

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Pannenberg, Markus; Rendtel, Ulrich

Working Paper — Digitized Version

Documentation of sample sizes and panel attrition in the German Socio Economic Panel (GSOEP) (1984 until 1995) [Subsamples A, B, C]

DIW Discussion Papers, No. 137

Provided in Cooperation with:

German Institute for Economic Research (DIW Berlin)

Suggested Citation: Pannenberg, Markus; Rendtel, Ulrich (1996): Documentation of sample sizes and panel attrition in the German Socio Economic Panel (GSOEP) (1984 until 1995) [Subsamples A, B, C], DIW Discussion Papers, No. 137, Deutsches Institut für Wirtschaftsforschung (DIW), Berlin

This Version is available at: https://hdl.handle.net/10419/95856

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.



Diskussionspapiere Discussion Papers

Discussion Paper No. 137

Documentation of Sample Sizes and Panel Attrition in the German Socio Economic Panel (GSOEP) (1984 until 1995) [Subsamples A,B,C]

by Markus Pannenberg¹ and Ulrich Rendtel²

Deutsches Institut für Wirtschaftsforschung

Discussion Paper No. 137

Documentation of Sample Sizes and Panel Attrition in the German Socio Economic Panel (GSOEP) (1984 until 1995) [Subsamples A,B,C]

by
Markus Pannenberg¹ and Ulrich Rendtel²

¹German Institute for Economic Research, Berlin ²Johann Wolfgang Goethe University Frankfurt

Berlin, July 1996

Deutsches Institut für Wirtschaftsforschung, Berlin Königin-Luise-Str. 5, D-14191 Berlin

Telefon: 49-30 - 89 7 89-0 Telefax: 49-30 - 89 7 89-200

Contents

1	Dev	elopment of the sample sizes	1
	1.1	Development of the number of successful interviews by cross-section	1
	1.2	Longitudinal development of losses due to panel attrition	5
	1.3	Entrants by birth or move-ins and their participation behavior	10
2	Loss	ses due to unsuccessful follow-up	11
	2.1	Drop-out rates by mobility behavior	11
	2.2	Definition of the covariates for a Logit analysis	13
	2.3	Estimated coefficients of the Logit model	14
3	Loss	ses due to refusals	17
	3.1	Drop out rates by different household characteristics	17
	3.2	Definition of the covariates for a Logit analysis	25
	3.3	Estimated coefficients of the Logit model	27
4	Cha	nges due to the incorporation of the new immigrant sample	34
	(San	nple D)	
5	Refe	erences	36

1

1 Development of the sample sizes

General comment: The sample sizes of the English public use version of the GSOEP and the German DIW version differ by approximately five percent. The exclusion of 5 percent of the original data from the GSOEP was necessary to fulfill the requirements of the German data protection laws. Technically this was achieved by dropping randomly 5 percent of the original wave 1 households. All persons and households which stem from these root households are excluded from the English public use version. As a consequence the difference in sample sizes is not always exactly 5 percent. The sample sizes documented here refer to the original DIW data base version. Our focus is on the subsamples A, B and C. The first wave of the new immigrant sample (subsample D) is documented in Burkhauser/Kreyenfeld/Wagner (1996).

The development of the sample sizes is documented here under the following aspects:

- Comparison of the number of successful interviews by cross-section.
- Longitudinal development of panel attrition.
- Entrants by birth or move-ins and their participation behavior.

1.1 Development of the number of successful interviews by cross-section

The following figures display the number of successful interviews under different aspects.

Figure 1 Comparison for individuals and households (subsamples A and B), wave 1 (1984) to 11 (1995).

Figure 2 Comparison between subsamples A and B on the individual level, wave 1 (1984) to 11 (1995).

Figure 3 Comparison between the subsamples A,B and C on the individual level wave 1 to 6.

Figure 1: Comparison of successful interviews with persons and households (subsample A and B), waves 1 to 12.

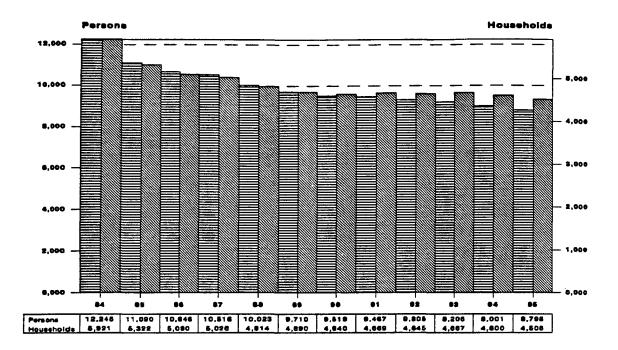


Figure 2: Comparison of successful interviews between subsamples A and B (individual level), waves 1 to 12.

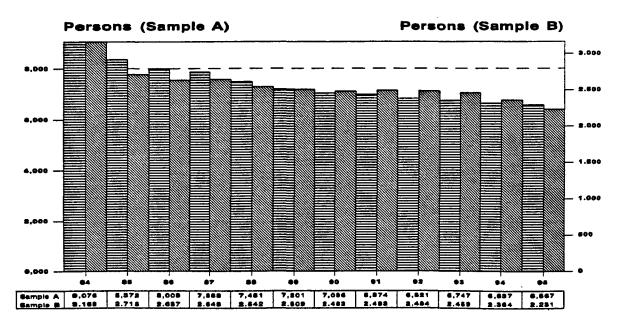
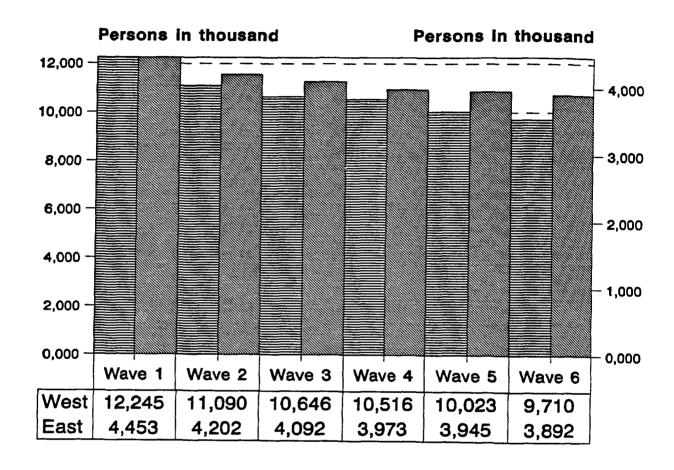



Figure 3: Comparison of successful interviews between subsamples A, B and C (individuals), waves 1 to 6.

West East

With increasing duration of the GSOEP the initial subsample indicator looses its ability to predict the actual sampling region; i.e. members of subsample C (East-Germany) move to West-Germany and members of the subsample A and B (West-Germany) move to East-Germany. Table 1 displays the actual sampling region of the GSOEP households since 1990 (Wave 7 for subsamples A and B, wave 1 for subsample C).

Table 1: Development of sample sizes by sampling region and institutional status 1990 to 1995. n=Number of successful interviews, N=Estimated population total in thousands. Population margins for the number of households and individuals living in private households by sampling region are taken from the German microcensus. Figures for 1995 are provisional. Because of the different definitorial concepts the figures for the institutional population are not comparable to the microcensus.

Surve	y			· · · · · · · · · · · · · · · · · · ·	Samplin	ng region			
year			W	est	_		E	ast	
		Sampl	e A+B	Sam	ple C	Sam	ole C	Sampl	e A+B
		1*	2*	1*	2*	1*	2*	1*	2*
					Hous	eholds			
1990	n	4592	48	-	-	2158	21	-	-
	N	28173	417		-	6703	90	-	-
1991	n	4620	49	22	-	1988	20	-	-
	N	28466	408	117	-	6672	108	-	-
1992	n	4598	46	58	3	1946	13	1	-
	N	28776	387	266	18	6654	71	2	-
1993	n	4609	53	78	5	1878	9	5	-
	N	29310	436	399	28	6615	50	40	-
1994	n	4545	47	93	5	1850	11	8	-
	N	29542	430	457	24	6706	77	103	-
1995	n	4451	45	111	3	1814	10	12	-
·	N	28208	453	533	9	6723	74	166	-
				Perso	ns (inclu	iding chil	dren)		
1990	n	12151	59	-	-	6014	30	-	-
	N	62380	471	-	-	16313	120	-	-
1991	n	12100	61	44	-	5613	26	-	-
	N	62971	455	236	-	15808	128	-	-
1992	n	11884	58	133	3	5331	18	2	-
	N	63441	434	559	18	15618	84	4	-
1993	n	11724	63	182	5	5078	11	7	-
	N	63934	464	836	24	15501	54	44	_
1994	n	11467	55	225	5	4938	13	11	-
	N	64342	437	1058	17	15349	82	151	-
1995	n	11193	54	277	3	4796	12	23	-
,	N	59794	483	1204	9	15175	81	293	
_		ousehol							
2*: Insti	tutic	nalized	populati	on					

Considering the estimated population for sample A and B in 1995 (West) at a household and a personal level, we have to take into account that beginning with wave 12 (1995), the A and B weights are reduced to reflect the fact that immigrants are contained now in sample D (see chapter 4 for details).

1.2 Longitudinal development of losses due to panel attrition

The following figures display the development of the number of losses due to panel attrition under different aspects:

Figure 4: All first wave persons of subsamples A and B. Whereabout until wave 12.

Figure 5: All first wave persons of subsample A. Whereabout until wave 12.

Figure 6: All first wave persons of subsample B. Whereabout until wave 12.

Figure 7: All first wave person of subsample C. Wherabout until wave 6.

Figure 8: Comparison of attrition rates between subsamples A, B and C in wave 6.

The figures in the center display the percentage of records that are without survey related attrition until the corresponding wave. These percentages may be taken as a score for panel stability.

Figure 4: All first wave persons (subsample A+B). Development until wave 12.

Whereabout of the 16205 Persons 100% Records without survey related attrition 75% Moved abroad Deceased Under the age of 16 50% 1000 3 Ħ 舖 With Interview Temporary drop-out Declined to reply 25% No contact Records with survey related attrition 0% 84 85 86 87 88 89 90 91 92 93 94 95

Figure 5: All first wave persons (subsample A). Development until wave 12.

