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Abstract 

Mandelbrot (1960) proposed using the so-called Pareto-Lévy class of distributions as a framework for 
representing income distributions. We argue in this paper that the Pareto-Lévy distribution is an 
interesting candidate for representing income distribution because its parameters are easy to interpret 
and it satisfies a specific invariance-under-aggregation property. We also demonstrate that the Gini 
coefficient can be expressed as a simple formula of the parameters of the Pareto-Lévy distribution. We 
subsequently use wage and income data for Norway and seven other OECD countries to fit the Pareto-
Lévy distribution as well as the Generalized Beta type II (GB2) distribution. The results show that the 
Pareto-Lévy distribution fits the data better than the GB2 distribution for most countries, despite the 
fact that GB2 distribution has four parameters whereas the Pareto-Lévy distribution has only three. 
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1. Introduction 

For analysing and representing data on income distributions it may often be convenient to apply a 

parametric class of distribution functions, for the following reasons. First, a parametric distribution 

allows researchers to estimate the income distribution in question even if data are scarce. Second, a 

parametric framework may be convenient for summary representations of the distribution by means of 

associated parameters, provided that these parameters have a clear and intuitive interpretation and 

capture central aspects of the distribution. Third, the parameters of a parametric framework may in 

some cases relate in a simple way to commonly used inequality measures, such as the Gini coefficient, 

thus facilitating the interpretation of changes in the Gini coefficient in terms of changes in the 

parameters of the corresponding distribution. This paper discusses the potential of the Pareto-Lévy 

distribution as a framework for representing income distributions. 

 In recent years, several researchers have proposed or discussed parametric representations for 

the size distribution of incomes. These include Champernowne (1953), Singh and Maddala (1976), 

Dagum (1977), Kloek and van Dijk (1978), McDonald and Ransom (1979), van Dijk and Kloek 

(1980), McDonald (1984), Esteban (1986), Majumder and Chakravarty (1990), McDonald and 

Mantrala (1995), McDonald and Xu (1995), Bordley et al. (1996), Parker (1999), Bandourian et al. 

(2002) and Chotikapanich (2008). The distributions proposed include the log-normal distribution, the 

Gamma and Generalized Gamma distributions, the Burr 3 and Burr 12 distributions, and the GB1 and 

GB2 distributions. As discussed by McDonald and Mantrala (1995) and Bordley et al. (1996), many 

distributions that have been proposed in the literature, such as the Generalized Gamma, the Burr 3 and 

the Burr 12, are special cases of the GB2 distribution. Bordley et al. (1996) demonstrate that among 

several four-parameter distributions, the GB2 distribution yields the best fit to US data.  

Some of these representations are derived from theoretical principles. For example, Singh and 

Maddala (1976) and Dagum (1977) derived their functional form as the solution of a differential 

equation specified to capture the characteristic properties of empirical income distributions, whereas 

Esteban (1986) proposed characterizing the Generalized Gamma distribution as an income distribution 

in terms of what he defined as the ‘income share elasticity’. Parker (1999) presents a neoclassical 

model of optimizing firm behaviour which predicts that income distribution will follow the GB2 

distribution.  

Unfortunately, the parameters of many of the distributions proposed in the literature do not in 

general have a simple interpretation. Also, except for Champernowne (1953), Singh and Maddala 

(1976), Dagum (1977), Esteban (1986) and Parker (1999), the only selection criterion of the 

parametric distributions seem to be a consideration of goodness of fit. Mandelbrot has emphasized in 
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several of his papers that although goodness of fit is a necessary requirement, it should not be the only 

one. This is because there is no general agreement on what is the best goodness of fit measure. Since 

different goodness of fit measures emphasize different parts of the distributions under investigation, 

different measures may result in different rankings of the distributions. A more fundamental point is 

that the central focus of a scientific approach should be on the relevant qualitative properties of the 

model in question, not just on its flexibility with respect to fitting the data and the application of 

sophisticated inference methods. 

