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Abstract

Revealed preference tests are widely used in empirical applications of consumer rationality. These

are static tests, and consequently, lack ability to handle measurement errors in the data. This

paper extends and generalizes existing procedures that account for measurement errors in revealed

preference tests. In particular, it introduces a very effi cient method to implement these procedures,

which make them operational for large data sets. The paper illustrates the new method for both

classical and Berkson measurement errors models.
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1 Introduction

This paper focus on testing whether mismeasured data is consistent with utility maximization behavior
in a revealed preference framework. More precisely, assuming that data on prices and quantities for a
set of goods and assets contains measurement errors, the purpose is to provide models and methods
to test the null hypothesis that the ‘true’data (without errors) satisfies utility maximizing behavior,
or equivalently, satisfies certain revealed preference axioms. The main contribution is twofold: First, I
introduce a simple and very effi cient algorithm to implement the revealed preference based procedure for
error-contaminated data proposed by Fleissig and Whitney (2005). This algorithm makes it possible to
apply revealed preference methods to large scaled data sets (with errors), which are becoming increasingly
available in empirical macroeconomics and applied economics in general.1

As a second main contribution, I modify Fleissig and Whitney’s (2005) procedure to make it compat-
ible with classical measurement error models. The standard approach to account for measurement errors
in revealed preference tests has been to use Berkson error models, where the ‘true’variable of interest is

∗Financial support from the Jan Wallander and Tom Hedelius Foundation (research grant W2009-0079:1) and the

Marianne and Marcus Wallenberg Foundation is gratefully acknowledged. I also thank Barry Jones for generously providing

the data for the empirical application. Correspondence to: Per Hjertstrand, Research Institute of Industrial Economics

(IFN), P.O. Box 55665, SE-102 15 Stockholm, Sweden. E-mail: Per.Hjertstrand@ifn.se.

1Examples of other relevant applications besides empirical macroeconomics where the use of revealed preference tests

to analyze large data sets has recently been advocated includes large scale scanner data (Echenique, Lee, and Shum, 2011)

and cross-sectional data gathered for a large number of households (Crawford and Pendakur, 2012).
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predicted (or caused) by the observed variable and a random error.2 However, these models have been
labeled inappropriate to describe many economic data sets (Chen, Hong and Nekipelov, 2011).3 Instead,
classical measurement error models, where the observed variable is being predicted by the ‘true’variable
and a random error, is widely considered the most appropriate specification to incorporate measurement
errors in economic applications (Chen et al., 2011; Hausman, 2001).
Revealed preference analysis provides necessary and suffi cient conditions for a data set to be ratio-

nalized by a well-behaved utility function. As such, it provides a natural starting point for empirically
analyzing dynamic general equilibrium models in macroeconomics since these models are most often
based on the assumption that a ‘representative’consumer maximizes utility over consumption goods and
monetary assets. In addition, revealed preference analysis is implicitly a key ingredient in constructing
monetary aggregates. This follows from that utility maximization is a necessary condition for monetary
aggregates to exist (Barnett, 1980). This, in turn, has motivated numerous studies to use revealed pref-
erence analysis to test whether aggregates satisfy this necessary condition; See for examples Swofford
and Whitney (1986, 1987, 1994) and Fisher and Fleissig (1997), and more recently Jones, Dutkowsky
and Elger (2005), Elger, Jones, Edgerton and Binner (2008), and Jha and Longjam (2006).4

From an applied perspective, revealed preference based tests are attractive since they are non-
parametric in the sense of not having to stipulate any parametric form for the utility function. However,
they are by definition deterministic, and consequently, fail to add any stochastic element to the analysis.
A particularly important such element when, for example, analyzing monetary and consumption data is
measurement errors (Barnett, Diewert and Zellner, 2009; Belongia, 1996; Fixler, 2009). For this reason,
much effort has gone into extending the standard (deterministic) revealed preference tests to make them
applicable when there are errors present in the data. Varian (1985), Epstein and Yatchew (1985), de
Peretti (2005) and Cherchye, Demuynck, De Rock and Hjertstrand (2012) are a few examples of such
test-procedures. However, these procedures share the problem of being computationally burdensome for
large or even medium sized data sets. For example, Varian’s (1985) and Epstein and Yatchew’s (1985)
procedures are based on solving non-linear programming problems (with non-linear constraints) which
may become very computationally burdensome even for moderate sized problems (See Jones and de
Peretti, 2005, for a detailed discussion).
As discussed above, Fleissig and Whitney (2005) proposed another revealed preference procedure for

dealing with measurement errors in the data. This procedure is based on calculating a test statistic by
minimizing the maximal slack term required for the data to satisfy revealed preference, which is, in a
second step, compared to a critical value obtained from the empirical distribution of the measurement
errors. Jones and Edgerton (2009) suggest calculating Fleissig and Whitney’s (2005) test statistic by
solving a non-linear constrained optimization problem. Similar to the procedures mentioned above, it
therefore suffers from the problem of being computationally burdensome for medium or large sized data
sets. Although it is possible to calculate the test statistic using a binary search algorithm, each step in
the binary search consists of solving a linear program (LP) and even if computationally simpler than
solving the non-linear problem, solving a LP may still become computationally burdensome for large
sized data sets.

