the revelation 

principle (see Myerson, 1994), without loss of generality the messages sent by the players to 

the mediator may be assumed type reports. The message that each player gets from the 

mediator indicates a particular action for that player. This mechanism in required to be 

incentive compatible in that it is in each player’s best interest to report his type honestly and 

take the indicated action if all the others do the same.  

The most comprehensive account to date of correlated and communication equilibria in 

games with incomplete information is Forges’ (1993) paper, which compared strategy 

correlated equilibrium, type (or agent normal form) correlated equilibrium, communication 

equilibrium, and ‘Bayesian solution’. (A fifth solution concept considered in the paper 

concerns hierarchies of beliefs.) Bayesian solution is a very general solution concept, which 

includes strategy and type correlated equilibria as special cases. It extends an incomplete 

information game by introducing a state space in which several states may correspond to a 

single type profile. This allows players to have partial or complete information about the 

other players’ types as well as about outside events. As in Aumann’s (1987) model, the 

information structure is complemented by a mapping from states to action profiles that is 

required to satisfy the obvious incentive compatibility condition. A Bayesian solution may be 

implemented by an omniscient mediator, who knows the players’ types. In this, it differs 

from a communication equilibrium, in which the mediator totally relies on the players’ type 

reports.  

The messages that the players receive from the mediator are part of the solution concept, 

and are distinct from any signals that are part of the game itself, which define the players’ 

types. The potential impact of the former depends on the extent to which the latter (i.e., the 

players’ types) are dependant. For example, with perfectly correlated types, the players 

already know each other’s type when they receive the mediator’s messages, which can 

therefore only help them coordinate their actions. Conversely, if the types are independent, 

the mediator’s messages may also inform players about the other players’ types. However, 

this is so only if the solution concept allows the messages to depend on these types. 

Therefore, depending on the solution concept, garbling, or randomly perturbing, in a 

particular way the signals that the players receive as part of the game may or may not 

change the set of equilibrium outcomes.1 Lehrer et al. (2006b) identified the kinds of 

garbling that do not affect the equilibrium outcomes for three kinds of correlated 

equilibrium in two-player Bayesian games: mixed (Nash) equilibrium, type correlated 

equilibrium, and a special kind of Bayesian solution (called belief invariant Bayesian solution 

                                                            
1 This assumes that the players’ types do not directly affect the payoffs but only reflect certain 
“hidden variables” that do so, and therefore garbling the signals has no direct effect on payoffs.  
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by Forges, 2006), which satisfies a condition similar to the conditional independence 

property. They showed, for example, that garbing has no effect on mixed equilibria, 

regardless of the payoff functions, if and only if it is performed independently for each 

player, without taking into account to the other player’s signal.   

Identification of information types (Milchtaich, 2004) is a special kind of garbling. It removes 

distinctions between player types that are interchangeable in terms of their effect on the 

payoffs and differ, say, only in what the player knows about the opponents’ types. 

Identification of information types may transform one kind of equilibrium into another. For 

example, a pure (-strategy) equilibrium (with different actions for different information 

types) may become a mixed equilibrium (with different possible actions for the single type 

that results from the identification). Thus, the collection of pure equilibria, for example, is 

not closed under identification of information types. The same is true for more general 

solution concepts like type correlated equilibrium, since when information types are 

identified, the conditional independence property may cease to hold (Milchtaich, 2004, 

Examples 7). In fact, the narrowest extension of pure equilibrium that is closed under 

identification of information types is the notion of correlated equilibrium used in the present 

paper (Milchtaich, 2004, Propositions 4 and 5), which is similar to Forges’ (1993, 2006) 

Bayesian solution, or global equilibrium in the terminology of Lehrer et al. (2006b). Thus, in 

this respect at least, this solution concept is not excessively broad.  

2 Preliminaries 

2.1 Bayesian games 
An 𝑛-player (finite) pre-Bayesian game is a function 𝑢 =  𝑢1 , 𝑢2 , … , 𝑢𝑛 : 𝑇 × 𝐴 → ℜ𝑛 , where 

𝑇 = 𝑇1 × 𝑇2 × ⋯ × 𝑇𝑛  and 𝐴 = 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛  are each the Cartesian product of 𝑛 finite 

sets and ℜ is the real line. The interpretation is that 𝑁 = {1,2, … , 𝑛} is the set of players; for 

each player 𝑖, the sets 𝑇𝑖  and 𝐴𝑖  and the function 𝑢𝑖  are respectively the type space, action 

space and payoff function of player 𝑖; and for each type profile 𝑡 =  𝑡1 , 𝑡2 , … , 𝑡𝑛 ∈ 𝑇 and 

action profile 𝑎 =  𝑎1 , 𝑎2 , … , 𝑎𝑛 ∈ 𝐴, 𝑢(𝑡, 𝑎) is the payoff vector. A more general possibility 

is that the type of one of the players represents the state of nature, i.e., variables that affect 

the players’ payoffs but are unknown to them. Such a “player” does not take any action, so 

that his action space must be a singleton.   

A pure strategy for a player 𝑖 is a function from 𝑖’s type space to his action space, i.e., an 

element of 𝐴𝑖
𝑇𝑖 . A pure-strategy profile is an assignment of a pure strategy to each player, 

i.e., an element of 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯ × 𝐴𝑛
𝑇𝑛 . Using a fixed indexing of the elements of the type 

space of each player 𝑖, 𝑇𝑖 = {𝑡𝑖
1 , 𝑡𝑖

2 , … }, a pure-strategy profile can be written as 

(𝑎1
1 , 𝑎1

2 , … ; 𝑎2
1 , 𝑎2

2 , … ; … ; 𝑎𝑛
1 , 𝑎𝑛

2 , … ). For each player 𝑖, 𝑎𝑖
1 is the action prescribed to 𝑖’s first 

type 𝑡𝑖
1, 𝑎𝑖

2 is the action prescribed to his second type 𝑡𝑖
2, and so on.  

A pre-Bayesian game becomes a (finite) Bayesian game when it is coupled with a specified 

probability measure on 𝑇, which assigns a probability to each type profile 𝑡. This measure 𝜂𝑇  

gives the distribution of type profiles in the game. Its support, supp(𝜂𝑇), which is the 

collection of all type profiles 𝑡 that have positive probability, may be a proper subset of 𝑇. 
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However, it is assumed (essentially without loss of generality) that every type 𝑡𝑖  of every 

player 𝑖 is supported, that is,  𝑡𝑖 , 𝑡−𝑖 ∈ supp(𝜂𝑇) for some 𝑡−𝑖 . The measure 𝜂𝑇  can always 

be expressed as the distribution of a random type profile, which is a random variable2 

𝒕 =  𝒕1 , 𝒕2 , … , 𝒕𝑛  with values in 𝑇 such that 

𝜂𝑇  𝑡  = Pr 𝒕 = 𝑡 , 𝑡 ∈ 𝑇. 

For example, a random type profile can be constructed by restricting the measure 𝜂𝑇  to its 

support and defining 𝒕 as the identity map on supp(𝜂𝑇). It does not normally matter which 

random type profile is used to express a particular distribution of type profiles, and in this 

paper the symbol 𝒕 and the definite article are used for referring to any random type profile.  

For each player 𝑖, the conditional distribution of 𝒕, given the player’s type 𝒕𝑖 , is interpreted 

as the posterior beliefs of player 𝑖 about the players’ types. The interpretation entails that 

each player 𝑖 knows his own type 𝑡𝑖  but does not necessarily know the types of the other 

players, which constitute the partial type profile 𝑡−𝑖 =  𝑡1 , … , 𝑡𝑖−1 , 𝑡𝑖+1 , … , 𝑡𝑛 .   

2.2 Mechanisms 
A mechanism for a Bayesian game is an extraneous source of messages3, which the players 

receive before they have to choose their actions. The messages that each player 𝑖 can 

receive are elements of some finite set 𝑀𝑖 , the player’s (received) message space. For each 

type profile 𝑡, the profile of messages is given by a random variable 

𝒎 𝑡 =  𝒎1 𝑡 , 𝒎2 𝑡 , … , 𝒎𝑛 𝑡   with values in the product set 𝑀 = 𝑀1 × 𝑀2 × ⋯ × 𝑀𝑛 . 

Thus, a mechanism is specified by a random variable 𝒎 =  𝒎 𝑡  𝑡∈𝑇  (specifically, a random 

vector with entries indexed by the type profiles, which are themselves random 𝑛-tuples) 

that is independent of the random type profile 𝒕. The independence assumption entails that, 

given the type profile, any residual randomness in the messages is extraneous to the game 

(see Section 2.2.1 for further discussion of this point). However, this does not mean that the 

messages themselves are unrelated to the type profile. For example, if the mechanism is an 

outside observer who is capable of finding out the players’ types, the messages may convey 

this information:  

𝒎𝑖 𝑡 = 𝑡, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇. 

In this example, the mechanism is purely a source of information about the other players’ 

types. Other mechanisms may serve primarily or exclusively as randomization devices, and 

convey little or no information about the types. A finer, more exact classification of 

mechanisms is facilitated by the following list of properties. Each property is expressed by a 

condition that the messages sent by the mechanism are required to satisfy for every player 𝑖 

                                                            
2 A random variable, in this work, is any function from a finite probability space, in which each point 
has positive probability, to an arbitrary set. Random variables are denoted by boldface letters and 
their arguments are always suppressed. Since the range of a function as above is finite, it would be 
possible in principle to restrict attention to real-valued random variables. However, in practice such a 
restriction would be inconvenient.  
3 The term ‘messages’ is used rather than ‘signals’ to emphasize the assumption that the sending 
mechanism is part of a solution concept rather than the game. ‘Signals’ in an incomplete information 
game may be synonymous with the players’ types, which are part of the game.  

(1) 
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and pair of type profiles 𝑡 = (𝑡𝑖 , 𝑡−𝑖) and 𝑡′ = (𝑡𝑖
′ , 𝑡−𝑖

′ ). The symbol =
𝑑

 denotes equality in 

distribution. 

(𝑆) Player 𝑖’s type does not affect the message he receives:  

𝒎𝑖 𝑡 = 𝒎𝑖 𝑡𝑖
′ , 𝑡−𝑖 . 

(𝑆 ) Player 𝑖’s type does not affect the distribution of the message he receives: 

𝒎𝑖 𝑡 =
𝑑

𝒎𝑖 𝑡𝑖
′ , 𝑡−𝑖 . 

(𝑂) The other players’ types do not affect the message player 𝑖 receives:  

𝒎𝑖 𝑡 = 𝒎𝑖(𝑡𝑖 , 𝑡−𝑖
′ ). 

(𝑂 ) The other players’ types do not affect the distribution of the message: 

𝒎𝑖 𝑡 =
𝑑

𝒎𝑖(𝑡𝑖 , 𝑡−𝑖
′ ). 

(𝐷) The messages are non-random:  

𝒎 𝑡  has a degenerate distribution.4 

(𝐼) The messages that different players receive are (statistically) independent:  

 𝒎𝑗  𝑡  𝑗∈𝑁
 are independent. 

Conditions 𝑆  and 𝑂  require equality between two distributions, for specified 𝑡 and 𝑡′ . Since 

the players’ types are actually random, this translates into equality between conditional 

distributions. Specifically, 𝑆  entails that the message that player 𝑖 receives is conditionally 

independent of his type 𝒕𝑖 , given the other players’ types 𝒕−𝑖 . In property 𝑂 , 𝒕𝑖  and 𝒕−𝑖  are 

interchanged.  

Equality between distributions is a weaker requirement than equality between the random 

variables themselves, as required by properties 𝑆, 𝑂 and 𝐷.5 The latter means that the 

random variables are equal pointwise (equivalently, with probability 1). The distinction 

between equality in distribution and pointwise equality does not seem to have received 

sufficient attention in the existing literature on games with incomplete information. This 

paper shows that it has significant implications for correlated strategies and equilibria.  

                                                            
4 A distribution is degenerate if all the probabilities are 0 or 1. 
5 For example, if a device satisfies 𝑂  and the types of all but two players are changed, the distributions 
of the messages that these two players receive do not change. However, the joint distribution of the 
messages may change. For example, uncorrelated messages may become correlated. By contrast, 𝑂 
would imply that the joint distribution does not change when the other players’ types change. A 

subtler – but highly consequential – difference between 𝑂 and 𝑂  also applies to two-player games. 
See footnote 15. 

(2) 

(3) 

(4) 
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2.2.1 Independence lemma and the canonical mechanism 

The definition of mechanism in effect assumes that the randomness or uncertainty regarding 

the messages that the players receive has two independent potential sources: the inherent 

randomness of the type profile, which the messages may reflect, and residual randomness, 

which persists also with a specified type profile. The following lemma shows that this 

independence assumption involves no loss of generality. Any joint distribution of types and 

messages can be produced by “mixing” the random type profile 𝒕 with a random variable of 

the form 𝒎 =  𝒎 𝑡  𝑡∈𝑇  that is independent of 𝒕. The outcome of the mixture is the 

random profile of messages 𝒎 𝒕 , the value of which is determined by first determining the 

realization of 𝒕, which is a type profile 𝑡, and then determining the realization of 𝒎 𝑡 .6   

Lemma 1. Let 𝑀 = 𝑀1 × 𝑀2 × ⋯ × 𝑀𝑛  be any finite product set and 𝜂 any probability 

measure on 𝑇 × 𝑀 whose marginal on 𝑇 is equal to the distribution of type profiles 𝜂𝑇 . 

There exists a random variable 𝒎 =  𝒎 𝑡  𝑡∈𝑇  that is independent of the random type 

profile 𝒕 such that the joint distribution of 𝒕 and 𝒎 𝒕  is equal to 𝜂.  

Proof. For any 𝜂 as above, it is possible to construct for each type profile 𝑡 a random variable 

𝒎 𝑡 =  𝒎1 𝑡 , 𝒎2 𝑡 , … , 𝒎𝑛 𝑡   with values in 𝑀 such that the following requirements 

are met. First,  

 𝒎 𝑡  𝑡∈𝑇   are independent, 

and are collectively independent of 𝒕. Second, for 𝑡 ∈ supp 𝜂𝑇 , the distribution of 𝒎 𝑡  

is the probability measure on 𝑀 that assigns to each element 𝑚 the (conditional) probability   

𝜂   𝑡, 𝑚   

𝜂𝑇  𝑡  
. 

Third, 

for 𝑡 ∉ supp 𝜂𝑇 , condition (4) holds, and in addition, 

for every 𝑖 ∈ 𝑁, (2) holds for some 𝑡′ ∈ 𝑇 with  𝑡𝑖 , 𝑡−𝑖
′  ∈ supp 𝜂𝑇 . 

It follows from the first and second requirements that, for every 𝑡 ∈ 𝑇 and 𝑚 ∈ 𝑀,  

Pr(𝒕 = 𝑡, 𝒎 𝒕 = 𝑚) = 𝜂𝑇  𝑡  Pr 𝒎 𝑡 = 𝑚 = 𝜂   𝑡, 𝑚   . 

Thus, the joint distribution of 𝒕 and 𝒎 𝒕  is equal to 𝜂. ∎ 

The proof of Lemma 1 details the construction of a specific mechanism 𝒎 =  𝒎 𝑡  𝑡∈𝑇  for 

any given measure 𝜂 as in the lemma. This canonical mechanism7 is such that the joint 

distribution of 𝒕 and 𝒎 𝒕  is equal to 𝜂. In addition, it has the two special properties (5) and 

                                                            
6 An equivalent definition of the random profile of messages is 𝒎 𝒕 = 𝜌 𝒕, 𝒎 , where the auxiliary 
function 𝜌: 𝑇 × 𝑀𝑇 → 𝑀 is defined by 𝜌 𝑡′ ,  𝑚 𝑡  𝑡∈𝑇 = 𝑚 𝑡′ , i.e., it is the projection of the second 
argument on the coordinate specified by the first one. This function is thus the “vessel” in which the 
two independent ingredients 𝒕 and 𝒎 are mixed to produce the actual messages to the players. 
7 The proof of the lemma allows some latitude in the construction, which means that the canonical 
device may actually have more than one version. However, differences between versions are 
inconsequential.  

(5) 

(6) 
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(6), which may seem purely technical. The first property (5) concerns relations between 

different type profiles, which by definition cannot coexist (since only one type profile is 

realized), and the second one (6) concerns type profiles 𝑡 that cannot actually occur (that is, 

Pr 𝒕 = 𝑡 = 0). However, property (5) is quite potent in that it essentially prevents the 

mechanism from satisfying 𝑆 or 𝑂, unless it also satisfies 𝐷. This is because two random 

variables that are equal and independent necessarily have degenerate distributions. Mainly 

because of this limitation, it is not possible to restrict attention to canonical mechanisms. 

They are, however, quite useful technical constructs. 

2.3 Correlated strategies 
With a specified mechanism, a correlated strategy 𝜎 = (𝜎1 , 𝜎2 , … , 𝜎𝑛) in an 𝑛-player 

Bayesian game specifies the action 𝑎𝑖  that each player 𝑖 takes as a function 𝜎𝑖 : 𝑇𝑖 × 𝑀𝑖 → 𝐴𝑖  

of the player’s type 𝑡𝑖  and the message he receives 𝑚𝑖 . Thus, 𝑎𝑖 =  𝜎𝑖(𝑡𝑖 , 𝑚𝑖).8 As indicated, 

the messages are part of the specification of the correlated strategy rather than the game. 

Their (potential) randomness and that of the types means that the actions are also random. 

The random action profile corresponding to a correlated strategy 𝜎 with a mechanism 

𝒎 =  𝒎 𝑡  𝑡∈𝑇  is the random variable 𝒂 =  𝒂1 , 𝒂2 , … , 𝒂𝑛  defined by 

𝒂𝑖 = 𝜎𝑖 𝒕𝑖 , 𝒎𝑖 𝒕  , 𝑖 ∈ 𝑁. 

Correlated strategies include several other kinds of strategies as special cases. If the 

message that each player receives is unaffected by the player’s own type or the other’ types 

and is also non-random, i.e., if the mechanism satisfies 𝑆, 𝑂 and 𝐷 (which effectively means 

that the player does not receive any messages at all), then, for some fixed 𝑚1 , 𝑚2 , … , 𝑚𝑛 , 

𝒂𝑖 = 𝜎𝑖 𝒕𝑖 , 𝑚𝑖 , 𝑖 ∈ 𝑁. 

In this case, for each player 𝑖, 𝜎𝑖  associates a (deterministic) action 𝑎𝑖  with each type 𝑡𝑖 , 

which means that the correlated strategy is effectively a pure-strategy profile and may be 

referred to as such. A more general case is that of a mixed-strategy profile, which is defined 

as a correlated strategy with a mechanism that satisfies 𝑆, 𝑂 and 𝐼. These properties of the 

mechanism mean that the messages are independent and equal to 

𝒎1 𝑡′ , 𝒎2 𝑡′ , … , 𝒎𝑛 𝑡′ , where 𝑡′ is any fixed type profile, and the random action profile 

satisfies  

𝒂 =  𝜎1 𝒕1 , 𝒎1 𝑡′  , 𝜎2 𝒕2 , 𝒎2 𝑡′  , … , 𝜎𝑛 𝒕𝑛 , 𝒎𝑛 𝑡′   . 

This is effectively the same as (and it can be implemented by) private randomization over 

                                                            
8 By assumption, the specification of the actions is deterministic: randomized actions are not allowed. 
This assumption involves no loss of generality, and in particular, it does not exclude mixed strategies. 
It just means that even private randomizations are viewed as parts of a single large device. 
Alternatively, randomization may be relegated to the device from which the players receive 
messages. Specifically, a player-specific random number may be appended to each message, such 
that these 𝑛 random numbers are independent. Clearly, a device modified in such a way does not 

generally satisfy 𝐷. However, the modification has no effect on properties 𝑆, 𝑆 , 𝑂, 𝑂  or 𝐼. 

(7) 

(8) 
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pure strategies independently for each player.9 An even more general case is that of a 

random (pure-strategy) profile, which is defined as a correlated strategy with a mechanism 

that satisfies 𝑆 and 𝑂. The actions can still be presented as in (8), but since property 𝐼 is not 

assumed to hold, the randomization cannot generally be emulated by independent private 

randomizations. 

For a specified correlated strategy, the joint distribution of the random type profile 𝒕 and 

actions 𝒂 (the latter given by (7)) is called the correlated strategy distribution (CSD). A CSD is 

said to be implementable by a particular mechanism (which implements the distribution) if 

there is some correlated strategy with that mechanism that gives the distribution. A CSD is a 

pure-strategy distribution, mixed-strategy distribution or random-profile distribution if it is 

implementable by some mechanism 𝒎 with properties 𝑆, 𝑂 and 𝐷, properties 𝑆, 𝑂 and 𝐼, or 

properties 𝑆 and 𝑂, respectively. 

Every CSD is a probability measure on 𝑇 × 𝐴 whose marginal on 𝑇 is 𝜂𝑇 .10 Hence, it has a 

canonical mechanism 𝒎 =  𝒎 𝑡  𝑡∈𝑇  (see Section 2.2.1), in which the message space 𝑀𝑖  of 

each player 𝑖 is his action space 𝐴𝑖 . The interpretation is that the canonical mechanism 

explicitly tells each player which action to take. The canonical strategy 𝜎 with this 

mechanism, which is defined by  

𝜎𝑖 𝑡𝑖 , 𝑚𝑖 = 𝑚𝑖 , 𝑖 ∈ 𝑁. 

simply instructs the players to obey. The corresponding random action profile 𝒂 satisfies  

𝒂 =  𝜎1 𝒕1 , 𝒎1 𝒕  , 𝜎2 𝒕2 , 𝒎2 𝒕  , … , 𝜎𝑛 𝒕𝑛 , 𝒎𝑛 𝒕   = 𝒎 𝒕 . 

Obviously, every probability measure 𝜂 on 𝑇 × 𝐴 with the marginal 𝜂𝑇  is implementable 

by its canonical mechanism, which proves that it is a CSD. This observation gives the 

following.  

Lemma 2. In a Bayesian game, a necessary and sufficient condition for a probability measure 

on 𝑇 × 𝐴 to be a correlated strategy distribution is that the marginal on 𝑇 is equal to the 

distribution of type profiles. 

2.4 Correlated equilibria 
The players’ incentives in a Bayesian game are embodied by their payoff functions, 

𝑢1 , 𝑢2 , … , 𝑢𝑛 . For a correlated strategy 𝜎 with a mechanism 𝒎, the payoff of each player 𝑖 is 

the random variable 𝑢𝑖(𝒕, 𝒂), where 𝒕 is the random type profile and 𝒂 is the random action 

profile (given by (7)). The correlated strategy is incentive compatible if none of the players 𝑖 

can increase his expected payoff by a unilateral deviation, that is, by changing the function 

determining his action from 𝜎𝑖  to some other function 𝜎𝑖
′ : 𝑇𝑖 × 𝑀𝑖 → 𝐴𝑖 . Equivalently, 

incentive compatibility means that the action that the correlated strategy specifies for each 

                                                            
9 A mixed-strategy profile can also be described as a behavior strategy for each player, that is, a 
randomized action for each of the player’s types. 
10 Since the distribution of type profiles is given as part of the specification of the game, a CSD can 
also be described as an assignment of a probability measure on 𝐴 to every type profile 𝑡, namely, the 
distribution of the players’ action when they have types 𝑡 (which is arbitrarily if 𝑡 lies outside the 
support of 𝜂𝑇). 

(9) 

(10) 
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player always maximizes the conditional expectation11 of the player’s payoff, given his type 

and the message he receives. The latter condition is used in the following definition.  

Definition 1. In a Bayesian game, a correlated strategy 𝜎 with a mechanism 𝒎 is a correlated 

equilibrium if the corresponding random action profile 𝒂 is such that, for every player 𝑖 and 

action 𝑎𝑖
′  for that player, 

𝐸 𝑢𝑖 𝒕, 𝒂 − 𝑢𝑖 𝒕,  𝑎𝑖
′ , 𝒂−𝑖   𝒕𝑖 , 𝒎𝑖 𝒕  ≥ 0. 

If a correlated strategy is a correlated equilibrium, then the correlated strategy distribution 

is said to be a correlated equilibrium distribution (CED). A CED is implementable by a 

particular mechanism if there is some correlated equilibrium with that mechanism that gives 

the distribution. A CED is a pure- or mixed-equilibrium distribution if it is implementable by 

some mechanism with properties 𝑆, 𝑂 and 𝐷, or properties 𝑆, 𝑂 and 𝐼, respectively. Two 

additional kinds of CEDs are defined in Section 3.2.3.  

An equivalent definition of CED, which does not explicitly refer to an implementing 

mechanism, is given by the following lemma. The lemma is formulated in terms of random 

variables (whose joint distribution is the CED) rather than in purely measure theoretic terms. 

This is not absolutely necessary, but it makes the formulation somewhat more transparent 

and intuitive, and closer in appearance to Definition 1. 

Lemma 3. In a Bayesian game, a necessarily and sufficient condition for a correlated strategy 

distribution 𝜂 to be a correlated equilibrium distribution is that some (equivalently, every12) 

pair of random variables 𝒕 =  𝒕1 , 𝒕2 , … , 𝒕𝑛  and 𝒂 =  𝒂1 , 𝒂2 , … , 𝒂𝑛  whose joint distribution 

is 𝜂 satisfies  

𝐸 𝑢𝑖 𝒕, 𝒂 − 𝑢𝑖 𝒕,  𝑎𝑖
′ , 𝒂−𝑖   𝒕𝑖 , 𝒂𝑖 ≥ 0, 𝑖 ∈ 𝑁, 𝑎𝑖

′ ∈ 𝐴𝑖 . 

Proof. Let 𝒎 be the canonical mechanism for 𝜂. The canonical correlated strategy 𝜎 with 

this mechanism is a correlated equilibrium if and only if it satisfies the condition in Definition 

1. By (10), inequality (11) is equivalent to that in (12). This proves the sufficiency of the 

condition in the lemma, and it remains to prove its necessity. 

Every CED is by definition the joint distribution of a pair of random variables 𝒕 and 𝒂 such 

that the latter is the random action profile corresponding to some correlated equilibrium 𝜎 

with a mechanism 𝒎 that satisfies the condition in Definition 1. For every player 𝑖, taking the 

condition expectation of both sides of (11), given 𝒕𝑖  and 𝒂𝑖 , yields 

𝐸 𝐸 𝑢𝑖 𝒕, 𝒂 − 𝑢𝑖 𝒕,  𝑎𝑖
′ , 𝒂−𝑖   𝒕𝑖 , 𝒎𝑖 𝒕   𝒕𝑖 , 𝒂𝑖 ≥ 0. 

                                                            
11 For a random variable 𝒙 and a real-valued random variable 𝒚, which are defined on the same 
probability space, the conditional expectation 𝐸 𝒚 𝒙  is also a random variable on that space. It is 
constant on any event of the form [𝒙 = 𝑥] (where 𝒙 takes a particular value 𝑥), in which its value is 
𝐸 𝒚 𝒙 = 𝑥 , i.e., the conditional expectation of 𝒚, given that 𝒙 = 𝑥. The meaning of equalities and 
inequalities involving conditional expectations is that they hold pointwise (equivalently, with 
probability 1). 
12 The equivalence holds since whether inequality (12) below holds only depends on the joint 
distribution of 𝒕 and 𝒂. 