In the 1960s and 1970s Mandelbrot wrote a number of papers in which he discussed the 

problem of justifying the stochastic properties of economic variables such as stock market prices and 

incomes (Mandelbrot, 1960, 1961, 1962, 1963). His argument was that there are certain aggregation 

operations that take place and have important bearings on the structure of the probability distribution 

of the variables under investigation. In a similar way to what had happened in the physical sciences, he 

was led to postulate specific invariance principles which imply that income distributions should 

belong to the class of stable distributions. The class of stable distributions has the property that a linear 

combination of two independent stable random variables with the same index of stability is a stable 

random variable. The class of stable distributions contains the normal distribution as a special case and 

also follows from a general version of the Central Limit Theorem without the condition of bounded 

variance. Note that the condition of bounded variance is essential in the classic Central Limit 

Theorem. More precisely, in the context of income distributions Mandelbrot restricted attention to a 

subclass of stable distributions; namely, what he called the Pareto-Lévy law. A Pareto-Lévy 

distribution has the properties that the mean exists, that it is skewed to the right and that, for a suitable 

choice of location, the probability mass of negative values becomes negligible (within the stable 

class). The rationale for the emphasis on the Pareto-Lévy law is the need to take into account the fact 

that ‘income’ is a non-negative variable. 

Like Mandelbrot, we argue that the Pareto-Lévy distribution offers an attractive framework for 

representing income distributions, for a number of reasons. First, the three parameters of the Pareto- 

Lévy distribution have a clear and intuitive interpretation. Second, the right tail is asymptotically 

Pareto-distributed, a property which is considered as a typical feature of empirical income 

distributions. Third, the Pareto-Lévy distribution possesses the linear aggregation property mentioned 

above. Specifically, since a linear combination of independent Pareto-Lévy distributed variables, 

which are distributed according to a Pareto-Lévy distribution with given index of stability, has a 

Pareto-Lévy distribution with the same index, a model using this framework will consequently not 

depend critically on whether the income concept is based on, say, monthly or yearly income.  

A novel contribution of this paper is the demonstration that the Gini coefficient of the Pareto-

Lévy distribution can be expressed as a simple closed-form formula of its parameters. This is of 



4 

considerable interest because it facilitates the interpretation of changes in income distribution in terms 

of changes in inequality, as measured by the Gini coefficient. 

Apart from the work of Van Dijk and Kloek (1980), the Pareto-Lévy distributions have not 

received much attention in this context. In the theoretical part of this paper, we discuss in detail 

possible reasons why many are reluctant to use the Pareto-Lévy class to model income distributions 

and argue that they are no longer valid objections.  

In the empirical part of this paper, we estimate Pareto-Lévy distributions using micro-data on 

wage and income for Norway and grouped income data for seven other OECD countries from the 

Luxembourg Income Study (LIS) database (2003). This seems to be the first time micro-data on 

incomes have been used to estimate a Pareto-Lévy distribution. For comparison, we also fit the income 

data to a GB2 distribution, comparing the fit to the estimated Pareto-Lévy distribution. In contrast to 

what van Dijk and Kloek (1980) found, our results suggest that the Pareto-Lévy distribution is flexible 

enough to fit typical empirical income distributions. It even appears to fit the data better than the 

popular GB2 distribution for most countries. 

The paper is organized as follows: in the next section we discuss properties of stable 

distributions and review Mandelbrot’s invariance arguments that support the Pareto-Lévy distribution; 

in Section 3 we derive a closed-form formula for the Gini coefficient as a function of the parameters of 

the Pareto-Lévy distribution; in Section 4 we review different estimation methods; and in Section 5 we 

describe the data and report empirical results. 

2. Theoretical considerations 

In this section we first review some of the properties of the Pareto-Lévy law before we explain why 

we are using it to represent income distribution. Our reason for this is that although stable distribution 

is well known among specialists in mathematical statistics, it appears to be less known among 

economists and even many econometricians.  

The stable class follows from an extended version of the Central Limit Theorem, under rather 

general conditions. Specifically, a random variable, X, is said to have a stable distribution if for any 

positive numbers, 1a  and 2a there exists a positive number 1b  and a real number 2b  such that  

(2.1) 1 1 2 2 1 2
da X a X b X b+ = + , 

where X1 and X2 are independent copies of X, and where d=  denotes equality in distribution. It is well 

known that the normal distribution has this property, but it is less known that this property holds for a 

much wider class of distribution functions: namely, the so-called stable class. The distribution of X is 

called strictly stable if (2.1) holds with 2b 0= . The stable class was thoroughly investigated by Paul 



5 

Lévy in the 1920s and 1930s (see Lévy, 1925, 1937; see also Gnedenko and Kolmogorov, 1954). 