2See, for example, Varian (1985), Epstein and Yatchew (1985), Jones and de Perreti (2005), Elger and Jones (2008) and

Hjertstrand (2007).

3Berkson models are mostly of interest in the statistics, biology and medical literature; See Carroll, Ruppert, and

Stefanski (1995) for motivations and explanations of various Berkson-error models.

4Monetary aggregates need to be weakly separable from all other goods in order to qualify as (theoretically) proper

aggregates (Barnett, 1980). Revealed preference analysis provides a very convenient way of testing for weak separability.

Consequently, empirical studies aimed at finding proper monetary aggregates most often employ revealed preference tests

for weak separability. A necessary condition for these tests is that the data satisfies revealed preference.
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This paper proposes a very effi cient and simple algorithm to calculate Fleissig and Whitney’s (2005)
test statistic. The new algorithm is especially suitable for the large scaled data sets typically encountered
in empirical macroeconomics. The algorithm computes the test statistic from a modified version of the
Generalized Axiom of Revealed Preference (GARP). As such, it is based on computing transitive closures
of matrices for which there exists very effi cient (polynomial-time) methods (Varian, 1982). In fact, results
from Monte Carlo experiments (available upon request) show that the algorithm is solvable for several
hundreds of observations within reasonable time. Moreover, the algorithm is guaranteed to find a global
solution to the test statistic, and perhaps most importantly, it does not require using any optimization
software (linear or non-linear) as the case is in Jones and Edgerton (2009).
In this paper, I also extend Fleissig and Whitney’s (2005) procedure to classical measurement errors.

Given the importance of accounting for measurement errors, this extension allows for analyzing data
with errors using models that are widely recognized as the most approporiate ones in empirical economic
modelling. As such, the extension to classical measurement error models and the introduction of the
new algorithm provides a unified framework for analyzing data with errors within a revealed preference
framework.
I demonstrate the practical usefulness of the models and methods by applying them to monetary

data from Jones and de Peretti (2005). In this application, I investigate the computational properties of
the new algorithm. As explained above, I found the algorithm to be very fast in practice. I also compare
and contrast classical measurement error models with Berkson-type models. Rather surprisingly, I found
that classical models yields similar results as Berkson models, which would suggest that accounting for
measurement errors in revealed preference analysis is robust to the employed error-model. Finally, I
compare the different models with respect to the error distribution, and find that the models produce
similar results for normally and uniformly distributed errors.
The remainder of the paper is organized as follows: Section 2 briefly recapitulates the concept of re-

vealed preference. Section 3 introduces measurement errors, and describes the new algorithm. Section 4
discusses implementation issues while Section 5 shows how the procedure can accommodate various mea-
surement error models. Section 6 contains the empirical application and Section 7 gives some concluding
remarks and discussion.

2 Revealed preference

Suppose a consumer chooses from K goods observed at N time periods, with index set T = {1, ..., N}.
Let xt = (x1t, ..., xKt) ∈ RK+ denote the observed quantity-vector at time t ∈ T with corresponding
price-vector pt = (p1t, ..., pKt) ∈ RK++. Let mt ∈ R++ denote the wealth of the consumer, and define
the budget set as Bt = B (pt,mt) =

{
x ∈ RK+ : pt · x ≤ mt

}
. In the standard utility maximizing model,

choices are usually taken to be exhaustive which means that budget balancedness holds, i.e., p · x = m.
Throughout the paper, I will refer to the list T = {pt,xt,mt}t∈T as ’the data’, but drop m from this list
whenever convenient.
Let us now recall the following concepts and definitions from Varian (1982): we say that the data

T = {pt,xt,mt}t∈T is rationalizable if there exists a well-behaved (i.e. continuous, concave and strictly
increasing) utility function U such that the observed consumption bundles solves the utility maximizing
problem, i.e.,

{xt}t∈T solves max
x∈Bt

U (x) .

Consider next the definition of the Generalized Axiom of Revealed Preference (GARP).

Definition 1 (Generalized Axiom of Revealed Preference, Varian, 1982) Consider the data T =
{pt,xt,mt}t∈T . We say that:
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• xt is directly revealed preferred to xs written xtRDxs if mt ≥ pt · xs.

• xt is revealed preferred to xs written xtRxs if there exists a sequence of observations (t, u, v, ..., w, s) ∈
T such that xtRDxu, xuRDxv, ..., xwRDxs.

• T satisfies the Generalized Axiom of Revealed Preference (GARP) if xtRxs implies ms ≤ ps · xt.