(11) 

(12) 

(13) 
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Since, by (7), 𝒂𝑖  can be expressed as a function of 𝒕𝑖  and 𝒎𝑖 𝒕 , the iterated conditional 

expectation in (13) is equal to the (single) conditional expectation in (12) (see Shiryaev, 

1996, Chapter I, §8). This proves that the condition in the lemma is also necessary for CED.

           ∎ 

A useful immediate corollary of Lemma 3 (which is already established the first part of the 

proof) is that, to check whether a given CSD is a CED, it suffices to consider its canonical 

mechanism and strategy.  

Corollary 1. A correlated strategy distribution is a correlated equilibrium distribution if and 

only if the canonical strategy, with the canonical mechanism, is a correlated equilibrium.  

A probability measure 𝜂 on 𝑇 × 𝐴 that satisfies the condition in Lemma 3 is sometimes 

referred to itself as a correlated equilibrium (Bergemann and Morris, 2007). Another 

reasonable definition of this concept would be a mechanism with which the canonical 

strategy is a correlated equilibrium in the sense of Definition 1. Lemma 3 and Corollary 1 

show that these alternative definitions are not fundamentally different from the definition 

of correlated equilibrium given above. However, this paper emphatically distinguishes 

between correlated equilibrium and correlated equilibrium distribution, and between 

correlated equilibrium and the mechanism it uses. These distinctions are instrumental for 

the paper’s primary objective of studying the implementability relation between a 

correlated equilibrium distribution and a mechanism: the existence of some correlated 

equilibrium with the latter that gives the former.  

2.5 Communication equilibria 
Communication equilibrium differs from correlated equilibrium in that the mechanism relies 

on type reports that it receives from the players. Correspondingly, the incentive-

compatibility condition of correlated equilibrium is augmented by the requirement that a 

player cannot gain from being the only one to lie about his type (and, possibly, deviate from 

the correlated strategy). The reliance on the players’ reports turns the mechanism from a 

primary source of information about the (other) players’ types to a secondary source – a 

mediator. The mediator may be a physical entity, such as a disinterested third party or a 

device, or it may be a communication protocol, such as a one-shot direct exchange of 

messages between two players.13 Effectively, the message exchange in the last example is 

not limited to type reports. This is because each player could in principle use a gadget that 

takes a type as input and outputs the required message. The players’ individual gadgets 

would then be viewed collectively as a single mechanism, in the sense of the definition in 

Section 2.2.  

When a correlated strategy 𝜎 = (𝜎1 , 𝜎2 , … , 𝜎𝑛) with a mechanism 𝒎 is used, a player 𝑖 has 

an incentive to lie about his type if he can increase his expected payoff by misreporting it as 

some type 𝑡𝑖
′ , thereby changing the messages sent to the players to 𝒎 𝑡𝑖

′ , 𝑡−𝑖 , where 

                                                            
13 The question of how, and to what extent, can unmediated communication between players replace 
a mediator or a correlation device lies outside to scope of this paper. This question has been 
extensively studied, for both complete and incomplete information games. See, for example, Forges 
(1990), Ben-Porath (2003), Gerardi (2004) and references therein.  
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𝑡 =  𝑡𝑖 , 𝑡−𝑖  is the true type profile. Player 𝑖 may be able to take advantage of the resulting 

change of the other players’ actions by altering the rule that determines his response to the 

messages the mechanism sends him, from 𝜎𝑖  to some 𝜎𝑖
′ : 𝑇𝑖 × 𝑀𝑖 → 𝐴𝑖 . Such an alteration 

changes the random action profile to 𝒂′ =  𝒂1
′ , 𝒂2

′ , … , 𝒂𝑛
′  , which is given by  

𝒂𝑖
′ = 𝜎𝑖

′ 𝒕𝑖 , 𝒎𝑖 𝑡𝑖
′ , 𝒕−𝑖  , 

𝒂𝑗
′ = 𝜎𝑗  𝒕𝑗 , 𝒎𝑗  𝑡𝑖

′ , 𝒕−𝑖  , 𝑗 ∈ 𝑁 ∖  𝑖 . 

Communication equilibrium is defined by the requirement that, regardless of player 𝑖’s true 

type, misreporting it in the above manner cannot increase the player’s expected payoff.  

Definition 2. In a Bayesian game, a correlated strategy 𝜎 with a mechanism 𝒎 is a 

communication equilibrium if, for every player 𝑖, type 𝑡𝑖
′  for that player and function 

𝜎𝑖
′ : 𝑇𝑖 × 𝑀𝑖 → 𝐴𝑖 , 

𝐸 𝑢𝑖 𝒕, 𝒂 − 𝑢𝑖 𝒕, 𝒂′  𝒕𝑖 ≥ 0, 

where 𝒂 and 𝒂′  are given by (7) and (14). 

An extension of the revelation-principle argument used in the first paragraph of this 

subsection shows that the set of possible communication equilibrium outcomes would not 

change if players were allowed to send to the mechanism arbitrary (rather than just type) 

reports, possibly determined by private randomization. For a player 𝑖 of type 𝑡𝑖 , such a 

report would be described by a random variable 𝒓𝑖(𝑡𝑖) with values in some finite (say) set 

𝑅𝑖 . Processing the reports would require a “generalized” mechanism, which assigns to every 

possible profile of reports 𝑟 =  𝑟1 , 𝑟2 , … , 𝑟𝑛 ∈ 𝑅1 × 𝑅2 × ⋯ × 𝑅𝑛  a random profile of 

messages 𝒎 𝑟  from the mechanism back to the players.  

Next, the action 𝑎𝑖  for each player 𝑖 would be determined as a function 𝜎 𝑖  by the player’s 

type 𝑡𝑖 , the report 𝑟𝑖  he sent to the mechanism and the message 𝑚𝑖  he got in response:  

𝑎𝑖 = 𝜎 𝑖 𝑡𝑖 , 𝑟𝑖 , 𝑚𝑖 . 

The reason this formulation is in fact no more general than the one described above is that 

there is a correlated strategy 𝜎 with a “normal” mechanism that produces identical actions. 

Essentially, the mechanism internalizes the players’ reporting process. For each type profile 

𝑡, the random message that it sends to each player 𝑖 is the pair 

 𝒓𝑖(𝑡𝑖), 𝒎𝑖(𝒓1(𝑡1), 𝒓2(𝑡2), … , 𝒓𝑛(𝑡𝑛)) . 

The correlated strategy 𝜎 then determines 𝑖’s action as a function of his type 𝑡𝑖  and the 

message  𝑟𝑖 , 𝑚𝑖  he received according to  

𝜎𝑖 𝑡𝑖 ,  𝑟𝑖 , 𝑚𝑖  = 𝜎 𝑖 𝑡𝑖 , 𝑟𝑖 , 𝑚𝑖 . 

It is a simple, and standard, exercise to show that if with the generalized mechanism none of 

the players 𝑖 can increase his expected payoff by changing  𝒓𝑖(𝑡𝑖)  𝑡𝑖∈𝑇𝑖
 (which specifies the 

report player 𝑖 sends) and/or 𝜎 𝑖  (which specifies his response to the mechanism’s messages), 

(14) 
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then the correlated strategy 𝜎 with the “normal” mechanism described above is a 

communication equilibrium in the sense of Definition 2.  

A similar argument, which is also part of the revelation principle, shows that, in every 

Bayesian game, the set of communication equilibrium outcomes would not change also if 

the messages that the mechanism sends to the players were required to be concrete action 

recommendations rather than arbitrary objects (see Myerson, 1994). If a correlated strategy 

distribution is a communication equilibrium distribution (MED), that is, if it is the CSD of 

some communication equilibrium, then there is some mechanism in which the message 

spaces coincide with the respective players’ actions spaces, and with which the canonical 

strategy of obeying the message is a communication equilibrium that gives the MED. 

However, this does not mean that attention can be restricted to communication equilibria of 

this kind.  As for correlated equilibria, such a restriction would be inconsistent with the goals 

of this paper, since it might affect in an unwarranted way the properties of the 

implementing mechanisms. For example, suppose that two players base their choice of 

actions on their own type and the type report that they receive from the other player. To 

implement this, it suffices to use a mechanism with property 𝑆, which simply transmits the 

reports. However, the same would not be true if the mechanism were also required to 

indicate each player’s actual action. Since the actions depend on the players’ own types, 

property 𝑆 cannon be maintained. More generally, the properties of the mechanism should 

only describe the properties of the communication channels available to the players (which 

may or may not involve a mediator). The way the players use these channels is expressed by 

a different entity, which is their correlated strategy.  

3 Overview of Results 
This section summarizes the main results in this paper and illustrates them by examples. The 

results are described in greater depth and detail in Sections 4, 5, 6 and 7. 

3.1 Attributes of correlated strategy distributions 
The six properties of mechanisms described in Section 2.2 are not independent. Property 𝑆 

implies 𝑆 , 𝑂 implies 𝑂 , and 𝐷 implies 𝐼. Therefore, for each of the three pairs, a mechanism 

may satisfy both properties, only the second one, or none of them. Altogether, there are 

(33 =) 27 possibilities. This classification of mechanisms induces a classification of correlated 

strategy distributions. Each CSD has or does not have the attribute that it can be 

implemented by a mechanism with a particular property, or set of properties 𝒫. For 

example, a CSD is 𝑆-implementable if it is implementable by some mechanism with property 

𝑆, and it is 𝑆,𝑂-implementable if it is implementable by some mechanism that has both 

property 𝑆 and property 𝑂. The various attributes of CSDs are not independent. For 

example, 𝑆,𝑂-implementability implies 𝑆 ,𝑂-implementability, since 𝑆 is a more stringent 

requirement than 𝑆 , and it is implied by 𝑆,𝑂, 𝐼-implementability, which involves the 

additional requirement that the implementing mechanism also satisfies 𝐼. A natural 

question, for each of these implications, is whether the reverse implication also holds, so 

that the two attributes are actually equivalent. As the Hesse diagram in Figure 1 shows, the 

answer is affirmative for 𝑆,𝑂- and 𝑆 ,𝑂-implementability (which are equivalent) but negative 
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for 𝑆,𝑂- and 𝑆,𝑂, 𝐼-implementability (which are not equivalent). Thus, every CSD that is 

implementable by some mechanism that satisfies 𝑆  and 𝑂 is also implementable by a 

mechanism that satisfies 𝑆 and 𝑂 (and vice versa), and there is some such CSD in some 

Bayesian game that is not implementable by any mechanism that also satisfies 𝐼.  

As Figure 1 shows, there are not 27 but only 7 distinct (i.e., nonequivalent) attributes of 

CSDs that can be defined in terms of the properties of the implementing mechanisms. Each 

can be described in several equivalent ways by using different combinations of properties. 

For example, 𝑆-implementability and 𝑆 -implentability are both equivalent to the attribute of 

simply being a CSD, which is denoted in Figure 1 by the empty set (of properties of 

implementing mechanisms)    . Thus, the limitations that these two properties put on the 

implementing mechanisms are inconsequential. Note that the seven attributes of CSDs are 

not all comparable. That is, some attributes do not imply and are not implied by certain 

other attributes. 

 

Figure 1. Hesse diagram of the different attributes of correlated strategy distributions (CSDs) in Bayesian 
games, ordered by implication. An attribute is represented by a box containing its equivalent definitions, each 
of which is a set of properties possessed by some mechanism that implements the CSD. Two sets in the same 
box identify mechanisms that implement exactly the same CSDs. For those in different boxes, the 
implementable CSDs are different. A line segment connecting two boxes indicates that the lower attribute 
implies the upper one but the reverse implication does not hold. 

    

 𝑆   

 𝑆  

 𝑂 , 𝐼  

 𝑂, 𝐼  

 𝑆 , 𝑂 , 𝐼  

 𝑆, 𝑂 , 𝐼  

 𝑆 , 𝑂, 𝐼  

 𝑆, 𝑂, 𝐼  

 𝑂   

 𝑆 , 𝑂   

 𝑆, 𝑂   

 

 𝐼  

 𝑆 , 𝐼  

 𝑆, 𝐼  

 

 𝑂  

 𝑆 , 𝑂  

 𝑆, 𝑂  

 

I 

II IV 

III
V 

V 

 𝑂 , 𝐷  

 𝑂, 𝐷  

 𝑆 , 𝑂 , 𝐷  

 𝑆, 𝑂 , 𝐷  

 𝑆 , 𝑂, 𝐷  

 𝑆, 𝑂, 𝐷  

 𝐷  

 𝑆 , 𝐷  

 𝑆, 𝐷  

 

VI 
 

VII 
Pure-

strategy 
distributions 

Mixed-
strategy 

distributions 

Random-
profile 
distributions 

All correlated 
strategy 
distributions 



16 

Additional attributes of correlated strategy distributions in Bayesian games may conceivably 

be defined by conjunction. For example, a CSD may be both 𝑂 -implementable and 𝐷-

implementable. A natural question is whether this is equivalent to 𝑂 , 𝐷-implementability. 

More generally, if there is some implementing mechanism with a particular set of properties 

and another mechanism with some other properties, does it follow that the CSD is 

implementable by a single mechanism that has all the properties of the other two? Lemma 5 

in Section 4 answers this question in the affirmative. An immediate corollary of this result 

(see Section 3.4) is that conjunctions do not in fact define new attributes of CSDs. 

3.1.1 Intrinsic characterizations 

Each of the seven attributes of CSDs in Figure 1 can also be characterized intrinsically, that is, 

without explicitly referring to implementing mechanisms. The significance of intrinsic 

characterizations is that they may make it easier to check whether a particular distribution 

has a particular attribute. Lemma 2 may be viewed as an intrinsic characterization of the 

weakest attribute, which is simply being a CSD (I in Figure 1). The following proposition 

characterizes the strongest attribute, which is being a pure-strategy distribution (VII in 

Figure 1), as well as the attribute of being a mixed-strategy distribution (V in Figure 1).  

Proposition 1. A correlated strategy distribution in a Bayesian game is a mixed-strategy 

distribution if and only if it is the joint distribution of a pair of random variables 𝒕 =

 𝒕1 , 𝒕2 , … , 𝒕𝑛  and 𝒂 =  𝒂1 , 𝒂2 , … , 𝒂𝑛  such that  

(i) For each player 𝑖, 𝒂𝑖  and  𝒕−𝑖 , 𝒂−𝑖  are conditionally independent, given 𝒕𝑖 . 

A correlated strategy distribution is a pure-strategy distribution if and only if it satisfies the 

stronger condition in which (i) is replaced by 

(ii) For each player 𝑖, the conditional distribution of 𝑖’s action 𝒂𝑖 , given his type 𝒕𝑖 , is 

degenerate. 

In other words, pure-strategy distributions are characterized by the property that if a 

player’s type is known, there is no uncertainty about his action. Mixed-strategy distributions 

are characterized by the property that if a player’s type is known, his action does not add 

any information about the other players’ types or actions.14 Proposition 1 is proved in 

Section 4. 

The next proposition characterizes random-profile distributions (III in Figure 1). The 

characterizing property is the existence of a probability measure 𝜇 on 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯ × 𝐴𝑛
𝑇𝑛  

that satisfies a certain condition. Such a measure assigns a probability to each pure-strategy 

profile (𝑎1
1 , 𝑎1

2 , … ; 𝑎2
1 , 𝑎2

2 , … ; … ; 𝑎𝑛
1 , 𝑎𝑛

2 , … ) (see Section 2.1). For each type profile 

𝑡 = (𝑡1
𝑗1 , 𝑡2

𝑗2 , … , 𝑡𝑛
𝑗𝑛 ) there is a corresponding marginal measure 𝜇𝑡  on 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 , 

which assigns to each action profile 𝑎 the probability that the actions associated with the 

players’ types specified by 𝑡 are those specified by 𝑎. Formally, 

  

                                                            
14 For an extension of this result to games with a random number of players, see Milchtaich (2004, 
Theorem 2). 
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𝜇𝑡 {𝑎} 

= 𝜇   (𝑎1
1 , 𝑎1

2 , … ; 𝑎2
1 , 𝑎2

2 , … ; … ; 𝑎𝑛
1 , 𝑎𝑛

2 , … ) ∈ 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯ × 𝐴𝑛
𝑇𝑛   (𝑎1

𝑗1 , 𝑎2
𝑗2 , … , 𝑎𝑛

𝑗𝑛 ) = 𝑎  . 

The proof of the following proposition is given in Section 4, and it is illustrated by Example 1 

below.  

Proposition 2. A correlated strategy distribution 𝜂 is a random-profile distribution if and only 

if there is a probability measure 𝜇 on 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯ × 𝐴𝑛
𝑇𝑛  such that   

𝜂   𝑡, 𝑎   = 𝜂𝑇  𝑡   𝜇𝑡  𝑎  ,   𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴, 

where 𝜂𝑇  is the distribution of type profiles and 𝜇𝑡  is the marginal measure defined by (15).  

A random-profile distribution is not necessarily a mixed-strategy distribution. Therefore, by 

Proposition 1, it may not have the property that if a player’s type is known, his action does 

not add any information about the other players’ types or actions. However, a random-

profile distribution always has the weaker property that, if a player’s type is known, his 

action does not add any information about the other players’ types (but may say something 

about their actions). This property can be expressed formally as follows (Forges, 1993). 

Definition 3. A correlated strategy distribution 𝜂 has the conditional independence property 

if for some (equivalently, every) pair of random variables 𝒕 and 𝒂 whose joint distribution is 

𝜂, the action 𝒂𝑖  of each player 𝑖 and the types 𝒕−𝑖  of the other players are conditionally 

independent, given 𝑖’s own type 𝒕𝑖 . 

The conditional independence property is not, however, unique to random-profile 

distributions. As shown by the following example (which is based on Example 6 in 

Milchtaich, 2004; see also Lehrer at al., 2006a, and Forges, 2006), even for two-player games 

the two conditions are not equivalent.15 Whereas being a random-profile distribution (which 

by definition means 𝑆, 𝑂-implementability) is equivalent to 𝑂-implementability, it is shown 

by Proposition 3 in Section 4 that the conditional independence property is equivalent to the 

weaker attribute of 𝑂 -implementability (or, equivalently, 𝑆, 𝑂 -implementability; II in Figure 

1). 

Example 1. A correlated strategy distribution with the conditional independence property 

that is not a random-profile distribution. The two players in a 2 × 2 Bayesian game have 

identical action spaces, 𝐴1 = 𝐴2 =  𝐿, 𝑅 , and identical two-element type spaces, 

𝑇1 = 𝑇2 =  +1, −1 . The four type profiles are equally probable, so that types are 

independent. (Independence is not a crucial assumption. It would suffice to assume that all 

type profiles have positive probability.) A correlated strategy distribution is defined as 

follows: (i) If both players have type +1, the action profile is either (𝐿, 𝐿) or (𝑅, 𝑅), each 

                                                            
15 Forges (1993) and Cotter’s (1994) suggestion that the two properties are equivalent is mistaken. 
The mistake was corrected in Forges (2006). As explained below, the non-equivalence reflects the 

difference between properties 𝑂 and 𝑂  of devices. 

(15) 
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with probability 0.5, and (ii) if the type profile is any of the other three, the action profile is 

either (𝐿, 𝑅) or (𝑅, 𝐿), each with probability 0.5.  

This correlated strategy distribution has the conditional independence property, since for 

each type profile, each player takes action 𝐿 with probability 0.5. However, this is not a 

random-profile distribution. This can be proved by assuming that a measure 𝜇 on pure-

strategy profiles as in Proposition 2 exists, and showing that this assumption leads to a 

contradiction. Since, by (ii), there is zero probability that the players take identical actions 

when the type profile is different from (+1, +1), 𝜇 must, in particular, assign zero 

probability of any pure-strategy profile of the form (𝑅,∗;∗, 𝑅), (∗, 𝑅; 𝑅,∗) or (∗, 𝐿;∗, 𝐿), where 

a wildcard action ∗ can be either 𝐿 or 𝑅. The same must therefore be true for any pure-

strategy profile of the form (𝑅,∗; 𝑅,∗), which necessarily also has one of the above three 

forms. However, this implies that there is zero probability that both players play 𝑅 when the 

type profile is (+1, +1), which contradicts (i). 

Intrinsic characterizations for the remaining two attributes of CSDs (IV and VI in Figure 1) are 

given by Proposition 4 in Section 4. 

3.2 Attributes of correlated equilibrium distributions 
A correlated equilibrium distribution in a Bayesian game is also a correlated strategy 

distribution but the converse is not always true. However, since every correlated strategy 

distribution is a correlated equilibrium distribution in some game, for exmaple, one with 

constant payoffs, the number of distinct (i.e., nonequivalent) attributes of CEDs that can be 

defined in terms of the properties of the implementing mechanisms is not smaller than for 

CSDs. In fact, Figure 2 shows that the number is significantly larger: 14 or 15 instead of 7. 

This reflects the fact that the classifications of CEDs can be viewed as consisting of two 

layers: (i) the classification induced by the different attributes of CSDs, and (ii) the 

refinement that results from also taking into account the incentive compatibility 

requirement (as expressed by Lemma 3). Thus, two CEDs in a Bayesian game may differ (i) in 

that even as CSDs they require different kinds of implementing mechanisms, or (ii) only in 

that different kinds of implementing mechanisms are compatible with the equilibrium 

condition. This is a useful distinction, which seems to be lacking in the existing literature on 

games with incomplete information. 

Where the equilibrium condition is effective is the connection between a player’s type and 

the messages he receives, i.e., properties 𝑆 and 𝑆  of the mechanism. For CSDs these 

properties do not make any difference, as can be seen in Figure 1, but this is not so for CEDs. 

For example, as can be seen in Figure 2, for CEDs the three attributes of simply being a CED, 

𝑆-implementability and 𝑆 -implementability (I, Ia and Ib in Figure 2) are not equivalent. Thus, 

there are CEDs in some Bayesian games that cannot be implemented by any mechanism that 

satisfies 𝑆 , and there are CEDs that are implementable by such a mechanism but cannot be 

implemented by any mechanism with the stronger property 𝑆. The following two examples 

present such CEDs. Note that these examples, like the other ones in this subsection and 

Example 1, concern two-player games. Therefore, the Hesse diagrams in Figure 1 (CSDs) and 

Figure 2 (CEDs) apply to two-player Bayesian games as well as to the general, 𝑛-player case. 
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Figure 2. Hesse diagram of the different attributes of correlated equilibrium distributions (CEDs) in Bayesian 
games, ordered by implication. As in Figure 1, each attribute is represented by a box, and an implication 
relation is represented by a line. A conjunction symbol ∧ means that the CED is implementable both by a 
mechanism with one property and by a mechanism satisfying the other property. The line marked ? represents 
an uncertain relation: it is not known whether the reverse implication also holds (in which case the two 
connected boxes should be coalesced).  

Example 2. A correlated equilibrium distribution that is not 𝑆 -implementable. In a symmetric 

2 × 2 game with the game structure and distribution of type profiles described in Example 1, 

the two players always get equal payoffs, which for a type profile (𝑡1 , 𝑡2) are given by the 

payoff matrix 

 𝐿       𝑅
𝐿
𝑅

 
−𝑡1𝑡2 0

0 2𝑡1𝑡2
   . 
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Thus, depending on the type profile, 𝐿 or 𝑅 is a dominant action for both players. The 

message that each player receives is a type profile. For both types of player 1 and for type 

+1 of player 2, this type profile is the actual one (𝑡1 , 𝑡2). However, for type −1 of player 2, 

the message is always (−1, −1). With this mechanism, the correlated strategy that instructs 

each player to choose the dominant action for the type profile specified by the message he 

receives is a correlated equilibrium. Type +1 of player 1, type −1 of that player and type +1 

of player 2 clearly cannot do any better than playing according to the strategy, which gives 

them the expected payoffs 1, 3/2 and 3/2, respectively. The same is true for type −1 of 

player 2, whose expected payoff would decrease from 1 to 1/2 if he switched from his 

(constant) action 𝑅 to 𝐿.  

The mechanism described above does not involve randomization, so it has property 𝐷, but it 

does not satisfy 𝑆 . In fact, the corresponding correlated equilibrium distribution is not 

implementable by any mechanism with the latter property. Specifically, it is not 

implementable by any mechanism for which, for each type of player 1, the message that 

player 2 receives is (statistically) independent of his own type. To see this, suppose that such 

a mechanism exists, and let 𝑚2
+ and 𝑚2

− be some specific messages that player 2 receives 

with positive probability (which is the same for both types of player 2) when player 1’s type 

is +1 and −1, respectively. The two messages cannot be identical, for otherwise type +1 of 

player 2 would receive this message with positive probability both when 1’s type is +1 and 

when the type if −1, which is inconsistent with the fact that (according to the above 

distribution) he plays 𝑅 with probability 1 in the former case and 𝐿 in the latter. Therefore, 

every such 𝑚2
+ and 𝑚2

− must be distinct, which implies that player 2 can always tell by his 

message the type, and hence also the action, of his opponent. However, this is inconsistent 

with incentive compatibility, since it implies that, by choosing the same action as the 

opponent, type −1 of player 2 could increase his payoff from 1 to 3/2. This contradiction 

proves that the above correlated equilibrium distribution is not implementable by any 

mechanism satisfying 𝑆 . 

Example 3. A correlated equilibrium distribution that is 𝑆 - but not 𝑆-implementable. The 

game is the same as in Example 2. A correlated equilibrium distribution in this game is given 

by Table 1, which specifies the (conditional) distribution of the players’ action profile for 

each type profile. As seen in the table, the marginal distributions, i.e., the probability that a 

player of a given type plays 𝐿 or 𝑅, depend only on the opponent’s type. (Specifically, 𝐿 has 

probability 0.75 or 0.5 if the type of the opponent is +1 or −1, respectively.) Therefore, a 

mechanism that randomly chooses an action profile  𝑎1 , 𝑎2  according to the probabilities 

corresponding to the players’ actual type profile and reports 𝑎1 to player 1 and 𝑎2 to 

player 2 has property 𝑆 . The correlated strategy of acting according to the messages is a 

correlated equilibrium; it is not difficult to check that a player can never increase his 

expected payoff by deviating to the other action. It is also true, but less easy to check, that 

the CED in Table 1 is not implementable by any mechanism that has the stronger property 𝑆. 

In fact, it takes a computer to check this. Although the problem is a standard linear 

programming one – it needs to be checked that a particular system of linear equalities and 

inequalities does not have a solution – the number of variables and equalities/inequalities 

involved (at least 256 and 20, respectively) is far too great for manual calculations.   
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 Player 2 
   Type +1   Type −1  

Player 1 

  𝐿 𝑅   𝐿 𝑅  

Type +1 
𝐿 0.75 0 0.75 𝑈 0.25 0.25 0.5 
𝑅 0 0.25 0.25 𝐷 0.5 0 0.5 

  0.75 0.25   0.75 0.25  
  𝐿 𝑅   𝐿 𝑅  

Type −1 
𝐿 0.25 0.5 0.75 𝑈 0 0. 5 0.5 
𝑅 0.25 0 0.25 𝐷 0.5 0 0.5 

  0.5 0.5   0.5 0.5  

Table 1. A correlated equilibrium distribution for Example 3. The four type profiles are equally probable. For 
each of them, the joint distribution of player 1’s and player 2’s actions (which can be 𝑳 or 𝑹), as well as the 
marginal distributions, are given.  

Some intuition16 about why a mechanism with property 𝑆 cannot implement the CED in 

Table 1 can be gained by considering two conceivable mechanisms with this property. The 

first mechanism generates the messages by randomizing over pure-strategy profiles 

according to a suitable distribution and then recommending to each player the action that 

his pure strategy specifies for the opponent’s actual type. In this way, a player’s own type 

does not affect the message he receives. This mechanism fails on a very basic level: it cannot 

implement the distribution in Table 1 even as a correlated strategy distribution. The problem 

is similar to that in Example 1, and it does not involve incentives (i.e., payoffs).  