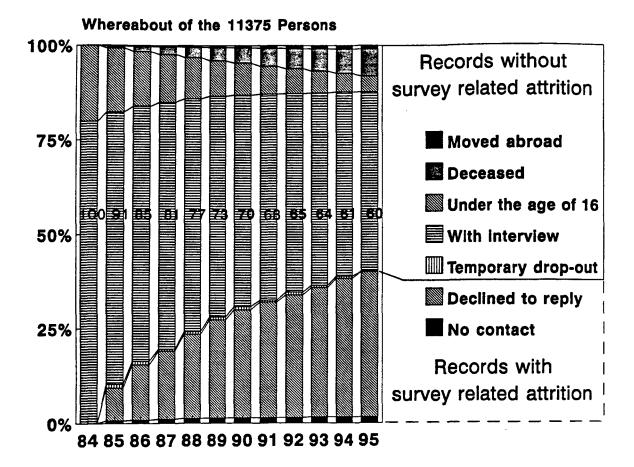


Figure 6: All first wave persons (subsample B). Development until wave 12.

Whereabout of the 4830 Persons

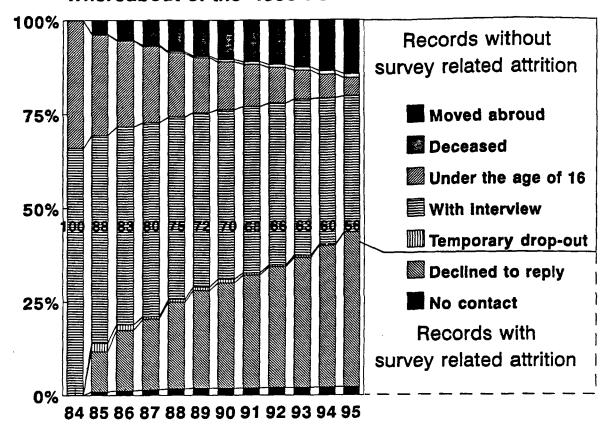


Figure 7: All first wave persons of the subsample C. Development until wave 6 (East).

Whereabout of the 6131 Persons

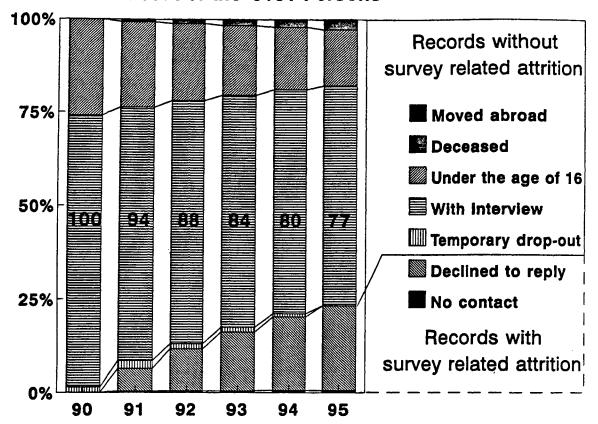
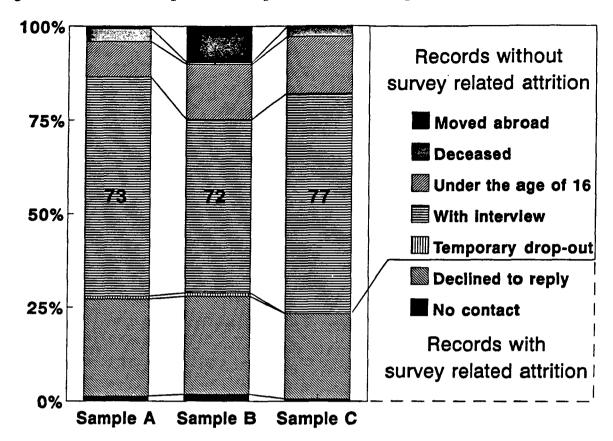
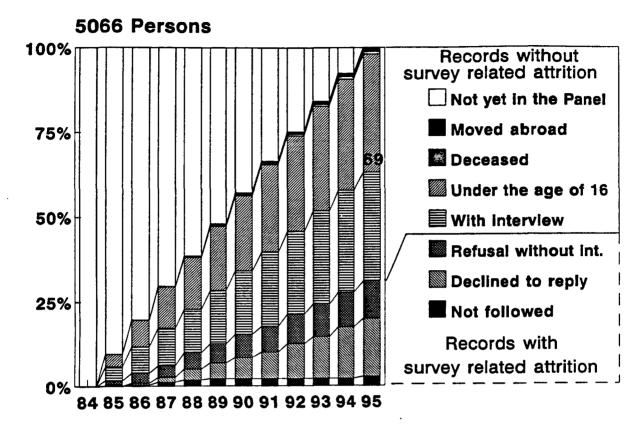




Figure 8: All first wave persons. Comparison of the development until wave 6.

1.3 Entrants by birth or move-ins and their participation behavior

Figure 9: Entrants by birth or move-in and their participation behavior (subsamples A+B).

2 Losses due to unsuccessful follow-up

In each panel wave it is necessary to re-contact the households of the proceeding wave. In doing this it will be assessed, whether:

- the household still lives at the old address.
- the entire household has moved.
- all household members deceased.
- all household members left the sampling area.
- all household members returned into an existing panel household.

2.1 Drop-out rates by mobility behavior

Table 2 displays the success of the field work in re-contacting households. The drop-out rates refer to all households of the previous wave that still exist in the sampling area plus split-off households. A contact is regarded to be successfully established if the interviewer recorded an interview or a refusal in the address protocol. Also the detection that the household members returned into an existing panel household is taken as a successful follow-up.

Table 2: Drop-out rates due to unsuccessful follow-up in the GSOEP subsamples A and B. N= Number of households to be recontacted; %= percentage of households without contact.

Wave:	2	3	4	5	6	7	8	9	10	11	12		
						Total							
N	6051	5814	5465	5342	5156	5044	5029	5006	5049	5008	4900		
%	1.9	1.4	1.0	0.9	0.9	0.9	0.5	0.4	0.9	0.8	0.6		
				ŀ	Iouseho	lds with	out mov	'e					
N	5413	5039	4808	4683	4545	4472	4448	4447	4395	4359	4292		
%	0.8	0.4	0.1	0.1	0.2	0.0	0.04	0.0	0.02	0.1	0.07		
				Mov	ed mult	olds							
N	298	307	272	274	228	186	197	195	231	239	264		
%	7.4	3.6	4.0	5.5	0.5	1.6	0.5	0.5	0.9	0.0	1.9		
				Mov	ed singl	e-persor	n housel	olds					
N	119	180	142	143	126	122	94	90	105	146	127		
%	21.0	14.4	7.7	5.6	4.7	5.7	1.1	0.0	7.6	6.2	0.8		
					Split-c	t-off households							
N	221	295	242	242	246	263	290	273	317	264	217		
%	11.7	8.4	10.4	7.4	11.8	12.9	7.6	7.3	10.7	9.9	9.2		

Table 3: Drop-out rates due to unsuccessfull follow-up in the GSOEP subsample C. N=
Number of households to be recontacted; %= percentage of households without contact.

	Wa	ve 2	Wave 3		Wave 4		Wave 5		Wave 6	
Characteristic	N	%	N	%	N	%	N	%	N	%
Total	2246	1.5	2304	0.5	2227	0.9	2136	0.6	2113	0.4
Households without move	2062	0.0	2043	0.05	2021	0.05	1904	0.0	1862	0.1
Moved multi-person households	81	11.1	106	0.0	82	3.7	92	2.2	119	0.0
Moved single-person households	21	14.3	43	9.3	14	0.0	39	2.6	30	3.3
Split-off households	82	25.6	112	6.3	110	13.6	104	8.6	102	6.9

2.2 Definition of the covariates for a Logit analysis

The estimation of the probability that a household is lost by unsuccessful follow-up uses a Logit model with the following characteristics:

Characteristic	Abbreviation	Code	Values
Moved	MOVE	1	household, not moved
		2	Moved multi-person household
	1	3	Moved single-person household
	.]	4	Split-off household
Large City	LARGE	0	Else
	1	1	More than 500 thousand
		1	inhabitants
Household size	SIZE	1	Single-person household
	1	2	2 person household
	[3	3 person household
	<u> </u>	4	4 or more persons household
Single-person	SINGLE	0	Else
household	1	1	Single-person household
Typ of house	TYP	1	Single house or rural area
		2	Multi storey house
		3	Else
Split-off household	SPLIT	1	Moved multi-person household
	-	2	Moved single-person household
		3	Split-off household

2.3 Estimated coefficients of the Logit model

The covariates defined in the previous section were used in a multiple Logit analysis. The model estimates the probability P_c = (contact= no). For the computation of the GSOEP weighting schemes only model specifications with all covariates being significant were used.

Meaning of coefficients:
$$ln \frac{P_{c,i}}{1 - P_{c,i}} = const + X'_i \beta$$

Thus, positive coefficients indicate an increased drop-out rate compared to the sample average. Table 4 uses a simple symbolic notation for the models and their estimated coefficients. Here "+" means the addition of a main effect, an "*" indicates an interaction term. Variable 1 (Variable 2 = c) symbolizes a conditional main effect which is linked to cases where variable 2 = c. The estimated coefficients are displayed under the model equation. The notation uses the convention: variable (value 1: coefficient 1/value 2: coefficient 2/...).

The estimated drop out rates due to unsuccessful follow-up may be easyly calculated from table 4. For example: In wave 2, subsample A, we find for a multiple-person household, that moved (MOVE=2) from a large city (LARGE=1) the logit value -2.87+0.24+ 0.11=-2.52.

Thus we have Pr (contact = no) =
$$\frac{e^{-.2.52}}{1 + e^{-2.52}} = 0.074$$
.

Table 4: The estimates of a Logit model for the probability of a drop-out due to unsuccessful follow-up in the GSOEP. Representation of coefficients: variable (value 1: coefficient 1/value 2: coefficient 2/...).