In words, GARP states that it cannot be that bundle xt is preferred over bundle xs while at the same
time the costs for bundle xt at prices ps is strictly less than the costs for bundle xs. Using these concepts
and definitions, Varian (1982), based on Afriat (1967), derived necessary and suffi cient conditions for the
data T to be rationalized by a well-behaved utility function.

Theorem 1 (Afriat’s Theorem, Varian, 1982) Consider the data T = {pt,xt,mt}t∈T . The follow-
ing statements are equivalent:

(i) There exist a continuous, strictly increasing and concave utility function rationalizing T.

(ii) T satisfies GARP.

(iii) There exist utility indices Ut and marginal utility indices λt > 0 such that the following (Afriat)
inequalities hold (for all s, t ∈ T ):

Us − Ut ≤ λt (pt · xs −mt) . (AI)

The standard formulation of Afriat’s theorem uses that budget balancedness holds (i.e., sets mt =

pt · xt for all t ∈ T ). For now, I will keep a separate notation for m and p · x because the measurement
error procedure described in the next section introduces a slack term to allow for violations of the Afriat
inequalities. This slack is additive to total expenditure and is basically the minimal perturbation of total
expenditure such that the Afriat inequalities hold; I then define m as the minimally perturbed total
expenditure.
Afriat’s theorem presents two different methods for testing whether the data can be rationalized by

a well-behaved utility function. The first method implements GARP given in condition (ii). This consists
in a first step of constructing the RD relation. In the second step, one calculates the transitive closure
of the relation RD (using, for example, Warshall’s (1962) algorithm). The final third step consists of
verifying whether ms ≤ ps · xt holds whenever xtRxs. If this is the case, then T satisfies GARP, and
consequently, the data can be rationalized by a well-behaved utility function. GARP can be effi ciently
implemented (i.e., in polynomial time) using standard statistical and mathematical software, and for
that reason has become the most popular test-method in empirical applications of consumer rationality.5

The second method uses linear programming (LP) techniques to check whether there exists a solution (in
the unknowns Ut and λt) to the Afriat inequalities (AI); See, for example, Diewert (1973). Although this
method can be used to find a solution to the Afriat’s inequalities in polynomial time, it is increasingly
computationally burdensome as the number of constraints in the LP problem grows quadratically with
the number of observations (the number of constraints in the LP problem is T 2 − T ). Thus, even if
computationally effi cient for small data sets, this method may become practically infeasible for large
data sets.
As discussed in the Introduction, a problem with any one of these methods concerns their inability to

incorporate stochastic elements in the analysis. In particular, test-methods based on conditions (ii) and
(iii) are inherently deterministic since they are unable to account for any randomness in the data such as
measurement errors or optimization errors. This paper focus on measurement errors and introduces next
a simple algorithm to implement the measurement error procedure proposed by Fleissig and Whitney
(2005).

5See Varian (2006) for a recent overview.
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3 Allowing for measurement errors

Suppose the quantity data is measured with random errors collected in the K−dimensional vector εt =
(ε1t, ..., εKt) ∈ RK . For illustration, I begin by assuming a classical additive measurement error model,

xt = qt + εt, (CA)

where {qt}t∈T is the ’true’(unobserved) quantity-vector. Below, I show how the classical additive error
structure can be modified to a classical multiplicative error structure, and to additive and multiplicative
Berkson error structures.
Our purpose is to test the following hypothesis:

H0 : The ’true’data {pt,qt}t∈T satisfy GARP

HA : The ’true’data {pt,qt}t∈T violate GARP.
(HYP)

Here, H0 corresponds to that there exists a continuous, strictly increasing and concave utility function
rationalizing the ’true’(unobserved and without errors) data {pt,qt}t∈T , while HA corresponds to that
there do not exist any utility function rationalizing {pt,qt}t∈T . To test this hypothesis, Fleissig and
Whitney (2005, henceforth referred to as FW) proposed a procedure which consists of adding a slack term
to the Afriat inequalities (AI) to allow for violations of these. A test statistic is constructed by calculating
the minimal slack required for the observed data T = {pt,xt}t∈T to satisfy the Afriat inequalities. The
hypothesis (HYP) is then evaluated by comparing the test statistic to a critical value obtained from the
empirical distribution of the errors.

The test statistic. Jones and Edgerton (2009) suggested calculating FW’s test statistic, denoted F ,
by solving the following optimization problem:

min
{Ut,λt,F}t∈T

F s.t (op_AIF)

Us − Ut − λt (pt · xs − pt · xt) ≤ λtF,

λt > 0,

F ≥ 0,

for all s, t ∈ T . The problem (op_AIF) contains quadratic (non-linear) constraints, which makes it
non-trival. As such, one alternative is to solve (op_AIF) using optimization software that is able to
handle quadratic constraints. However, a computationally simpler solution can be obtained by noting
that if (op_AIF) has a feasible solution for a specific value of F then it also has a solution for all values
F ′ ≥ F . This monotonicity condition implies that one can find a solution to F by applying a binary
search algorithm. In practice, this consists of iterating upon F and check whether there exists a solution
to the Afriat inequalities for a given F by solving a LP problem in each iteration; I discuss the details
within a similar context in the next section. However, as pointed out in the previous section, although
these LP problems can be solved in polynomial time, they may become ineffi cient for large scaled data
sets, and as a result make the entire procedure diffi cult to implement in practice.