The second conceivable mechanism for the CED in Table 1 has property 𝑆 by virtue of 

sending as a message to each player not a single action but a pure strategy, and leaving it to 

the player to choose the action corresponding to his actual type. (Such a mechanism is used 

in the proof of Proposition 5 below.) Specifically, the mechanism first chooses action profiles 

according to the probabilities specified in Table 1, independently for each of the four type 

profiles. Then, based on the players’ actual type profile  𝑡1 , 𝑡2 , it tells player 1 both his 

action for the type profile  +1, 𝑡2  and his action for  −1, 𝑡2 , and similarly for player 2. If 

the players use the messages in the intended manner, i.e., take the first or second action if 

their type is +1 or −1, respectively, then the action distributions for the four type profiles 

are indeed as in Table 1. However, this correlated strategy is not a correlated equilibrium. 

The reason is that the double message conveys too much information about the opponent’s 

type. By assumption, the prior probability that player 2 has type +1 is 0.5. By Bayes rule, the 

posterior probability that 2 has that type given that player 1 plays 𝐿 is 0.6. Thus, telling 

player 1 which action he should take gives him some information about 2’s type, but not too 

much information, in that taking the action is still optimal for him. (As indicated in the 

previous paragraph, telling the players only the actions they should take cannot be 

implemented by a mechanism that satisfies 𝑆.) A double message as above amounts to two 

independent draws from the same unknown distribution, which are more informative about 

the underlying distribution than a single draw. For example, telling player 1 that he should 

play 𝐿 whether his type is +1 or −1 increases the (posterior) probability that 2’s type is +1 

to almost 0.7. This probability is greater than 2/3, which implies that, regardless of the 

actions the two types of play 2 take, 𝑅 is the better action for type +1 of player 1. Thus, a 

player may deduce from the additional information conveyed by the double message that 

                                                            
16 Note that this is not meant to be an outline of a proof.  
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his expected payoff from taking the action he is supposed to take is actually less than for the 

alternative action.   

Examples 2 and 3 illustrate an insight of general significance. The reason 𝑆 and 𝑆  affect 

implementability of CEDs is that these properties may entail inability to restrict messages to 

certain types of players only. This is not a problem for correlated strategies, where 

information cannot do any harm, but it may be a problem for correlated equilibria, where 

incentive compatibility matters. However, as can be seen in Figure 2, whether this is actually 

so depends on the other properties of the mechanism. For example, for 𝑂 -implementable 

CEDs (II in Figure 2), requiring that the implementing mechanism also satisfy 𝑆 or 𝑆  does not 

make any difference.  

3.2.1 Attributes inherited from correlated strategy distributions 

Since a correlated equilibrium distribution in a Bayesian game is in particular a correlated 

strategy distribution, it has as such one or more of the attributes in Figure 1, which are 

defined by the properties of the implementing mechanisms. However, a CES that as a CSD is 

implementable by a mechanism with a particular set of properties may not be 

implementable by such a mechanism as a CED. That is, it may be impossible to find a suitable 

correlated strategy with that kind of mechanism that is also a correlated equilibrium. For 

example, the CED in Example 2 is not 𝑆 -implementable even though it is 𝑆 -implementable as 

a CSD (since this is so for every CSD; see Figure 1). However, as the following theorem 

shows, this kind of discrepancy between the two notions of implementability only arises 

when properties 𝑆 or 𝑆  of mechanisms are involved. Since the other four properties of 

mechanisms defined in Section 2.2 are sufficient to characterize all the attributes of CSDs in 

Figure 1, this means that a CED has attribute I, II, III, IV, V, VI or VII in Figure 2 if and only if, 

as a CSD, it has the similarly numbered attribute in Figure 1. Thus, for example, a CED is a 

pure- or mixed-equilibrium distribution if and only if is a pure- or mixed-strategy 

distribution, respectively. The proof of the theorem is given in Section 5. 

Theorem 1. For 𝒫 ⊆ {𝑂, 𝑂 , 𝐷, 𝐼}, a correlated equilibrium distribution is implementable by a 

mechanism with all the properties in 𝒫 if and only if it satisfies a similar condition as a 

correlated strategy distribution. 

It follows from Theorem 1 that the intrinsic characterizations for the seven attributes of 

CSDs given in Section 3.1.1 and (Propositions 3 and 4 in) Section 4 also apply to the 

corresponding attributes of CEDs. For example, a CED is 𝑂 -implementable (attribute II in 

Figure 2) if and only if it has the conditional independence property. An intrinsic 

characterization for the very attribute of being a CED (I in Figure 2) is given by Lemma 3, 

which says that a CSD is a CED if and only if it satisfies a certain incentive-compatibility 

condition (for distributions). It follows that, for example, an 𝑂 -implementable CED can be 

(intrinsically) characterized as a CSD that satisfies the incentive-compatibility condition and 

has the conditional independence property.  

3.2.2 Attributes defined by conjunction 

A significant difference between attributes of CSDs and those of CEDs concerns the effect of 

conjunctions. As indicated in Section 3.1, if a CSD that is implementable by a mechanism 
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with one of the properties in Section 2.2 is also implementable by a mechanism with 

another property, then it is implementable by a single mechanism that has both properties. 

It hence follows from Theorem 1 that this remains true for CEDs as long as the properties 

concerned are not 𝑆 or 𝑆 . However, as the following two examples show, this is not so in 

general. The first example presents a CED that is implementable by a mechanism with 

property 𝑆 and by a mechanism with property 𝐷 but is not implementable by any 

mechanism with both properties. The second example replaces 𝐷 with 𝐼. 

Example 4. A correlated equilibrium distribution that is 𝑆- and as well as 𝐷-implementable 

but not 𝑆, 𝐷-implementable. In a two-player Bayesian game, player 1 has two types, 𝑡1
′  and 

𝑡1
″ , and two actions, 𝐿 and 𝑅. Player 2 has three types, 𝑡2

′ , 𝑡2
″  and 𝑡2

‴ , and only one action, 𝐿. 

All type profiles except (𝑡1
′ , 𝑡2

′ ) may occur, and they have the same probability (1/5). If 

player 1 plays 𝑅, the payoff to both players is 0.5. If he plays 𝐿, the payoff vector is 

determined by the type profile according to the following table: 

 𝑡2
′       𝑡2

″        𝑡2
‴

𝑡1
′

𝑡1
″

N/A  1,0  0,1 

 3,0  0,0  0,0 
 

The lowest possible expected payoff for player 2 in this game is 0.1. As shown below, there 

is a unique correlated equilibrium distribution with this payoff, and this CED is both 𝐷-

implementable and 𝑆, 𝐼-implementable but it is not even 𝑆 , 𝐷-implementable.  

For player 2’s expected payoff to be 0.1, player 1 should play 𝑅 if and only if the type profile 

is (𝑡1
′ , 𝑡2

‴ ). Consider the implementing mechanism with property 𝐷 (i.e., no randomization) 

that  sends to player 1 the message 𝑅 if the type profile is (𝑡1
′ , 𝑡2

‴ ), and otherwise sends 𝐿. 

The correlated strategy in which player 1 follows the mechanism’s instructions is a 

correlated equilibrium, since it always gives maximum payoff to type 𝑡1
′  of player 1 and gives 

𝑡1
″  (who is always instructed to play 𝐿( an expected payoff of 1, which is greater than the 0.5 

he would receive from playing 𝑅. Another mechanism, with properties 𝑆 and 𝐼, that 

implements the same CED is a mechanism that sends to player 1 the message 𝐿 or 𝑅 if 

player 2 has type 𝑡2
″  or 𝑡2

‴  respectively, and sends either message with probability 1/2 if the 

type is 𝑡2
′ . The correlated strategy in which player 1 follows the mechanism’s instructions if 

his type is 𝑡1
′  but always plays 𝐿 if the type is 𝑡1

″  is a correlated equilibrium, with the same 

CED. This is because the message that type 𝑡1
″  of player 1 receives does not affect the 

probability that he assigns to player 2’s type being 𝑡2
′ , which is 1/3 regardless of the 

message.  

It remains to show that any mechanism with properties 𝑆  and 𝐷 cannot implement the 

above CED. The message that player 1 receives from a mechanism with these properties 

must be a function of player 2’s type, say 𝑚1
′ , 𝑚1

″  or 𝑚1
‴  if the type is 𝑡2

′ , 𝑡2
″  and 𝑡2

‴ , 

respectively. To implement the CED, in which the action that type 𝑡1
′  of player 1 takes 

depends on whether or not 2’s type is 𝑡2
‴ , the message 𝑚1

″  must be different from 𝑚1
‴ . 

Therefore, one of these, say 𝑚1
″ , must also be different from 𝑚1

′ . But this means that the 

mechanism effectively tells player 1 when 2’s type is 𝑡2
″ . Therefore, in any correlated 

equilibrium with that mechanism, player 1 plays (his payoff-maximizing action) 𝑅, and not 𝐿, 

when the type profile is (𝑡1
″ , 𝑡2

″ ).  
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 Player 2 
   Type +1   Type −1  

Player 1 

  𝐿 𝑅   𝐿 𝑅  

Type +1 
𝐿 2 0 2/3 𝐿 0 0 2/3 
𝑅 0 1 1/3 𝑅 1 0 1/3 

  1/2 1/2   1/2 1/2  
  𝐿 𝑅   𝐿 𝑅  

Type −1 
𝐿 0 0 1/3 𝐿 0 0 1/2 
𝑅 0 0 2/3 𝑅 0 0 1/2 

  1/2 1/2   1/2 1/2  

Table 2. A correlated equilibrium distribution for Example 5. The four type profiles are equally probable. For 
each of them, the actions that players 1 and 2 take are independent. The probabilities that these actions are 𝑳 
or 𝑹 are given at the margins of the corresponding box. The numbers inside the box are player 1’s payoffs. 
Player 2 always gets payoff 𝟎.  

Example 5. A correlated equilibrium distribution that is 𝑆- as well as 𝐼-implementable but not 

𝑆, 𝐼-implementable. The game structure and distribution of type profiles are again as in 

Examples 1, 2 and 3. The payoff matrices of player 1, one for each type profile, are shown in 

Table 2. Player 2 has the constant payoff function 0. A mechanism with property 𝐼 randomly 

chooses an action for each player for each type profile according to the probabilities shown 

in Table 2, such that these eight choices are independent. It then tells each player the action 

chosen for him for the actual type profile. The players’ strategy is to play accordingly. This is 

a correlated equilibrium. The reason is that a change of action by player 1 may affect his 

payoff only if his type is +1 and (i) player 2 has type +1 and he plays 𝐿, (ii) player 2 has type 

+1 and he plays 𝑅, or (iii) player 2 has type −1 and he plays 𝐿. The effect in case (i) has the 

opposite sign and twice the magnitude of the effect in the other two cases. Since (i), (ii) and 

(iii) always has equal conditional probabilities, given that the type of player 1 is +1 and given 

his action, this means that the conditional expectation of the gain from changing action is 

always zero. 

The same CED is implementable by a mechanism with property 𝑆. The mechanism first 

chooses two pairs of actions, 𝑎+ = (𝑎++, 𝑎−+) and 𝑎− = (𝑎+−, 𝑎−−). The pairs are chosen 

independently of one another, the probability that 𝑎+ equals (𝐿, 𝐿), (𝐿, 𝑅), (𝑅, 𝐿) or (𝑅, 𝑅) 

is 1/6, 1/2, 1/6 and 1/6, respectively, and for 𝑎− the corresponding probabilities are 1/3, 

1/3, 1/6 and 1/6. Then, for each type profile 𝑡 = (𝑡1 , 𝑡2), the mechanism chooses an action 

𝑎2
𝑡  for player 2, with probabilities (for 𝑅 and 𝐿) that depend on (both 𝑡 and) 𝑎− (that was 

chosen in the first stage). Specifically, the probability that 𝑎2
𝑡 = 𝐿 is 1/2 unless 𝑡 = (+1, −1) 

and (i) 𝑎− = (𝐿, 𝐿), in which case the probability is 1/4, or (ii) 𝑎− = (𝐿, 𝑅), in which case the 

probability is 3/4. Finally, the mechanism sends messages to the players, which depend on 

the choices made in the first two stages and the players’ actual type profile 𝑡 = (𝑡1 , 𝑡2). The 

message to player 1 is 𝑎+ or 𝑎− if 2’s type is +1 or −1, respectively, and the message to 

player 2 is the pair of actions (𝑎2
(𝑡1 ,+1)

, 𝑎2
(𝑡1 ,−1)

). Thus, neither message reflects the player’s 

own type. It is not very difficult to check that the correlated strategy specifying that each 

player chooses the first or second action in his message if his type is +1 or −1, respectively, 

gives the CED described above. For example, if 𝑡 = (+1, +1), the action profile is 

(𝑎++, 𝑎2
 +1,+1 

), which is (𝐿, 𝑅), (𝐿, 𝑅), (𝑅, 𝐿) or (𝑅, 𝑅) with probability 1/3, 1/3, 1/6 and 

1/6, respectively. Therefore, the players’ actions are independent and are distributed as 

specified at the margins of the top-left box in Table 2.  
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To show that the above correlated strategy (with the described mechanism with property 𝑆) 

is a correlated equilibrium, it suffices to prove that, given that the type of player 1 is +1 and 

given the message he receives (which can be (𝐿, 𝐿), (𝐿, 𝑅), (𝑅, 𝐿) or (𝑅, 𝑅)), the conditional 

probabilities of the following three events are equal: (i) player 2 has type +1 and he plays 𝐿, 

(ii) player 2 has type +1 and he plays 𝑅, and (iii) player 2 has type −1 and he plays 𝐿. As 

indicated above, such equality means that player 1 is indifferent between his two actions. 

The equality can be viewed as the conjunction of two equalities: (a) events (i) and (ii) have 

equal conditional probabilities, which are necessarily one-half the conditional probability 

that 𝑡2 = +1, and (b) the latter is also equal to twice the conditional probability of (iii). To 

prove (a) it suffices to note that, given that 𝑡 =  +1, +1 , the message 𝑎+ that player 1 

receives and the action 𝑎2
 +1,+1 

 that player 2 takes are conditionally independent, and the 

probability that the latter is 𝐿 is 1/2. To prove (b) note, first, that by the specification of the 

mechanism and Bayes’ rule, the conditional probability that 𝑡2 = +1, given that player 1’s 

type is +1 and he receives the message (𝐿, 𝐿), (𝐿, 𝑅), (𝑅, 𝐿) or (𝑅, 𝑅), is 1/3, 3/5, 1/2 or 

1/2, respectively. It is therefore sufficient to show that the conditional probability, given the 

same information, that 𝑡2 = −1 and 𝑎2
 +1,−1 

= 𝐿 is 1/6, 3/10, 1/4 or 1/4, respectively. 

This conditional probability is equal to the product of two terms: the condition probability 

that 𝑡2 = −1, given that 𝑡1 = +1 and player 1’s message has the specified value; and the 

condition probability that 𝑎2
 +1,−1 

= 𝐿, given that 𝑡 =  +1, −1  and 𝑎− has that value. The 

first term is the complement of the conditional probability that 𝑡2 = +1, i.e., 2/3, 2/5, 1/2 

or 1/2 if the message is (𝐿, 𝐿), (𝐿, 𝑅), (𝑅, 𝐿) or (𝑅, 𝑅), respectively; and by the specification 

of the mechanism, the second term is 1/4, 3/4, 1/2 or 1/2, respectively. Therefore, the 

product of the two terms is 1/6, 3/10, 1/4 or 1/4, respectively, as had to be shown.   

The above CED, which as shown is both 𝑆- and 𝐼-implementable, is not implementable by 

any mechanism that has both properties, or even by a mechanism with properties 𝑆  and 𝐼. 

To see this, consider any correlated strategy with a mechanism satisfying 𝑆  and 𝐼 that has 

the CSD specified by Table 2. Partition all the messages that player 1 may receive into four 

groups, (𝐿, 𝐿), (𝐿, 𝑅), (𝑅, 𝐿) and (𝑅, 𝑅), according to the actions that player 1’s strategy 

assigns to them when the player’s type is +1 (first entry) and −1 (second entry). Since the 

mechanism satisfies 𝑆 , the probability of receiving a message that belongs to a particular 

group when player 2 has type +1 is the same for both types of player 1. Denote these 

probabilities by 𝑝𝐿𝐿
+ , 𝑝𝐿𝑅

+ , 𝑝𝑅𝐿
+  and 𝑝𝑅𝑅

+ . Let 𝑝𝐿𝐿
− , 𝑝𝐿𝑅

− , 𝑝𝑅𝐿
−  and 𝑝𝑅𝑅

−  be the corresponding 

probabilities for the case where player 2’s type is −1. Since these messages induce the 

distributions of actions given in Table 2, the following equalities must hold. 

𝑝𝐿𝐿
+ + 𝑝𝐿𝑅

+ =
2

3
 , 𝑝𝐿𝐿

− + 𝑝𝐿𝑅
− =

2

3
 , 

𝑝𝐿𝐿
+ + 𝑝𝑅𝐿

+ =
1

3
 , 𝑝𝐿𝐿

− + 𝑝𝑅𝐿
− =

1

2
 .  

A necessary condition for the correlated strategy to be a correlated equilibrium is that type 

+1 of player 1 cannot increase the conditional expectation of his payoff by playing 𝑅, 𝑅, 𝐿 or 

𝐿, respectively, when the message he receives belongs to group (𝐿, 𝐿), (𝐿, 𝑅), (𝑅, 𝐿) or 

(𝑅, 𝑅) (so that his strategy specifies taking the opposite action). Since the mechanism 

(16) 

(17) 
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satisfies 𝐼, for any type profile the message that player 1 receives is independent of player 

2’s message, and hence of that player’s action. Thus, regardless of player 1’s type and the 

message he receives, player 2 plays 𝐿 with probability 1/2. The above necessary condition is 

therefore expressed by the following inequalities:  

𝑝𝐿𝐿
+  −

1

2
⋅ 2 +

1

2
⋅ 1 + 𝑝𝐿𝐿

−  
1

2
⋅ 1 +

1

2
⋅ 0 ≤ 0, 

𝑝𝐿𝑅
+  −

1

2
⋅ 2 +

1

2
⋅ 1 + 𝑝𝐿𝑅

−  
1

2
⋅ 1 +

1

2
⋅ 0 ≤ 0, 

𝑝𝑅𝐿
+  

1

2
⋅ 2 −

1

2
⋅ 1 + 𝑝𝑅𝐿

−  −
1

2
⋅ 1 −

1

2
⋅ 0 ≤ 0, 

𝑝𝑅𝑅
+  

1

2
⋅ 2 −

1

2
⋅ 1 + 𝑝𝑅𝑅

−  −
1

2
⋅ 1 −

1

2
⋅ 0 ≤ 0. 

All inequalities in (18) must in fact hold as equalities. If one of the first two inequalities or 

one of the last two were strict, then − 𝑝𝐿𝐿
+ + 𝑝𝐿𝑅

+  +  𝑝𝐿𝐿
− + 𝑝𝐿𝑅

−  < 0 or  𝑝𝑅𝐿
+ + 𝑝𝑅𝑅

+  −

 𝑝𝑅𝐿
− + 𝑝𝐿𝑅

−  < 0 would hold. These two inequalities are equivalent (since the probabilities in 

each quartet sum up to 1), and they contradict (16). Therefore, in particular, the first and 

third equalities in (18) hold as equalities, which implies − 𝑝𝐿𝐿
+ + 𝑝𝑅𝐿

+  +  𝑝𝐿𝐿
− + 𝑝𝑅𝐿

−  = 0. 

This equation contradicts (17). The contradiction proves that a correlated strategy with a 

mechanism satisfying 𝑆  and 𝐼 that has the distribution specified by Table 2 cannot be a 

correlated equilibrium.  

The conjunction of 𝑆- and 𝐷-implementability (as in Example 4) and the conjunction of 𝑆- 

and 𝐼-implementability (Example 5) are two attributes of CEDs that have no parallels among 

the attributes of CSDs. A third attribute that is defined in a similar manner may exist, 

namely, the conjunction of 𝑆 - and 𝐼-implementability. However, its existence is still an open 

question: it is not known whether this third attribute is indeed distinct from the second one. 

This uncertainty is represented in Figure 2 by the question mark. However, in any case, it is 

shown in Section 5.3 below that these two or three attributes of CEDs are the only ones that 

can be defined only by conjunctions; additional such attributes do not exist.  

3.2.3 Strategy correlated and type correlated equilibria 

As an illustration of the discussion in the previous subsections, this subsection describes in 

detail two of the attributes of correlated equilibrium distributions in Figure 2: 𝑂-

implementability (attribute III), which is inherited from correlated strategy distributions, and 

the “spin-off” attribute 𝑆, 𝑂-implementability (attribute IIIa). Both attributes have been 

previously described in the literature, under various names. The correlated equilibria whose 

CEDs are 𝑆, 𝑂-implementable are called strategy correlated equilibria (Cotter, 1991), 

strategic form correlated equilibria (Forges, 1993, 2006) or normal form correlated equilibria 

(Lehrer et al., 2006a). The correlated equilibria whose CEDs are 𝑂-implementable are called 

type correlated equilibria (Cotter, 1994) or agent normal form correlated equilibria (Forges, 

1993, 2006; Lehrer et al., 2006a,b).  

In a strategy correlated equilibrium, a referee who does not know the players’ types 

confidentially recommends a strategy to each of them. The recommendations are thus 

independent of the players’ actual types but not necessarily of one another. The equilibrium 

condition is that it is always optimal for each player to take the action that the strategy 

(18) 
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recommended by the referee prescribes to his actual type, assuming that all the other 

players do the same. In the terminology of this work, a referee corresponds to a 

mechanism.17 The assumption that the referee does not know the players’ types 

corresponds to properties 𝑆 and 𝑂 of the mechanism, which together mean that the types 

do not affect the messages.  

A type correlated equilibrium differs from a strategy correlated equilibrium in that each 

player is told not the whole strategy but only the action it prescribes to his actual type. 

However, it is still assumed that the referee does not know the types when he chooses his 

recommendations. Hence, either he learns them later or there is something (e.g., a language 

barrier; see the example in the Introduction) that prevents players from learning what they 

are not supposed to know, namely, the actions that the strategy recommended by the 

referee prescribes to each of the other types of the same player. Either way, the message 

that each player receive may depend on his type, so that the mechanism only has property 

𝑂. 

Forges (1993) showed that some type correlated equilibria are not equivalent to any 

strategy correlated equilibrium. The next example provides another demonstration of this 

result.   

Example 6. A correlated equilibrium distribution that is 𝑆 , 𝑂- but not 𝑆, 𝑂-implementable.  

Two players play the coordination game 

  𝐿 𝑅 
𝐿
𝑅

 
1 0
0 1

  . 

Player 1 can be of type +1 or type −1, which are both equally likely. Player 2 has the single 

type +1. A mechanism bases its messages on the outcomes of two independent coin tosses, 

𝒎+ and 𝒎−, each of which gives 𝐿 or 𝑅 with equal probabilities. A player of type +1 or −1 

receives the message 𝒎+ or 𝒎−, respectively. The correlated strategy of always acting 

according to the message is a correlated equilibrium. It gives the expected payoffs 1 and 0.5, 

respectively, to types +1 and −1 of player 1, and 0.75 to player 2, and it is easy to check 

that, in all three cases, profitable deviations do not exist.  

The above mechanism has properties 𝑆  and 𝑂. Whether player 1’s type is +1 or −1 does not 

affect the distribution of the message he receives (which has probability 0.5 of being 𝐿 in 

both cases), and has no effect whatsoever on player 2’s message. The corresponding 

correlated equilibrium distribution is not implementable by any mechanism that satisfies 𝑆 

and 𝑂, i.e., one in which both messages are unaffected by 1’s type. The reason is that, in any 

correlated equilibrium with a mechanism that has that property, the expected payoff for the 

two types of player 1 must be equal. Otherwise, one of them could increase his payoff by 

mimicking the way the other type reacts to the message he receives.  

                                                            
17 This description of strategy correlated equilibrium is not entirely general, in that the 
recommendation that each player receives from the referee is an explicit strategy. In a more general 
setting, a device may send out messages that are arbitrary objects, and the translation into strategies 
for the receiving players is expressed by the correlated strategy. 
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Figure 3. Hesse diagram of the different attributes of communication equilibrium distributions (MEDs) in 
Bayesian games, ordered by implication. Each attribute is represented by a box, and an implication relation is 
represented by a line. A conjunction symbol ∧ means that the MED is implementable both by a mechanism 
satisfying one property (or pair of properties) and by a mechanism satisfying the other property. A line marked 
? represents an uncertain relation: it is not known whether the reverse implication also holds (in which case 
the two connected boxes should be coalesced).  

3.3 Attributes of communication equilibrium distributions 
A communication equilibrium in a Bayesian game is also a correlated equilibrium but the 

converse is not always true. The incentive compatibility requirement for correlated 

equilibrium is that taking a different action than that prescribed by the correlated strategy 

cannot make a player better off. Communication equilibrium adds the requirement that 

reporting the types truthfully is incentive compatible. Obviously, the latter requirement has 

no bite if the mechanism ignores the players’ type reports, i.e., if it has properties 𝑆 and 𝑂. 

Thus, if a CED is implementable by a mechanism with these properties, it is automatically a 

MED. Somewhat less trivially, it is shown below that 𝑆, 𝑂-implementability is the weakest 

? 

    

 𝑂  ∧  𝐼  

 𝑂 , 𝐼  

 𝑂, 𝐼  

 𝑆 , 𝑂 , 𝐼  

 𝑆, 𝑂 , 𝐼  

 𝑆 , 𝑂, 𝐼  

 𝑆, 𝑂, 𝐼  

 𝑆    𝐼  

 

 𝑆, 𝑂  

 𝑂   

 𝑆 , 𝑂   

 𝑆, 𝑂   

 
 𝑂  

 𝑆 , 𝑂  

 𝑆  

 

III 

IIIa 

II 

Ia 

Ib IV 

V 

 𝑂  ∧  𝐷  

 𝑂 , 𝐷  

 𝑂, 𝐷  

 𝑆 , 𝑂 , 𝐷  

 𝑆, 𝑂 , 𝐷  

 𝑆 , 𝑂, 𝐷  

 𝑆, 𝑂, 𝐷  

 𝐷  

 

VI 

VII 

IVa 

VIa 

 𝑆  ∧  𝐼  

 
 𝑆 ∧  𝐼  

 

IVb 

 𝑆 , 𝐷  
 𝑆, 𝐷  

 

 𝑆, 𝐼 ∧  𝐷  

 𝑆 , 𝐼  
 𝑆, 𝐼  

 

? 

 𝑆  ∧  𝐷  

 
 𝑆 ∧  𝐷  

 

I 



29 

attribute in Figure 2 that guarantees that a CED is also a MED. Thus, for any list of properties 

of mechanisms that does not include 𝑆 or 𝑂, some of the CEDs implementable by a 

mechanism with these properties are not MEDs. However, other such CEDs are MEDs, which 

raises the question of whether, also as MEDs, they are implementable by a mechanism with 

the same properties, i.e., whether there exists a communication equilibrium with such a 

mechanism that gives the distribution. Examples 7 and 8 below show that the answer can be 

negative.  