	Subsample A (West-Germans)
Wave	Model and coefficients
2	Model = CONST + LARGE + MOVE
	CONST (-2.87), LARGE (0: -0.24/1: 0.24)
	MOVE (1: -2.52 / 2: 0.11 / 3: 1.53 / 4: 0.84)
3	Model = CONST + LARGE + MOVE
	CONST (-3.62), LARGE (0: -0.36 / 1: 0.36),
	MOVE (1: -1.79 / 2: -0.49 / 3: 1.48 / 4: 0.80)
4	Model = CONST + MOVE
	CONST (-3.42), MOVE (1: -3.01 / 2: 0.78 / 3: 0.98 / 4: 1.35)
5	Model = CONST + MOVE + SINGLE (MOVE)
	CONST (-3.76), MOVE (1: -3.09 / 2,3: 1.34 / 4: 1.75)
	SINGLE (MOVE = 1) $(0: -1.35 / 1: 1.35)$
	SINGLE (MOVE = $2,3$) 0: -0.28 / 1: 0.28)
	SINGLE (MOVE = 4) $(0: -0.63 / 1: 0.63)$
6	Model = CONST + MOVE + SINGLE (MOVE)
	CONST (-3.48), MOVE (1: -2.33 / 2,3: 0.64 / 4: 1.69)
	SINGLE (MOVE = 1) (0: -0.75 / 1: 0.75)
	SINGLE (MOVE =2,3) (0: -0.76 / 1: 0.76)
	SINGLE (MOVE= 4) (0: -0.26 / 1: 0.26)
7*	Model = CONST + LARGE + SPLIT
	CONST (-2.97), LARGE (0: -0.39 / 1: 0.39),
	SPLIT (1: -1.10 / 2: -0.07 / 3: 1.17)
8	Model = CONST + MOVE
	CONST (-5.03) MOVE 1: -2.79 / 2: -0.24 / 3: 0.50 / 4: 2.53)
9	Pr (contact = no) = 0 if MOVE = 1,2,3 / = 0.06 if MOVE = 4
10	Model = CONST + LARGE + MOVE
	CONST (-4.44), LARGE (0: -0.44 / 1: 0.44),
	MOVE (1: -3.65 / 2: 0.10 / 3: 1.12 / 4: 2.42)
11	Model = CONST + SINGLE + MOVE
	CONST (-6.01), SINGLE (0: -1.06 / 1: 1.06)
	MOVE (1: -0.99 / 2: -5.13 / 3: 1.84 / 4: 4.28)
12	Model = CONST + SINGLE + MOVE
	CONST (-4.61), SINGLE (0: -0.72 / 1: 0.72)
	MOVE (1: -2.68 / 2: 0.78 / 3: -0.83 / 4: 2.73)
* In wa	ve 7 all households that did not move were successfully re-contact.
	rop-out analysis therefore based only on households that moved.

Table 4: continued

	Subsample B (Foreigners)
2	Model = CONST + LARGE + MOVE + SIZE
	CONST (-2.28), LARGE (0: -0.50 / 1: 0.50),
	MOVE (1: -1.66 / 2: 0.69 / 3: -0.07 / 4: 1.04)
	SIZE (1: 1.23 / 2: 0.26 /3: -0.82 / 4: -0.67)
3	Model = CONST + LARGE + MOVE
1	CONST (-2.65), LARGE (0: -0.72 / 1: 0.72),
	MOVE (1: -3.06 / 2: 0.16 / 3: 1.64 / 4: 1.26)
4	CONST (-3.34), MOVE (1: -3.60 / 2: -0.46 /3: 2.19 /4: 1.87)
5	like Subsample A
6	like Subsample A
7*	Model = CONST + LARGE + SPLIT + TYPE
	CONST (-2.93), LARGE (0: 0.064 / 1: -0.64),
	SPLIT (1: -1.65 / 2: 0.58 / 3: 1.07),
	TYPE (1: -0.73 /2: 1.32 / 3: -0.59)
8	like Subsample A
9	Pr (contact = no) = 0 if MOVE = $1,2,3 / = 0.10$ if MOVE = 4
10	Model = CONST + LARGE + MOVE
	CONST (-7.98), LARGE (0: -0.81 / 1: 0.81),
	MOVE (1: -7.63 / 2: -4.69 / 3: 6.50 / 4: -5.82)
11	Model = CONST + SINGLE + MOVE
	CONST (-5.39), SINGLE (0: -1.5 / 1: 1.54),
	MOVE (1: -1.19 / 2: -4.26 / 3: 2.07 / 4: 3.39)
12	Model = CONST + MOVE
	CONST (-5.34), MOVE (1: -1.52 / 2: 2.21 /3 : -3.86 / 4: 3.17)
	ve 7 all households that did not move were successfully re-contact.
The dr	op-out analysis therefore based only on households that moved.
	Subsample C (East-Germans)
Wave	Model and coefficients
2 East	Pr(contact=no) = MOVE (1: 0.0 / 2: 0.11 / 3: 0.14 / 4: 0.25)
3 East	Pr(contact=no) = MOVE (1,2: 0.0 / 3: 0.09 / 4: 0.07)
4 East	Pr(contact=no) = MOVE (1: 0.0 / 2: 0.04 / 3: 0.0 / 4: 0.14)
5 East	Pr(contact=no) = MOVE (1: 0.0 / 2: 0.02 / 3: 0.03 / 4: 0.09)
6 East	Pr(contact=no) = MOVE (1: 0.0 / 2: 0.0 / 3: 0.03 / 4: 0.07)

3 Losses due to refusals

3.1 Drop-out rates by different household characteristics

The subsequent tables display the drop-out rates due to refusal by different household characteristics. In general the characteristics refer to their status at the previous interview. However, the survey related characteristics refer to the actual sampling wave.

The person related characteristics refer to the head of the household in the previous wave. However, for split-off households the person related characteristics refer to the person that moved from the panel household (In case of several persons that moved from a panel household: the person first mentioned in the address protocol).

For households which were successfully re-contacted two alternative outcomes were considered:

- an interview is achieved at the household level.
- the household interview was not achieved.

Here, no differences were made between various reasons for the refusal like explicit denial or refusal because of lack of time, bad health conditions, etc..

Table 5: Participation behavior of re-contacted households by socio demographic characteristics of the head of the household. N = Number of eligible households. % = Percentage of households without interview.

	Τ						Wave					
		2	3	4	5	6	7	8	9	10	_ 11 _	12
All households	N	5937	5732	5398	5285	5095	4982	4985	4977	4994	4960	4863
	%	10.4	11.2	6.9	8.9	7.9	6.9	6.3	6.7	6.6	7.3	7.3
Drop-out in	N	-	259	197	154	169	154	183	145	164	146	150
pervious wave	%	_	59.5	52.8	71.6	57.4	49.3	48.1	62.1	50.6	54.1	60.7
				House	holds v	with pa	rticipati	on in p	revious	wave		
All	N	5937	5473	5201	5131	4926	4828	4802	4832	4830	4814	4713
	%	10.4	8.9	5.1	7.0	6.2	5.5	4.7	5.0	5.1	5.8	5.6
							Sample	;				
A West-	N	4611	4275	4058	3993	3834	3755	3716	3724	3718	3713	3661
Germans	%	10.2	8.7	5.2	7.1	6.2	5.3	4.6	4.9	5.1	5.3	5.0
B Foreigners	N	1326	1198	1143	1138	1092	1073	1086	1108	1112	1101	1052
	%	10.9	9.6	5.0	6.9	6.4	6.1	5.3	5.5	6.2	7.7	7.6
						Gender						
Male	N	4664	4226	3951	3840	3624	3486	3413	3372	3340	3286	3173
	%	9.8	8.3	4.7	6.7	6.2	5.0	4.2	4.9	4.5	5.5	5.1
Female	N	1273	1247	1250	1291	1303	1342	1389	1460	1490	1528	1540
	%	12.2	11.0	6.5	7.9	6.5	6.9	6.1	5.3	6.3	6.6	6.6
							Age					
75 +	N	448	394	374	386	381	380	371	367	353	340	344
	%	18.3	13.7	6.7	6.5	6.8	5.0	3.0	5.2	6.2	5.0	9.8
65-74	N	562	513	487	480	465	462	477	503	527	550	554
	%	10.1	9.4	2.9	5.4	6.0	3.0	2.9	3.2	2.9	4.2	3.4
55-64	N	947	860	809	803	798	783	782	811	821	832	857
	%	9.8	8.7	4.2	4.7	5.9	5.5	3.8	3.4	3.4	4.7_	3.6
35-54	N	2621	2401	2272	2226	2112	2017	1970	1899	1851	1797	1675
	%	9.2	· 7.8	4.3	6.3	6.1	4.9	4.7	4.1	3.6	5.8	5.3
25-34	N	1116	1034	976	963	904	926	957	983	1020	1077	1107
	%	8.9	8.0	6.1	9.9	6.1	7.7	6.1	6.2	7.7	6.3	6.1
16-24	N	243	271	283	273	266	260	245	269	258	218	176
	%	17.3	15.1	13.4	13.2	9.0	8.1	8.9	14.8	13.2	13.3	13.6

Table 5: continued

							Wave					
		2	3	4	5	6	7_	8	9	10	11	12
				House	holds v	with par	rticipati	on in p	revious	wave		
							rital sta					
Married,	N	3893	3600	3366	3301	3144	3029	3015	3008	2990	2949	2869
living together	%	9.6	8.0	4.4	6.2	6.2	4.6	3.4	4.9	4.3	5.2	4.6
Married,	N	104	157	119	97	120	110	96	102	102	106	106
living separate	%	7.7	12.1	5.9	13.4	6.7_	8.2	12.5	6.9	8.8	9.4	6.6
Single	N	836	811	802	783	764	764	782	797	824	846	837
	%	12.6	9.6	9.4	11.5	6.8	8.6	9.1	9.7	8.3	7.9	7.7
Divorced	N	349	345	328	347	327	351	356	369	353	364	380
	%	10.3	10.4	4.6_	6.3	7.0	7.1	4.8	4.9	3.4	6.0	7.9
Widowed	N	671	560	533	542	534	532	518	515	523	514	500
	%	12.6	11.9	3.9	5.1	4.7	4.5	4.4	3.9	4.8	4.9	6.0
						Sch	ool deg	gree				
Without exam	N	493	445	411	407	376	373	380	379	380	379	367
	%	10.9	11.0	6.3	8.8	6.7_	5.6	5.8	5.5	5.0	6.3	8.7
Lower second-	N	2952	2669	2493	2488	2405	2340	2314	2296	2272	2240	2190
ary school	%	11.8	9.8	4.7	6.2	6.3	5.2	4.6	4.6	4.8	5.6	4.6
Intermediate	N	852	849	818	805	7 98	780	784	812	835	846	856
secondary	%	6.8	8.8	5.6	8.3	8.0	6.3	4.9	4.7	4.4	5.7	6.3
school												
Technical	N	223	205	205	201	183	180	184	188	199	212	212
school	%	9.4	6.8	6.3	9.5	<u> 5.5</u>	5.6	7.6	4.8	5.0	7.1	5.7
Upper second-	N	601	588	582	569	542	552	533	557	564	580	572
ary school	%	7.5	6.0	5.5	7.6	4.2	7.4	5.1	7.0	6.2	5.5	5.1
							oational					
Not gainfully	N	1527	1325	1290	1302	1276	1329	1339	1279	1314	1320	1349
employed	%	13.9	10.1	5.5	6.9	6.4	5.2	4.3	4.9	4.4	4.5	6.2
Jobless	N	206	297	260	258	265	193	199	215	197	239	285
	%	9.7	10.7	7.7	8.5	4.9	2.6	6.0	6.5	6.6	8.4	4.9
Hight status	N	585	578	522	530	519	511	496	518	531	557	524
	%	7.9	6.2	4.4	7.7	7.1	8.4	5.9	5.6	4.7	6.3	4.4
Middle status	N	2248	2202	2053	1982	1911	1803	1857	1932	1989	1855	1878
	%	8.8	8.1	5.3	6.6	6.2	5.1	4.7	5.1	5.5	5.7	5.2
Low status	N	1364	1071	1076	1059	954	992	911	888	799	843	677
	%	11.2	10.0	4.3	7.4	6.2	5.9	4.6	4.3	5.0	7.2	6.7

Table 6: Participation behavior of re-contacted households by survey related characteristics. N = Number of eligible households. % = Percentage of households without interview.