A new procedure to calculate the test statistic F . To remedy the diffi culty of calculating FW’s
test statistic, the remainder of this section introduces an alternative procedure to calculate this statistic.
Motivated by the equivalence between the Afriat inequalities (AI) and GARP in Afriat’s theorem, the new
procedure replaces the non-linear constraints in (op_AIF) with a GARP-like condition. As such, this new
procedure inherits the advantages of GARP. Most importantly from a practical point of view, it does not
require using software packages for solving optimization problems (linear or non-linear) as the case is
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for (op_AIF). For that reason, it is computationally much more effi cient than solving (op_AIF), and is
practically operational for large scaled data sets. But before providing a formal argument for the new
procedure, we consider the following condition.

Definition 2 (GARPF) Consider the data T = {pt,xt}t∈T and the scalar F ≥ 0. We say:

• xtRDF xs if pt · (xt − xs) ≥ F .

• xtRFxs if there exists a sequence of observations (t, u, v, ..., w, s) ∈ T such that xtRDF xu, xuRDF xv, ...,
xwR

D
F xs.

• that T satisfies GARPF if xtRFxs implies ps · (xs − xt) ≤ F .

The next theorem proves that GARPF is equivalent to the non-linear constraints in (op_AIF).

Theorem 2 Consider the data T = {pt,xt}t∈T and the scalar F ≥ 0. The following statements are
equivalent:

(i*) There exist numbers Ut and λt > 0 such that the following inequalities hold (for all s, t ∈ T ):

Us − Ut − λt (pt · xs − pt · xt) ≤ λtF. (AIF)

(ii*) T satisfies GARPF .

Proof. Note that (AIF) is equivalent to the following inequalities (for all s, t ∈ T ):

Us − Ut − λt (pt · xs −mt) ≤ 0,

where I have defined mt = pt · xt − F for all t ∈ T . By Afriat’s theorem, this is equivalent to that
T = {pt,xt}t∈T satisfies GARP, i.e., there exists a sequence of observations (t, u, v, ..., w, s) ∈ T such
that:

pt · xt − F = mt ≥ pt · xu, pu · xu − F = mu ≥ pu · xv, ..., pw · xw − F = mw ≥ pw · xs implies
ps · xs − F = ms ≤ ps · xt.

But this is GARPF which proves the theorem. �

Theorem 2 suggests that we can replace the quadratic (non-linear) constraints in the problem
(op_AIF) with the equivalent condition GARPF and calculate FW’s test statistic, F , by solving:

min
{F}

F s.t. (op_GF)

T = {pt,xt}t∈T satisfies GARPF ,

F ≥ 0.

This problem can be effi ciently (i.e., in polynomial time) solved using the following simple binary search
algorithm.

Algorithm 1
Input: Data T = {pt,xt}t∈T , a lower bound Fl, an upper bound, Fu, and a termination criterion ψ > 0.
Output: A slack term F which satisfies GARPF .

1. If T satisfies GARP, abort and return F = 0. Otherwise set F (1)u = Fu, F
(1)
l = Fl and F (0) =

(Fu − Fl) /2.
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2. Set i = 1: do until
∥∥F (i) − F (i−1)∥∥ ≤ ψ,

• if T satisfies GARPF with F (i) =
(
F
(i)
u − F (i)l

)
/2, set F (i+1)u =

(
F
(i)
u − F (i)l

)
/2 and F (i+1)l =

F
(i)
l ;

• otherwise set F (i+1)l =
(
F
(i)
u − F (i)l

)
/2 and F (i+1)u = F

(i)
u .

To implement this algorithm, there are a few issues to decide upon. First, we need to set lower and
upper bounds. From the restriction F ≥ 0, we have that the lower bound must satisfy Fl = 0. A feasible
upper bound is found by noting that GARPF is trivially true whenever pt · xt − F = mt ≤ 0 holds for all
t ∈ T ; thus Fu = maxt∈T {pt · xt}. Secondly, we need to choose a suitable finite dimensional distance
metric ‖·‖, and a suffi ciently small termination criterion ψ > 0. In the empirical application, I choose
‖·‖ to be the euclidian norm and use ψ = 10−8.
Finally, it is interesting to note that the problem (op_GF) is closely related to calculating the Afriat

Critical Cost Effi ciency Index (CCEI). Specifically, Afriat (1972) and Varian (1990) argued that fully
effi cient utility maximizing behavior may be a too restrictive hypothesis in empirical applications of
revealed preference. For this reason, they argued that ’nearly effi cient’optimizing behavior may be an
equally as plausable hypothesis as effi cient optimizing behavior. To allow for ineffi ciency in the consumers
choices, Varian (1990), based on Afriat (1972), suggested to introduce a parameter 0 ≤ e ≤ 1, such that
xtR

D
e xs if ept · xt ≥ pt · xs. GARPe holds if xtRexs implies eps · xs ≤ ps · xt, where xtRexs is the

transitive closure of the relation RDe . CCEI is then defined as the largest possible value of e, i.e.,

CCEI = max
{e}

e s.t.