Except for a few cases, the probability distributions in the stable class cannot be expressed in closed 

form. Their characteristic function, however, can be expressed as 

(2.2) i X( ) Ee exp i c 1 i sign( ) tan ,
2

αλ α⎛ ⎞⎛ ⎞απ⎛ ⎞φ λ = = λδ − λ − β λ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

where, ,1i −=  X is a stable random variable, c > 0 and δ  are scale and location parameters, 

[ ]1,1β∈ −  is a parameter that represents the skewness of the distribution, α (called the index of 

stability) represents the tail fatness of the distribution and the formula (2.2) holds for all ( ]0,2α∈  

except for 1α = . When 1α = , the characteristic function is given by a similar formula (see 

Samorodnitsky and Taqqu, 1994). The parameter c is a scale parameter similar to the standard 

deviation and represents the ‘spread’ of the distribution, so that when X is multiplied by a constant, k, 

the scale parameter changes from c to kc. By tail fatness representation we mean that asymptotically 

 
xd

xFd
log

))(1log( −−
≅α  

when x is ‘large’. This property means that the distribution has a right Pareto tail (see Pareto, 1897). 

When 0β =  the distribution is symmetric, whereas it is said to be totally skewed to the right (left) 

when 1=β  ).1( −=β  When 2α =  we get the normal distribution, the parameter β vanishes and 

2 22c σ=  where 2σ is the variance. When )2,1(∈α  the variance of the distribution is infinite and the 

expectation equals ,δ whereas the expectation does not exist and the variance is infinite when 

( ]0,1α∈ . Thus within the stable class the only member that possesses a finite variance is the normal 

distribution.  

 For our purpose, we are only interested in a subclass of the stable distributions, namely the 

Pareto-Lévy class. This class consists of the subclass of stable distributions with ∈α (1,2) and 1β =  

and has the property that the probability mass of negative values will be negligible for sufficiently 

large δ .1 Τhus, a Pareto-Lévy distribution is characterized by only three parameters, the measure of 

tail fatness α,  the mean δ , and the measure of distribution spread  c.  

                                                      

1 There is also another special case within the stable class with support defined on the positive part of the real line. When the 
index of stability is less than 1, the skewness parameter is equal to 1 and the location parameter is zero, then the 
corresponding stable distribution is positive only on the positive part of the real line. However, this special case seems not 
to be of interest in the context of income distribution because the mean does not exist. 
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The first person to discuss theoretical properties of income distributions seems to have been 

Pareto (1897). He found that the right tail of income/wealth distribution follows an inverse-power law 

and he therefore proposed the Pareto distribution to describe the distribution of income. However, it 

was subsequently recognized that the Pareto distribution gives a poor fit of other parts of the 

distributions. In several papers Mandelbrot proposed using a generalization of the Pareto distribution – 

namely, the Pareto-Lévy distribution mentioned above – as a framework for representing incomes and 

other economic variables (see Mandelbrot, 1960, 1961, 1962, 1963).  

Not many researchers have taken Mandelbrot’s idea of applying the Pareto-Lévy class as a 

framework for analysing income distribution very seriously. We suggest that this may be for the 

following reasons. First, the c.d.f. and the corresponding density of the Pareto-Lévy distributions 

cannot be expressed in closed form. Second, since we never observe empirical distributions with 

infinite variances, it may initially seem rather awkward to apply theoretical distributions with infinite 

variance. Third, the theoretical arguments provided by Mandelbrot to support his choice of the Pareto-

Lévy distribution are not entirely convincing. Finally, the Pareto-Lévy distribution is not flexible 

enough to fit typical empirical income distributions.  

 Taking a closer look at these arguments, the first one is no longer a serious objection because 

several estimation and simulation methods now exist that can be used to estimate and produce graphs 

of stable distributions. One particular method (McCulloch, 1986) is in fact extremely simple to use.  

The Second argument against the Pareto-Lévy distribution is not valid either. The variance is 

just a mathematical expression that should not be taken literally in every case. The situation is similar 

to the following example: the normal distribution has infinite support, whereas empirical distributions 

have finite support, but this does not prevent researchers from usefully applying this distribution in a 

large number of cases. Moreover, the existence of second-order moments implies that, if disturbances 

hitting economic agents are only idiosyncratic, then aggregate fluctuations disappear as the number of 

agents grows large. In contrast, distributions with infinite variance do not need aggregate shocks to 

generate aggregate fluctuations and are good candidates for explaining aggregate large fluctuations in 

time periods characterized by small aggregate shocks.  