Implementability by a mechanism with a particular set of properties is an attribute of MEDs, 

just as for CEDs and CSDs. As in Sections 3.1 and 3.2, a basic question, for each such attribute 

of MEDs or a conjunction of several attributes, is which of the other attributes are implied by 

it. The answer to this question is given by the Hesse diagram in Figure 3, which presents the 

implication relations among the various attributes of communication equilibrium 

distributions. Comparison to the diagram for correlated equilibrium distributions (Figure 2) 

shows that, among the attributes of distributions that are defined by single sets of 

properties of mechanisms, the implications relations for MEDs and CEDs are identical. 

However, this is not so for attributes that are defined by conjunctions, with the result that 

some such attributes are equivalent in the case of CEDs but distinct for MEDs.  

A fundamental reason for the difference between the Hesse diagrams in Figure 2 and Figure 

3 is that, unlike for CEDs, the reaction of a mechanism implementing a MED to type reports 

that are patently not all truthful, since the profile of reported types lies outside the support 

of the distribution of type profiles, may be critically important. The reaction has to induce 

actions that harm the player who lied about his type (whose identity may or may not be 

inferable). As the following example demonstrates, the feasibility of such a reaction may 

depend on the properties of the implementing mechanism.      

Example 7. A communication equilibrium distribution that is 𝑆- as well as 𝐷-implementable 

but not 𝑆, 𝐼-implementable. In a three-player Bayesian game, player 1 has two types, 𝑡1
′  and 

𝑡1
″ . Players 2 and 3 both have the same two types, 𝑡′  and 𝑡″ . All type profiles except 

(𝑡1
′ , 𝑡′ , 𝑡′ ) may occur, and they have the same probability (1/7). Each player can play 𝐿 or 𝑅. 

Player 1’s payoff depends only on the type profile 𝑡 and on the other players’ actions. 

Specifically, it can be different from 0 only if 𝑡 =  𝑡1
″ , 𝑡′ , 𝑡′ , in which case the payoff is given 

by the following symmetric matrix, in which the rows and columns correspond to the actions 

of players 2 and 3:  

  𝐿  𝑅 
𝐿
𝑅

 
0 −1

−1 6
  . 

For each of the other players, 2 and 3, the payoff is the sum of two numbers. The first 

number is 4 if player 1 plays 𝐿 and players 2 and 3 have identical types; it is 4 also if player 1 

plays 𝑅 and players 2 and 3 have different types; and it is 0 otherwise. The second number is 

1/2 if the player’s own action is 𝑅; and if the action is 𝐿, it is given by the following table, in 

which the rows describe the player’s own type and the columns describe the types of the 

other two players: 
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 𝑡1
′ , 𝑡′ 𝑡1

″ , 𝑡′ 𝑡1
′ , 𝑡″ 𝑡1

″ , 𝑡″

𝑡′

𝑡″
N/A     1     0     0     

3     0     0     0     

. 

Consider the function that, for each type profile 𝑡, assigns to player 1 the action 𝐿 or 𝑅 if the 

types of players 2 and 3 are identical or different, respectively, and assigns to each of the 

other players the action specified by the following table, and which the rows and columns 

correspond to the player’s own type and that of the other player, respectively: 

 𝑡′ 𝑡″

𝑡′

𝑡″
𝐿 𝑅
𝐿 𝐿

. 

With the mechanism with property 𝐷 that, for each type profile 𝑡, tells each player the 

action the above function assigns him, the correlated strategy of acting accordingly is a 

communication equilibrium. Player 1 cannot increase his payoff of 0, since there is no way 

he can make players 2 and 3 play 𝑅 when they both have type 𝑡′. And for these players, a 

truthful type report is incentive compatible, since if (only) one of them lies, both players lose 

the 4 they would get from a match between their types (identical or different) and player 1’s 

action (𝐿 or 𝑅, respectively). In addition, for players 2 and 3, acting according to the 

coordinated strategy is incentive compatible. For a player of type 𝑡′ , doing so always 

guarantees maximum payoff, and for type 𝑡″ , deviating from the assigned action 𝐿 to 𝑅 

would decrease the expected payoff by (1/4 × 3 − 1/2 =) 1/4. 

The communication equilibrium distribution described above is also implementable by a 

mechanism with property 𝑆. That mechanism sends to player 1 the same messages as 

above, and sends to each of the other two players 𝑖 (= 2,3) a message that depends on the 

others’ types according to the table 

 𝑡1
′ , 𝑡′ 𝑡1

″ , 𝑡′ 𝑡1
′ , 𝑡″ 𝑡1

″ , 𝑡″

 𝒁𝑖      𝐿     𝑅      𝑅     
, 

where (𝒁2 , 𝒁3) is a pair of random variables that equals (𝐿, 𝑅) with probability 0.5 and 

(𝑅, 𝐿) with probability 0.5. A communication equilibrium with this mechanism that gives the 

same distribution as the previous one is for each player to play according to the message he 

receives, unless he is of type 𝑡″ , in which case he should play 𝐿. In the latter case, playing 𝑅 

would not increase the conditional expectation of the player’s payoff, regardless of the 

message he receives. The conditional probability that the other players’ types are 𝑡1
′  and 𝑡′ , 

given that the received message is 𝐿 or 𝑅, is 1/3 or 1/5, respectively. Since 1/3 × 3 and 

1/5 × 3 are greater than 1/2, deviation to 𝑅 is unwarranted in both cases. The incentive 

compatibility of truthful type reports is proved by arguments similar to those used for the 

previous equilibrium. 

There is no communication equilibrium with a mechanism with properties 𝑆 and 𝐼 that gives 

the above distribution. To see this, suppose that such a communication equilibrium exists. 

Since property 𝑆 implies 𝑆 , the distribution of the messages that player 3 gets from the 

mechanism only depends on the other players’ types, so that it can be described by the table  
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 𝑡1
′ , 𝑡′ 𝑡1

″ , 𝑡′ 𝑡1
′ , 𝑡″ 𝑡1

″ , 𝑡″

 𝑃1    𝑃2     𝑃3      𝑃4     
, 

where 𝑃1, 𝑃2, 𝑃3, 𝑃4 are four probability measures on player 3’s message space 𝑀3. If the 

type of player 3 is 𝑡′ , he should play 𝐿 or 𝑅 if he receives any message in supp 𝑃2  or 

supp 𝑃3 ∪ supp 𝑃4 , respectively. Therefore, these two subsets of 𝑀3 must be disjoint. If 

the type of player 3 is 𝑡″ , he should play 𝐿 regardless of the message 𝑚3 he receives. 

Deviation to 𝑅 should not increase the conditional expectation of the player’s payoff, which 

means that  

 
1

2
− 3 𝑃1  𝑚3  +

1

2
𝑃2  𝑚3  +

1

2
𝑃3  𝑚3  +

1

2
𝑃4  𝑚3  ≤ 0. 

Summing over all 𝑚3 ∈ supp 𝑃3 ∪ supp 𝑃4  gives  

−
5

2
𝑃1 supp(𝑃3) ∪ supp(𝑃4) + 0 +

1

2
+

1

2
≤ 0. 

It follows that if the type profile is (𝑡1
′ , 𝑡′ , 𝑡′), the probability that player 3 plays 𝑅 is at least 

2/5. The same is true for player 2. Therefore, by the assumed independence of the 

messages (property 𝐼), the probability that both 2 and 3 play 𝑅 when the type profile is 

(𝑡1
′ , 𝑡′ , 𝑡′ ) is at least 4/25. Since 4/25 × 6 + 21/25 × (−1) > 0, this shows that player 1 

has an incentive to misreport his type as 𝑡1
′  when it is really 𝑡1

″ , which contradicts the 

equilibrium assumption.  

Example 7 shows that for communication equilibrium distributions, unlike for correlated 

equilibrium distributions (Figure 2), the conjunction of 𝑆- and 𝐷-implementability does not 

imply 𝑆, 𝐼-implementability. The MED in Example 7 is not 𝑆, 𝐼-implementable even though it 

is 𝑆, 𝐼-implementable as a CED. The next example demonstrates another such difference 

between MEDs and CEDs, which is significant in that it shows that these solution concepts 

are not connected by a relation similar to that in Theorem 1, which concerns CEDs and CSDs. 

The example is taken from Gerardy (2004, Example 2). 

Example 8. A communication equilibrium distribution that is not 𝐷-implementable but does 

have that attribute as a correlated equilibrium distribution. In a three-player Bayesian game, 

player 1 has two types, 𝑡1
′  and 𝑡1

″ , player 2 has two types, 𝑡2
′  and 𝑡2

″ , and player 3 has a single 

type. Types 𝑡1
″  and 𝑡2

″  cannot occur together, but all the other three type profiles are 

possible and equally probable. Players 1 and 2 have a single action, and player 3 has four 

actions: 𝑎3
1 , 𝑎3

2 , 𝑎3
3 , 𝑎3

4. The payoff vectors that result from these four actions, for each type 

profile, are given by the following table. 

 𝑡1
″                                                                𝑡2

″

𝑡1
′

𝑡1
″

 −1, −1,1 ,  1,1,0 ,  0,0, −1 , (0,0, −1)  1,0,0 ,  1,1,1 ,  −3,0,1 , (1,0, −1)
 0,1,0 ,  1,1,1 ,  0,1, −1 , (0, −3,1) N/A

. 

For each of the three possible type profiles there are either one or two actions for player 3 

that yield the player’s maximum payoff of 1. Any choice of such actions specifies an 𝑆, 𝐷- 

(but not 𝑂 -) implementable CED. However, it can be shown that only one of these four CEDs 

is also a MED, namely, the one in which player 3 chooses 𝑎3
1 if the other players’ types are 𝑡1

′  
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and 𝑡2
′  and chooses 𝑎3

2 otherwise. In addition, in any communication equilibrium player 3 

randomizes exactly fifty-fifty between 𝑎3
3 and 𝑎3

4 if the impossible type combination (𝑡1
″ , 𝑡2

″ ) 

is reported; otherwise, truthful type reports are not incentive compatible. Therefore, the 

above MED is 𝑆, 𝐼- but not 𝑉-implementable.  

Example 8 shows that for communication equilibria a result similar to Corollary 1 does not 

hold. The fundamental reason, again, is that the messages that the mechanism sends when 

it receives type reports that are not in the support of the distribution of type profiles cannot 

be chosen arbitrarily. The existence in Example 8 of 𝑆, 𝐷-implementable CEDs that are not 

MEDs also shows that this attribute of CEDs is insufficient to make them MEDs. Example 6 

proves that 𝑆 , 𝑂-implementability is also insufficient. This is because, in the CED considered 

in that example, the otherwise identical two types of player 1 receive different payoffs, 

which is impossible in a MED. Together, these two examples prove that the only attributes 

of CEDs in Figure 2 that necessarily make them MEDs are those that imply 𝑆, 𝑂-

implementability. 

The differences between the attributes of correlated equilibrium distributions and those of 

communication equilibrium distributions are not limited to differences between the 

respective Hesse diagrams. As Example 7 and 8 show, they involve not only the number of 

attributes and the relations between them but also the classification of individual 

distributions. The same distribution may be assigned to either of two non-corresponding 

classes depending on whether it is viewed as a CED or as a MED. The next subsection 

describes in detail the classifications of CSDs, CEDs and MEDs that are derived from the 

respective Hesse diagrams. 

3.4 Classifications  
A significant result concerning the collections of attributes of distributions that are described 

in the preceding three subsections is that each of them is closed under conjunctions. That is, 

each collection includes every attribute that can be defined as the conjunction of several of 

its elements, i.e., as the quality of possessing all of these attributes. This result is formally 

expressed by the following theorem and it is proved by Lemmas 5, 6 and 7 below (in 

Sections 4, 5 and 6). 

Theorem 2. The conjunction of any number of the attributes of CSDs in Figure 1, CEDs in 

Figure 2, or MEDs in Figure 3 is equivalent to one of the attributes in the same figure. 

Each of the collections of attributes of CSDs, CEDs, and MEDs in the above figures is a lattice 

with respect to the implication relation. That is, in each of the three Hesse diagrams, every 

two attributes have a greatest lower bound (or infimum) and a least upper bound (or 

supremum). The greatest lower bound, which is also called the meet of the two attributes, is 

the unique attribute in the diagram that (i) implies both attributes and (ii) is implied by every 

other attribute in the diagram that implies them. The least upper bound, which is also called 

the join of the two attributes, is the unique attribute that (i) is implied by each of the two 

attributes and (ii) implies every other attribute in the diagram that is implied by each of 

them. The meet and join operations are customarily denoted by ∧ and ∨ respectively. 

Theorem 2 implies that this notation is consistent with the use of ∧ in Figure 2 and Figure 3 
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as the symbol for logical conjunction. By the theorem, in each Hesse diagram, the 

conjunction of any two attributes is equivalent to some attribute in the same diagram. That 

attribute is clearly the meet of the first two: it implies each of them, and it is implied by any 

other attribute that does the same. 

A CSD, CED, or MED in a Bayesian game usually has more than one of the attributes of 

distributions of that kind that are described in this paper. Specifically, if it has a particular 

attribute, then it also possesses every other attribute that is implied by the first one. For 

example, every random-profile distribution (attribute III in Figure 1) also has the conditional 

independence property (property II). However, as Theorem 3 below shows, among all the 

attributes in Figure 1, Figure 2 or Figure 3 that a given CSD, CED or MED has, there is always 

one that implies all the others; it is its strongest attribute. Clearly, specifying the strongest 

attribute is equivalent to specifying the whole collection of attributes that the distribution 

possesses. 

Classification according to the strongest attribute partitions the collection of all CSDs into 7 

nonempty and mutually disjoint classes. The partition for CEDs, which is finer than (that 

inherited from) the former, has 14 or 15 elements, and for MEDs the number of classes is 15, 

16 or 17.18 Each of these classes can be designated by the same roman number (and, if 

applicable, a subscript letter) that designates the corresponding attribute in Figure 1, Figure 

2 or Figure 3. For example, class II of CSDs consists of all the correlated strategy distributions 

with the conditional independence property that are not random-profile distributions.   

Theorem 3. For every correlated strategy distribution 𝜂, the collection of all the attributes in 

Figure 1 that 𝜂 possesses includes one attribute that implies all the others. The same is true 

for correlated equilibrium distributions and for communication equilibrium distributions, 

except that for these the relevant attributes are those in Figure 2 and Figure 3, respectively. 

Theorem 3 is an immediate corollary of the closedness under conjunctions. By Theorem 2, 

the conjunction of all the attributes that a distribution 𝜂 possesses is equivalent to one of 

the attributes in the relevant Hesse diagram. Since equivalence means two-way implication, 

it follows that (i) 𝜂 has that attribute, and (ii) the attribute implies all the other attributes 

that 𝜂 possesses. Parenthetically, Theorem 3 does not simply follow from the observation 

that each of the three Hesse diagrams is a lattice (or vice versa). Removing VIb, for example, 

from Figure 2 would invalidate the theorem, but the Hesse diagram would still represent a 

lattice.  

It follows from Theorem 3 that if a CED, for example, is implementable both by a mechanism 

with property 𝑂  and by a mechanism with property 𝐷, then it is a pure-equilibrium 

distribution. This is because the only attribute in Figure 2 that is stronger than (i.e., implies 

both) 𝑂 -implementability and 𝐷-implementability is 𝑆, 𝑂, 𝐷-implementability. 

                                                            
18 Although the ranges of possible cardinalities overlap, it follows from Example 7 and Lemma 22 
below that the number of classes of MEDs is strictly greater than for CEDs. 
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3.5 Payoffs 
Example 6 purports to show that the joint distributions of type and action profiles 

achievable by strategy correlated equilibria are not identical to those achievable by type 

correlated equilibria. It does that by showing that the two kinds of equilibria may give 

different expected payoffs to certain types of players. Forges’ (1993) demonstration of the 

nonequivalence of strategy correlated and type correlated equilibria, which is considerably 

more involved than Example 6, seemingly goes further by showing that even the players’ 

payoffs, which combine those of all their types, may be different for the two kinds of 

equilibria. However, it follows from the next theorem that to study the effect of the 

properties of the implementing mechanism on the correlated equilibrium payoffs (CEPs), 

which are the 𝑛-tuples specifying the players’ expected payoffs in the correlated equilibria in 

an 𝑛-player Bayesian game, it is in fact not necessary to actually examine these payoffs, as 

Forges (1993, 2006) did. It suffices to solve the more tractable problem of CED 

implementability (Section 3.2). This is because any two kinds of mechanisms (of those 

considered in Figure 2) that do not implement the same CEDs necessarily also do not 

implement the same CEPs (and, obviously, vice versa). A similar relation exists between 

correlated strategy distributions (Section 3.1) and correlated strategy payoffs (CSPs), and 

between communication equilibrium distributions (Section 3.13.3) and communication 

equilibrium payoffs (MEPs). The proof of the theorem, which is given in Section 7, is 

constructive. It thus provides a means of automatically turning an example such as Example 

6 into one that involves different payoff vectors (rather than just different joint distributions 

of types and actions).   

Theorem 4.  For any two subsets 𝒫 and 𝒬 of the properties (of mechanisms) {𝑆, 𝑆 , 𝑂, 𝑂 , 𝐷, 𝐼}, 

the proposition  

𝒫-implementability implies 𝒬-implementability 

holds for correlated strategy distributions, correlated equilibrium distributions or 

communication equilibrium distributions if and only if it holds for correlated strategy 

payoffs, correlated equilibrium payoffs or communication equilibrium payoffs, respectively. 

Moreover, the same is true with the premise “𝒫-implementability” replaced by “𝒫-

implementability and 𝒫′ -implementability and 𝒫″ -implementability and …”, for any list 

𝒫, 𝒫′ , 𝒫″ …  of subsets of {𝑆, 𝑆 , 𝑂, 𝑂 , 𝐷, 𝐼}. 

The meaning of Theorem 4 is that the Hesse diagrams in Figure 1, Figure 2 and Figure 3 

apply not only to CSDs, CEDs and MEDs, respectively, but also to CSPs, CEPs and MEPs. 

Moreover, the classifications of CSPs, CEPs and MEDs by the properties of the implementing 

mechanisms are identical to the classifications of CSDs, CEDs and MEDs described in Section 

3.4. Therefore, the notation used for the various classes of distributions may also be used for 

the corresponding classes of payoff vectors. For example, Class I of CEPs consists of all the 

correlated equilibrium payoffs (in specified Bayesian games) that are not 𝑆 - or 𝐼-

implementable. 

This concludes the summary of the main results in this paper. The following sections present 

these results in detail and give their proofs.  
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4 Correlated Strategy Distributions 
One of the goals of this paper is to identify new attributes of correlated strategy 

distributions. It would seem natural to base the classification on the intrinsic properties of 

CSDs, that is, properties that can easily be expressed in terms of the distributions 

themselves, as in Lemma 2. Indeed, this is the prevalent approach in the literature. 

However, an alternative approach turns out to be quite fruitful. This approach, which forms 

the basis for this work, is to classify CSDs according to the properties of the mechanisms 

implementing them. Characterization in terms of intrinsic properties is the second step.   

The classification of CSDs is based on the six properties of mechanisms described in Section 

2.2, namely, 𝑆, 𝑆 , 𝑂, 𝑂 , 𝐷 and 𝐼. Each subset 𝒫 of these properties defines an attribute of 

CSDs, namely, 𝒫-implementability. A CSD is 𝒫-implementable if it is implementable by some 

mechanism with (all) the properties in 𝒫. If 𝒫 and 𝒬 are two subsets of properties, 𝒫-

implementability implies 𝒬-implementability if in every Bayesian game every 𝒫-

implementable CSD is also 𝒬-implementable. Shorthand for this implication is  

𝒫 ⇒ 𝒬. 

A trivial sufficient condition for (19) is 𝒬 ⊆ 𝒫. 𝒫-implementability and 𝒬-

implementability are comparable if (19) or the reverse implication holds, and equivalent if 

both implications hold. Shorthand for equivalence is  

𝒫 ⇔ 𝒬 

The connection between properties of mechanisms and attributes of CSDs can be extended 

by considering pairs of subsets of {𝑆, 𝑆 , 𝑂, 𝑂 , 𝐷, 𝐼}. Each such pair, 𝒫 and 𝒫′, defines an 

attribute of CSDs , namely, the conjunction of 𝒫-implementability and 𝒫′-implementability, 

which is denoted by  

𝒫 ∧ 𝒫′. 

A CSD with this attribute is implementable both by a mechanism with the properties in 𝒫 

and by a (possibly, different) mechanism with the properties in 𝒫′. However, Lemma 5 at the 

end of this section shows that no new attributes are defined this way, since every CSD as 

above is also implementable by a mechanism that has both the properties in 𝒫 and those in 

𝒫′.  

A particularly simple mechanism that implements any given CSD is its canonical mechanism, 

which is defined in Section 2.2.1. The following useful lemma identifies several attributes of 

CSDs that only depend on properties of their canonical mechanism.  

Lemma 4. A CSD is 𝑂 -, 𝐷- or 𝐼- implementable if and only if its canonical mechanism has 

property 𝑂 , 𝐷 or 𝐼, respectively.  

Proof. Consider a CSD 𝜂 and a correlated strategy 𝜎 with a mechanism 𝒎′  such that 𝜂 is 

equal to the joint distribution of the random type profile 𝒕 and the random action profile 𝒂 

that is defined by a similar equation to (7) except that 𝒎′  replaces 𝒎. Let 𝒎 =  𝒎 𝑡  𝑡∈𝑇  

be the canonical mechanism of 𝜂. By definition, it satisfies 

(19) 
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𝒎 𝑡 =
𝑑

 𝜎𝑗  𝑡𝑗 , 𝒎𝑗
′  𝑡   

𝑗∈𝑁
, 𝑡 ∈ supp(𝜂𝑇). 

If 𝒎′  satisfies 𝐼, then the entries on the right-hand side of the equality are independent, and 

therefore (4) holds. A special property of the canonical mechanism is that (4) also holds for 

all 𝑡 ∉ supp(𝜂𝑇), which proves that 𝒎 satisfies 𝐼. 

Another special property of the canonical mechanism is that, for every 𝑡 and 𝑖, there is some 

𝑡′  with  𝑡𝑖 , 𝑡−𝑖
′  ∈ supp(𝜂𝑇) such that (2) holds, and hence (by (20)) 

𝒎𝑖 𝑡 =
𝑑

𝜎𝑖 𝑡𝑖 , 𝒎𝑖
′ (𝑡𝑖 , 𝑡−𝑖

′ ) . 

If 𝒎′  satisfies 𝐷, then the expression on the right-hand side has a degenerate distribution, 

which proves that 𝒎 satisfies 𝐷. If 𝒎′  satisfies 𝑂 , then the distribution of the expression on 

the right-hand side is unaffected by replacing 𝑡′  with an arbitrary type profile 𝑡∗, and the 

equation that results from this replacement proves that 𝒎 satisfies 𝑂 . ∎ 

Unfortunately, Lemma 4 cannot be extended to all attributes of CSDs. In particular, as 

indicated in Section 2.2.1, the canonical mechanism of an 𝑂-implementable CSD does not 

necessarily have property 𝑂. However, every 𝑂-implementable CSD 𝜂 is implementable by a 

mechanism 𝒎 =  𝒎  𝑡  𝑡∈𝑇  with property 𝑂 that is functionally indistinguishable from the 

canonical mechanism 𝒎 =  𝒎 𝑡  𝑡∈𝑇 , in that 

𝒎  𝑡 =
𝑑

𝒎 𝑡 , 𝑡 ∈ supp(𝜂𝑇). 

Such a mechanism can be constructed by taking any mechanism 𝒎′ =  𝒎′ 𝑡  𝑡∈𝑇  with 

property 𝑂 that implements 𝜂 and a corresponding correlated strategy 𝜎, and defining  

𝒎 𝑖 𝑡 = 𝜎𝑖 𝑡𝑖 , 𝒎𝑖
′ (𝑡) , 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇. 

It follows from (20) that this mechanism is functionally indistinguishable from the canonical 

one, which implies that 𝜂 is obtained also from using the canonical strategy with the 

mechanism 𝒎 . 

4.1 Intrinsic characterizations 
This subsection presents intrinsic characterizations for several attributes of CSDs, which 

represent an alternative to definitions by properties of the implementing mechanisms. The 

first two propositions are slightly reworded versions of results presented in Section 3.1.1. 

Proposition 1. A CSD 𝜂 is 𝑆, 𝑂, 𝐼-implementable if and only if the following condition holds 

for some (equivalently, every) pair of random variables 𝒕 =  𝒕1 , 𝒕2 , … , 𝒕𝑛  and 𝒂 =

 𝒂1 , 𝒂2 , … , 𝒂𝑛  whose joint distribution is 𝜂:  

(i) For each player 𝑖, 𝒂𝑖  and  𝒕−𝑖 , 𝒂−𝑖  are conditionally independent, given 𝒕𝑖 .  

A CSD is 𝑆, 𝑂, 𝐷-implementable if and only if it satisfies the stronger condition in which (i) is 

replaced by: 

(ii) For each player 𝑖, the conditional distribution of 𝒂𝑖 , given 𝒕𝑖 , is degenerate. 

(20) 

(21) 
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Proof. To prove the sufficiency of the condition for 𝑆, 𝑂, 𝐼-implementability, let 𝒎 and 𝜎 the 

canonical mechanism and canonical correlated strategy of 𝜂, and 𝒂 the corresponding 

random action profile. Suppose that (i) holds. For every type profile 𝑡 ∈ supp 𝜂𝑇  and action 

profile 𝑎,  

Pr 𝒂 = 𝑎 𝒕 = 𝑡 = Pr 𝒂1 = 𝑎1 𝒂−1 = 𝑎−1 , 𝒕 = 𝑡 Pr 𝒂−1 = 𝑎−1 𝒕 = 𝑡  

= Pr 𝒂1 = 𝑎1 𝒕 = 𝑡  Pr 𝒂−1 = 𝑎−1 𝒕 = 𝑡 = ⋯ 

= Pr 𝒂1 = 𝑎1 𝒕 = 𝑡  Pr 𝒂2 = 𝑎2 𝒕 = 𝑡 ⋯ Pr 𝒂𝑛 = 𝑎𝑛  𝒕 = 𝑡 ,  

where the second equality follows from (i) and the subsequent equalities follow from using 

the same trick for the other entries of 𝑎. This proves that 𝒂1 , 𝒂2 , … , 𝒂𝑛  are conditionally 

independent, given 𝒕. By (i), for every type profile 𝑡′  with  𝑡𝑖 , 𝑡−𝑖
′  ∈ supp 𝜂𝑇 , each 

expression in (22) of the form Pr 𝒂𝑖 = 𝑎𝑖 𝒕 = 𝑡  is equal to Pr 𝒂𝑖 = 𝑎𝑖 𝒕 =  𝑡𝑖 , 𝑡−𝑖
′   . Eqs. 

(10) and (22) and the second part of property (6) of the canonical mechanism therefore 

imply that, for 𝑡 ∈ supp 𝜂𝑇 , 𝑎 ∈ 𝐴 and any 𝑡′ ∈ 𝑇, 

Pr 𝒂 = 𝑎 𝒕 = 𝑡 = Pr 𝒎 𝑡 = 𝑎 =  Pr 𝒎𝑖 𝑡𝑖 , 𝑡−𝑖
′  = 𝑎𝑖 

𝑛

𝑖=1

. 