T = {pt,xt}t∈T satisfies GARPe ,

0 ≤ e ≤ 1.

In other words, CCEI is the smallest proportion of the consumer’s budget which (s)he is allowed to waste
through ineffi cient consumption behavior. Thus, like the problem (op_GF), CCEI is designed to find
the smallest perturbation of total expenditure such that the data satisfies revealed preference. However,
while total expenditure is additively perturbed in (op_GF) (i.e. as p · x − F ), the perturbation enters
proportionally in CCEI (i.e. as ep ·x). As a final remark, it is standard practice in empirical applications
of consumer rationality to report CCEI and there exist very effi cient (polynomial time) algorithms to
implement CCEI. With just a minor (and simple) change in the computer code, it is possible to modify
it to solve (op_GF) instead of CCEI.

4 Implementation

The calculation of the test statistic, F , constitutes the first step in FW’s measurement error procedure.
This section discuss the additional steps required to test the hypothesis (HYP). But before the step-wise
procedure is fully operational, there are two issues that remain to be addressed. First, the structure
and distribution of the errors need to be determined. As explained above, I assume, for now, a simple
classical additive measurement error structure, defined by (CA). Moreover, I assume that the errors,
εt, are independently normally distributed random variables with mean zero and constant variance σ2,
i.e. εkt ∼ N

(
0, σ2

)
.6 At this point, it is worth pointing out that the procedure is amenable under

any (parametric) error structure and error distribution. In this section, I choose a simple classical
additive structure with normally distributed errors for illustration, but show in the next section how the

6That is, I assume E [εktεjs] = 0 for all (j 6= k) ∈ K and (s 6= t) ∈ T .
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procedure can accomodate a classical multiplicative measurement error structure as well as additive and
multiplicative Berkson error structures with any predetermined error distribution.
Secondly, the test statistic, F , need to be linked to a statistical decision rule in order to test the

hypothesis (HYP). Given the assumption of a classical additive error structure (CA), a critical value can
be derived from the following theorem (See Jones and Edgerton, 2007, p.218).

Theorem 3 Let F̂ be the optimal solution from (op_AIF ), or equivalently, from (op_GF ). Suppose
(CA) holds. Then under H0 in (HYP), it holds that F̂ ≤ maxs,t∈T {pt · (εt − εs)}.

The decision rule is to reject H0 in (HYP) whenever F̂ > CCA1−α, where α denotes the significance
level and CCA1−α denotes the 1 − α percentile of the distribution of maxs,t∈T {pt · (εt − εs)}. However,
maxs,t∈T {pt · (εt − εs)} does not follow any standard distribution, and it is therefore diffi cult to derive
an analytical expression for C1−α. To deal with this, FW suggested calculating the empirical distribution
of maxs,t∈T {pt · (εt − εs)} by simulations. With (op_AIF) replaced by the more effi cient Algorithm 1,
FW’s measurement error procedure takes the following steps (Here and below, α denotes the nominal
(%−)significance level set by the researcher).

FW’s measurement error procedure with classical additive errors

1. Calculate F using Algorithm 1. Denote the solution F̂ .

2. Choose σ2 and M and set m = 0.

3. Draw random numbers εkt ∼ N
(
0, σ2

)
for all k ∈ K and t ∈ T .

4. If F̂ > maxs,t∈T {pt · (εt − εs)}, then set m = m+ 1.

5. Repeat steps 3 and 4 M times.

6. H0 in (HYP) (i.e., that {pt,qt}t∈T satisfies GARP) is rejected if 100× (m/M) > (100− α).

FW recommended that the number of simulations, given by M in step 2, should be set relatively
large. In our application, we haveM = 5, 000 which should be suffi cient to provide a good approximation
of the empirical distribution of maxs,t∈T {pt · (εt − εs)}.
Finally, step 2 require the researcher to set a predetermined value of the variance σ2. In practice,

Jones and Edgerton (2009) suggested implementing the procedure for a grid of values of σ2. The smallest
value of σ2 such that H0 cannot be rejected is a lower bound of the possible ’amount’of measurement
errors (measured by the variance). More precisely, if σ2 denotes the lower bound, then the procedure is
also unable to reject H0 at the given significance level for any σ2 ≥ σ2.