							Wave		-			
		2	3	4	5	6	_ 7	8	9	10	11	12
				Hou	seholds	with pa	ırticipati	on in pr	evious v	vave		
						Type	of hous	ehold				
Household, not	N	5372	4810	4646	4567	4421	4353	4313	4379	4285	4242	4182
moved	%	9.6	8.0	4.2	5.8	5.6	4.6	3.6	3.9	4.0	5.8	4.7
Household	N	370	425	373	370	322	277	274	275	309	362	367
which moved	%	11.6	12.7	10.7	14.1	9.0	7.6	9.9	9.5	8.4	7.7	8.7
Split-off	N	195	238	182	194	183	198	215	208	235	204	164
household	%	29.2	21.4	17.6	23.7	16.9	23.2	21.4	22.1	20.4	17.2	22.0
						Change	e of inte	rviewer				
Yes	N	2041	1203	816	715	826	742	717	751	340	385	199
	%	14.9	17.5	12.5	19.0	12.9	14.4	10.7	12.1	8.2	8.6	9.6
No	N	3896	4265	4385	4416	4100	4086	4085	4081	3879	3824	3888
	%_	7.9	6.5	3.8	5.1	4.9	3.9	3.7	3.7	3.3	3.4	3.2
Special cases	N									611	605	626
	%								_	14.6	19.3	19.0
					Numb	er of in	terviews	with th	e head			
Complete from	N	-	5419	5018	4826	4600	4384	4225	4060	3856	3693	3520
first wave	%_	-	8.7	4.7	5.9	5.6	4.4	3.6	3.3	3.4	3.9	4.1
1 interview	N	-	-	161	246	253	294	346	389	399	416	412
missing	%	-	-	16.7	23.1	14.6	13.9	13.8	10.8	10.3	11.1	10.4
2 interviews	N	-	-	-	46	43	73	93	127	163	173	174
missing	%		-	-	43.5	16.2	23.2	12.9	18.9	14.7_	17.3	8.6
3 interviews	N	-	-	•		24	49	63	104	137	164	168
missing	%			-		12.5	14.3	9.5	10.6	8.0_	8.5_	9.5
					New e	entrant L	iving in	the hou	sehold			
Yes	N	257	243	218	211	209	220	198	210	197	197	168
	%	9.0	11.1	6.4	6.6	4.8	6.4	6.6	2.4	3.6	4.0	3.0
No	N	5680	5230	4983	4920	4717	4608	4604	4622	4633	4616	4545
	%	10.4	8.8	5.1	7.1	6.3	5.5	4.7	5.1	5.2	5.9	5.7
					A respo	ndent p	erson lei	ft the ho	usehold			
Yes	N								209	243	201	168
	%								7.2	6.3	5.0	1.2
					Ho	usehold	withou	telepho	one			
Yes	N									248	253	-
	%									9.7	7.9	-

Table 6: continued

							Wave					
		2	3	4	5 _	6_	7_	8	9	10	11	12
			•	Hou	iseholds	with pa	rticipatio	on in p	revious v	wave		
				ŀ	Househo	lds with	a separ	ation o	f a coup	le		
All	N			-					94	116	103	83
	%								24.5	20.7	9.7	19.3
Old household	N								47	60	52	43
	%								14.6	16.7	7.7	4.7
Split-off	N								47	56	51	40
household									34.8	25.0	11.7	35.0
			_	Subj	ective c	naracter	istics					
					(General	life satis	faction	1			
More or less dissatisfied	N									302	380	393
(≤4)	%									7.3	7.6	6.9
More or less satisfied	N									4528	4434	4320
(≥5)	%									4.9	5.7	5.5

Table 7: Participation of re-contacted households by household income and the number of different assets. N = Number of eligible households. % = Percentage of households without

							Wave										
		2	3	4	5	6	7 _	8	9	10	11	12					
				Hou	seholds	with pa	rticipati	on in pr	evious v	vave							
					Hou	sehold	income	not repo			193 220 1 7.8 15.0 1 157 151 7.0 6.6 721 665 6 5.0 7.2 1129 1063 1 4.4 4.9 1103 1039 1 5.4 4.9 1527 1676 1 4.8 5.2 d 567 563 6.5 10.7 1140 1197 1 5.3 5.7 1412 1277 1 5.5 5.6 1210 1250 1 4.3 4.1 451 476 6 3.8 5.9 50 51 0.0 3.9						
	N	335	310	272	237	210	203	197	226			199					
	%	17.9	18.4	12.9	16.9	11.4	15.2	12.7	10.6	7.8	15.0	12.6					
					F	Iouseho	ld incon	ne in DN		==							
≤ 1000	N	456	368	293	270	241	213	182	165			137					
	%	13.8	10.1	5.5	9.3	7.1	6.1	6.6	8.5			8.8					
1000-2000	N	1816	1521	1383	1243	1140	995	870	802			651					
	%	11.2	9.7_	5.3	6.6	6.2	4.8	5.1	4.5			6.5					
2000-3000	N	1713	1572	1469	1404	1354	1329	1260	1202			1040					
	%	8.3	7.6	4.2	6.5	6.6	4.6	4.0	5.1			5.3					
3000-4000	N	992	996	1008	1087	1060	1073	1069	1085			1045					
	%	9.6	6.4	4.3	6.1	5.0	4.7	3.7	4.4			5.7					
≥ 4000	N	625	706	776	890	921	1015	1224	1352			1641					
	%	8.2	8.9	5.0	6.4	5.9	6.2	4.7	4.4		27 1676 8 5.2	4.3					
				N	umber o	f differe	nt asset										
0	N	823	769	743	735	578	661	573	604			541					
	%	12.5	12.3	6.9	11.3	8.3	8.8	6.6	9.9			7.8					
1	N	1714	1561	1468	1429	1431	1262	1256	1191			1149					
	%	13.2	10.4	5.1	6.8	6.7	5.5	4.4	4.5			6.0					
2	N	1709	1549	1427	1449	1444	1310	1350	1367			1278					
	%	8.3	8.2	5.6	5.8	5.9	5.2	5.0	4.1			5.8					
3	N	1224	1161	1134	1122	1107	1152	1201	1180			1180					
	%	8.7	6.7	3.9	5.9	5.7	4.1	3.7	4.2			4.4					
4	N	403	388	374	343	326	377	375	447			489					
	%	7.7	5.9	3.7	7.0	4.6	5.3	4.5	4.5			3.5_					
5	N	64	45	55	53	40	66	47	43			52					
	%	9.4	6.7	9.1	11.3	2.5	7.5	14.9	4.7	0.0	3.9	11.5					
					Dra	wing of	social a	id paym									
Yes	N								133			143					
	%								6.8	8.3	6.7	8.4_					

Table 8: Comparison of drop-out rates between the GSOEP West (Subsample A and B) and East (Subsample C) until wave 6. % = Percentage of households without interview.

	Wa	ve 2	Wa	ve 3	Wa	ve 4	Wa	ve 5	Wa	ve 6
	West	East	West	East	West	East	West	East	West	East
Characteristic	%	%	%	%	%	%	%	%	%	%
All re-contacted	10.4	8.3	11.2	11.8	6.9	10.8	8.9	7.7	7.9	7.8
households				ļ		1			}	1
Drop-out in previous	_	_	59.4	53.1	52.8	67.1	71.6	50.0	57.4	62.8
wave			1		ļ					_
Else	-	-	8.9	8.6	5.1	7.2	7.0	6.0	6.2	5.6
		Households with participation in previous wave								
				Age of	f the hea	d of hou	isehold			
75+	17.5	18.1	13.7	11.3	6.5	11.7	6.5	8.5	6.8	6.4
65-74	9.9	8.0	9.5	7.3	2.9	6.0	5.4	3.4	6.0	5.2
55-64	9.7	7.0	9.0	7.0	4.2	5.4	4.7	4.3	5.9	1.8
35-54	9.3	6.3	7.7	6.8	4.3	6.6	6.3	5.3	6.1	5.3
25-34	8.9	9.2	7.9	9.4	6.1	7.8	9.9	7.7	6.1	7.4
-25	19.9	13.4	14.8	23.4	13.4	13.1	13.2	11.3	9.0	13.5
			G	ender of	the hea	d of the				
Male	9.8	7.6	8.2	8.9	4.7	8.1	6.7	6.2	6.2	6.0
Female	12.4	8.9	11.4	8.3	6.5	6.4	7.9	5.8	6.5	5.3
	Occupational status of the head									
Not gainfully employed	12.9	10.8	10.1	8.2	5.5	7.3	6.9	6.6	6.4	5.6
Jobless	9.8	14.3	10.8	9.4	7.7	8.3	8.5	4.6	4.9	5.9
Hightest status	7.9	5.5	6.4	5.8	4.4	6.0	7.7	3.9	7.1	9.4
Lowest status	10.6	9.4	10.0	9.5	4.3	8.6	6.6	9.0	6.2	6.0
Else	9.1	7.8	8.1	9.2	5.3	6.8	7.4	5.9	6.2	6.1
	Highest school degree							 		
							7.	2	4.0	26
Upper secondary school	7.5	7.1	6.0	7.6	5.5	7.3	7.6	3.7	4.2	3.6 5.9
Intermediate secondary	6.8	7.0	8.8	8.6	5.6	7.7	8.3	6.6	8.0	3.9
school	110	00	9.8	8.8	4.7	6.4	6.2	5.0	6.3	5.3
Lower secondary school	11.8	9.9	11.0	0.0	6.3	0.4	8.8	5.9	6.7	J.3 -
Without exam	10.9		11.0	NT-		old inco		L	0.7	<u> </u>
NY /	17.0	0.4	10.4					17.2	114	18.8
Not reported	17.9	9.4	18.4	17.5	12.9	20.0	16.9	17.2	11.4	10.0
West East <1000 <800	120	14.3	10.1	8.7	5.5	7.8	9.3	10.0	71	11.1
	13.8	8.7	9.7	8.8	5.3	8.6	6.6	10.0 6.2	7.1 6.2	7.7
1000-2000 800-1200	8.3	8.1	7.6	9.8	4.2	8.0	6.5	5.9	6.6	6.3
2000-3000 1200-1800 3000-4000 1800-2500	9.6	6.2	6.4	7.5	4.2	6.9	6.1	7.1	5.0	4.2
1	8.2	6.5	8.9	8.1	5.0	6.0	6.4			4.9
>4000 >2500	8.2	0.5	0.9	0.1	3.0	0.0	0.4	4.7	5.9	4.7