As regards the third objection, Mandelbrot (1960) argued as follows: if income is considered 

the variable of interest, this variable may be broken down into different kinds of income, such as 

income from waged work, self-employment, capital income, etc. If the distribution of each of the 

income components is compared with the distribution of total income, it appears that these 

distributions have more or less the ‘same shape’.2 From this, Mandelbrot (1960) postulated that the 

distribution of the sum of (independent) income components should also belong to the same class as 

                                                      

2 The notion of the ‘same shape’ is, of course, not very precise. Here it will be interpreted as follows: two distributions have 
the same shape if after a scale transformation they become roughly the same.  
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the distributions of the components. Hence, provided that the income components are skew to the 

right, stochastically independent, and have negligible negative left tails, the Pareto-Lévy class of 

distributions follows. Of course, in practice the income components may not be strictly independently 

distributed, so Mandelbrot’s argument will be valid only for an idealized case and the resulting class 

of distributions may hold only in an approximate sense. It is also of interest to note that although the 

independence condition is necessary for (2.1) to imply a Pareto-Lévy distribution, it is sufficient for 

this equation to hold that ),( 21 XX  has a joint Pareto-Lévy distribution. A similar argument can be 

applied to aggregation over time.  

As mentioned in the introduction, we believe that in addition to the invariance-under-

aggregation property explained above, the most interesting feature about the Pareto-Lévy distribution 

function is that its parameters have a clear and intuitive interpretation as they represent key features 

(location, scale and tail fatness) of the underlying income distribution, as reviewed in Section 2. This 

is in contrast to many other parametric distributions that have been applied in this context.  

A crucial point, therefore, is whether the Pareto-Lévy law is sufficiently flexible to yield a good 

fit of empirical income distributions compared to other parametric distributions in use. Our empirical 

results on income data from eight OECD countries suggest the Pareto-Lévy law is quite flexible. 

Specifically, we demonstrate in the present paper that in our chosen empirical application the Pareto-

Lévy distribution does indeed fit the data rather well.  

As indicated in the introduction, we would like to emphasize that model selection criteria based 

solely on goodness of fit measures are treacherous. The reason is that different and perfectly 

reasonable goodness of fit measures may yield different model selection results, as will be illustrated 

in the empirical application below. More fundamentally, scientific modelling should not primarily be a 

matter of curve fitting. What is needed are alternative qualitative selection criteria that combine 

goodness of fit properties with theoretical features. With these criteria in mind, the Pareto-Lévy law 

has clear advantages over other competing parametric distributions proposed in the literature, due to 

the appealing theoretical properties discussed above. 

3. The Gini coefficient as a closed-form function of the parameters of the 

Pareto-Lévy distribution 

In this section we investigate an additional advantage of the Pareto-Lévy law, namely, that it allows us 

to express the Gini coefficient as a simple formula of the underlying parameters of the distribution. 

The Pareto-Lévy law is not the only distribution that leads to a closed-form formula for the Gini 

coefficient. However, the Gini coefficient for the most general family of distributions proposed in this 

context – namely, the GB2 distribution – is quite complicated (see McDonald, 1984).  
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In assessing the significance of changes in an income distribution, say F(y), aggregate 

measures of income inequality are often employed. The most common measure is the Gini coefficient, 

which can be expressed as 

(3.1) 1 2

1

E Y Y
G

2EY
−

= , 

where Y1 and Y2 are independent random variables with c.d.f. F(y). In this section we consider the 

properties of G when F(y) is a Pareto-Lévy distribution. Specifically, we demonstrate how G depends 

in a simple way on the parameters of the Pareto-Lévy distribution.  

 When F is assumed to be a Pareto-Lévy distribution it follows that 1 2Y Y−  is stable, 

symmetric with zero mean and dispersion parameter equal to 1c2 α  (see Samorodnitsky and Taqqu, 

1994). From Samorodnitsky and Taqqu (1994, p.18), we thus find that 

 

(3.2)    

1

1 2

12c 1 2
E Y Y ,

α⎛ ⎞Γ −⎜ ⎟α⎝ ⎠− =
π

 

 

from which it follows that G can be expressed as 

(3.3) 

11c 1 2
G .