5 Extensions

This section illustrates the generality of FW’s procedure by showing how it can accomodate other mea-
surement error models such as a classical multiplicative error structure and Berkson additive and mul-
tiplicative error structures. By the end of the section, I stress that the procedure can take on any
imaginable (parametric) error distribution, and discuss other properties.
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Classical multiplicative error structure. Instead of the classical additive error structure (CA), I
now assume that the measurement errors, εt (which I suppose have mean zero), enter multiplicatively
which results in the classical multiplicative error model:

xt = qt � (1+ εt) , (CM)

where, 1 = (1, ..., 1) denotes a K−dimensional vector of ones, and � denotes the Hadamard product
(element-wise product). Further recall that {qt}t∈T , denotes the ’true’(unobserved and without errors)
quantity-vector. In order to test the hypothesis (HYP) given the model (CM), one needs to link the test
statistic, F , to a statistical decision rule. To do so, I prove the following result, which is analogous to
Theorem 3 in the case of the classical multiplicative error model. Here, ÷ denotes Hadamard division
(element-wise division).

Theorem 4 Let F̂ be the optimal solution from (op_GF ), or equivalently, from (op_AIF ). Suppose
(CM) holds. Then under H0 in (HYP), it holds that

F̂ ≤ max
s,t∈T

{pt · ([xs ÷ (1+ εs)]− [xt ÷ (1+ εt)])− pt · (xs − xt)} .

Proof. Define B = maxs,t∈T {pt · ([xs ÷ (1+ εs)]− [xt ÷ (1+ εt)])− pt · (xs − xt)}. By Afriat’s
theorem (Theorem 1) and under H0 in (HYP) there exist numbers Ut and λt > 0 satisfying the
(Afriat) inequalities (for all s, t ∈ T ): Us − Ut ≤ λtpt · (qs − qt). Now, first solving for qt in
(CM) to get qt = xt ÷ (1+ εt), and then substituting this into the Afriat inequalities yields Us − Ut ≤
λtpt · (xs ÷ (1+ εs)− xt ÷ (1+ εt)). Next, dividing through by λt and subtracting pt · (xs − xt) from
both sides gives:

Us − Ut
λt

− pt · (xs − xt) ≤ pt · (xs ÷ (1+ εs)− xt ÷ (1+ εt))− pt · (xs − xt) ≤ B.

It, therefore, follows that (for all s, t ∈ T ):

Us − Ut − λtpt · (xs − xt) ≤ λtB.

Since F̂ is the value of F that solves the problem (op_AI F), or equivalently, solves (op_GF), it holds
that F̂ ≤ B. �

Similar to the case of a classical additive error structure, the statistical decision rule here is to reject
H0 in (HYP) whenever F̂ > CCM1−α where α denotes the significance level, and C

CM
1−α denotes the 1 − α

percentile of the distribution of maxs,t∈T {pt · ([xs ÷ (1+ εs)]− [xt ÷ (1+ εt)])− pt · (xs − xt)}. Once
again, we have to resort to simulations in order to calculate the empirical distribution of CCM1−α. In this
case, FW’s measurement error procedure takes the following steps, assuming that the errors are normally
distributed.

FW’s measurement error procedure with classical multiplicative errors

1-3. Same as above.

4. If F̂ > maxs,t∈T {pt · ([xs ÷ (1+ εs)]− [xt ÷ (1+ εt)])− pt · (xs − xt)}, then set m = m+ 1.

5-6. Same as above.

As in the previous case, that the researcher need to set a predetermined value of the variance σ2.
Like before, I suggest following Jones and Edgerton (2009) and implement the procedure for a grid of
values of σ2.
Finally, it is interesting to note that it is only step 4 in the procedure that is different from the

implementation under classical additive errors. As such, neither implementation is more computationally
burdensome than the other, and can easily be combined in empirical applications.
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Berkson additive error structure. In the next two extensions, I show how to allow for Berkson
error structures in FW’s measurement error procedure. I begin with a Berkson additive error structure,
and then turn to the multiplicative case. Suppose that the ’true’quantities q, are predicted (or caused)
by the observed quantities x via the following Berkson specification:

qt = xt + ηt, (BA)

where ηt in this case denotes the measurement errors. In contrast to classical measurement errors, a
Berkson structure thus assumes that q fluctuates around x such that E [qt] = xt, which means that
the observed quantities predict the ’true’quantities. Given the Berkson additive error structure (BA),
and by defining εt = −ηt (so that xt = qt + εt), we can directly apply Theorem 3 and show that it
under H0 in (HYP) holds that F̂ ≤ maxs,t∈T {pt · (ηs − ηt)}. Thus, the decision rule in this case is to
reject H0 in (HYP) whenever F̂ > CBA1−α where C

BA
1−α denotes the 1− α percentile of the distribution of

maxs,t∈T {pt · (ηs − ηt)}. Assuming normally distributed errors with variance σ2, FW’s measurement
error procedure takes the following steps.

FW’s measurement error procedure with Berkson additive errors

1-2. Same as above.