Table 8: continued

	Wave 2 Wave 3		Wave 4		Wave 5		Wave 6			
	West	East	West	East	West	East	West	East	West	East
Characteristic	%	%	%	%	%	%	%	%	%	%
			·		Marita	l status				
Married living together	-	-	-	-	4.4	6.5	6.2	4.6	6.2	4.4
Married living	-	-	-	-	5.9	26.7	13.4	10.7	6.7	14.0
separately										
Single	-	-	_	-	9.4	12.2	11.5	9.2	6.8	8.9
Divoreed	-	-	-	-	4.6	3.9	6.3	7.6	7.0	5.0
Widowed	-	-		-	3.9	5.9	5.1	8.2	4.7	7.4
]			T	ype of h	ouseho	ld			
Old household not moved	9.6	7.7	7.9	7.3	4.2	6.5	5.8	5.1	5.6	4.6
Old household moved	11.6	8.9	12.7	16.6	10.7	13.2	14.1	7.4	9.0	7.8
Split-off household	29.2	24.6	21.4	23.8	17.6	18.6	23.7	23.5	16.9	25.3
	Interviewer has changed									
Yes	14.9	8.4	17.5	11.6	12.6	11.4	19.0	7.8	12.9	5.9
No	7.9	5.5	6.5	7.4	3.8	5.5	5.1	4.4	4.9	4.1
Special cases		13.6		36.4	-	26.2	-	25.2	-	17.2
		General life satisfaction								
More or less	-	-	-	-	-	8.7	-	7.3	-	6.9
dissatisfied (≤ 4)										
More or less	ļ <i>-</i>	-	-	-	-	7.0	-	5.7	-	5.4
satisfied (≥5)			<u> </u>							L
					Loss	of job		,		··
Loss expected or	-	9.1	-	8.9	-	5.4	-	7.6	-	7.1
probable										
Else	-	7.8	-	8.5	-	7.6	-	5.6		5.4
Household moved to							}			
West-Germany		15.4	-	15.8	-	9.6	-	10.0	-	3.5
Drawing of social	Ι.									
aid payments	-	-	-	-	-	10.3	-	4.6	-	13.5
Household without telephone	_	_	_	_	_	7.9	_	6.6	_	_
reseptione					L	1.7	<u> </u>	<u> </u>	L	<u> </u>

3.2 Definition of the covariates for a Logit analysis

The characteristics used in the tabulations of the preceding section were used as covariates in a multiple Logit analysis of the refusal rate. However, for the estimation of the drop-out probabilities we used only model specification where all included covariates have significant coefficients. Thus, one may conclude that the omitted variables (or some differences between its values) do not have a systematic influence on the participation behavior of re-contacted households. The definition of the covariates that were finally used is given in the list below:

Characteristic	Abbreviation	Code	Values
Age of the head	ALTHV	1	Older than 75 years
of household		2	65-74 years
		3	55-64 years
	· ·	4	35-54 years
	1	5	25-34 years
	<u></u>	6	Younger than 25 years
Gender of the head	SEX	0	Male
		1	Female
Typ of the household	HTYP	1	Old household without move
	4	2	Old household moved
	}	3	Split-off household
Change of	INTW	0	No change
interviewer	1	1	Change since previous wave
	<u> </u>	2	Not regular interviewer number
Number of interviews	BETREUUNG	Ţ	Number of interviews with the
			interviewer of the present wave
Starting from the	BEGINN	0	Else
beginning	<u> </u>	1	Heads participation since wave 1
Person moving out	AUSZUG	0	Else
	l	1	A respondent left the household
		<u> </u>	since the previous wave
Separation of a couple	PAAR	0	Else
	ł	1	The head or the spouse
	į	ł	(cohabitator) of the previous wave
			left the household
Interaction of household	TYP	0	HH Typ = $1,2$ and Paar = 1
type and separation of		1	HH Typ = 1 and Paar = 0
the couple		2	HH-Typ = 2 and $Paar = 0$
		3	HH-Typ = 3 and $Paar = 0$
		4	HH-Typ = 3 and $Paar = 1$
East-Berlin	OSTB	0	Else
		1	household is located in East-Berlin
Marital status	FAMSTD	1	Married living together
		2	Married living separately
		3	Single
		4	Divorced
		5	Widowed

List: continued

Characteristic	Abbreviation	Code	Values
Jobless	ALOS	0	Else
		1	Head is jobless
Loss of job	VERLUST	0	Else
(subjective notion)		1	Loss expected or probable
Occupational status	STATUSH	0	Else
of the head		1	High status
Social aid	SOZH	0	Else
		1	Household is recipient of social
			aid payments
Household income	EINKW	1	Income not reported
West-Germany		2	≤2000 DM
·		3	2000 - 4000 DM
		4	≥ 4000 DM
Household income	EINKO	1	Income not reported
(East-Germany)		2	≤ 800 DM
•		3	800-1200 DM
		4	1200-1800 DM
		5	1800-2500 DM
		6	≥ 2500 DM
Household income	KAEINK	0	Else
not reported		1	Income not reported
Balance of assets	KAVB	0	Else
not reported	ł	1	Balance not reported in wave 5
Number of different	ANZAHL	1	Number = 0
kinds of assets in the		2	Number = 5 (Maximum)
households		3	Else
No assets reported	ANZ0	0	Else
		1	Number of reported assets = 0
Firm assets	BETRIEB	0	Else
	,	1	Household owns firm assets
Savings reported	SPAR	0	No
as one kind of assets		1	Yes
Household migrated	OSTWEST	0	No
from East to		1	Yes
West Germany			

3.3 Estimated coefficients of the Logit model

The covariates defined above were used in a multiple Logit analysis. The model estimates the probability $P_R = P(Response=no)$. For the computation of the GSOEP weighting schemes only model specifications with all covariates being significant were used. Meaning the coefficients:

$$\ln \frac{P_{R,i}}{1 - P_{R,i}} = const + X'_i \beta$$

Thus, positive coefficients indicate an increased drop-out rate compared to the sample average.

Table 9 uses a simple symbolic notation for models and their coefficients. Here "+" means the addition of a main effect an "*" indicates an interaction term. Variable 1 (Variable 2 = c) symbolizes a conditional main effect which is linked to cases where variable 2 = c. The estimated coefficients are displayed under the model equation. The notation uses the convention: variable (value 1: coefficient 1/value 2: coefficient 2).

The estimated drop-out rates due to refusals may be easily calculated from the coefficients displayed in table 9. For example: In wave 2, subsample A, we find for a household with no change of the interviewer (INTW = 0) and age of the head between 35 and 74 years (ALTHV = 2,3,4) and the reported household income below 2000 DM (EINKW = 2), which did not move (HTYP = 1) the logit value -1.53 - 0.25 + 0.03 - 0.68 + 0.12 = -2.31. Thus we have Pr

(Response=no)=
$$\frac{e^{-2.31}}{1+e^{-2.31}}$$
=0.09.

Table 9: The estimates of a Logit model for the probability of a drop-out due to refusal in the GSOEP. Representation of coefficients: variable (value 1: coefficient 1/value 2: coefficient 2/...).

	Subsample A (West-Germans)
Wave	Model and coefficients
2	Model = CONST + INTW + ALTHV + HTYP + EINKW
	CONST (-1.53), INTW (0: -0.25 / 1: 0.25),
	ALTHV (1: 0.66 / 2,3,4: 0.03 / 5: -0.39 / 6: -0.30),
	HTYP (1: -0.68 / 2: -0.19 / 3: 0.87),
	EINKW (1: 0.61 / 2: 0.12 / 3: -0.35 / 4: -0.38)
3	Model = CONST + INTW + ALTHV + INTW * ALTHV + HTYP +
	ALOS + KAEINK
	CONST (-1.22), INTW (0: -0.39 / 1: 0.39),
	ALTHV * (INTW =0) (1: -0.13 / 2: -0.11 / 3,4: -0.39 / 5: 0.26 / 6: 0.37),
	ALTHV * (INTW =1) (1: 0.13 / 2: 0.11 / 3,4: 0.39 / 5: -0.26 / 6: -0.37),
	ALTHV (1: 0.59/ 2: 0.16 / 3,4: -0.06 / 5: -0.53 / 6: -0.16)
	HTYP (1: -0.52 / 2: 0.10 / 3: 0.42),
	ALOS (0: -0.21 / 1: 0.21),
	KAEINK (0: -0.39 / 1: 0.39)
4	Model = CONST + ALTHV + INTW (ALTHV) + HTYP + KAEINK
	CONST (-1.83), INTW (ALTHV = 1) $(0: -0.44 / 1: 0.44)$,
	INTW (ALTHV =2) (0: -0.74 / 1: 0.74),
	INTW (ALTHV =3,4) (0: -0.59 / 1: 0.59),
	INTW (ALTHV =5) (0: -0.41 / 1: 0.41),
	INTW (ALTHV =6) (0: -0.32 / 1: 0.32),
	ALTHV (1: 0.21 / 2: -0.38 / 3,4: -0.24 / 5: 0.06 / 6: 0.35),
	HTYP (1: -0.45 / 2: 0.29 / 3: 0.19),
	KAEINK (0: -0.39 / 1: 0.39)
5	Model = CONST + BETREUUNG + ALTHV (INTW =1) + HTYP +
	KAEINK + ANZO
	CONST (-1.60),
	BETREUUNG (1: 1.15/2: 0.41/3: 0.18/4: -0.71/5: -1.03),
	ALTHV (INTW = 1) $(1,2: 0.52 / 3,4,5: -0.11 / 6: -0.40)$,
	HTYP (1: -0.49 / 2: 0.11 /3: 0.38),
	KAEINK (0: -0.45 / 1: 0.45),
	ANZO (0: -0.38 / 1: 0.38)