α⎛ ⎞Γ −⎜ ⎟α⎝ ⎠=
δπ

  

Let   

(3.4) 
1/(1 1/ )2 .

αΓ − α
κ =

π
 

Since the Gamma function )(xΓ is strictly decreasing when x is positive and less than 1, it follows that 

κ is decreasing as a function of .α  Since κ  is a monotone mapping of ,α it is qualitatively an 

equivalent representation of tail fatness. Thus κ  increases with increasing fatness of the right tail of 

the income distribution, so we can write the Gini coefficient as 

 

(3.5)     cG .κ
=

δ
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The relation in (3.5) asserts that the Gini coefficient is proportionate to the scale parameter and the tail 

fatness index, and inversely proportionate to the mean of the distribution. Evidently, since incomes are 

positive, the parameters must fulfil certain restrictions: namely, that 

 ( )P 1cV 0 ≥ − εδ + >  

where ε is small and V denotes a Pareto-Lévy random variable with scale and location parameters 

equal to 1 and zero respectively. For example, if 0.001ε =  and 1.6α = , then it follows that 4 .cδ ≥  

 The formula (3.3), or alternatively (3.5), is of considerable interest because it enables us to 

assess the impact on inequality (measured by G) from changes in the parameters of the income 

distribution: namely, c, δ  and α. In practice, the tail fatness index α  will in most cases belong to the 

interval [1.5, 1.7]. This corresponds to a κ  decreasing from 1.35 to about 1. This means that an 

increase of the index of stability from 1.5 to 1.7 will yield a substantial decrease in inequality, as 

measured by the Gini coefficient. 

 For the sake of computational simplicity, the following may be of interest. Note first that 

within the interval x [1.3, 1.5],∈ (x)Γ is practically constant and approximately equal to 0.89. 

Remember, furthermore, that the Gamma function satisfies the recursive relation 

).()1( xxx Γ=+Γ Hence we obtain that when α belongs to the interval [1.5, 2], we have  

 

    ( ) ( )2 1/ 0.891 1/ ,
1 1/ 1 1/

Γ − α
Γ − α = ≅

− α − α
  

 

which implies that  

 

(3.6)     
1/0.89 2 .

(1 1/ )

α⋅
κ ≅

− α π
 

 

 There are several non-parametric estimators for the Gini coefficient. For example, we realize 

that the empirical analogue to the formula in (3.1) is given by 

 

(3.7)    ,
)1(2

||
ˆ

1

1

∑

∑∑

=

= ≠

−

−

= N

i
i

N

j

N

ji
ji

YN

YY
G  
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where N is the sample size and N,...,2,1i,Yi =  are the individual incomes. Therefore the formula in 

(3.7) can be applied to estimate the Gini coefficient non-parametrically. 

4. Estimation issues 

The literature suggests many methods for estimating the parameters of stable distributions. In this 

section we briefly review a few of these in order to show that although no closed-form analytic 

expression for Pareto-Lévy distribution function exists, it is not difficult to estimate its parameters. 

However, here we are not primarily concerned with optimal inference methods. As indicated above, 

we feel that, with some notable exceptions, the literature on fitting parametric distributions to incomes 

has focused too narrowly on inference issues and statistical goodness of fit criteria. 

4.1. The McCulloch method  

An interesting estimation method, attractive because of its simplicity, was proposed by McCulloch 

(1986). It is based on selected fractiles of the empirical distribution. Specifically, he proposed a 

method based on the 5 per cent, 25 per cent, 50 per cent, 75 per cent and 95 per cent fractiles of the 

empirical distribution function. Thus this method requires the knowledge of only these fractiles and 

access to a set of tables given in McCulloch’s paper. The corresponding asymptotic standard errors 

can also be computed by means of these tables. Below we illustrate how this method performs in 

comparison with other estimation methods. 

4.2. The Koutrouvelis method 

The method proposed by Koutrouvelis (1980) is based on properties of the characteristic function of 

the stable distribution. This method has also been extensively discussed by Kogon and Williams 

(1998), so we give only a very brief discussion here.  