3. Draw random numbers ηkt ∼ N
(
0, σ2

)
for all k ∈ K and t ∈ T .

4. If F̂ > maxs,t∈T {pt · (ηs − ηt)}, then set m = m+ 1.

5-6. Same as above.

Berkson multiplicative error structure. I finally consider a Berkson multiplicative error structure,

qt = xt � (1+ ηt) . (BM)

This is the error structure considered by Varian (1985) and is the most commonly used model in em-
pirical applications (See the citations in the Introduction). Assuming that (BM) holds and defining
εt = −xt � ηt, we can once more apply Theorem 3 and show that it holds under H0 in (HYP) that
F̂ ≤ maxs,t∈T {pt · (xs � ηs − xt � ηt)}. Jones and Edgerton (2009, p. 225-227) provides a detailed dis-
cussion on how to implement FW’s measurement procedure given the Berkson multiplicative error model
(BM) with normally distributed errors. However, note that they suggest to calculate the test statistic,
F̂ , by solving (op_AIF) using non-linear optimization techniques, whereas I recommend calculating it
using the much faster Algorithm 1.

Error distribution and errors in prices. An important property of the measurement errors proce-
dures described in the previous and this section are that they can be implemented with any imaginable
(parametric) error distribution. More precisely, although we have assumed normal errors (specified in
step 3), they can, in fact, take on any distribution chosen by the researcher. For example, FW assumed
that the errors were uniformly distributed in their original procedure, while Cherchye, Demuynck, De
Rock and Hjertstrand (2012) showed how to implement FW’s measurement error procedure with normal
and uniform errors in the context of a weakly separable utility function. In the empirical application
below I implement FW’s procedure with both uniformly and normally distributed errors to investigate
the robustness of the procedures with respect to different error distributions. Interestingly, I find that
the procedures seem rather robust to the choice of error distribution.
Finally, I stress that the procedures described above are not pertained to errors in the quantities.

Jones and Edgerton (2009, p. 219-220), for example, describe how FW’s procedure can be implemented
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assuming a classical additive error specification in the prices, i.e., pt = p̃t+εt, where p̃t denotes the ’true’
unobserved price-data. It is straightforward to modify FW’s measurement error procedure to account
for errors in the prices under any of the error models presented above.

6 Empirical application

This section illustrates FW’s measurement error procedure under different measurement error models
and distributions. I do so by applying them to a data set that has previously been used in Jones and de
Peretti (2005) to compare and contrast Varian’s (1985) error procedure with an alternative procedure
proposed by de Peretti (2005). Both of these procedures are based on computing perturbed quantity data
that satisfy GARP. Jones and Edgerton (2009) used the same data set to compare FW’s measurement error
procedure with Varian’s and de Peretti’s procedures. However, they exclusively considered a Berkson
multiplicative error model, whereas I illustrate FW’s procedure under both classical and Berkson error
structures. In addition, I calculate the test statistic F using Algorithm 1, while Jones and Edgerton
(2009) used non-linear optimization techniques to calculate F from the problem (op_AIF).
The data consists of nominal per-capita asset stocks and real user cost prices for the assets in the

monetary aggregate L (Liquid Assets) (See Jones and de Peretti, 2005). The data span monthly ob-
servations from 1960 to 1992, but because of inconsistencies in the data, Jones and de Peretti (2005)
split the data into 8 different (non-overlapping) sub sets, which they called S1-S8. Table 1 presents the
results and some summary statistics of S1-S87 . In this table, columns 4 and 5 report the number of
GARP violations and the Afriat critical cost effi ciency index (CCEI). Column 6 report the calculated test
statistic, F̂ , for each sub-sample, while the last column gives the time (in seconds) it took to calculate
F̂ using Algorithm 1.

Table 1: Summary statistics and results

Sample #Assets (K) #Obs. (T ) # GARP violations CCEI F̂ Time (in sec.)

S1 13 36 2 0.9999 0.0047 1.0140

S2 14 81 1479 0.9740 4.3145 4.8828

S3 17 45 6 0.9988 0.2828 1.3104

S4 19 34 8 0.9990 0.3636 0.7020

S5 20 70 442 0.9825 14.9133 3.2604

S6 24 39 6 0.9970 0.1767 0.9672

S7 22 65 18 0.9984 0.9240 3.1512

S8 20 16 0 1.0000 0.0000 0.0000

The last column shows that Algorithm 1 indeed runs very fast in practice. Take for example the
sample S2 with T = 81 observations, for which Algorithm 1 found a solution under 5 seconds.
Consider next Figures 1-7, which plots the percentage number of times F̂ exceed the critical value

(y−axis) for different values of the standard deviation (x−axis).