Index the players’ types in such a way that 𝑡1 =  𝑡1
1 , 𝑡2

1 , … , 𝑡𝑛
1 ∈ supp 𝜂𝑇 . For each 𝑡, let 

𝒎  𝑡 = (𝒎 1 𝑡 , 𝒎 2 𝑡 , … 𝒎 𝑛 𝑡 ) be the random variable with values in 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯ ×

𝐴𝑛
𝑇𝑛  that is defined by 

𝒎 𝑖 𝑡 =  𝒎𝑖 𝑡𝑖
1 , 𝑡−𝑖

1  , 𝒎𝑖 𝑡𝑖
2 , 𝑡−𝑖

1  , …  , 𝑖 ∈ 𝑁. 

The message that each player 𝑖 receives from the mechanism 𝒎 =  𝒎  𝑡  𝑡∈𝑇  is a pure 

strategy of the form  𝑎𝑖
1 , 𝑎𝑖

2 , …  ∈ 𝐴𝑖
𝑇𝑖 . Each entry 𝑎𝑖

𝑘  is an action that corresponds to a 

particular type 𝑡𝑖
𝑘  of player 𝑖; it is the message player 𝑖 would receive from the canonical 

mechanism 𝒎 if his type were 𝑡𝑖
𝑘  and the other players’ types were given by 𝑡−𝑖

1 . Since this 

does not involve the actual type profile 𝑡, the mechanism 𝒎  satisfies 𝑆 and 𝑂. To prove that 

it also satisfies 𝐼, it has to be shown that for any 𝑎1
1 , 𝑎1

2 , … ∈ 𝐴1, 𝑎2
1 , 𝑎2

2 , … ∈ 𝐴2, ... , 

𝑎𝑛
1 , 𝑎𝑛

2 , … ∈ 𝐴𝑛 , 

Pr 𝒎1 𝑡1
1 , 𝑡−1

1  = 𝑎1
1 , 𝒎1 𝑡1

2 , 𝑡−1
1  = 𝑎1

2 , … ; 𝒎2 𝑡2
1 , 𝑡−2

1  = 𝑎2
1 , 𝒎2 𝑡2

2 , 𝑡−2
1  = 𝑎2

2 , … ; …  

=  Pr(𝒎𝑖 𝑡𝑖
1 , 𝑡−𝑖

1  = 𝑎𝑖
1 , 𝒎𝑖 𝑡𝑖

2 , 𝑡−𝑖
1  = 𝑎𝑖

2 , … )

𝑛

𝑖=1

. 

By (5), the left-hand side is equal to  

Pr 𝒎 𝑡1 =  𝑎1
1 , 𝑎2

1 , … , 𝑎𝑛
1    ⋅   Pr 𝒎𝑖 𝑡𝑖

2 , 𝑡−𝑖
1  = 𝑎𝑖

2 Pr 𝒎𝑖 𝑡𝑖
3 , 𝑡−𝑖

1  = 𝑎𝑖
3 ⋯ .

𝑛

𝑖=1

 

By the second equality in (23) (used with 𝑡 = 𝑡′ = 𝑡1), this proves that  

  

(22) 

(23) 

(24) 

(25) 
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Pr 𝒎1 𝑡1
1 , 𝑡−1

1  = 𝑎1
1 , 𝒎1 𝑡1

2 , 𝑡−1
1  = 𝑎1

2 , … ; 𝒎2 𝑡2
1 , 𝑡−2

1  = 𝑎2
1 , 𝒎2 𝑡2

2 , 𝑡−2
1  = 𝑎2

2 , … ; …  

=   Pr(𝒎𝑖 𝑡𝑖
𝑘 , 𝑡−𝑖

1  = 𝑎𝑖
𝑘)

𝑘≥1

𝑛

𝑖=1

. 

By (5) again, (26) proves (25), so that the mechanism 𝒎  satisfies 𝐼. To prove that it 

implements the CSD 𝜂, define a correlated strategy 𝜎 = (𝜎 1 , 𝜎 2 , … , 𝜎 𝑛) with this mechanism 

by  

𝜎 𝑖 𝑡𝑖
𝑘 ,  𝑎𝑖

1 , 𝑎𝑖
2 , …   = 𝑎𝑖

𝑘 , 𝑖 ∈ 𝑁, 𝑘 = 1,2, …. 

Thus, according to 𝜎 𝑖 , of all the entries in the message, player 𝑖 takes the one corresponding 

to his actual type. It has to be shown that 

 𝒕, 𝒂1 , 𝒂2 , … , 𝒂𝑛 =
𝑑

 𝒕, 𝜎 1 𝒕1 , 𝒎 1 𝑡  , 𝜎 2 𝒕2 , 𝒎 2 𝑡  , … , 𝜎 𝑛 𝒕𝑛 , 𝒎 𝑛 𝑡   . 

For this, it suffices to show that, for every 𝑡 ∈ supp 𝜂𝑇  and 𝑎 ∈ 𝐴,  

Pr 𝒂 = 𝑎 𝒕 = 𝑡 

= Pr 𝜎 1 𝒕1 , 𝒎 1 𝒕  = 𝑎1 , 𝜎 2 𝒕2 , 𝒎 2 𝒕  = 𝑎2 , … , 𝜎 𝑛 𝒕𝑛 , 𝒎 𝑛 𝒕  = 𝑎𝑛  𝒕 = 𝑡 . 

By (23), this equation holds if and only if   

 Pr 𝒎𝑖 𝑡𝑖 , 𝑡−𝑖
1  = 𝑎𝑖 

𝑛

𝑖=1

= Pr(𝜎 1 𝑡1 , 𝒎 1 𝑡  = 𝑎1 , 𝜎 2 𝑡2 , 𝒎 2 𝑡  = 𝑎2 , … , 𝜎 𝑛 𝑡𝑛 , 𝒎 𝑛 𝑡  = 𝑎𝑛). 

By (27) and (24), the left-hand side is equal to  

 Pr 𝜎 𝑖 𝑡𝑖 , 𝒎 𝑖 𝑡  = 𝑎𝑖 

𝑛

𝑖=1

. 

By property 𝐼 of the mechanism 𝒎 , the right-hand side is also equal to this product, so that 

the equality holds. 

Establishing the sufficiency of the condition for 𝑆, 𝑂, 𝐷-implementability only requires the 

following short addition to the above proof. Suppose that (ii) (rather than the weaker 

condition (i)) holds. It has to be shown that the mechanism 𝒎  satisfies 𝐷 (rather than only 

𝐼). By (24), it suffices to show that for every 𝑡′ ∈ 𝑇 and 𝑖 ∈ 𝑁 the distribution of the random 

variable 𝒎 𝑖 𝑡
′  is degenerate. By the second part of property (6) of the canonical 

mechanism, it suffices to restrict attention to type profiles 𝑡′  in supp 𝜂𝑇 , for which the 

distribution is equal to the conditional distribution of 𝒎𝑖 𝒕 , given that 𝒕 = 𝑡′ . By (10), the 

latter is equal to the conditional distribution of 𝒂𝑖 , given that 𝒕 = 𝑡′ , which by (i) is 

degenerate. 

It remains to prove the necessity of the conditions in the proposition. Every CED is the joint 

distribution of pair of random variables 𝒕 and 𝒂 such that (7) holds for some correlated 

strategy 𝜎 with a mechanism 𝒎. Moreover, 𝒕 and 𝒎 are independent, and therefore  

(26) 

(27) 
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Pr 𝒂𝑖 = 𝑎𝑖 𝒕 = 𝑡 = Pr 𝜎𝑖 𝑡𝑖 , 𝒎𝑖 𝑡  = 𝑎𝑖 , 𝑖 ∈ 𝑁, 𝑡 ∈ supp 𝜂𝑇 , 𝑎 ∈ 𝐴. 

It follows from (28) that if the mechanism 𝒎 satisfies 𝑉, then the probability on the left-

hand side is either 0 or 1, and if 𝒎 satisfies 𝑂 , then, for every 𝑖 ∈ 𝑁, 𝑡 ∈ supp 𝜂𝑇  and 

𝑎 ∈ 𝐴,  

Pr 𝒂𝑖 = 𝑎𝑖 𝒕 = 𝑡 = Pr 𝒂𝑖 = 𝑎𝑖 𝒕𝑖 = 𝑡𝑖 . 

If 𝒎 satisfies 𝐼, then (in view of (7)) the actions 𝒂1 , 𝒂2 , … , 𝒂𝑛  are conditionally 

independent, given 𝒕, and therefore, for every 𝑖 ∈ 𝑁, 𝑡 ∈ supp 𝜂𝑇  and 𝑎 ∈ 𝐴, 

Pr 𝒂 = 𝑎 𝒕 = 𝑡 = Pr 𝒂𝑖 = 𝑎𝑖 𝒕 = 𝑡 Pr 𝒂−𝑖 = 𝑎−𝑖 𝒕 = 𝑡 . 

Multiplying both sides by the conditional probability Pr 𝒕−𝑖 = 𝑡−𝑖 𝒕𝑖 = 𝑡𝑖  gives  

Pr 𝒕−𝑖 = 𝑡−𝑖 , 𝒂 = 𝑎 𝒕𝑖 = 𝑡𝑖 = Pr 𝒂𝑖 = 𝑎𝑖 𝒕 = 𝑡 Pr 𝒕−𝑖 = 𝑡−𝑖 , 𝒂−𝑖 = 𝑎−𝑖 𝒕𝑖 = 𝑡𝑖 . 

Therefore, if a CSD 𝜂 is both 𝑂 - and 𝐼-implementable (and, a fortiori, if it is 𝑆, 𝑂, 𝐼-

implementable), then every 𝒕 and 𝒂 whose joint distribution is 𝜂 satisfy (29) and (30), and 

hence also  

Pr 𝒕−𝑖 = 𝑡−𝑖 , 𝒂 = 𝑎 𝒕𝑖 = 𝑡𝑖 = Pr 𝒂𝑖 = 𝑎𝑖 𝒕𝑖 = 𝑡𝑖 Pr 𝒕−𝑖 = 𝑡−𝑖 , 𝒂−𝑖 = 𝑎−𝑖 𝒕𝑖 = 𝑡𝑖 , 

for every 𝑖 ∈ 𝑁, 𝑡 ∈ supp 𝜂𝑇  and 𝑎 ∈ 𝐴. This property is equivalent to condition (ii). If 𝜂 is 

in addition 𝐷-implementable (and, a fortiori, if it is 𝑆, 𝑂, 𝐷-implementable), then the 

expression on the right-hand side of (29) is either 0 or 1, which gives (i). ∎ 

Proposition 2. A CSD 𝜂 is 𝑆, 𝑂-implementable if and only if there is a probability measure 𝜇 

on 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯ × 𝐴𝑛
𝑇𝑛  such that   

𝜂   𝑡, 𝑎   = 𝜂𝑇  𝑡  ⋅ 𝜇𝑡  𝑎  ,   𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴, 

where 𝜂𝑇  is the distribution of type profiles and 𝜇𝑡  is the marginal measure defined by 

(15). 

Proof. To prove the sufficiency of the condition for 𝑆, 𝑂-implementability, suppose that a 

measure 𝜇 as above exists for a CSD 𝜂. Restrict 𝜇 to its support 𝑅, and let the random 

variable 𝒓 be the identity map on 𝑅, which by construction is independent of the random 

type profile 𝒕. Define a mechanism 𝒎 =  𝒎 𝑡  𝑡∈𝑇  by 

𝒎𝑖 𝑡 = 𝒓, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇. 

This mechanism clearly has properties 𝑆 and 𝑂. The message space of each player is 𝑅, 

each element 𝑟 of which is a pure-strategy profile (𝑎1
1 , 𝑎1

2 , … ; 𝑎2
1 , 𝑎2

2 , … ; … ; 𝑎𝑛
1 , 𝑎𝑛

2 , … ) 

(where, for each player 𝑖, each 𝑎𝑖
𝑘  is the action prescribed to a particular type 𝑡𝑖

𝑘  of that 

player). Define a correlated strategy 𝜎 with the mechanism 𝒎 by  

𝜎𝑖 𝑡𝑖
𝑘 , 𝑟 = 𝑎𝑖

𝑘 , 𝑖 ∈ 𝑁, 𝑘 = 1,2, …. 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 
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Thus, the strategy for each player is simply to take the action prescribed to his actual type. It 

has to be shown that the joint distribution of 𝒕 and the random action profile 𝒂 

corresponding to 𝜎 is 𝜂. By (31), this means that the following has to be established:  

Pr 𝒂 = 𝑎 𝒕 = 𝑡 = 𝜇𝑡 {𝑎} , 𝑡 ∈ supp(𝜂𝑇) , 𝑎 ∈ 𝐴. 

By (7) and (32), for any type profile 𝑡 = (𝑡1
𝑗1 , 𝑡2

𝑗2 , … , 𝑡𝑛
𝑗𝑛 ), 

Pr 𝒂 = 𝑎 𝒕 = 𝑡 = Pr   𝜎1 𝑡1
𝑗1 , 𝒓 , 𝜎2 𝑡2

𝑗2 , 𝒓 , … , 𝜎𝑛 𝑡𝑛
𝑗𝑛 , 𝒓  = 𝑎 . 

By (33), the right-hand side is the 𝜇-measure of the set of all pure-strategy profiles 

 𝑎1
1 , 𝑎1

2 , … ; 𝑎2
1 , 𝑎2

2 , … ; … ; 𝑎𝑛
1 , 𝑎𝑛

2 , …   with (𝑎1
𝑗1 , 𝑎2

𝑗2 , … , 𝑎𝑛
𝑗𝑛 ) = 𝑎, which by definition (Eq. (15)) 

is equal to 𝜇𝑡 {𝑎} . Thus, (34) holds, so that 𝒎 implements the CSD 𝜂. 

To prove the necessity of the condition in the proposition, consider a CSD 𝜂 that is equal to 

the joint distribution of a pair of random variables 𝒕 and 𝒂 such that (7) holds for a 

correlated strategy 𝜎 with a mechanism 𝒎 that satisfies 𝑂 (and may or may not satisfy 𝑆). 

Fix a type profile 𝑡′ . The random variable  

  𝜎1 𝑡1 , 𝒎1 𝑡1 , 𝑡−1
′    

𝑡1∈𝑇1
,  𝜎2 𝑡2 , 𝒎2 𝑡2 , 𝑡−2

′    
𝑡𝑖∈𝑇𝑖

, … ,  𝜎𝑛 𝑡𝑛 , 𝒎𝑛 𝑡𝑛 , 𝑡−𝑛
′    

𝑡𝑛 ∈𝑇𝑛
  

returns values in 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯ × 𝐴𝑛
𝑇𝑛 , i.e., pure-strategy profiles. Its distribution 𝜇 is given 

by  

𝜇 {(𝑎1
1 , 𝑎1

2 , … ; 𝑎2
1 , 𝑎2

2 , … ; … )} = Pr 𝜎1 𝑡1
1 , 𝒎1 𝑡1

1 , 𝑡−1
′   = 𝑎1

1 , 𝜎1 𝑡1
2 , 𝒎1 𝑡1

2 , 𝑡−1
′   

= 𝑎1
2 , … ; 𝜎2 𝑡2

1 , 𝒎2 𝑡2
1 , 𝑡−2

′   = 𝑎2
1 , 𝜎2 𝑡2

2 , 𝒎2 𝑡2
2 , 𝑡−2

′   = 𝑎2
2 , … ; …  . 

For every type profile 𝑡 = (𝑡1
𝑗1 , 𝑡2

𝑗2 , … , 𝑡𝑛
𝑗𝑛 ) and action profile 𝑎 = (𝑎1 , 𝑎2 , … 𝑎𝑛), 

𝜇    𝑎1
1 , 𝑎1

2 , … ; 𝑎2
1 , 𝑎2

2 , … ; … ; 𝑎𝑛
1 , 𝑎𝑛

2 , …  ∈ 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯ × 𝐴𝑛
𝑇𝑛    𝑎1

𝑗1 , 𝑎2
𝑗2 , … , 𝑎𝑛

𝑗𝑛  = 𝑎   

= Pr  𝜎1 𝑡1
𝑗1 , 𝒎1 𝑡1

𝑗1 , 𝑡−1
′   = 𝑎1 , 𝜎2 𝑡2

𝑗2 , 𝒎2 𝑡2
𝑗2 , 𝑡−2

′   = 𝑎2 , … , 𝜎𝑛 𝑡𝑛
𝑗𝑛 , 𝒎𝑛 𝑡𝑛

𝑗𝑛 , 𝑡−𝑛
′     

= Pr 𝜎1 𝒕1 , 𝒎1 𝒕  = 𝑎1 , 𝜎2 𝒕2 , 𝒎2 𝒕  = 𝑎2 , … , 𝜎𝑛 𝒕𝑛 , 𝒎𝑛 𝒕  = 𝑎𝑛  𝒕 = 𝑡 , 

where the last equality uses the assumption that 𝒎 has property 𝑂. By (15) and (7), this 

shows that (34) holds, which gives (31). ∎ 

Proposition 3. A CSD 𝜂 is 𝑂 -implementable if and only if it has the conditional independence 

property. 

Proof. In view of Lemma 4, it suffices to show that the condition in Definition 3 holds for the 

random type profile 𝒕 and the random action profile 𝒂 corresponding to the canonical 

mechanism 𝒎 of 𝜂 if and only if 𝒎 has property 𝑂 . The condition in the definition is the 

requirement that, for every player 𝑖 and type 𝑡𝑖  for that player, 

Pr 𝒂𝑖 = 𝑎𝑖 𝒕 =  𝑡𝑖 , 𝑡−𝑖
′   = Pr 𝒂𝑖 = 𝑎𝑖 𝒕 =  𝑡𝑖 , 𝑡−𝑖

′′   , 𝑎𝑖 ∈ 𝐴𝑖  

for all type profiles 𝑡′  and 𝑡′′ with  𝑡𝑖 , 𝑡−𝑖
′  ,  𝑡𝑖 , 𝑡−𝑖

′′  ∈ supp(𝜂𝑇). By (10), (35) is equivalent to 

(34) 

(35) 
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𝒎𝑖(𝑡𝑖 , 𝑡−𝑖
′ ) =

𝑑
𝒎𝑖(𝑡𝑖 , 𝑡−𝑖

′′ ). 

It follows from the second part of property (6) of the canonical mechanism that (36) holds 

for all type profiles 𝑡′  and 𝑡′′ with  𝑡𝑖 , 𝑡−𝑖
′  ,  𝑡𝑖 , 𝑡−𝑖

′′  ∈ supp(𝜂𝑇) if and only if it holds for all 𝑡′  

and 𝑡′′. This is so for every player 𝑖 and type 𝑡𝑖  if and only if 𝒎 has property 𝑂 . ∎ 

Proposition 4. A CSD 𝜂 is 𝐼-implementable if and only if the following condition holds for 

some (equivalently, every) pair of random variables 𝒕 and 𝒂 =  𝒂1 , 𝒂2 , … , 𝒂𝑛  whose joint 

distribution is 𝜂: 

(i)  𝒂𝑗  𝑗∈𝑁
 are conditionally independent, given 𝒕.  

A CSD is 𝐷-implementable if and only if it satisfies the stronger condition in which (i) is 

replaced by: 

(ii) The conditional distribution of 𝒂 given 𝒕 is degenerate. 

Proof. In view of Lemma 4, it suffices to show (i) or (ii) holds for the random type profile 𝒕 

and the random action profile 𝒂 corresponding to the canonical mechanism 𝒎 of 𝜂 if and 

only if the canonical mechanism has property 𝐼 or 𝐷, respectively. By (10), (i) or (ii) holds for 

these random variables if and only if (4) or (3), respectively, holds for all type profiles 

𝑡 ∈ supp(𝜂𝑇). By property (6) of the canonical mechanism, this is so if and only if (4) or (3), 

respectively, holds for all 𝑡, which means that 𝒎 has property 𝐼 or 𝐷, respectively. ∎ 

4.2 Equivalences 
This subsection identifies equivalent formulations for the attributes of CSDs considered in 

the previous subsection. As it shows, these attributes and the basic attribute of simply being 

a CSD are actually the only attributes of CSDs that can be defined in terms of properties of 

the implementing mechanisms. 

Proposition 5. For CSDs,  𝑆 ⇔  𝑆  ⇔    , {𝑆, 𝑂 } ⇔ {𝑆 , 𝑂 } ⇔ {𝑂 }, {𝑆, 𝑂} ⇔ {𝑆 , 𝑂} ⇔ {𝑂}, 

 𝑆, 𝐼 ⇔  𝑆 , 𝐼 ⇔  𝐼  and  𝑆, 𝐷 ⇔  𝑆 , 𝐷 ⇔  𝐷 .  

Proof. Since property 𝑆 of mechanisms implies 𝑆 , and therefore {𝑆} ⇒ {𝑆 } ⇒ { }, to prove 

that these three attributes are equivalent it suffices to show that every CSD is 𝑆-

implementable.  

Let 𝒎 and 𝜎 be the canonical mechanism and canonical correlated strategy of a CSD 𝜂, and 

𝒂 the corresponding random action profile. The canonical mechanism implements 𝜂 but it 

does not necessarily have property 𝑆 (see Section 2.2.1). To obtain an implementing 

mechanism that has this property, let 𝒎     𝑡 = (𝒎    1 𝑡 , 𝒎    2 𝑡 , … 𝒎    𝑛 𝑡 ) for each 𝑡 be the 

random variable with values in 𝐴1
𝑇1 × 𝐴2

𝑇2 × ⋯ × 𝐴𝑛
𝑇𝑛  that is defined by 

𝒎    𝑖 𝑡 =  𝒎𝑖 𝑡𝑖
1 , 𝑡−𝑖 , 𝒎𝑖 𝑡𝑖

2 , 𝑡−𝑖 , …  , 𝑖 ∈ 𝑁. 

This definition differs from that in (24) in that the partial type profile on the right-hand side 

is 𝑡−𝑖  rather than the constant one 𝑡−𝑖
1 . Hence, the mechanism 𝒎    =  𝒎     𝑡  𝑡∈𝑇  only satisfies 

𝑆. It follows from (10) that, with this mechanism, the correlated strategy 𝜎  defined in (27) 

(36) 

(37) 
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gives a random action profile 𝒂 that satisfies  

𝒂𝑖 = 𝜎 𝑖 𝒕𝑖 , 𝒎    𝑖 𝒕  , 𝑖 ∈ 𝑁. 

This proves that the mechanism 𝒎     implements 𝜂.  

The proofs that {𝑆, 𝐼} ⇔ {𝑆 , 𝐼} ⇔  𝐼  and {𝑆, 𝐷} ⇔ {𝑆 , 𝐷} ⇔ {𝐷} are very similar, and only 

require the following additions to the above proof.  

If the CSD 𝜂 is 𝐼- or 𝐷-implementable, then by Lemma 4 the canonical mechanism 𝒎 has 

property 𝐼 or 𝐷, respectively. Since a canonical mechanism also satisfies (5), the 𝑛 𝑇  

random variables (where |𝑇| is the cardinality of 𝑇) 

 𝒎𝑗  𝑡  𝑗∈𝑁,𝑡∈𝑇
 

are independent in both cases, and in the case of 𝐷-implementability their distributions are 

moreover degenerate. It follows that, for every type profile 𝑡, the same is true for the 𝑛 

random variables 

 𝒎    𝑗  𝑡  𝑗∈𝑁
 , 

each of which is a vector whose entries are a subset of the random variables in (39), such 

that theses 𝑛 subsets are disjoint. This shows that, if 𝜂 is 𝐼- or 𝐷-implementable, then the 

mechanism 𝒎     satisfies 𝐼 or 𝐷, respectively, as well as 𝑆. 

To prove that {𝑆, 𝑂 } ⇔ {𝑆 , 𝑂 } ⇔ {𝑂 }, it suffices to show that 𝑂 -implementability implies 

𝑆, 𝑂 -implementability. In fact, in view of Lemma 4, it suffices to show that if the canonical 

mechanism 𝒎 satisfies 𝑂 , then 𝒎     also satisfies 𝑂 . If the former holds, then, for every player 

𝑖 and type profiles 𝑡′ and 𝑡′′, (36) holds for all types 𝑡𝑖 , which by (5) implies  

 𝒎𝑖 𝑡𝑖
1 , 𝑡−𝑖

′  , 𝒎𝑖 𝑡𝑖
2 , 𝑡−𝑖

′  , …  =
𝐷

 𝒎𝑖 𝑡𝑖
1 , 𝑡−𝑖

′′  , 𝒎𝑖 𝑡𝑖
2 , 𝑡−𝑖

′′  , …  . 

Thus, 𝒎     has property 𝑂 . 

To prove that {𝑆, 𝑂} ⇔ {𝑆 , 𝑂} ⇔ {𝑂}, it suffices to show that {𝑂} ⇒ {𝑆, 𝑂}. This is shown in 

the proof of Proposition 2, where it is proved that the existence of a measure 𝜇 as in that 

proposition implies 𝑆, 𝑂-implementability and it is implied by 𝑂-implementability. ∎ 

Proposition 6. For CSDs, {𝑆, 𝑂, 𝐼} ⇔ {𝑆 , 𝑂, 𝐼} ⇔ {𝑆, 𝑂 , 𝐼} ⇔ {𝑆 , 𝑂 , 𝐼} ⇔ {𝑂, 𝐼} ⇔ {𝑂 , 𝐼} ⇔

  𝑂  ∧  𝐼   and {𝑆, 𝑂, 𝐷} ⇔ {𝑆 , 𝑂, 𝐷} ⇔ {𝑆, 𝑂 , 𝐷} ⇔ {𝑆 , 𝑂 , 𝐷} ⇔ {𝑂, 𝐷} ⇔ {𝑂 , 𝐷} ⇔

  𝑂  ∧  𝐷  . 

Proof. It clearly suffices to show that  {𝑂 } ∧ {𝐼} ⇒  𝑆, 𝑂, 𝐼  and  {𝑂 } ∧ {𝐷} ⇒  𝑆, 𝑂, 𝐷 . As 

shown in the last part of the proof of Proposition 1, every CSD that is both 𝑂 - and 𝐼-

implementable, or both 𝑂 - and 𝐷-implementable, respectively, is the joint distribution of a 

pair of random variables 𝒕 and 𝒂 that satisfy condition (i) or (ii) in Proposition 1. Therefore, 

by that proposition, in the first case the CSD is also 𝑆, 𝑂, 𝐼-implementable, and in the second 

case it is 𝑆, 𝑂, 𝐷-implementable. ∎ 

(38) 

(39) 
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4.3 Implications 
Propositions 5 and 6 identify seven attributes of correlated strategy distributions that are 

defined by subsets of the six properties of mechanisms defined in Section 2.2. Figure 1 

presents these classes as well as certain implication relations among them, which all hold 

trivially (since they follow immediately from relations between properties of mechanisms). 

To prove that the figure presents a complete picture of the implication relations between 

attributes of CSDs, it remains to show that implications additional to those shown do not 

hold, so that, in particular, none of the seven attributes is equivalent to another. For this, 

the following four propositions are required. 

Proposition 7. For CSDs, {𝑆, 𝑂, 𝐼} ⇏ {𝐷}. 

Proof. It suffices to consider any complete information game and a mixed-strategy profile in 

the game that is not pure. ∎ 

Proposition 8. For CSDs, {𝑆, 𝐷} ⇏ {𝑂 }. 

Proof. In a two-player Bayesian game in which player 1 has a single type and two actions and 

player 2 has a single action and two types, consider a correlated strategy distribution in 

which player 1 takes his first or second action if player 2 is of the first or second type, 

respectively. This CSD is implementable by mechanism that simply tells player 1 the type of 

player 2, and thus satisfies 𝑆 and 𝐷. However, the CSD is not 𝑂 -implementable, since with a 

mechanism that satisfies 𝑂 , player 1 cannot know player 2’s type. ∎ 

Proposition 9. For CSDs, {𝑂 } ⇏ {𝑂}.  