Table 9: continued

	Subsample A (West-Germans)
Wave	Model and coefficients
6	Model = CONST + BETREUUNG + ALTHV (INTW = 1) +
	HTYP + KAEINK + KAVB + BETRIEB
	CONST (-2.44),
	BETREUUNG (1: 0.75 / 2: 0.58 / 3: 0.21 / 4: -0.59 / 5: -0.43 / 6: -0.52),
	ALTHV (INTW = 1) $(1,2: 0.26 / 3,4,5. 0.05 / 6: -0.31)$,
	HTYP (1: -0.32 / 2: -0.04 / 3: 0.37),
	KAEINK (0: -0.26 / 1: 0.26),
	BETRIEB (0: 0.41 / 1: -0.41)
7	Model = CONST + HTYP + INTW (HTYP) + KAEINK +
	STATUSH
	CONST (-1.34),
	INTW (HTYP = 1) (0: -0.75 / 1: 0.75),
	INTW (HTYP = 2) (0: -0.56 / 1: 0.56), INTW (HTYP = 3) (0: -0.12 / 1: 0.12),
	HTYP (1: $-0.66 / 2$: $-0.24 / 3$: 0.90),
	KAEINK (0: -0.58 / 1: 0.58)
	STATUSH (0: -0.30 / 1: 0.30)
8	Model = CONST + INTW + HTYP + KAEINK + ANZAHL
	CONST (-1.15),
	INTW (=: -0.55 / 1: 0.55),
	HTYP (1: -0.83 / 2: -0.14 / 3: 0.97),
	KAEINK (0: -0.57 / 1: 0.57),
	ANZAHL (1: -0.08 / 2: 0.70 / 3: -0.62)
9	Model = CONST + INTW (BEGINN) + BEGINN (ALTHV) +
	HTYP + AUSZUG (HTYP =1) + KAEINK + ANZO + SEX
	CONST (-131),
	INTW (BEGINN = 0) (0: -0.17 / 1: 0.17),
	INTW (BEGINN = 1) (0: -0.68 / 1: 0.68),
	BEGINN (ALTHV = 1) $(0: -0.09 / 1: 0.09)$,
	BEGINN (ALTHV = 2) $(0: 0.70 / 1: -0.70)$,
	BEGINN (ALTHV = 3) (0: 1.20 / 1: -1.20),
	BEGINN (ALTHV = 4) (0: 0.49 / 1: -0.49),
	BEGINN (ALTHY = 5) (0: 0.48 / 1: -0.48),
	BEGINN (ALTHV = 6) (0: 0.10 / 1: -0.10),
	HTYP (1: -0.53 / 2: 0.07 / 3: 0.46),
	AUSZUG (HTYP=1) (0: -0.47 / 1: 0.47), KAEINK (0: -0.25 / 1: 0.25),
	ANZO (0: -0.29 / 1: 0.29),
	SEX (0: 0.15 / 1: -0.15)
	DLA (0. 0.13 / 10.13)

Table 9: continued

Wave	Model and Coefficients
10	Model = CONST + HTYP + BEGINN (HTYP) + INTW (HTYP) +
	PAAR (HTYP=1) + ALTHV (HTYP=1)
	CONST (-1.89),
1	HTYP (1: -0.12 / 2: -0.39 / 3: 0.51),
	INTW (HTYP=1) (0: -0.95 / 1: -0.08 / 2: 0.88),
ŀ	INTW (HTYP=2) (0: -0.24 / 1: -0.06 / 2: 0.30),
	INTW (HTYP=3) (0: 0.16 / 1: -0.47 / 2: 0.31),
	BEGINN (HTYP=1) (0: 0.43 / 1: -0.43),
1	BEGINN (HTYP=2) (0: 0.21 / 1: -0.21),
	BEGINN (HTYP=3) (0: -0.07 / 1: 0.07),
	PAAR (HTYP=1) (0: -0.58 / 1: 0.58),
	ALTHV (HTYP=1) (1: 0.41 /2: -0.26 /3: -0.08 / 4: -0.50 / 5: 0.01 / 6: 0.42)
11	Model = CONST + HYTP + BEGINN + INTW + KAEINK +
	TELEPHON (INTW=1)
	CONST (-1.68)
	HTYP (1: -0.39 / 2: -0.09 / 3: 0.48)
	BEGINN (0: 0.27 / 1: -0.27)
	INTW (0: -0.63 / 1: -0.10 / 2: 0.73)
	KAEINK (0: -0.35 / 1: 0.35)
	TELEPHON (INTW=1) (0: 0.49 / 1: -0.49)
12	Model = CONST + HTYP + INTW + ALTHV (HTYP = 1)
	CONST (-1.92)
	HTYP (1: -0.36 / 2: -0.52 / 3: 0.88)
	INTW (0: -1.10 / 1: 0.03 / 2: 1.07)
	ALTHV (HTYP=1) (1: 0.57 / 2,3,4,5,6: -0.57)

Table 9: continued

	Subsample B (Foreigners)
Wave	Model and coefficients
2	Model = CONST + INTW + HTYP
	CONST (-1.96),
	INTW (0: -0.55 / 1: 0.55)
	HTYP (1: -0.03 / 2: -0.58 / 3: 0.62)
3	Model = CONST + SEX + HTYP
	CONST (-1.60),
	SEX (0: -0.31 / 1: 0.31),
	HTYP (1,2: -0.46 / 3: 0.46)
4	Model = CONST + INTW (ALTHV) + HTYP + EINKW
	CONST (-1.69),
	INTW (ALTHV =1,2,3) $(0: -0.47 / 1: 0.47)$,
	INTW (ALTHV =4) (0: -0.73 / 1: 0.73),
	INTW (ALTHV =5) (0: -0.60 / 1: 0.60),
	INTW (ALTHV =6) (0: -0.26 / 1: 0.26),
	HTYP (1: -0.34 / 2: 0.46 / 3: -0.12),
	EINKW (1: 0.75 / 2: 0.10 / 3: -0.85)
5	Model = CONST + BETREUUNG + HTYP + KAEINK
	CONST (-1.87),
	BETREUUNG (1: 1.26 / 2: 0.14 / 3: -0.21 / 4: -0.70 / 5: -0.50),
	HTYP (1: -0.47 / 2: 0.89 /3: -0.42),
	KAEINK (0: -0.43 / 1: 0.43)
6	Model = CONST + BETREUUNG + HTYP + KAEINK
	CONST (-1.89),
	BETREUUNG (1: 0.83 / 2: 0.37 / 3: -0.31 / 4: -0.55 / 5: 0.04 / 6: -0.37),
	HTYP (1: -0.41 / 2: 0.22 / 3: 0.19),
	KAEINK (0: -0.54 / 1: 0.54)
7	Model = CONST + HTYP + INTW (HTYP) + KAEINK
	CONST (-1.50),
	INTW (HTYP=1) (0: -0.55 / 1: 0.55),
	INTW (HTYP=2) (0: -0.98 / 1: 0.98),
	INTW (HTYP=3) (0: -1.06 / 1: 1.06),
	HTYP (1: -0.50 / 2: -0.88 / 3: 1.38),
	KAEINK (0: -0.66 / 1: 0.66)
8	Model = CONST + INTW + HTYP
	CONST (-2.05),
	INTW (0: -0.48 / 1: 0.48),
	HTYP (1: -0.85 / 2: 0.22 / 3: 0.63)

Table 9: continued

Wave	Subsample B (Foreigners)
9	Model = CONST + INTW + BEGINN + TYP + ALTHV+
	KAEINK + ANZO + SOZH
	CONST (-1.79),
	INTW (0: -0.50 / 1: 0.50),
	BEGINN (0: 0.39 / 1: -0.39),
	TYP (0: 0.16 / 1: -0.59 / 2: -1.90 / 3: -0.03 / 4: 2.36),
	ALTHV 1,2,3: 0.28 / 4: -0.10 / 5: -0.65 / 6: 0.47),
	KAEINK (0: -0.66 / 1: 0.66),
	ANZO (0: -0.53 / 1: 0.53),
	SOZH (0: 0.73 / 1: -0.73)
10	Model = CONST + HTYP + PAAR + ALTHV + INTW (ALTHV)
	CONST (-1.58)
	HTYP (1: -0.44 / 2: -0.11 / 3: 0.55),
	PAAR (0: -0.63 / 1: 0.63),
	ALTHV (1,2,3: -0.79 / 4: -0.04 / 5: 0.77 / 6: -0.05),
	INTW (ALTHV = 4) $(0: -1.11 / 1: -0.10 / 2: 1.21)$,
	INTW (ALTHV = 5) (0: -0.79 / 1: -0.22 / 2: 1.01)
11	Model = CONST + BEGINN + HTYP + INTW + ANZO + FAMSTD
	CONST (-1.43),
	INTW (0: -0.69 / 1: 0.01 / 2: 0.70),
	BEGINN (=: 0.33 / 1: -0.33),
	HTYP (1,2: -0.48 / 3: 0.48),
	ANZO (0: -0.31 / 1: 0.31),
	FAMSTD (1: 0.25 / 2,3,4,5: -0.25)
12	Model = CONST + HTYP + INTW + PAAR + ALTHV
	CONST (-0.88)
	HTYP (1: -0.97 / 2: 0.36 / 3: 0.61)
	INTW (0: -0.67 / 1: -0.45 / 2: 1.12)
	PAAR (0: -0.84 / 1: 0.84)
	ALTHV (1,2,3: -0.35 / 4,5,6: 0.35)