[FIGURES 1-7 HERE]

7See also Tables 1,2 and 3 in Jones and de Peretti (2005).
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Each figure represents a different sample (S1-S7), and contains 4 different plots which corresponds to
the classical multiplicative model (CM) with either normal or uniform errors, and the Berkson multiplica-
tive model (BM) with normal and uniform errors. For example, the solid line in Figure 1 corresponding
to the classical multiplicative error model (CM) with normal errors gives the %−fraction for which
F̂ > maxs,t∈T {pt · ([xs ÷ (1+ εs)]− [xt ÷ (1+ εt)])− pt · (xs − xt)} for different standard deviations.
Assuming a 5% nominal significance level then means that H0 in (HYP) is rejected for standard devia-
tions that give values of that fraction above (100− 5) = 95%. The results from the Berkson multiplicative
model with normal errors replicates the ones in Jones and Edgerton (2009, Table 2).
Some interesting findings emerge from Figures 1-7. First of all, the figures indicate that H0 (i.e., that

the true data satisfy GARP) can only be rejected for very small standard deviations. More precisely, if
the standard deviation of measurement errors is 0.9% or greater, then the test is unable to reject H0 at
the 5% level for any data set. This means that the data would have to be measured very precisely in
order to consider rejecting the null hypothesis of utility maximization. And as seen from the figures, this
holds irrespectively of the sample (i.e., data set), the model or error distribution in question. In fact, it
is interesting to note from the figures that the classical and Berkson error models (with the same error
distribution) produce very similar results. This implies that FW’s measurement error procedure, at least
for our data set, seem to be robust in terms of the measurement error model.
Secondly, the results also seem robust in terms of the chosen error distribution. This can be seen

from comparing the results of the classical and Berkson models with normal errors to those with uniform
errors. In fact, they produce very similar results. Finally, it is interesting to compare our results with
Jones and de Peretti (2005) who applied Varian’s (1985) measurement error procedure to the same data
set (assuming a Berkson multiplicative error model). Looking at Table 5 in Jones and de Peretti (2005),
we see that Varian’s (1985) and our results are fairly consistent with each other (which confirms the
findings in Jones and Edgerton, 2009, who compared FW’s and Varian’s procedure within a similar
setting).

7 Discussion and concluding remarks

This paper has extended Fleissig and Whitney’s (2005) measurement error procedure to make it op-
erational with large data sets. In particular, I have proposed an easy-to-apply algorithm to calculate
the test statistic in this procedure. The algorithm is based on a simple modification of the Generalized
Axiom of Revealed Preference (GARP), and as such, doesn’t require the use of any optimization software.
In an empirical application, I show that implementing this algorithm is very fast in practice.
In addition to proposing the new algorithm I have shown how Fleissig and Whitney’s (2005) measure-

ment error procedure can be applied to different measurement error models. Specifically, I show how the
procedure can be designed to test whether data with errors satisfy rational behavior in classical additive
and multiplicative error models as well as in Berkson additive and multiplicative error models. The
measurement errors are not pertained to a particular distributional assumption in any of these models,
but can take on any imaginable distribution chosen by the researcher.
Finally, I discuss some important issues related to the nature of FW’s test procedure. First, it is not

hard to see that the procedures described in previous sections are conservative. This follows because
the test will have at least the desired level of significance, i.e., the probability of a Type I error is
P
[
F̂ > Cl1−α | H0

]
≤ α for l = CA,CM,BA,BM , where α is the nominal significance level. This

means that one should expect the probability of making a Type I error to be low in the current context.
But although this is not negative per sé, it is likely that it will have effect on the power of the test.
Unfortunately, measuring the potential loss in power is diffi cult since it requires the researcher to specify
a suitable hypotesis of irrational behavior. Nevertheless, the conservative nature and its implications
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on the power is not unique to FW’s procedure but shared by the other procedures designed to test the
hypothesis (HYP); See for examples Varian (1985) and Epstein and Yatchew (1985).
Secondly, when put in relation to the alternative procedures (notably Varian, 1985, and Epstein and

Yatchew, 1985) that has been developed to test the hypothesis (HYP), it seem that FW’s procedure, in
combination with the results in this paper, has two main benefits. First, from a computational viewpoint,
it is by far the most simple and effi cient to implement and one can expect it to run very fast in practice.
As such, it seem to be the only procedure that is applicable for the large data sets typically encountered
in empirical macroeconomics and applied economic research. Second, FW’s procedure is very flexible in
that it can be implemented under a wide variety of different measurement error models without increasing
or changing the computational burden of the procedure. Also, it is very general in the sense that it is
amenable under any error distribution chosen by the researcher.
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Figure 1: Results for sample S1
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Figure 2: Results for sample S2
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Figure 3: Results for sample S3

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

10

20

30

40

50

60

70

80

90

100

100*Standard dev iation

Pe
rc

en
ta

ge
 o

f s
im

ul
at

ed
 va

lu
es

 e
xc

ee
de

d 
by

 F

C lass ic al normal
Berks on normal
C lass ic al uniform
Berks on uniform

Figure 4: Results for sample S4
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Figure 5: Results for sample S5
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Figure 6: Results for sample S6
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Figure 7: Results for sample S7
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