Proof. By Example 1, there exists a CSD that has the conditional independence property but 

is not 𝑆, 𝑂-implementable. By Proposition 3, that CSD is 𝑂 -implementable, and by 

Proposition 5, it is not 𝑂-implementable. ∎ 

Proposition 10. For CSDs, {𝑆, 𝑂} ⇏ {𝐼}. 

Proof. In a complete information game, that is, if every player has only one type, properties 

𝑆 and 𝑂 automatically hold for every mechanism, but a CSD is 𝐼-implementable only if the 

players’ actions are independent. ∎ 

Proposition 7 proves that attribute V only implies the other attributes in Figure 1 that the 

diagram indicates it implies (that is, it does not imply VI or VII). Proposition 8 proves the 

same for attribute VI. These two results prove that attribute IV (which is implied by both V 

and VI) only implies attribute I, and therefore the latter does not imply II. Proposition 9 

proves that II does not imply III. Proposition 10 proves that attribute III only implies the 

(two) attributes that the diagram indicates it implies, which establishes the same for 

attribute II and for attribute I.  

Since, for mechanisms, property 𝑆 implies 𝑆 , property 𝑂 implies 𝑂 , and 𝐷 implies 𝐼, there are 

only 27 relevant subsets of {𝑆, 𝑆 , 𝑂, 𝑂 , 𝐷, 𝐼}, which all appear in Figure 1. Therefore, there are 

no additional attributes of CSDs that can be described by single subsets of the six properties 

of mechanisms. The following lemma shows that the same is true for pairs (hence also 
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triplets, etc.) of sets of properties of mechanisms: no additional attributes of CSDs can be 

defined by them.  

Lemma 5. For CSDs, for every two subsets 𝒫, 𝒬 ⊆ {𝑆, 𝑆 , 𝑂, 𝑂 , 𝐷, 𝐼},  

 𝒫 ∧ 𝒬 ⇔ 𝒫 ∪ 𝒬. 

Proof (an outline). Proposition 6 proves the special case of (40) in which 𝒫 =  𝑂   and 𝒬 

is either  𝐷  or  𝐼 . By inspection of Figure 1, every other case follows from one of these 

two.           ∎ 

As indicated in Section 3.2.2 (see also Section 5.3), for correlated equilibrium distributions a 

similar result to Lemma 5 does not hold. In other words, the requirement of incentive 

compatibility may invalidate the equivalence (40).  

5 Correlated Equilibrium Distributions 
The analysis of correlated strategy distributions in the previous section is a first step in the 

analysis of correlated equilibrium distributions. The former concerns qualitative differences 

between distributions that reflect the limited capabilities of the implementing mechanisms. 

The latter also incorporates the constraints inherent in the incentive compatibility 

requirement. Whereas in the case of CSDs the limiting factor is the mechanism’s ability to 

transmit information to players, in the case of CEDs its ability to do so selectively also comes 

into play.  

As for CSDs, each subset 𝒫 of the six properties of mechanisms described in Section 2.2 

defines an attribute of correlated strategy distributions, namely, 𝒫-implementability. A CED 

with this attribute is implementable by some mechanism with (all) the properties in 𝒫. Note 

that in the present context implementability has a different meaning than for CSDs (Section 

4). Here, the correlated strategy involved is required to be a correlated equilibrium. Thus, an 

expression like (19) has a different meaning for CSDs and CEDs. Wherever confusion is 

possible, the implication sign may be replaced by the more explicit one ⇒
CSD

 or ⇒
CED

. The 

following proposition shows that the second relation is in a sense stronger than the first one. 

Proposition 11. For every 𝒫, 𝒬 ⊆ {𝑆, 𝑆 , 𝑂, 𝑂 , 𝐷, 𝐼}, 

𝒫 ⇒
CED

𝒬 implies 𝒫 ⇒
CSD

𝒬. 

Proof. It has to be shown that (i) 𝒫 ⇒
CED

𝒬 and (ii) 𝒫 ⇏
CSD

𝒬 are contradictory. Condition (i) 

means that, in every Bayesian game, every 𝒫-implementable CED is also 𝒬-implementable. 

Condition (ii) means that there is some CSD in some Bayesian game that is 𝒫- but not 𝒬-

implementable. Without loss of generality, the payoff functions in that game (which are 

irrelevant for CSD implementability) are identically zero. Therefore, every correlated 

strategy in the game is a correlated equilibrium and vice versa. However, this contradicts (i).

           ∎ 

(40) 

(41) 
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The converse of (41) does not generally hold. Consequently, the attributes of CEDs that can 

be described in terms of the six properties of mechanisms do not all correspond to attributes 

of CSDs. In other words, the former are not simply the restrictions of the latter to correlated 

equilibrium distributions. Rather, restriction is followed by refinement, which gives rise to 

additional attributes. Some of the attributes of CEDs, including the majority of those 

inherited from CSDs, are presented in the following subsection. The subsequent one 

describes additional attributes, by identifying all instances in which the converse of (41) does 

not hold. The last subsection completes the description of the implication relation ⇒
CED

 

(henceforth written simply as ⇒) by considering implications involving conjunctions of 

attributes of CEDs.  

5.1 Equivalences 
The following propositions identify equivalent formulations for several attributes of CEDs. 

Proposition 12. For CEDs, {𝑆, 𝑂 } ⇔ {𝑆 , 𝑂 } ⇔ {𝑂 }. 

Proof. In view of Lemma 4, it suffices to show that if the canonical mechanism 𝒎 of a CED 𝜂 

has property 𝑂 , then the correlated strategy 𝜎  with the mechanism 𝒎     constructed in the 

proof of Proposition 5 is a correlated equilibrium. As shown in that proof, if the canonical 

mechanism satisfies 𝑂 , then 𝒎     satisfies 𝑆 and 𝑂 .  

By Lemma 3, the random type profile 𝒕 and the random action profile 𝒂 corresponding to 

the canonical correlated strategy 𝜎 of 𝜂 satisfy (12). By (38), 𝜎  is a correlated equilibrium if 

and only if  

𝐸 𝑢𝑖 𝒕, 𝒂 − 𝑢𝑖 𝒕,  𝑎𝑖
′ , 𝒂−𝑖   𝒕𝑖 , 𝒎    𝑖 𝒕  ≥ 0, 𝑖 ∈ 𝑁, 𝑎𝑖

′ ∈ 𝐴𝑖 . 

Therefore, a sufficient condition for 𝜎  to be a correlated equilibrium is that the conditional 

expectations in (12) and (42) are equal. The formal difference between them is that player 

𝑖’s action 𝒂𝑖  in the former is replaced in the latter by 𝒎    𝑖 𝒕 , which by (37) specifies not only 

the message that player 𝑖 receives from the canonical mechanism (which is 𝒂𝑖 ) but also the 

messages he would receive if his type were different. Therefore, the meaning of the above 

equality is that these messages do not provide player 𝑖 with any information that he could 

use for choosing a better action.  

If the conditional expectations in (12) and (42) are not equal, then by (10) and (37) there is 

some type of player 𝑖, say the first one 𝑡𝑖
1, and some messages 𝑚𝑖

1 , 𝑚𝑖
2 , … such that  

𝐸 𝑢𝑖 𝒕, 𝒎 𝑡𝑖
1 , 𝒕−𝑖  − 𝑢𝑖 𝒕,  𝑎𝑖

′ , 𝒎−𝑖 𝑡𝑖
1 , 𝒕−𝑖    𝒕𝑖 = 𝑡𝑖

1 , 𝒎𝑖 𝑡𝑖
1 , 𝒕−𝑖 = 𝑚𝑖

1 

≠ 𝐸 𝑢𝑖 𝒕, 𝒎 𝑡𝑖
1 , 𝒕−𝑖  − 𝑢𝑖 𝒕,  𝑎𝑖

′ , 𝒎−𝑖 𝑡𝑖
1 , 𝒕−𝑖    𝒕𝑖 = 𝑡𝑖

1 , 𝒎𝑖 𝑡𝑖
1 , 𝒕−𝑖 = 𝑚𝑖

1 , 𝒎𝑖 𝑡𝑖
2 , 𝒕−𝑖 = 𝑚𝑖

2 , …  . 

The inequality implies that the pair of random variables 𝒕 and 𝒎 𝑡𝑖
1 , 𝒕−𝑖  is not independent 

of 𝒎𝑖 𝑡𝑖
2 , 𝒕−𝑖 , 𝒎𝑖 𝑡𝑖

3 , 𝒕−𝑖 , …. However, if the canonical mechanism 𝒎 has property 𝑂 , then 

is follows from (5) that such independence does hold, so that the above inequality cannot 

hold, which shows that 𝜎  is a correlated equilibrium. ∎ 

Proposition 13. For CEDs, {𝑆 , 𝑂} ⇔ {𝑂}. 

(42) 
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Proof. It suffices to show that for every correlated equilibrium 𝜎 with a mechanism 𝒎 

satisfying 𝑂 there is another correlated equilibrium 𝜎 = (𝜎 1 , 𝜎 2 , … , 𝜎 𝑛) with a mechanism 

𝒎 =  𝒎  𝑡  𝑡∈𝑇  satisfying 𝑆  and 𝑂 such that the two correlated equilibria have identical 

CEDs. The correlated equilibrium 𝜎  and mechanism 𝒎  are constructed below. The 

construction uses a random variable 𝒓 that is uniformly distributed on the half-open interval 

(0,1] and is independent of 𝒎. (The assumption of uniform distribution, which is 

inconsistent with the definition of random variable in footnote 2, is only temporary. Below, 

𝒓 is replaced by a random variable that is defined on a finite probability space.)  

The idea of the proof is to encode the message that each type 𝑡𝑖  of each player 𝑖 receives 

from the mechanism 𝒎 in a particular way. The assumption that the mechanism satisfies 𝑂 

implies that this (random) message is equal to 𝒎𝑖(𝑡𝑖 , 𝑡−𝑖
′ ), where 𝑡′ is any fixed type profile. 

Using a fixed indexing 𝑀𝑖 = {𝑚𝑖
1 , 𝑚𝑖

2 , … } of the elements of 𝑖’s message space, the 

distribution of the message can be represented by a finite collection of points 0 = 𝑥0 ≤

𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 1, such that the distance 𝑥𝑘 − 𝑥𝑘−1 between each point 𝑥𝑘  with 𝑘 ≥ 1 and 

the preceding point is equal to the probability that type 𝑡𝑖  receives the corresponding 

message, i.e., Pr(𝒎𝑖(𝑡𝑖 , 𝑡−𝑖
′ ), = 𝑚𝑖

𝑘). For example, if there are three elements in 𝑀𝑖  and 𝑡𝑖  is 

equally likely to receive any of them, the points are 𝑥0 = 0, 𝑥1 = 1/3, 𝑥2 = 2/3 and 𝑥3 =

1. The mechanism 𝒎  combines the message 𝒎𝑖 𝑡  that player 𝑖 receives from 𝒎 with the 

random variable 𝒓 in the following manner. If the former is equal to 𝑚𝑖
𝑘  and the latter is 𝑟, 

the message 𝑚 𝑖  that player 𝑖 receives is given by 

𝑚 𝑖 = (1 − 𝑟)𝑥𝑘−1 + 𝑟𝑥𝑘 . 

This defines the random variable 𝒎 𝑖 𝑡 , which is uniformly distributed on the unit 

interval for every 𝑖 and 𝑡. Therefore, the mechanism 𝒎 =  𝒎  𝑡  𝑡∈𝑇  satisfies 𝑆  as well as 𝑂. 

(Note that, strictly speaking, the above construction does not conform to the definition of 

mechanism since the message spaces are infinite. A variant that is free of this problem is 

described below.) 

The next step is to define the correlated strategy 𝜎 . For each player 𝑖, 𝜎 𝑖  is defined by 

𝜎 𝑖(𝑡𝑖 , 𝑚 𝑖) = 𝜎𝑖(𝑡𝑖 , 𝜓𝑖 𝑡𝑖 , 𝑚 𝑖 ), where 𝜓𝑖  is a function that “decodes” the message 𝑚 𝑖  that 

the player receives from 𝒎  and recovers the original message 𝑚𝑖
𝑘  (from 𝒎). Thus, 

𝜓𝑖 𝑡𝑖 , 𝑚 𝑖 = 𝑚𝑖
𝑘 . Decoding is possible (using the type-specific “key”  𝑥0 , 𝑥1 , 𝑥2 , …  ) since, 

for each type 𝑡𝑖  of player 𝑖, 𝑚 𝑖  uniquely identifies 𝑥𝑘 , and thus identifies 𝑚𝑖
𝑘 . This shows that 

𝜎 𝑖  is well defined and that the action it specifies is always identical to the original action, i.e., 

that specified by 𝜎𝑖 . Since, in addition, the messages that the players receive from the 

mechanism 𝒎  convey precisely the same information as those from 𝒎, this proves that 𝜎 , 

like 𝜎, is a correlated equilibrium.  

It remains to dispense with the use of the uniformly-distribution random variable 𝒓 (which is 

responsible for 𝒎  having infinite message spaces). For each type of each player, there is a 

finite collection of points in the unit interval that constitutes the type-specific “key”, as 

described above. Let 𝑋 be the union of all of these collections. Modify the message that 

each player 𝑖 receives by replacing (43) with 

(43) 
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𝑚 𝑖 = 𝜆 (1 − 𝑟)𝑥𝑘−1 + 𝑟𝑥𝑘 , 

where the function 𝜆:  0,1 → [0,1] is defined by 𝜆 𝑥 = min  𝑥′ ∈ 𝑋 𝑥′ ≥ 𝑥  . This 

modification is inconsequential. Since the value of the right-hand side of (44) is always 

between that of (43) and 𝑥𝑘 , each decoder 𝜓𝑖  decodes (43) and (44) identically. For 

𝑋 =   𝑥′ , 𝑥′′  ∈ 𝑋 × 𝑋 𝑥′ ≤ 𝑥′′  , consider the mapping that for each 𝑟 ∈ (0,1] returns the 

vector  

 𝜆  1 − 𝑟 𝑥′ + 𝑟𝑥′′   
 𝑥 ′ ,𝑥 ′′  ∈𝑋 

 

(the entries of which include, among others, all possible messages, to any player, when 

𝒓 = 𝑟). Since this mapping clearly has a finite range, it is constant in each element of some 

finite partition of (0,1]. Associating each partition element with its (positive) Lebesgue 

measure makes the partition a finite probability space. Construct a random variable 𝒓′  by 

sending each partition element to a specific point in it, and replace 𝑟 in the expression on 

the right-hand side of (44) with the value 𝑟′  of 𝒓′ . Clearly, for every 𝑥𝑘−1 and 𝑥𝑘 , this 

substitution does not affect the distribution of that expression. Therefore, the mechanism 

still satisfies 𝑆  and 𝑂. ∎ 

Proposition 14. For CEDs, {𝑆, 𝐼} ⇔ {𝑆 , 𝐼} and {𝑆, 𝐷} ⇔ {𝑆 , 𝐷}. 

Proof. To prove that {𝑆 , 𝐼} ⇒ {𝑆, 𝐼}, it has to be shown that every CED implementable by a 

mechanism 𝒎 with properties 𝑆  and 𝐼 is also implementable by a mechanism with 

properties 𝑆 and 𝐼.  

Property 𝑆  of 𝒎 means that for every type profile 𝑡 and player 𝑖 the distribution of 𝒎𝑖 𝑡  

does not change when only player 𝑖’s type 𝑡𝑖  changes. In other words, the distribution only 

depends on 𝑖 and the partial type profile 𝑡−𝑖 . Therefore, it is possible to construct a family 

 𝒓𝑖 ,𝑡−𝑖  of independent random variables, indexed by the players and partial type profiles, 

such that each entry 𝒓𝑖 ,𝑡−𝑖  has the distribution described above. For each 𝑡, define  

𝒎  𝑡 =  𝒓1,𝑡−1 , 𝒓2,𝑡−2 , … , 𝒓𝑛 ,𝑡−𝑛  . 

Thus, 

𝒎 𝑖 𝑡 =
𝑑

𝒎𝑖 𝑡 , 𝑖 ∈ 𝑁, 𝑡 ∈  𝑇. 

The mechanism 𝒎 =  𝒎  𝑡  𝑡∈𝑇  satisfies 𝑆 and 𝐼 by construction. Since 𝒎 also satisfies 𝐼, it 

follows from (45) that  

𝒎  𝑡 =
𝑑

𝒎 𝑡 , 𝑡 ∈ 𝑇, 

which shows that the two mechanisms are functionally indistinguishable. It is not difficult to 

see that a correlated strategy with one mechanism is a correlated equilibrium if and only if 

the same correlated strategy is a correlated equilibrium with the other mechanism. 

Therefore, the two mechanisms implement precisely the same CEDs.  

An almost identical proof shows that {𝑆 , 𝐷} ⇒ {𝑆, 𝐷}. The only required change it to assume 

that the mechanism 𝒎 has properties 𝑆  and 𝐷. This assumption implies that for every 𝑡 the 

(44) 

(45) 

(46) 
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distribution of 𝒎 𝑡  is degenerate, which by (46) implies the same for 𝒎  𝑡 . Thus, 𝒎  

satisfies 𝐷. ∎ 

Proposition 15. For CEDs, {𝑆, 𝑂, 𝐼} ⇔ {𝑆 , 𝑂, 𝐼} ⇔ {𝑆, 𝑂 , 𝐼} ⇔ {𝑆 , 𝑂 , 𝐼} ⇔ {𝑂, 𝐼} ⇔ {𝑂 , 𝐼} ⇔

 {𝑂 } ∧ {𝐼}  and {𝑆, 𝑂, 𝐷} ⇔ {𝑆 , 𝑂, 𝐷} ⇔ {𝑆, 𝑂 , 𝐷} ⇔ {𝑆 , 𝑂 , 𝐷} ⇔ {𝑂, 𝐷} ⇔ {𝑂 , 𝐷} ⇔

 {𝑂 } ∧ {𝐷} . 

Proof. In view of Lemma 4, it suffices to show that if the canonical mechanism 𝒎 of a CED 𝜂 

has property 𝑂  as well as 𝐼 or 𝐷, then 𝜂 is 𝑆, 𝑂, 𝐼- or 𝑆, 𝑂, 𝐷-implementable, respectively. It is 

shown by Proposition 6 that, as a CSD, 𝜂 is indeed thus implementable. The proof of that 

proposition refers to the proof of Proposition 1, where it is shown that the mechanism 𝒎  

defined by (24) has the relevant three properties, and with it, the correlated strategy 𝜎  

defined in (27) gives 𝜂. Therefore, it only remains to show that the correlated strategy 𝜎  

with the mechanism 𝒎  is in fact a correlated equilibrium.  

As shown in proof of Proposition 12, 𝜎  is a correlated equilibrium with the mechanism 𝒎     

defined by (37). This mechanism and 𝒎  are both based on the canonical mechanism 𝒎, and 

the second can be obtained from the first by selecting a particular type profile 𝑡1 and setting  

𝒎  𝑡 = 𝒎     𝑡1 , 𝑡 ∈ 𝑇. 

Therefore, to complete the proof it suffices to show that  

𝒎  𝑡 =
𝑑

𝒎     𝑡 , 𝑡 ∈ 𝑇, 

so that 𝒎  and 𝒎     are functionally indistinguishable. To show this, it suffices to establish that 

replacing 𝑡1 in (47) with any other type profile 𝑡′  would not chance the distribution of 𝒎  𝑡 . 

By (26), a sufficient condition for this invariance is that, for all 𝑖, 𝑡𝑖  and 𝑎𝑖  

Pr 𝒎𝑖 𝑡𝑖 , 𝑡−𝑖
1  = 𝑎𝑖 = Pr 𝒎𝑖 𝑡𝑖 , 𝑡−𝑖

′  = 𝑎𝑖 . 

This condition holds since, by assumption, 𝒎 has property 𝑂 . ∎ 

5.2 Implications  
By Proposition 11, an implication relation that does not hold for CSDs also does not hold for 

CEDs. Therefore, an immediate corollary of Propositions 7, 8, 9 and 10 is the following result. 

Proposition 16. For CEDs, {𝑆, 𝑂, 𝐼} ⇏ {𝐷}, {𝑆, 𝐷} ⇏ {𝑂 }, {𝑂 } ⇏ {𝑂} and {𝑆, 𝑂} ⇏ {𝐼}.  

The next three propositions identify implication relations that do not hold for CEDs even 

though they hold for CSDs. 

Proposition 17. For CEDs, {𝐷} ⇏ {𝑆 }.  

Proof. This is proved by Example 2. ∎ 

Proposition 18. For CEDs, {𝑆 } ⇏ {𝑆}.  

Proof. This is proved by Example 3. ∎ 

(47) 
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Proposition 19. For CEDs, {𝑆 , 𝑂} ⇏ {𝑆, 𝑂}. 

Proof. This is proved by Example 6. ∎ 

Propositions 12, 13, 14 and 15 identify six attributes of correlated equilibrium distributions 

that are defined by subsets of the properties of mechanisms defined in Section 2.2. These 

attributes plus 𝑆-implementability are shown in Figure 2 as attributes Ia, II, III, IVa, V, VIa and 

VII. The implication relations that are specified by the Hesse diagram among these attributes 

all hold trivially (since they follow immediately from relations between properties of 

mechanisms). By Proposition 16, additional implications among the seven attributes do not 

hold, and in particular, none of them is equivalent to any of the others. (The more detailed 

argument given in Section 4.3 also applies here, mutatis mutandis.) Three more attributes 

are defined by    , {𝑆 } and {𝑉} (I, Ib and VI in Figure 2). The implication relations shown in 

Figure 2 among these attributes and between them and the other seven all hold trivially. It 

follows from Propositions 17 and 18, and from {𝑆, 𝑂, 𝐼} ⇏ {𝐷} in Proposition 16, that 

additional such implications do not hold. Two more attributes are defined by {𝑆, 𝑂} and {𝐼}. 

It follows from Proposition 19, and from {𝑆, 𝑂} ⇏ {𝐼} in Proposition 16, that the implication 

relations shown in Figure 2 between each of these attributes and each of the other ten are 

the only ones holding. This proves that there are precisely twelve distinct attributes of CEDs 

that can be defined by single subsets of the properties of mechanisms in Section 2.2.  

As indicated in Section 3.2.1, attributes I, II, III, IV, V, VI and VII of CEDs are obtained from 

the similarly numbered attributes of CSDs by restriction. That is, a CED has any of these 

attributes if and only if it has the corresponding attribute as a CSD. This result is an 

immediate corollary of Theorem 1, which is stated in Section 3.2.1 and is proved below.  

Proof of Theorem 1. Suppose first that 𝒫 ⊆ {𝑂 , 𝐷, 𝐼}, and let 𝜂 be a CED that is 𝒫-

implementable as a CSD. By Lemma 4, the canonical mechanism of 𝜂 has all the properties in 

𝒫. Therefore, by Corollary 1, 𝜂 is 𝒫-implementable also as a CED. 

Next, consider the case 𝒫 = {𝑂}. As remarked in Section 4, for every 𝑂-implementable CSD 

𝜂 there is a mechanism 𝒎  with property 𝑂 that is functionally indistinguishable from the 

canonical mechanism. If 𝜂 is moreover a CED, then by Corollary 1 the canonical strategy with 

the canonical mechanism is a correlated equilibrium, and the same is therefore true with the 

canonical mechanism replaced by 𝒎 . Hence, 𝜂 is 𝑂-implementable also as a CED.   

To complete the proof of the theorem it remains to note that, by Proposition 6 and 15, for 

both CSDs and CEDs, 𝑂, 𝐼-implementability and 𝑂 , 𝐼-implementability are equivalent, and the 

same is true for 𝑂, 𝐷- and 𝑂 , 𝐷-implementability. ∎  

5.3 Conjunction of attributes 
The next step is to consider attributes of CEDs that are defined by pairs (or possibly triplets, 

etc.) of subsets of properties of mechanisms, that is, by conjunction of two (or more) of the 

twelve attributes identified above. Unlike for CSDs (see Lemma 5), genuinely new attributes 

can be defined this way. For example, it follows from the second part of the next proposition 

that the conjunction of 𝑆-implementability and 𝐷-implementability is a new attribute. 



50 

Proposition 20. For CEDs,  {𝑆} ∧ {𝐷} ⇔  {𝑆 } ∧ {𝐷} ⇒ {𝑆, 𝐼} but  {𝑆} ∧ {𝐷} ⇏ {𝑆, 𝐷}. 

Proof. The second part of the proposition is proved by Example 4.19 To prove the first part, it 

suffices to show that  {𝑆 } ∧ {𝐷} ⇒ {𝑆, 𝐼}; the equivalence then follows immediately from 

the trivial implications  𝑆, 𝐼 ⇒ {𝑆} ⇒ {𝑆 }.  

Consider a CED 𝜂 that is both 𝑆 - and 𝐷-implementable. It has to be shown that 𝜂 is also 𝑆, 𝐼-

implementable. By the assumption of 𝐷-implementability and (condition (i) in) Proposition 

4, there is a mapping 𝜙 = (𝜙1 , 𝜙2 , … , 𝜙𝑛): 𝑇 → 𝐴 such that 𝜂   𝑡, 𝜙(𝑡)   = 𝜂𝑇({𝑡}) for all 

type profiles 𝑡. By the assumption of 𝑆 -implementability, there is a correlated strategy 𝜎 

with a mechanism 𝒎 satisfying 𝑆  such that 𝜂 is equal to the joint distribution of the random 

type profile 𝒕 and the random action profile 𝒂 defined by (7). In particular, for every 

𝑡 =  𝑡1 , 𝑡2 , … , 𝑡𝑛 ∈ supp 𝜂𝑇 , 

Pr(𝜎𝑖 𝑡𝑖 , 𝒎𝑖 𝑡  = 𝜙𝑖 𝑡  for all 𝑖) = Pr 𝒂 = 𝜙(𝑡) 𝒕 = 𝑡 =
𝜂   𝑡, 𝜙 𝑡    

𝜂𝑇  𝑡  
= 1. 

Therefore,  

𝒂𝑖 = 𝜎𝑖 𝒕𝑖 , 𝒎𝑖 𝒕  = 𝜙𝑖 𝒕 , 𝑖 ∈ 𝑁. 

Let the mechanism 𝒎  be as in the proof of Proposition 14. By (45) and (48), 

𝜎𝑖 𝒕𝑖 , 𝒎 𝑖 𝒕  = 𝜙𝑖 𝒕 , 𝑖 ∈ 𝑁. 

Therefore, using the correlated strategy 𝜎 with the mechanism 𝒎  instead of 𝒎 also gives 

the distribution 𝜂. Moreover, if this mechanism is used and a single player 𝑖 changes his 

strategy from 𝜎𝑖  to some other strategy 𝜎𝑖
′ , the player’s expected payoff changes to 

𝐸(𝑢𝑖 𝒕,  𝜎𝑖
′ 𝒕𝑖 , 𝒎 𝑖 𝒕  , 𝜙−𝑖 𝒕   ). By (45), the new payoff is equal to  

𝐸 𝑢𝑖 𝒕,  𝜎𝑖
′ 𝒕𝑖 , 𝒎𝑖 𝒕  , 𝜙−𝑖 𝒕    , 

which by (48) is 𝑖’s expected payoff if he unilaterally changes his strategy from 𝜎𝑖  to 𝜎𝑖
′  when 

the correlated strategy 𝜎 is used with the mechanism 𝒎 (rather than 𝒎 ). Since with this 

mechanism the correlated strategy is a correlated equilibrium, 𝑖’s change of strategy cannot 

increase his expected payoff. This proves that 𝜎 is an equilibrium also with the mechanism 

𝒎 , which by construction satisfies 𝑆 and 𝐼. ∎ 

It follows from the next proposition that the conjunction of 𝑆-implementability and 𝐼-

implementability is a new attribute. 