Table 9: continued

Wave Model and coefficients 2 East Model = CONST + HTYP + INTW + ALTHV + EINKO + VERLUST + OSTB CONST (-0.91), INTW (0: -0.47 / 1: -0.04 / 2: 0.51), ALTHV (1: 0.41 / 2., 3,4,5,6: -0.41), HTYP (1,2: -0.84 / 3: 0.84), EINKO (1: 0.24 / 2: 0.44 / 3: 0.12 / 4: 0.00 / 5: -0.37 / 6: -0.44), VERLUST (0: -0.17 / 1: 0.17), OSTB (0: -0.29 / 1: 0.29) 3 East Model = CONST + HTYP + INTW (HTYP) + ALTHV + SPAR CONST (-1.36), HTYP (1: -0.39 / 2: 0.08 / 3: 0.31), INTW (HTYP=1) (0: -0.28 / 1,2: 0.28), INTW (HTYP=2) (0: 0.42 / 1,2: -0.42), INTW (HTYP=3) (0: -0.36 / 1,2: 0.36), ALTHV (1: 0.02 / 2,3,4: -0.38 / 5: -0.20 / 6: 0.56), SPAR (0: 0.35 / 1: -0.35) 4 East Model = CONST + HTYP + INTW + ALTHV + KAEINK + FAMSTD CONST (0: -0.62), HTYP (1: -0.47 / 2: 0.25 / 3: 0.12), INTW (0: -0.78 / 1: -0.04 / 2: 0.82), ALTHV (1: 0.47 / 2,3,4,5,6: -0.47), KAEINK (0: -0.54 / 1: 0.54), FAMSTD (1: -0.12 / 2: 1.13 / 3: 0.24 / 4: -0.73 / 5: -0.51), 5 East Model = CONST + HTYP + INTW + KAEINK + VANZAHL + VERLUST CONST (-0.82), HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: 0.31 / 1: -0.31 / 2: 0.47); BEGINN (OSTWEST = 0) (0: 0.31 / 1: -0.31)		Subsample C (East-Germans)
2 East Model = CONST + HTYP + INTW + ALTHV + EINKO + VERLUST + OSTB CONST (-0.91), INTW (0: -0.47 / 1: -0.04/2: 0.51), ALTHV (1: 0.41/2,3,4,5,6: -0.41), HTYP (1,2: -0.84/3: 0.84), EINKO (1: 0.24/2. 0.44/3: 0.12/4: 0.00/5: -0.37/6: -0.44), VERLUST (0: -0.17/1: 0.17), OSTB (0: -0.29/1: 0.29) 3 East Model = CONST + HTYP + INTW (HTYP) + ALTHV + SPAR CONST (-1.36), HTYP (1: -0.39/2: 0.08/3: 0.31), INTW (HTYP=2) (0: -0.28/1,2: 0.28), INTW (HTYP=3) (0: -0.28/1,2: 0.36), ALTHV (1: 0.02/2,3,4: -0.38/5: -0.20/6: 0.56), SPAR (0: 0.35/1: -0.35) 4 East Model = CONST + HTYP + INTW + ALTHV + KAEINK + FAMSTD CONST (0: -0.62), HTYP (1: -0.47/2: 0.25/3: 0.12), INTW (0: -0.78/1: -0.04/2: 0.82), ALTHV (1: 0.47/2,3,4,5,6: -0.47), KAEINK (0: -0.54/1: 0.54), FAMSTD (1: -0.12/2: 1.13/3: 0.24/4: -0.73/5: -0.51), 5 East Model = CONST + HTYP + INTW + KAEINK + VANZAHL + VERLUST CONST (-0.82), HTYP (1: -0.45/2: -0.32/3: 0.77), INTW (0: -0.67/1: -0.18/2: 0.84), KAEINK (0: -0.69/1: 0.49), VANZAHL (0: 0.0/1: -0.31/2: -0.62/3: -0.93/4: -1.24/5: -1.51), VERLUST (=: -0.19/1: 0.19) 6 East Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65/2: -0.32/3: 0.97); KAEINK (0: -0.66/1: 0.66); INTW (OSTWEST = 0) (0: -0.46/1: -0.31/2: 0.47);	Wave	
VERLUST + OSTB CONST (-0.91), INTW (0: -0.47 / 1: -0.04 / 2: 0.51), ALTHY (1: 0.41 / 2., 3.4, 5.6: -0.41), HTYP (1,2: -0.84 / 3: 0.84), EINKO (1: 0.24 / 2. 0.44 / 3: 0.12 / 4: 0.00 / 5: -0.37 / 6: -0.44), VERLUST (0: -0.17 / 1: 0.17), OSTB (0: -0.29 / 1: 0.29) 3 East Model = CONST + HTYP + INTW (HTYP) + ALTHV + SPAR CONST (-1.36), HTYP (1: -0.39 / 2: 0.08 / 3: 0.31), INTW (HTYP=1) (0: -0.28 / 1,2: 0.28), INTW (HTYP=2) (0: 0.42 / 1,2: -0.42), INTW (HTYP=3) (0: -0.36 / 1,2: 0.36), ALTHV (1: 0.02 / 2,3.4: -0.38 / 50.20 / 6: 0.56), SPAR (0: 0.35 / 1: -0.35) 4 East Model = CONST + HTYP + INTW + ALTHV + KAEINK + FAMSTD CONST (0: -0.62), HTYP (1: -0.47 / 2: 0.25 / 3: 0.12), INTW (0: -0.78 / 1: -0.04 / 2: 0.82), ALTHV (1: 0.47 / 2,3.4,5.6: -0.47), KAEINK (0: -0.54 / 1: 0.54), FAMSTD (1: -0.12 / 2: 1.13 / 3: 0.24 / 4: -0.73 / 5: -0.51), 5 East Model = CONST + HTYP + INTW + KAEINK + VANZAHL + VERLUST CONST (-0.82), HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);		
CONST (-0.91), INTW (0: -0.47 / 1: -0.04 / 2: 0.51), ALTHV (1: 0.41 / 2., 3, 4, 5, 6: -0.41), HTYP (1,2: -0.84 / 3: 0.84), EINKO (1: 0.24 / 2. 0.44 / 3: 0.12 / 4: 0.00 / 5: -0.37 / 6: -0.44), VERLUST (0: -0.17 / 1: 0.17), OSTB (0: -0.29 / 1: 0.29) 3 East		
INTW (0: -0.47 / 1: -0.04 / 2: 0.51), ALTHV (1: 0.41 / 2., 3, 4, 5, 6: -0.41), HTYP (1, 2: -0.84 / 3: 0.84), EINKO (1: 0.24 / 2: 0.44 / 3: 0.12 / 4: 0.00 / 5: -0.37 / 6: -0.44), VERLUST (0: -0.17 / 1: 0.17), OSTB (0: -0.29 / 1: 0.29) 3 East Model = CONST + HTYP + INTW (HTYP) + ALTHV + SPAR CONST (-1.36), HTYP (1: -0.39 / 2: 0.08 / 3: 0.31), INTW (HTYP=1) (0: -0.28 / 1,2: 0.28), INTW (HTYP=2) (0: 0.42 / 1,2: -0.42), INTW (HTYP=3) (0: -0.36 / 1,2: 0.36), ALTHV (1: 0.02 / 2,3,4: -0.38 / 5: -0.20 / 6: 0.56), SPAR (0: 0.35 / 1: -0.35) 4 East Model = CONST + HTYP + INTW + ALTHV + KAEINK + FAMSTD CONST (0: -0.62), HTYP (1: -0.47 / 2: 0.25 / 3: 0.12), INTW (0: -0.78 / 1: -0.04 / 2: 0.82), ALTHV (1: 0.47 / 2,3,4,5,6: -0.47), KAEINK (0: -0.54 / 1: 0.54), FAMSTD (1: -0.12 / 2: 1.13 / 3: 0.24 / 4: -0.73 / 5: -0.51), 5 East Model = CONST + HTYP + INTW + KAEINK + VANZAHL + VERLUST CONST (-0.82), HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);		
HTYP (1,2: -0.84/3: 0.84), EINKO (1: 0.24/2. 0.44/3: 0.12/4: 0.00/5: -0.37/6: -0.44), VERLUST (0: -0.17/1: 0.17), OSTB (0: -0.29/1: 0.29) 3 East	j	INTW (0: -0.47 / 1: -0.04 / 2: 0.51),
EINKO (1: 0.24 / 2. 0.44 / 3: 0.12 / 4: 0.00 / 5: -0.37 / 6: -0.44), VERLUST (0: -0.17 / 1: 0.17), OSTB (0: -0.29 / 1: 0.29) 3 East		ALTHV (1: 0.41 / 2.,3,4,5,6: -0.41),
VERLUST (0: -0.17 / 1: 0.17), OSTB (0: -0.29 / 1: 0.29) 3 East		HTYP (1,2: -0.84 / 3: 0.84),
OSTB (0: -0.29 / 1: 0.29) 3 East		EINKO (1: 0.24 / 2. 0.44 / 3: 0.12 / 4: 0.00 / 5: -0.37 / 6: -0.44),
3 East		VERLUST (0: -0.17 / 1: 0.17),
CONST (-1.36), HTYP (1: -0.39 / 2: 0.08 / 3: 0.31), INTW (HTYP=1) (0: -0.28 / 1,2: 0.28), INTW (HTYP=2) (0: 0.42 / 1,2: -0.42), INTW (HTYP=3) (0: -0.36 / 1,2: 0.36), ALTHV (1: 0.02 / 2,3,4: -0.38 / 50.20 / 6: 0.56), SPAR (0: 0.35 / 1: -0.35) 4 East		
HTYP (1: -0.39 / 2: 0.08 / 3: 0.31), INTW (HTYP=1) (0: -0.28 / 1,2: 0.28), INTW (HTYP=2) (0: 0.42 / 1,2: -0.42), INTW (HTYP=3) (0: -0.36 / 1,2: 0.36), ALTHV (1: 0.02 / 2,3,4: -0.38 / 50.20 / 6: 0.56), SPAR (0: 0.35 / 1: -0.35) 4 East	3 East	Model = CONST + HTYP + INTW (HTYP) + ALTHV + SPAR
INTW (HTYP=1) (0: -0.28 / 1,2: 0.28), INTW (HTYP=2) (0: 0.42 / 1,2: -0.42), INTW (HTYP=3) (0: -0.36 / 1,2: 0.36), ALTHV (1: 0.02 / 2,3,4: -0.38 / 50.20 / 6: 0.56), SPAR (0: 0.35 / 1: -0.35) 4 East		CONST (-1.36),
INTW (HTYP=2) (0: 0.42 / 1,2: -0.42), INTW (HTYP=3) (0: -0.36 / 1,2: 0.36), ALTHV (1: 0.02 / 2,3,4: -0.38 / 50.20 / 6: 0.56), SPAR (0: 0.35 / 1: -0.35) 4 East]	HTYP (1: -0.39 / 2: 0.08 / 3: 0.31),
INTW (HTYP=3) (0: -0.36 / 1,2: 0.36),	Ì	
ALTHV (1: 0.02 / 2,3,4: -0.38 / 50.20 / 6: 0.56), SPAR (0: 0.35 / 1: -0.35) 4 East		
SPAR (0: 0.35 / 1: -0.35) 4 East		
4 East Model = CONST + HTYP + INTW + ALTHV + KAEINK + FAMSTD CONST (0: -0.62), HTYP (1: -0.47 / 2: 0.25 / 3: 0.12), INTW (0: -0.78 / 1: -0.04 / 2: 0.82), ALTHV (1: 0.47 / 2,3,4,5,60.47), KAEINK (0: -0.54 / 1: 0.54), FAMSTD (1: -0.12 / 2: 1.13 / 3: 0.24 / 4: -0.73 / 5: -0.51), S East Model = CONST + HTYP + INTW + KAEINK + VANZAHL + VERLUST CONST (-0.82), HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);	1	· ·
CONST (0: -0.62), HTYP (1: -0.47 / 2: 0.25 / 3: 0.12), INTW (0: -0.78 / 1: -0.04 / 2: 0.82), ALTHV (1: 0.47 / 2,3,4,5,60.47), KAEINK (0: -0.54 / 1: 0.54), FAMSTD (1: -0.12 / 2: 1.13 / 3: 0.24 / 4: -0.73 / 5: -0.51), 5 East Model = CONST + HTYP + INTW + KAEINK + VANZAHL + VERLUST CONST (-0.82), HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) + BEGINN (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);		
HTYP (1: -0.47 / 2: 0.25 / 3: 0.12), INTW (0: -0.78 / 1: -0.04 / 2: 0.82), ALTHV (1: 0.47 / 2,3,4,5,60.47), KAEINK (0: -0.54 / 1: 0.54), FAMSTD (1: -0.12 / 2: 1.13 / 3: 0.24 / 4: -0.73 / 5: -0.51), 5 East Model = CONST + HTYP + INTW + KAEINK + VANZAHL + VERLUST CONST (-0.82), HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) + BEGINN (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);	4 East	
INTW (0: -0.78 / 1: -0.04 / 2: 0.82), ALTHV (1: 0.47 / 2,3,4,5,60.47), KAEINK (0: -0.54 / 1: 0.54), FAMSTD (1: -0.12 / 2: 1.13 / 3: 0.24 / 4: -0.73 / 5: -0.51), 5 East		
ALTHV (1: 0.47 / 2,3,4,5,60.47), KAEINK (0: -0.54 / 1: 0.54), FAMSTD (1: -0.12 /2: 1.13 / 3: 0.24 / 4: -0.73 / 5: -0.51), 5 East Model = CONST + HTYP + INTW + KAEINK + VANZAHL + VERLUST CONST (-0.82), HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) + BEGINN (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);		
KAEINK (0: -0.54 / 1: 0.54), FAMSTD (1: -0.12 /2: 1.13 / 3: 0.24 / 4: -0.73 / 5: -0.51), Model = CONST + HTYP + INTW + KAEINK + VANZAHL + VERLUST CONST (-0.82), HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East		
FAMSTD (1: -0.12 /2: 1.13 / 3: 0.24 / 4: -0.73 / 5: -0.51), Model = CONST + HTYP + INTW + KAEINK + VANZAHL + VERLUST CONST (-0.82), HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) + BEGINN (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);		1
5 East Model = CONST + HTYP + INTW + KAEINK + VANZAHL + VERLUST		1
VERLUST CONST (-0.82), HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East		
CONST (-0.82), HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) + BEGINN (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);	5 East	
HTYP (1: -0.45 / 2: -0.32 / 3: 0.77), INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East		
INTW (0: -0.67 / 1: -0.18 / 2: 0.84), KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) 6 East Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) + BEGINN (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);		1
KAEINK (0: -0.49 / 1: 0.49), VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) + BEGINN (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);		l '
VANZAHL (0: 0.0 / 1: -0.31 / 2: -0.62 / 3: -0.93 / 4: -1.24 / 5: -1.51), VERLUST (=: -0.19 / 1: 0.19) Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) + BEGINN (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);		· ·
VERLUST (=: -0.19 / 1: 0.19) 6 East		1 '
6 East Model = CONST + HTYP + KAEINK + INTW (OSTWEST = 0) + BEGINN (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);		
+ BEGINN (OSTWEST = 0) CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);	6 Fost	
CONST (-1.33); HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);	0 East	
HTYP (1: -0.65 / 2: -0.32 / 3: 0.97); KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);		
KAEINK (0: -0.66 / 1: 0.66); INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);		1
INTW (OSTWEST = 0) (0: -0.46 / 1: -0.31 / 2: 0.47);	: 	
		1