Proposition 21. For CEDs,  {𝑆} ∧ {𝐼} ⇏ {𝑆, 𝐼}. 

Proof. This is shown by Example 5. ∎ 

Whether the conjunction of 𝑆 -implementability and 𝐼-implementability is also a new 

                                                            
19 Parenthetically, an argument broadly similar to that used below shows that  {𝑆} ∧ {𝐷} ⇒ {𝑆, 𝐷} 
would hold if it were assumed that the type distribution 𝜂𝑇  has full support, i.e., supp 𝜂𝑇 = 𝑇 (in 
other words, every type profile has positive probability). 

(48) 
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attribute of CEDs is not known. It depends on the answer to the following question. 

Open Question. For CEDs, does  {𝑆 } ∧ {𝐼} ⇒ {𝑆}?  

This question corresponds to the question mark in Figure 2. The marked line in the Hesse 

diagram exists if and only if the answer is negative, which means that there is a CED in some 

Bayesian game that is both 𝑆 - and 𝐼-implementable but not 𝑆-implementable. If the answer 

is affirmative, the two attributes of CEDs connected by the line (IVb and the unnumbered 

attribute) are actually one and the same, i.e., they are equivalent attributes.  

Depending on the answer to the Open Question, there are two or three attributes of CEDs 

that can be defined as the conjunction of a pair of incomparable attributes of the twelve 

ones presented above. Thus, there are in total 14 or 15 attributes of CEDs, which are related 

to one another as in Figure 2. The following lemma shows that this list is complete in that 

there are no additional, nonequivalent attributes that can be defined as the conjunction of 

two or more of those in Figure 2. This result holds regardless of the answer to the Open 

Question.  

Lemma 6. The conjunction of any number of the attributes of CEDs in Figure 2 is equivalent 

to one of the attributes in the same figure.  

Proof of Lemma 6 (an outline). Proposition 15 proves the two special cases of the 

conjunctions of 𝑂 -implementability and either 𝐷- or 𝐼-implementability. For the general 

case, it has to be shown that for every list 𝒫, 𝒫′ , 𝒫″ , … ⊆ {𝑆, 𝑆 , 𝑂, 𝑂 , 𝐷, 𝐼}, the conjunction 

𝒫 ∧ 𝒫′ ∧ 𝒫″ ∧ ⋯ is equivalent to one of the attributes in Figure 2. (It suffices to consider lists 

with three or fewer entries, since in any longer list at least two elements represent 

comparable attributes.) This can be shown quite easily in a straightforward, case-by-case 

manner. ∎  

6 Communication Equilibrium Distributions 
As for correlated strategy distributions and correlated equilibrium distributions, different 

kinds of mechanisms implement different kinds of communication equilibrium distributions. 

Specifically, for each subset 𝒫 of the six properties of mechanisms described in Section 2.2, a 

MED is 𝒫-implementable if it is given by some communication equilibrium with a 

mechanism that has (all) the properties in 𝒫. This section, like the previous two, is mainly 

concerned with the implication relation between these attributes, and conjunctions of 

several attributes. Implication is denoted by the generic symbol ⇒ when it is clear from the 

context that it refers to attributes of MEDs. Otherwise, the more explicit symbol ⇒
MED

 is used. 

As the following proposition shows, a necessary condition for the implication to hold is that 

a similar relation holds for CEDs. The proof of the proposition is given at the end of this 

section.  

Proposition 22. For every 𝒫, 𝒫′ , 𝒬 ⊆ {𝑆, 𝑆 , 𝑂, 𝑂 , 𝐷, 𝐼}, 

 𝒫 ∧ 𝒫′ ⇒
MED

𝒬   implies  (𝒫 ∧ 𝒫′) ⇒
CED

𝒬. (49) 
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Since by definition every MED is also a CED, it may seem that the reverse implication to that 

in Proposition 22 also ought to hold. However, as remarked in Section 3.3, Example 7 shows 

that this is not so, which is why the Hesse diagrams of the implications relations between 

attributes of CEDs (Figure 2) and between attributes of MEDs (Figure 3) are different. 

However, the differences only concern conjunction of attributes. As shown below, for 

attributes that a defined by single sets for properties of mechanisms, the implication 

relations for CEDs and MEDs are identical.  

6.1 Equivalences 
The following propositions parallel those in Section 5.1. Thus, they identify instances in 

which the reverse of (49) holds.  

Proposition 23. For MEDs, {𝑆, 𝑂 } ⇔ {𝑆 , 𝑂 } ⇔ {𝑂 }. 

Proof. It has to be shown that for every communication equilibrium 𝜎 with a mechanism 𝒎 

that has property 𝑂 , the resulting MED 𝜂 is 𝑆, 𝑂 -implementable.  

Without loss of generality, it can be assumed that 𝒎 (which, unlike in the proof of 

Proposition 12, is not necessarily canonical) satisfies (5). Otherwise, it could be replaced by 

any mechanism 𝒎  satisfying (5) such that 

𝒎  𝑡 =
𝑑

𝒎 𝑡 , 𝑡 ∈ 𝑇. 

The equalities imply that 𝒎  also has property 𝑂 , and it is not difficult to see that 𝜎 with 𝒎  is 

also a communication equilibrium, since for any profile of reported types, the messages that 

𝒎  sends are indistinguishable from those of 𝒎. 

Consider the correlated strategy 𝜎  and the mechanism 𝒎    =  𝒎     𝑡  𝑡∈𝑇 , which are defined, 

respectively, by (27) and the following generalization of (37): 

𝒎    𝑖 𝑡 =  𝜎𝑖 𝑡𝑖
1 , 𝒎𝑖 𝑡𝑖

1 , 𝑡−𝑖  , 𝜎𝑖 𝑡𝑖
2 , 𝒎𝑖 𝑡𝑖

2 , 𝑡−𝑖  , …  , 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇. 

As shown in the proof of Proposition 5, 𝒎     has properties 𝑆 and 𝑂 . It has to be shown that, 

with this mechanism, 𝜎  is a communication equilibrium. That is, for every player 𝑖, type 𝑡𝑖
′  

for that player and function 𝜎 𝑖
′ : 𝑇𝑖 × 𝐴𝑖

𝑇𝑖 → 𝐴𝑖 , 

𝐸 𝑢𝑖 𝒕, 𝒂 − 𝑢𝑖 𝒕, 𝒂′  𝒕𝑖 ≥ 0, 

where 𝒂 is the random action profile corresponding to 𝜎  and 𝒂′  is obtained from (14) by 

replacing 𝜎𝑖
′ , 𝜎𝑗  and 𝒎 by 𝜎 𝑖

′ , 𝜎 𝑗  and 𝒎    , respectively. Obviously, it suffices to consider the 

(effectively, completely general) case 𝑖 = 1 and 𝑡1
′ = 𝑡1

1, for which  

𝒂𝑗 = 𝜎 𝑗  𝒕𝑗 , 𝒎    𝑗  𝒕  = 𝜎𝑗  𝒕𝑗 , 𝒎𝑗  𝒕  , 𝑗 ∈ 𝑁 

and 

𝒂1
′ = 𝜎 1

′  𝒕1 , 𝒎    1 𝑡1
1 , 𝒕−1  = 𝜎 1

′  𝒕1 ,  𝜎1 𝑡1
1 , 𝒎1 𝑡1

1 , 𝒕−1  , 𝜎1 𝑡1
2 , 𝒎1 𝑡1

2 , 𝒕−1  , …   , 

𝒂𝑗
′ = 𝜎 𝑗  𝒕𝑗 , 𝒎    𝑗  𝑡1

1 , 𝒕−1  = 𝜎𝑗  𝒕𝑗 , 𝒎𝑗  𝑡1
1 , 𝒕−1  , 𝑗 ≠ 1. 

(50) 

(51) 
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If (50) does not hold (for 𝑖 = 1), then there are some 𝑡1
″  and 𝑚1

2 , 𝑚1
3 , … such that  

𝐸 𝑢1 𝒕, 𝒂′  𝒕1 = 𝑡1
″ , 𝒎1 𝑡1

2 , 𝒕−1 = 𝑚1
2 , 𝒎1 𝑡1

3 , 𝒕−1 = 𝑚1
3 , …  > 𝐸 𝑢1 𝒕, 𝒂  𝒕1 = 𝑡1

″  . 

It follows from properties 𝑂  and (5) of 𝒎 that the pair of random variables 𝒕 and 𝒎 𝑡1
1 , 𝒕−1  

is independent of 𝒎1 𝑡1
2 , 𝒕−1 , 𝒎1 𝑡1

3 , 𝒕−1 , …. Therefore, the above inequality is equivalent 

to 

𝐸 𝑢1 𝒕, (𝜎1
′  𝒕1 , 𝒎1 𝑡1

1 , 𝒕−1  , 𝜎2 𝒕2 , 𝒎2 𝑡1
1 , 𝒕−1  , … 𝜎𝑛 𝒕𝑛 , 𝒎𝑛 𝑡1

1 , 𝒕−1  )  𝒕1 = 𝑡1
″  

> 𝐸 𝑢1 𝒕, 𝒂  𝒕1 = 𝑡1
″  , 

where 𝜎1
′ : 𝑇1 × 𝑀1 → 𝐴1 is the function defined by 

𝜎1
′  𝑡1 , 𝑚1 = 𝜎 1

′  𝑡1 ,  𝜎1 𝑡1
1 , 𝑚1 , 𝜎1 𝑡1

2 , 𝑚1
2 , 𝜎1 𝑡1

3 , 𝑚1
3 , …   . 

However, in conjunction with (51), inequality (52) contradicts the assumption that 𝜎 with 

the mechanism 𝒎 is a communication equilibrium, since it shows that when player 1’s type 

is 𝑡1
″ , he can gain from misreporting it as 𝑡1

1 and switching from 𝜎1 to 𝜎1
′ . The contradiction 

proves that the correlated strategy 𝜎  with the mechanism 𝒎     is a communication 

equilibrium. ∎   

Proposition 24. For MEDs, {𝑆 , 𝑂} ⇔ {𝑂}. 

Proof. Identical to the proof of Proposition 13. ∎ 

Proposition 25. For MEDs, {𝑆, 𝐼} ⇔ {𝑆 , 𝐼} and {𝑆, 𝐷} ⇔ {𝑆 , 𝐷}. 

Proof. Identical to the proof of Proposition 14. ∎ 

Proposition 26. For MEDs, {𝑆, 𝑂, 𝐼} ⇔ {𝑆 , 𝑂, 𝐼} ⇔ {𝑆, 𝑂 , 𝐼} ⇔ {𝑆 , 𝑂 , 𝐼} ⇔ {𝑂, 𝐼} ⇔ {𝑂 , 𝐼} ⇔

 {𝑂 } ∧ {𝐼}  and {𝑆, 𝑂, 𝐷} ⇔ {𝑆 , 𝑂, 𝐷} ⇔ {𝑆, 𝑂 , 𝐷} ⇔ {𝑆 , 𝑂 , 𝐷} ⇔ {𝑂, 𝐷} ⇔ {𝑂 , 𝐷} ⇔

 {𝑂 } ∧ {𝐷} . 

Proof. It suffices to show that  {𝑂 } ∧ {𝐼} ⇒ {𝑆, 𝑂, 𝐼}, and similarly with 𝐼 replaced by 𝐷. By 

Proposition 15, both implications hold of CEDs, and the result that they also hold for MEDs 

follows immediately from the fact that a 𝑆, 𝑂, 𝐼-implementable CED is automatically a MED. 

           ∎ 

6.2 Implications  
Assertion (49) in Proposition 22 can equivalently be expressed by its counterpositive. It says 

(in the special case 𝒫 = 𝒫′ ), that if a counterexample showing that a 𝒫-implementable CED 

is not necessarily 𝒬-implementable exists, then a similar counterexample can be found for 

MEDs. The game and distribution in the two examples will generally not be the same. The 

reason is that a correlated equilibrium with a mechanism with the properties 𝒫 that 

establishes the result for CEDs may not be a communication equilibrium; players may have 

an incentive to lie about their types. However, if truthful type reports are incentive 

compatible, then the same counterexample also establishes the result for MEDs. This is 

because a CED that is not 𝒬-implementable a fortiori does not have that attribute as a MED. 

The proofs of the following two propositions use this simple observation. 

(52) 
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Proposition 27. For MEDs, {𝑂 } ⇏ {𝑂}, {𝑆, 𝑂} ⇏ {𝐼} {𝑆, 𝐷} ⇏ {𝑂 } and {𝑆, 𝑂, 𝐼} ⇏ {𝐷}.  

Proof. Proposition 16, which establishes the same for CEDs, relies on Proposition 11. 

Therefore, it suffices to show that a result similar to the latter holds with correlated 

equilibrium (distribution) replaced with communication equilibrium (distribution). This can 

be shown by simply making this replacement throughout the proof of Proposition 11. ∎  

Proposition 28. For MEDs, {𝐷} ⇏ {𝑆 }.  

Proof. The correlated equilibrium with the mechanism with property 𝐷 that is described in 

Example 2 is in fact a communication equilibrium. If player 2 lies about his type, player 1 will 

get as a message an incorrect type profile and will consequentially choose an action for 

which a positive payoff for 2 is impossible. For a similar reason, player 1 cannot gain from 

lying; in this case, the lie will only affect type +1 of player 2. The MED of this communication 

equilibrium in not 𝑆 -implementable since, as shown, it does not have this attribute even as a 

CED. ∎ 

Even if the correlated equilibrium that proves that a certain implication does not hold for 

CEDs is not a communication equilibrium, it may be possible to make truthful type reports 

incentive compatible by adding to the game a suitable honesty encouraging module (HEM) 

and modifying the mechanism and correlated strategy accordingly. Suppose, for example, 

that each of the two players in a Bayesian game can have type +1 or −1, and all four type 

profiles are equally probable. The game can then be modified by adding to it a HEM that 

either adds to or subtracts from both players’ payoffs in the original game a very large 

number 𝐾 > 0. The HEM requires each player to push one of three buttons, 𝐵1, 𝐵2 or 𝐵3. 

The resulting change in payoffs is then determined according to the following table by the 

choices of player 1 and player 2 (which correspond to the table’s rows and columns, 

respectively) and by the product 𝜏 = 𝑡1𝑡2 of their types:  

 𝐵1 𝐵2 𝐵3

𝐵1

𝐵2

𝐵3

𝜏𝐾 −𝜏𝐾 −𝐾
−𝐾 𝜏𝐾 −𝜏𝐾
−𝜏𝐾 −𝐾 𝜏𝐾

 . 

Any mechanism in the original game can be modified by appending to the message it sends 

to each player a recommended action in the HEM. The recommendations are chosen 

independently of the main bodies of the messages (which pertain to the game itself), in the 

following manner. One of the three cells in the table with value 𝐾 (the identities of which 

depend on whether 𝜏 is +1 or −1) is selected, with equal probabilities, and players 1 and 2 

is told the cell’s row and column, respectively. Thus, regardless of the players’ type reports, 

each recommendation is equally likely to be 𝐵1, 𝐵2 or 𝐵3. This implies that if the original 

mechanism had property 𝑆  or 𝑂 , the modified mechanism also has that property. It cannot, 

however, have any of the other four properties of mechanisms.20  

To any correlated equilibrium in the original game there corresponds a communication 

equilibrium in the game with HEM, in which the mechanism appends recommendations as 

                                                            
20 With a somewhat more sophisticated HEM, it is possible to also retain property 𝑆. 
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above and the players push the recommended buttons and otherwise play as in the original 

equilibrium. To see that truthful type reports are incentive compatible, suppose that, for 

example, button 𝐵1 is recommended to type +1 of player 1. If both players reported their 

types truthfully and they follow the mechanism’s recommendations, the player can infer 

that player 2 will choose 𝐵1 or 𝐵2 if his type is +1 or −1, respectively, so that in both cases 

the players will get the bonus of 𝐾. However, if (only) player 1 misreported his type, player 

2’s type has the opposite relation with his action. Therefore, player 1 needs to choose 𝐵2 or 

𝐵3 if 2’s type is +1 or −1, respectively; otherwise he will get a penalty of 𝐾. Since the 

players’ types are independent, this means that it is impossible for player 1 to get more than 

zero in expectation, which shows that dishonesty does not pay. 

Proposition 29. For MEDs, {𝑆 } ⇏ {𝑆}.  

Proof. Consider the Bayesian game and the 𝑆 - but not 𝑆-implementable CED presented in 

Example 3. This CED is not a MED. However, a communication equilibrium with a mechanism 

that has property 𝑆  can be obtained by modifying the game and the correlated equilibrium 

described in the example by adding a HEM as above. The corresponding MED is not 𝑆-

implementable even as CED. It is not difficult to see that, if it were 𝑆-implementable, the 

same would be true for the original CED. ∎ 

The proofs of the next two propositions involve more particular modifications of the original 

counterexamples (which refer to CEDs). 

Proposition 30. For MEDs, {𝑆 , 𝑂} ⇏ {𝑆, 𝑂}. 

Proof. Consider the following changes to the game and CED in Example 6. Both players can 

have type +1 or −1, and all four type profiles are equally probable. If the players’ types 

differ or they are identical, respectively, they both receive the payoff specified by the matrix  

  𝐿 𝑅 
𝐿
𝑅

 
0 0
0 1.5

    or   
  𝐿 𝑅 
𝐿
𝑅

 
1 0
0 1

  .  

With the mechanism described in Example 6, the correlated strategy of following the 

mechanism’s recommendations is still a correlated equilibrium. For a player of any type who 

receives the message 𝐿 and takes that action, the expected payoff is 1/2 ⋅ 0 + 1/2 ⋅ 1 = 0.5, 

whereas playing 𝑅 instead would only give 1/2 ⋅ 1/2 ⋅ 1.5 + 1/2 ⋅ 0 = 0.375. If the message 

is 𝑅, taking this action gives 0.875 and playing 𝐿 would give 0. This correlated equilibrium is 

moreover a communication equilibrium. If a player misreports his type, he will maximize his 

payoff by taking the recommended action, since this is also the action the other player will 

take if the (real) types differ, and if the types are identical, then the expected payoff from 

any action is 0.5. Thus, a dishonest player cannot get more than 1/2 ⋅ 1/2 ⋅ 1.5 + 1/2 ⋅

0.5 = 0.625, which is less than the 1/2 ⋅ 0.5 + 1/2 ⋅ 0.875 = 0.6875 a truthful report 

would give him.  

It remains to show that the corresponding MED cannot be obtained any communication (or 

even correlated) equilibrium 𝜎 with a mechanism that has properties 𝑆 and 𝑂. The messages 

that such a mechanism sends to the players can be written as 𝒎(𝑡′ ), for arbitrary type 
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profile 𝑡′ . Since the players’ actions are identical if their types are identical, necessarily 

 𝜎1 +1, 𝒎1 𝑡′  , 𝜎1(−1, 𝒎1 𝑡′  =  𝜎2 +1, 𝒎2 𝑡′  , 𝜎2(−1, 𝒎2 𝑡′  . 

If 𝒎1 𝑡′  is such that the left- (and, hence, also the right-) hand side equals  𝐿, 𝑅  or  𝑅, 𝐿 , 

respectively, then type +1 or −1 of player 1 will get 1/2 ⋅ 1 from taking the action 𝐿 he is 

supposed to take but 1/2 ⋅ 1.5 from playing 𝑅. Therefore, with probability 1 all four actions 

in (53) must be identical, which shows that the above MED, in which the players’ actions 

may differ, cannot be obtained. ∎ 

Proposition 31. For MEDs,  {𝑆} ∧ {𝐷} ⇏ {𝑆, 𝐼} and  {𝑆, 𝐼} ∧ {𝐷} ⇏ {𝑆, 𝐷}. 

Proof. The first part is proved by Example 7. To prove the second part, consider the following 

changes to the game and CED in Example 4. Player 2 has the constant payoff 0, and he is 

allowed to choose action 𝑅 as well as 𝐿. Choosing 𝑅 rather than 𝐿 only affects type 𝑡1
″  of 

player 1, whose payoff is reduced by 3 when player 2 plays 𝑅. The two mechanisms 

considered in Example 4 and the corresponding correlated equilibria are modified as follows. 

Both mechanisms instruct player 2 to play 𝑅 if player 1 reports the type 𝑡1
′  and to play 𝐿 

otherwise, and player 2 obeys. Clearly, this means that type 𝑡1
″  of player 1 has an incentive 

to report his type truthfully. The same is true for type 𝑡1
′ , for whom the CED gives the highest 

possible payoff. ∎ 

An alternative proof for the last proposition could be obtained by using the following simple 

and generally applicable modification of the game and correlated equilibria in the original 

example. Instead of changing the players’ action spaces, this modification adds to the game 

a new player, “player 0”. The player has a single type, and his action space is the collection 𝑇 

of type profiles for the original players. If the action that player 0 chooses coincides with the 

original players’ actual type profile, everyone gets a huge bonus. Any correlated equilibrium 

in the original game can be modified as follows. The mechanism sends to player 0 the type 

reports of the other players, and he chooses the corresponding action. This obviously 

creates an incentive for the players to report their types truthfully, and thus turns the 

correlated equilibrium into a communication equilibrium (in the modified game). If the 

original mechanism had property 𝑆, 𝑆 , 𝐼 or 𝐷, that property is retained. 

The following proposition uses this construction to show that if the answer to the Open 

Question presented in Section 5.3 is negative, then the same is true for MEDs. Note that if 

the answer will turn out to be affirmative, the proposition is uninformative, since its 

assertion holds vacuously.  

Proposition 32. If, for MEDs,  {𝑆 } ∧ {𝐼} ⇒ {𝑆}, then the same is true for CEDs 

Proof. Suppose there is a CED 𝜂 in some Bayesian game which is not 𝑆-implementable but is 

given by some correlated equilibrium 𝜎 with a mechanism 𝒎 that has property 𝑆  as well as 

by a correlated equilibrium 𝜎′  with a mechanism 𝒎′  that has property 𝐼. It has to be shown 

that a MED with similar properties also exists. 

Modify the game and the two correlated equilibria giving 𝜂 by adding a new player, as 

detailed above, thus turning 𝜎 and 𝜎′  into communication equilibria. The two MEDs are 

(53) 
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identical. The MED assigns nonzero probability only to pairs of type and action profiles in 

which the former coincides with the action of player 0, and the probability in this case is 

equal to that 𝜂 assigns to the pair obtained by omitting player 0’s action. Any 

communication, or even just correlated, equilibrium that gives this MED can be turned into a 

correlated equilibrium in the original game (in which 𝜂 is a CED) simply by omitting the 

message that the equilibrium’s mechanism sends to player 0 and the corresponding 

coordinate of the correlated strategy. If the mechanism had property 𝑆, the omission would 

not affect it. It therefore follows from the assumption concerning the CED 𝜂 that a 

mechanism implementing the MED cannot in fact have property 𝑆. ∎ 

Propositions 23, 24, 25 and 26 identify six attributes of communication equilibrium 

distributions that are defined by subsets of the properties of mechanisms described in 

Section 2.2. Figure 3 shows these attributes, which are marked II, III, IVa, V, VIa and VII, and 

eleven additional ones. The implication relations that are specified by the Hesse diagram 

among these 17 attributes all hold trivially, since they follow immediately from relations 

between properties of mechanisms. For two of the implications, it is not known whether the 

inverse implication also holds. The uncertainty is indicated in Figure 3 by a question mark. If 

the inverse implication does hold, the marked line should be removed and the two 

connected boxes should be coalesced, as they represent equivalent attributes. The following 

arguments show that none of the other attributes in Figure 3 are equivalent, and more 

generally, that the Hesse diagram indicates all the implication relations between attributes 

of MEDs 

If attributes that involve conjunctions were removed from Figure 2 and Figure 3, the two 

Hesse diagrams would become identical. In Section 5 it is shown that, among the remaining 

twelve attributes of CEDs, the implications indicated by the diagram are the only ones 

holding. Essentially the same arguments prove the same for MEDs, with Propositions 16, 17, 

18 and 19 replaced by 27, 28, 29 and 30, respectively. For each of the attributes in Figure 3 

that does involve conjunction, it follows from Proposition 31 that the only other attributes 

that imply or are implied by the attribute are those indicated as such by the Hesse diagram. 

This proves that the diagram is complete in terms of implication relations. The following 

lemma shows that it is also complete in terms of closedness under conjunctions.  

Lemma 7. The conjunction of any number of the attributes of MEDs in Figure 3 is equivalent 

to one of the attributes in the same figure.  

Proof of Lemma 7. The proof is similar to that of Lemma 6, except that is uses Proposition 26 

instead of 15. ∎ 

It is now possible to show that the implication relation ⇒
MED

 between attributes of MEDs is 

indeed stronger, in a sense, than the corresponding relation for CEDs. 

Proof of Proposition 22. In view of Lemma 7, it suffices to consider 𝒫 and 𝒫′  that are either 

identical or are such that their conjunction appears explicitly in Figure 3. With a single 

exception, which is covered by Proposition 32, in all cases comparison of Figure 3 with Figure 

2 immediately gives (49). ∎ 
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7 Correlated Strategy, Correlated Equilibrium and 

Communication Equilibrium Payoffs 
The expected payoffs of the players in a Bayesian game are completely determined by the 

joint distribution of the players’ types and actions. However, the relation between 

distributions and payoff vectors is normally many-to-one. Therefore, if a particular 

correlated equilibrium distribution cannot be implemented by a mechanism of a particular 

kind, it does not necessarily follow that the corresponding payoff vector is not 

implementable; it may be that a mechanism of that kind implements another CED with the 

same payoffs. Games with constant payoff functions provide a trivial example of this. In such 

games, a CED is implementable if and only if it is implementable as a CSD, so that the 

connection between implementability of distributions and the properties of the mechanism 

is as detailed in Section 4. By contrast, the single possible payoff vector is of course 

implementable by any mechanism.  

Correlated strategy payoffs (CSPs), correlated equilibrium payoffs (CEPs) and communication 

equilibrium payoffs (MEPs) in Bayesian games can be classified in a similar manner to the 

classification of CSDs (Figure 1), CEDs (Figure 2) and MEDs (Figure 3). Each subset 𝒫 of the 

properties of mechanisms described in Section 2.2 defines an attribute of CSPs, CEPs and 

MEPs, namely, 𝒫-implementability. A payoff vector 𝑣 =  𝑣1 , 𝑣2 , … , 𝑣𝑛 ∈ ℜ𝑛  in a specified 

𝑛-player Bayesian game is 𝒫-implementable if it is obtained in some correlated strategy, 

correlated equilibrium or communication equilibrium in the game with a mechanism that 

has (all) the properties in 𝒫 (equivalently, if it is obtained in some CSD, CED or MED, 

respectively, that is implementable by such a mechanism). For two subset 𝒫, 𝒬 ⊆

{𝑆, 𝑆 , 𝑂, 𝑂 , 𝐷, 𝐼}, 𝒫-implementability of CSPs, CEPs or MEPs implies 𝒬-implementability if in 

every Bayesian game every CSP, CEP or MEP, respectively, that is implementable by some 

mechanism with the properties in 𝒫 is also implementable by a mechanism with the 

properties in 𝒬. For CSPs, CEPs or MEPs, this relation is written as 𝒫 ⇒
CSP

𝒬, 𝒫 ⇒
CEP

𝒬 or 

𝒫 ⇒
MEP

𝒬, respectively.  

The main result concerning implementability of payoff vectors is Theorem 4, which is 

presented in Section 3.5 and is proved below. According to the theorem, the effect of the 

properties of the implementing mechanisms on the equilibrium outcomes has the same 

pattern for the joint distributions of types and actions and for the resulting payoffs. In other 

words, there is a one-to-one correspondence between attributes of CSDs and attributes of 

CSPs, which are both described by the Hesse diagram in Figure 1, and similar 

correspondences exists between attributes of CEDs and of CEPs (Figure 2), and between 

attributes of MEDs and of MEPs (Figure 3). Note that the example of a game with constant 

payoffs does not contradict this finding. It suffices that the properties of the implementing 

mechanism limit the equilibrium payoffs in some Bayesian game. They do not have to (and 

they cannot) come into play in every game.  

Proof of Theorem 4. The proofs for correlated equilibria and for communication equilibria 

are nearly identical. Only the former is presented below; the latter can be obtained 

essentially by replacing ‘correlated’ with ‘communication’ throughout. The proof for 
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correlated strategies can also easily be obtained from that below by simplifying it in the 

obvious manner.  

It has to be shown that, for every 𝒫, 𝒬 ⊆ {𝑆, 𝑆 , 𝑂, 𝑂 , 𝐷, 𝐼}, 

𝒫 ⇒
CEP

𝒬 if and only if 𝒫 ⇒
CED

𝒬, 

and that the same is true with 𝒫 replaced by 𝒫 ∧ 𝒫′ ∧ 𝒫″ ∧ ⋯, for any list 𝒫, 𝒫′ , 𝒫″ , … of 

subsets of {𝑆, 𝑆 , 𝑂, 𝑂 , 𝑉, 𝐼}. One direction of (54) (“if”) is easy. 𝒫 ⇏
𝑃

𝒬 and 𝒫 ⇒
𝐸

𝒬 cannot 

both hold, since the former means that, in some Bayesian game, there is a 𝒫-implementable 

CED 𝜂 with a payoff vector that is different from that of every 𝒬-implementable CED in the 

same game, whereas the latter implies that 𝜂 itself is 𝒬-implementable. 

To prove the nontrivial direction of (54) (“only if”), define the extension of a Bayesian game 

as the game obtained by the addition of dummy players — one for each element of 𝑇 × 𝐴. A 

dummy player has only one possible type and one action, which are therefore insignificant in 

that they cannot affect the payoff of any player. In the following, the types and actions of 

the dummy players are ignored, and the collections of type profiles and action profiles in the 

extended game are thus identified with those in the original game (namely, 𝑇 and 𝐴, 

respectively). The significance of the dummy players lies in their payoff functions. The payoff 

function 𝑢𝑡 ,𝑎 : 𝑇 × 𝐴 → ℜ of the dummy player representing the types-actions pair 

 𝑡, 𝑎 ∈ 𝑇 × 𝐴 is defined as the indicator function 1  𝑡 ,𝑎  , which returns 1 if the argument is 

equal to (𝑡, 𝑎) and 0 otherwise. Thus, the dummy players’ payoffs indicate the types and 

actions of the original, “real” players. In particular, for every correlated equilibrium 

distribution 𝜂 and every element  𝑡, 𝑎  of 𝑇 × 𝐴, the expected payoff of the corresponding 

dummy player is equal to 𝜂(  𝑡, 𝑎  ). It follows that two CEDs in the extended game, 𝜂 and 

𝜂 , give the same CEP if and only if they are equal, 𝜂 = 𝜂 .  

Every mechanism in the original game can be extended in a natural way to a mechanism in 

the extended game by sending arbitrary constant messages to the dummy players. The 

original and extended mechanisms have the exact same properties in {𝑆, 𝑆 , 𝑂, 𝑂 , 𝑉, 𝐼}, and in 

the following they are identified. Using this identification, every correlated strategy in the 

original game can be extended in a natural way to a correlated strategy with the same 

mechanism in the extended game by assigning to each of the dummy players his single 

possible strategy. Observe that:   

1. the original correlated strategy has the same distribution as the extended one (recall the 

above comment regarding the identification of profiles in the original and the extended 

games), and  

2. one of them is a correlated equilibrium if and only if this is so for the other.  

Moreover, every CED in the extended game can be obtained in the above manner from 

some CED in the original game. The former may be the distribution of a correlated strategy 

with a mechanism that sends variable messages to some dummy players. However, these 

messages are inconsequential (since a dummy player has only one possible action) and can 

be replaced by constant ones. Such replacement preserves each of the properties 𝑆, 𝑆 , 𝑂, 𝑂 , 

𝑉 and 𝐼. 

(54) 
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Suppose now that 𝒫 ⇒
CEP

𝒬. Then, for every 𝒫-implementable CED 𝜂 in the extended game 

there is a 𝒫-implementable CED 𝜂  in the same game with the same payoff vector. As 

indicated, necessarily 𝜂 =  𝜂, so that 𝜂 is 𝒬-implementable. Therefore, by Observations 1 

and 2 above, every 𝒫-implementable CED in the original game is also 𝒬-implementable. This 

proves that 𝒫 ⇒
CED

𝒬. 

Inspection of the above proof of (54) reveals that it applies virtually unchanged also to the 

more general case in which 𝒫 is replaced by 𝒫 ∧ 𝒫′ ∧ 𝒫″ ∧ ⋯. ∎ 

8 Summary 
The three Hesse diagrams in Section 3 refer to different notions of outcomes or solution 

concepts. Specifically, they present the implication relation between attributes of correlated 

strategy distributions or payoffs (Figure 1), between attributes of correlated equilibrium 

distributions or payoffs (Figure 2), and between attributes of communication equilibrium 

distributions or payoffs (Figure 3). However, since in all six cases the attributes are defined in 

terms of properties of the implementing mechanisms, the implication relations themselves 

are potentially comparable. Indeed, the results in the previous sections show that each of 

these relations implies or is implied by each of the others. This implication relation between 

implication relations is shown by the Hesse diagram in Figure 4.  

The Hesse diagrams in Figure 1, Figure 2, Figure 3 and Figure 4 together imply that the 

number of classes of CSDs (and CEPs) is strictly smaller than the number for CEDs (and CEPs), 

and the latter is strictly smaller than the number of classes of MEDs (and MEPs). Only the 

first of these numbers is precisely known: seven. The second number is either 14 or 15 

(depending on the answer to the Open Problem presented in Section 5.3) and the third 

(which, as indicated, is strictly greater that the second) is 15, 16 or 17. 

Correlated and communication equilibria can both be viewed as special cases of a model in 

which the messages that the mechanism sends to the players may depend on both their 

reported types and their true ones. The former dependence may be of little significance if 

there are no limitations on the mechanism’s use of the latter. However, the present setup is 

constructed specifically for facilitating analyzing such limitations and their significance. Thus, 

suppose for example that the mechanism can only use certain aggregate data regarding the 

players’ true types, e.g., a “checksum” of the types. Then, unilateral deviations from truthful 

type reporting may be detectable (even for reported type profiles that are a priori possible) 

but it may be impossible to tell who lied about his type. If the players use a particular 

correlated strategy to translate the mechanism’s messages into (type dependant) actions, 

then a natural extension of the definitions of correlated and communication equilibria is the 

requirement that it is incentive compatible for players to truthfully report their types and 

take the indicated actions. The question then arises, how the limitations of the mechanism 

affect the outcomes of such “correlated–communication” equilibria. From this perspective, 

the results reported in this paper only concern two special kinds of limitations: either the 

reported types or the true types should not affect the messages that the mechanism sends 

to the players.  



61 

  

References 
Aumann, R. J. (1987). Correlated equilibrium as an expression of Bayesian rationality. 

Econometrica 55, 1–18. 

Ben-Porath, E. (2003). Cheap talk in games with incomplete information. Journal of 

Economic Theory 108, 45–71. 

Bergemann, D. and Morris, S. E. (2007). Belief free incomplete information games. Cowles 

Foundation Discussion Paper No. 1629, Yale University.  

Cotter, K. D. (1991). Correlated equilibrium in games with type-dependent strategies. 

Journal of Economic Theory 54, 48–68.  

Cotter, K. D. (1994). Type correlated equilibria for games with payoff uncertainty. Economic 

Theory 4, 617–627.  

Forges, F. (1990). Universal mechanisms. Econometrica 58, 1341–1364. 

Forges, F. (1993). Five legitimate definitions of correlated equilibrium in games with 

incomplete information. Theory and Decision 35, 277–310. 

Forges, F. (2006). Correlated equilibrium in games with incomplete information revisited. 

Theory and Decision 61, 329–344. 

Gerardi, D. (2004). Unmediated communication in games with complete and incomplete 

information. Journal of Economic Theory 114, 104–131. 

 𝒫 ∧ 𝒫′ ∧ 𝒫″ ∧ ⋯  ⇒
CSP

𝒬 

 𝒫 ∧ 𝒫′ ∧ 𝒫″ ∧ ⋯  ⇒
CSD

𝒬 

 

 𝒫 ∧ 𝒫′ ∧ 𝒫″ ∧ ⋯  ⇒
CEP

𝒬 

 𝒫 ∧ 𝒫′ ∧ 𝒫″ ∧ ⋯  ⇒
CED

𝒬 

 𝒫 ∧ 𝒫′ ∧ 𝒫″ ∧ ⋯  ⇒
MEP

𝒬 

 𝒫 ∧ 𝒫′ ∧ 𝒫″ ∧ ⋯  ⇒
MED

𝒬 

 

Figure 4. Hesse diagram of the implication relations between attributes of (equilibrium) outcomes in Bayesian 
games: correlated strategy distributions (CSDs), correlated strategy payoffs (CSPs), correlated equilibrium 
distributions (CEDs), correlated equilibrium payoffs (CEPs), communication equilibrium distributions (MEDs) 
and communication equilibrium payoffs (MEPs). A box represents a pair of equivalent implication relations: for 

all subsets 𝓟, 𝓟′ , 𝓟″ , … and 𝓠 of (the set of properties of mechanisms) {𝑺, 𝑺 , 𝑶, 𝑶 , 𝑫, 𝑰}, one implication holds is 
and only if the other holds. A line represents only one-way implication (between implications): whenever an 
implication relation in the lower box holds, so does each implication relation in the higher box. 



62 

Kar, A., et al. (2008). A difficulty in implementing correlated equilibrium distributions. Games 

and Economic Behavior, doi:10.1016/j.geb.2008.11.006.  

Lehrer, E., Rosenberg, D. and Shmaya, E. (2006a). Signaling and mediation in games with 

common interests. Tel Aviv University. 

Lehrer, E., Rosenberg, D. and Shmaya, E. (2006b). Signaling and mediation in Bayesian 

games. Tel Aviv University. Mimeo. 

Milchtaich, I. (2004). Random-player games. Games and Economic Behavior 47, 353–388. 

Myerson, R.B. (1994). Communication, correlated equilibria, and incentive compatibility. 

Chapter 24 in Handbook of Game Theory, Vol. 2, edited by R. J. Aumann and S. Hart, Elsevier 

Science, pp. 827–847. 

Samuelson, L. and Zhang, J. (1989). Correlated and mediated equilibria in games with 

incomplete information. Pennsylvania State University. 

Shiryaev, A. N. (1996). Probability, 2nd Edition. Springer, New York. 



Electronic versions of the papers are available at 

http://www.biu.ac.il/soc/ec/wp/working_papers.html 

Bar-Ilan University 

Department of Economics 

WORKING PAPERS  
 

1‐01   The Optimal Size for a Minority 

Hillel Rapoport and Avi Weiss, January 2001. 

2‐01   An Application of a Switching Regimes Regression to the Study of Urban 
Structure 

Gershon Alperovich and Joseph Deutsch, January 2001. 

3‐01   The Kuznets Curve and the Impact of Various Income Sources on the Link 
Between Inequality and Development     

Joseph Deutsch and Jacques Silber, February 2001. 

4‐01   International Asset Allocation: A New Perspective 

Abraham Lioui and Patrice Poncet, February 2001. 

 מודל המועדון והקהילה החרדית 01‐5
 

 .2001פברואר , יעקב רוזנברג   

6‐01  Multi‐Generation Model of Immigrant Earnings: Theory and Application 

Gil S. Epstein and Tikva Lecker, February 2001. 

7‐01  Shattered Rails, Ruined Credit: Financial Fragility and Railroad Operations in 
the Great Depression 

Daniel A. Schiffman, February 2001. 

8‐01  Cooperation and Competition in a Duopoly R&D Market 

Damiano Bruno Silipo and Avi Weiss, March 2001. 

9‐01  A Theory of Immigration Amnesties 

Gil S. Epstein and Avi Weiss, April 2001. 

10‐01  Dynamic Asset Pricing With Non‐Redundant Forwards 

Abraham Lioui and Patrice Poncet, May 2001. 

11‐01  Macroeconomic and Labor Market Impact of Russian Immigration in Israel 

Sarit Cohen and Chang‐Tai Hsieh, May 2001. 



12‐01  Network Topology and the Efficiency of Equilibrium 

Igal Milchtaich, June 2001. 

13‐01  General Equilibrium Pricing of Trading Strategy Risk 

Abraham Lioui and Patrice Poncet, July 2001. 

14‐01  Social Conformity and Child Labor 

Shirit Katav‐Herz, July 2001. 

15‐01  Determinants of Railroad Capital Structure, 1830–1885 

Daniel A. Schiffman, July 2001. 

16‐01  Political‐Legal Institutions and the Railroad Financing Mix, 1885–1929 

Daniel A. Schiffman, September 2001. 

17‐01  Macroeconomic Instability, Migration, and the Option Value of Education 

Eliakim Katz and Hillel Rapoport, October 2001. 

18‐01  Property Rights, Theft, and Efficiency: The Biblical Waiver of Fines in the 
Case of Confessed Theft 

Eliakim Katz and Jacob Rosenberg, November 2001. 

19‐01  Ethnic Discrimination and the Migration of Skilled Labor 

Frédéric Docquier and Hillel Rapoport, December 2001. 

1‐02  Can Vocational Education Improve the Wages of Minorities and 
Disadvantaged Groups? The Case of Israel 

Shoshana Neuman and Adrian Ziderman, February 2002. 

2‐02  What Can the Price Gap between Branded and Private Label Products Tell 
Us about Markups? 

Robert Barsky, Mark Bergen, Shantanu Dutta, and Daniel Levy, March 2002. 

3‐02  Holiday Price Rigidity and Cost of Price Adjustment 

Daniel Levy, Georg Müller, Shantanu Dutta, and Mark Bergen, March 2002. 

4‐02  Computation of Completely Mixed Equilibrium Payoffs 

Igal Milchtaich, March 2002. 

5‐02  Coordination and Critical Mass in a Network Market – An Experimental 
Evaluation 

Amir Etziony and Avi Weiss, March 2002. 



6‐02  Inviting Competition to Achieve Critical Mass  

Amir Etziony and Avi Weiss, April 2002. 

7‐02  Credibility, Pre‐Production and Inviting Competition in a Network Market 

Amir Etziony and Avi Weiss, April 2002. 

8‐02  Brain Drain and LDCs’ Growth: Winners and Losers 

Michel Beine, Fréderic Docquier, and Hillel Rapoport, April 2002. 

9‐02  Heterogeneity in Price Rigidity: Evidence from a Case Study Using Micro‐
Level Data 

Daniel Levy, Shantanu Dutta, and Mark Bergen, April 2002. 

10‐02  Price Flexibility in Channels of Distribution: Evidence from Scanner Data 

Shantanu Dutta, Mark Bergen, and Daniel Levy, April 2002. 

11‐02  Acquired Cooperation in Finite‐Horizon Dynamic Games 

Igal Milchtaich and Avi Weiss, April 2002. 

12‐02  Cointegration in Frequency Domain  

Daniel Levy, May 2002. 

13‐02  Which Voting Rules Elicit Informative Voting? 

Ruth Ben‐Yashar and Igal Milchtaich, May 2002. 

14‐02  Fertility, Non‐Altruism and Economic Growth: Industrialization in the 
Nineteenth Century 

Elise S. Brezis, October 2002.  

15‐02  Changes in the Recruitment and Education of the Power Elitesin Twentieth 
Century Western Democracies 

Elise S. Brezis and François Crouzet, November 2002. 

16‐02  On the Typical Spectral Shape of an Economic Variable 

Daniel Levy and Hashem Dezhbakhsh, December 2002. 

17‐02  International Evidence on Output Fluctuation and Shock Persistence 

Daniel Levy and Hashem Dezhbakhsh, December 2002. 

1‐03  Topological Conditions for Uniqueness of Equilibrium in Networks 

Igal Milchtaich, March 2003. 

2‐03  Is the Feldstein‐Horioka Puzzle Really a Puzzle? 

Daniel Levy, June 2003. 



3‐03  Growth and Convergence across the US: Evidence from County‐Level Data 

Matthew Higgins, Daniel Levy, and Andrew Young, June 2003. 

4‐03  Economic Growth and Endogenous Intergenerational Altruism 

Hillel Rapoport and Jean‐Pierre Vidal, June 2003. 

5‐03  Remittances and Inequality: A Dynamic Migration Model 

Frédéric Docquier and Hillel Rapoport, June 2003. 

6‐03  Sigma Convergence Versus Beta Convergence: Evidence from U.S. County‐
Level Data 

Andrew T. Young, Matthew J. Higgins, and Daniel Levy, September 2003. 

7‐03  Managerial and Customer Costs of Price Adjustment: Direct Evidence from 
Industrial Markets 

Mark J. Zbaracki, Mark Ritson, Daniel Levy, Shantanu Dutta, and Mark Bergen, 
September 2003. 

8‐03  First and Second Best Voting Rules in Committees 

Ruth Ben‐Yashar and Igal Milchtaich, October 2003. 

9‐03  Shattering the Myth of Costless Price Changes: Emerging Perspectives on 
Dynamic Pricing 

Mark Bergen, Shantanu Dutta, Daniel Levy, Mark Ritson, and Mark J. Zbaracki, 
November 2003. 

1‐04  Heterogeneity in Convergence Rates and Income Determination across U.S. 
States: Evidence from County‐Level Data 

Andrew T. Young, Matthew J. Higgins, and Daniel Levy, January 2004. 

2‐04  “The Real Thing:” Nominal Price Rigidity of the Nickel Coke, 1886‐1959 

Daniel Levy and Andrew T. Young, February 2004. 

3‐04  Network Effects and the Dynamics of Migration and Inequality: Theory and 
Evidence from Mexico 

David Mckenzie and Hillel Rapoport, March 2004.   

4‐04  Migration Selectivity and the Evolution of Spatial Inequality 

Ravi Kanbur and Hillel Rapoport, March 2004. 

5‐04  Many Types of Human Capital and Many Roles in U.S. Growth: Evidence 
from County‐Level Educational Attainment Data 

Andrew T. Young, Daniel Levy and Matthew J. Higgins, March 2004. 



6‐04  When Little Things Mean a Lot: On the Inefficiency of Item Pricing Laws 

Mark Bergen, Daniel Levy, Sourav Ray, Paul H. Rubin and Benjamin Zeliger, 
May 2004. 

7‐04  Comparative Statics of Altruism and Spite 

Igal Milchtaich, June 2004. 

8‐04  Asymmetric Price Adjustment in the Small: An Implication of Rational 
Inattention   

Daniel Levy, Haipeng (Allan) Chen, Sourav Ray and Mark Bergen, July 2004. 

1‐05  Private Label Price Rigidity during Holiday Periods  

  Georg Müller, Mark Bergen, Shantanu Dutta and Daniel Levy, March 2005.  

2‐05  Asymmetric Wholesale Pricing: Theory and Evidence 

Sourav Ray, Haipeng (Allan) Chen, Mark Bergen and Daniel Levy,  
March 2005.   

3‐05  Beyond the Cost of Price Adjustment: Investments in Pricing Capital 

Mark Zbaracki, Mark Bergen, Shantanu Dutta, Daniel Levy and Mark Ritson, 
May 2005.   

4‐05  Explicit Evidence on an Implicit Contract 

Andrew T. Young and Daniel Levy, June 2005.   

5‐05  Popular Perceptions and Political Economy in the Contrived World of Harry 
Potter  

Avichai Snir and Daniel Levy, September 2005.   

6‐05  Growth and Convergence across the US: Evidence from County‐Level Data 
(revised version) 

Matthew J. Higgins, Daniel Levy, and Andrew T. Young , September 2005.  

1‐06  Sigma Convergence Versus Beta Convergence: Evidence from U.S. County‐
Level Data (revised version) 

Andrew T. Young, Matthew J. Higgins, and Daniel Levy, June 2006. 

2‐06  Price Rigidity and Flexibility: Recent Theoretical Developments 

Daniel Levy, September 2006. 

3‐06  The Anatomy of a Price Cut: Discovering Organizational Sources of the Costs 
of Price Adjustment    

Mark J. Zbaracki, Mark Bergen, and Daniel Levy, September 2006.   



4‐06  Holiday Non‐Price Rigidity and Cost of Adjustment  

Georg Müller, Mark Bergen, Shantanu Dutta, and Daniel Levy.  
September 2006.   

2008‐01  Weighted Congestion Games With Separable Preferences  

Igal Milchtaich, October 2008. 

2008‐02  Federal, State, and Local Governments: Evaluating their Separate 
Roles in US Growth 

Andrew T. Young, Daniel Levy, and Matthew J. Higgins, December 2008.  

2008‐03  Political Profit and the Invention of Modern Currency 

Dror Goldberg, December 2008. 

2008‐04  Static Stability in Games 

Igal Milchtaich, December 2008.  

2008‐05  Comparative Statics of Altruism and Spite 

Igal Milchtaich, December 2008.  

2008‐06  Abortion and Human Capital Accumulation: A Contribution to the 
Understanding of the Gender Gap in Education 

Leonid V. Azarnert, December 2008. 

2008‐07  Involuntary Integration in Public Education, Fertility and Human 
Capital 

Leonid V. Azarnert, December 2008. 

2009‐01  Inter‐Ethnic Redistribution and Human Capital Investments 

Leonid V. Azarnert, January 2009. 

2009‐02  Group Specific Public Goods, Orchestration of Interest Groups and 
Free Riding 

Gil S. Epstein and Yosef Mealem, January 2009. 

2009‐03  Holiday Price Rigidity and Cost of Price Adjustment 

Daniel Levy, Haipeng Chen, Georg Müller, Shantanu Dutta, and Mark Bergen, 
February 2009. 

2009‐04  Legal Tender 

Dror Goldberg, April 2009. 

2009‐05  The Tax‐Foundation Theory of Fiat Money 

Dror Goldberg, April 2009. 



2009‐06  The Inventions and Diffusion of Hyperinflatable Currency 

Dror Goldberg, April 2009. 

2009‐07  The Rise and Fall of America’s First Bank 

Dror Goldberg, April 2009. 

2009‐08  Judicial Independence and the Validity of Controverted Elections 

Raphaël Franck, April 2009. 

2009‐09  A General Index of Inherent Risk 

Adi Schnytzer and Sara Westreich, April 2009. 

2009‐10  Measuring the Extent of Inside Trading in Horse Betting Markets 

Adi Schnytzer, Martien Lamers and Vasiliki Makropoulou, April 2009. 

2009‐11  The Impact of Insider Trading on Forecasting in a Bookmakers' Horse 
Betting Market 

Adi Schnytzer, Martien Lamers and Vasiliki Makropoulou, April 2009. 

2009‐12  Foreign Aid, Fertility and Population Growth: Evidence from Africa 

Leonid V. Azarnert, April 2009. 

2009‐13  A Reevaluation of the Role of Family in Immigrants’ Labor Market 
Activity: Evidence from a Comparison of Single and Married Immigrants 

Sarit Cohen‐Goldner, Chemi Gotlibovski and Nava Kahana, May 2009. 

2009‐14  The Efficient and Fair Approval of “Multiple‐Cost–Single‐Benefit” 
Projects Under Unilateral Information 

Nava Kahanaa, Yosef Mealem and Shmuel Nitzan, May 2009. 

2009‐15  Après nous le Déluge: Fertility and the Intensity of Struggle against 
Immigration 

Leonid V. Azarnert, June 2009. 

2009‐16  Is Specialization Desirable in Committee Decision Making? 

Ruth Ben‐Yashar, Winston T.H. Koh and Shmuel Nitzan, June 2009. 

2009‐17  Framing‐Based Choice: A Model of Decision‐Making Under Risk 

Kobi Kriesler and Shmuel Nitzan, June 2009. 

2009‐18  Demystifying the ‘Metric Approach to Social Compromise with the 
Unanimity Criterion’ 

Shmuel Nitzan, June 2009. 



2009‐19  On the Robustness of Brain Gain Estimates 

Michel Beine, Frédéric Docquier and Hillel Rapoport, July 2009. 

2009‐20  Wage Mobility in Israel: The Effect of Sectoral Concentration 

Ana Rute Cardoso, Shoshana Neuman and Adrian Ziderman, July 2009. 

2009‐21  Intermittent Employment: Work Histories of Israeli Men and 
Women, 1983–1995 

Shoshana Neuman and Adrian Ziderman, July 2009. 

2009‐22  National Aggregates and Individual Disaffiliation: An International 
Study 

Pablo Brañas‐Garza, Teresa García‐Muñoz and Shoshana Neuman, July 2009. 

2009‐23  The Big Carrot: High‐Stakes Incentives Revisited 

Pablo Brañas‐Garza, Teresa García‐Muñoz and Shoshana Neuman, July 2009. 

2009‐24  The Why, When and How of Immigration Amnesties 

Gil S. Epstein and Avi Weiss, September 2009. 

2009‐25  Documenting the Brain Drain of «la Crème de la Crème»: Three 
Case‐Studies on International Migration at the Upper Tail of the Education 
Distribution 

Frédéric Docquier and Hillel Rapoport, October 2009. 

2009‐26  Remittances  and  the  Brain  Drain  Revisited:  The  Microdata  Show 
That More Educated Migrants Remit More 

Albert Bollard, David McKenzie, Melanie Morten and Hillel Rapoport, October 
2009. 

2009‐27  Implementability of Correlated and Communication Equilibrium 
Outcomes in Incomplete Information Games 

Igal Milchtaich, November 2009. 

 


	Introduction
	Related literature

	Preliminaries
	Bayesian games
	Mechanisms
	Independence lemma and the canonical mechanism

	Correlated strategies
	Correlated equilibria
	Communication equilibria

	Overview of Results
	Attributes of correlated strategy distributions
	Intrinsic characterizations

	Attributes of correlated equilibrium distributions
	Attributes inherited from correlated strategy distributions
	Attributes defined by conjunction
	Strategy correlated and type correlated equilibria

	Attributes of communication equilibrium distributions
	Classifications
	Payoffs

	Correlated Strategy Distributions
	Intrinsic characterizations
	Equivalences
	Implications

	Correlated Equilibrium Distributions
	Equivalences
	Implications
	Conjunction of attributes

	Communication Equilibrium Distributions
	Equivalences
	Implications

	Correlated Strategy, Correlated Equilibrium and Communication Equilibrium Payoffs
	Summary
	References