4 Changes due to the Incorporation of the new immigrant sample (sample D)

The new immigrant sample (sample D) of the GSOEP provides information concerning immigrants to Germany (for details, see Burkhauser/Kreyenfeld/Wagner 1996). It covers households, containing at least one member who immigrated to the western states of Germany between 1984 and 1993. Because few people immigrated to the eastern states of Germany over this period, they were not included in this sample. People living in public institutions (nursing homes, mental institutions, etc.) or provisional housing for asylum seekers are not included unless they were in the sample before moving into such an institution.

From a user's point of view, the weighting procedure of sample D has to fulfill some requirements:

- (1) Representative structural and longitudinal analysis of the new immigrant population (sample D).
- (2) When combining sample D with the other three GSOEP samples, the weighted entire GSOEP population has to be representative for the private households in Germany in 1995.
- (3) Concerning the 'old' GSOEP samples (A, B, C), the computed weights provided in the database have to guarantee a lasting representative analysis of the population of interest.

However, we have to point out that sample D includes some households, who have a positive selection probability with respect to sample A, B or C. The following two groups of households, with a positive selection probability are observed: so-called 'mixed' househoulds (households, living in West-Germany) with new immigrants and East German households, who migrated to West Germany after the starting date (1990) of sample C ('Spät-Übersiedler'). These households make up about 20 % of the entire sample D and hence are not ignorable. Therefore it was necessary to create **two different weighting variables** to integrate sample D into the GSOEP weighting scheme. The first variable is to be used with the full GSOEP and the second is to be used when working with sample D, only. When the entire sample (A,B,C and D) is used, the 'mixed' households and the 'Spät-Übersiedler' of sample D are assigned a zero weight.

Beginning with wave 12 (1995), the following sample weights are included in the GSOEP data files:

LPHRF Person level weight for cross-sectional analysis for wave L (1995), if all sample (A, B, C and D) are used. This weight assigns zeros to not only all households in sample D with immigrants and non-immigrants but also households in sample D with Übersiedler who moved after 1990.

LHHRF Household level weight for cross-sectional analysis for wave L (1995), if all samples (A, B, C, D) are used. This weight assigns zeros to not only all households in sample D with immigrants and non-immigrants but also households in sample D with Übersiedler who moved after 1990.

LPHRFD Person level weight for cross-sectional analysis for wave L (1995), if only sample D is used.

LHHRFD Household level weight for cross-sectional analysis for wave L (1995), if only sample D is used.

If only sample A and B are used in a weighted analysis, it has to be taken into account that beginning with wave 12 (1995), the A and B weights are reduced to reflect the fact that immigrants are contained now in sample D. Therefore, in this special case, the sample weights of A and B in wave 12 must be multiplied by 1.056 (for details, see Burkhauser/Kreyenfeld/Wagner 1996 or Rendtel/Daschke 1996). This value represents the weight of immigrants in the calculation of the weights.

5 References

- Arbeitsgemeinschaft ADM-Stichproben und Bureau Wendt 1994: Das ADM-Stichproben System (Stand 1993). In: Gabler, S.; Hoffmeyer-Zlotnik, J.; Krebs, D. (Hg): Gewichtung in der Umfragepraxis. Westdeutscher Verlag, Opladen, S. 188-203.
- Burkhauser, Richard V.; Kreyenfeld, Michaela; Wagner, Gert 1996: The new Immigrant sample of the German Socio-Economic Panel. Cross-National Studies in Aging Program Project Paper; Center for Policy Research, the Maxwell School. Syracuse, NY: Syracuse University (forthcoming).
- Kirschner, Hans-Peter 1984: ALLBUS 1980: Stichprobenplan und Gewichtung. In: Mayer, K.-U.; Schmidt, P. (Hrsg): Allgemeine Bevölkerungsumfrage Sozialwissenschaften, Frankfurt/M., S. 114-182.
- Projektgruppe "Das Sozio-ökonomische Panel" 1990: Das Sozio-ökonomische Panel für die Bundesrepublik Deutschland nach fünf Wellen. Vierteljahrshefte zur Wirtschaftsforschung, Heft 2, S. 141-151.
- Projektgruppe "Das Sozio-ökonomische Panel" 1991: Das Sozio-ökonomische Panel (SOEP) im Jahre 1990/91. Vierteljahrshefte zur Wirtschaftsforschung, Heft 3/4, S. 146-155.
- Projektgruppe "Das Sozio-ökonomische Panel" 1993: 10 Jahre Sozio-oekonomisches Panel (SOEP). Vierteljahrshefte zur Wirtschaftsforschung, Heft 1/2, S. 141-151.
- Projektgruppe "Das Sozio-ökonomische Panel" 1995: Das Sozio-oekonomische Panel (SOEP) im Jahre 1994. Vierteljahrshefte zur Wirtschaftsforschung, Heft 1.
- Pischner, Rainer 1994: Die Quer- und Laengschnittgewichtung des Sozio-oekonomischen Panels (SOEP). In: Gabler, S.; Hoffmeyer-Zlotnik, J.; Krebs, D. (Hg): Gewichtung in der Umfragepraxis. Westdeutscher Verlag, Opladen, S. 166-187.
- Rendtel, Ulrich 1990: Teilnahmebereitschaft in Panelstudien: Zwischen Beeinflussung, Vertrauen und Sozialer Selektion. Kölner Zeitschrift für Soziologie und Sozialpsychologie, 42, S. 280-299.
- Rendtel, Ulrich 1991: Die Schätzung von Populationswerten in Panelerhebungen. Allgemeines Statistisches Archiv, 75, S. 225-244.
- Rendtel, Ulrich 1995: Panelausfälle und Panelrepräsentativität, Campus Verlag, Frankfurt/M.-New York.
- Rendtel, Ulrich; Daschke, Stefan 1996: Die Gewichtung der Zuwanderer-Stichprobe des Sozio-oekonomischen Panels (SEOP). DIW-Diskussionspapier (forthcoming).

- Schupp, Jürgen; Gert Wagner 1995: Die Zuwandererstichprobe des Sozio-oekonomischen Panels (SOEP). Vierteljahrshefte zur Wirtschaftsforschung, Heft 1.
- Wagner, Gert; Schupp, Jürgen; Rendtel, Ulrich 1993: Das Sozio-ökonomische Panel Methoden der Datenproduktion und -aufbereitung im Längsschnitt. In: Hauser, R.; Ott N.; Wagner, G. (Hrsg.): Mikroanalytische Grundlagen der Gesellschaftspolitik Band 2: Erhebungsverfahren, Analysemethoden und Mikrosimulation. Akademie Verlag, Berlin, S. 70-112.