 Koutrouvelis noted that (2.2) implies that 

 

(4.1)    2ln( ln( ( ) )) ln(2c ) lnα− φ λ = + α λ  

 

This relation shows that a regression type of estimation procedure may be possible (for estimating c 

and )α . To carry out this procedure, ( )φ λ on the left-hand side of (4.1) is replaced by the 

corresponding empirical characteristic function, given by 
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(4.2) k

N
i Y

k 1

1ˆ( ) e
N

λ

=

φ λ = ∑ , 

and (4.1) is regressed against ln λ  for suitable chosen values of λ. Furthermore, Koutrouvelis shows 

that 
2ˆ( )φ λ  can be expressed as 

(4.3) ( )( )2

r q2
r,q

1ˆ( ) cos Y Y .
N

φ λ = λ −∑  

Koutrouvelis (1980, 1981) and Kogon and Williams (1998) have studied refinements of the estimation 

procedure above and have also done simulation experiments to demonstrate that this approach works 

well and is quite efficient, provided that the λ-values are carefully selected and the data are suitably 

normalized. Koutrouvelis (1980) indicates how to select appropriate λ-values. Thus by this method 

both α and c can be estimated. For further discussion on this method, we refer to Kogon and Williams 

(1998). Moreover, since the assumption of stability implies that the relation expressed in (4.1) is 

linear, we can obtain an informal test of the stability assumption by plotting 2ˆ{ln( ln(| ( ) | ))}− φ λ  

against {ln }λ . If this plot is approximately linear it indicates that the underlying distribution is stable. 

 Since 1β =  in the Pareto-Lévy class, the expectation δ  is the only parameter that remains to 

be estimated. Koutrouvelis shows that (2.2) also implies the relation 

 

(4.4)    Im ( )Arc tan c sgn( ) tan
Re ( ) 2

αα⎛ ⎞φ λ απ⎛ ⎞= δλ + λ λ⎜ ⎟ ⎜ ⎟φ λ ⎝ ⎠⎝ ⎠
 

 

where Im(.) and Re(.) denote the respective imaginary and real parts of the characteristic function. 

When c and α have been estimated we can, by replacing ( )φ λ  with ˆ( )φ λ use (4.4) to estimate the 

mean δ.  This parameter can also be estimated by the corresponding sample mean. However, unless 

the sample is large, the sample mean is not a very good estimator for the population mean. 

4.3. Least-squares method based on the cumulative distribution function 

This method is based on minimizing  

 

    ( )2

k k
ˆF(Y ) F(Y ) ,

k
−∑  
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where )y(F̂  is the empirical cumulative income distribution function and }Y{ k the income 

observations. The least-squares approach as applied in this paper relies on computing the cumulative 

Pareto-Lévy distribution function by a method developed by Nolan (1997). Nolan’s method is based 

on a reparametrized version of the stable distribution provided by Zolotarev (1986). For 1β =  (totally 

skewed to the right) we have found that Nolan’s procedure works well for computing c.d.f., but does 

not work well for computing the corresponding probability density.  

The least-squares method was originally proposed by Bohman (1975). However, he put 

forward a different method for computing the Pareto-Lévy distribution. The least-squares method can 

also be used on grouped data. 

4.4. Limited-information maximum-likelihood estimation 

Since we have individual observations, it is in principle possible to apply the maximum-likelihood 

method (full information). We have found that for Pareto-Lévy distributions, existing numerical 

procedures for density functions, such as those suggested by Nolan (1997) and McCulloch and Panton 

(1997), do not always work well. However, Nolan’s procedure seems to work well for computing 

stable c.d.f. We have therefore applied a limited-information maximum-likelihood procedure based on 

grouped data. In this case the log-likelihood function has the form 

 ( ) ( )( )
m

k k k 1
k 1

N ln F y F y −
=

−∑  

where 1 2 my y ... y< < < , is the partition that defines the groups and Nk is the number of observations 

within ( )k 1 ky , y−  (group k). In the actual estimations we have chosen the number of points, m, equal to 

30. This method can also be used on grouped data. In fact, several researchers have used this method 

with different types of parametric distributions. 

5. Data, estimation results and goodness of fit 

We used two different data sources for our empirical illustration. The Norwegian individual data are 

based on the Norwegian income and wealth data for 1994 gathered by Statistics Norway and described 

by Pedersen (1997). Income data for other countries used in this paper have been obtained from the 

Luxembourg Income Study (LIS) database. Specifically, we use data for seven countries: Australia 

(1994), Belgium (1997), Canada (1997), France (1994), Germany (1994), Italy (1995) and the United 

States (1997). The LIS datasets contain variables on market incomes, public transfers and taxes, 
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household- and person-level characteristics, labor market outcomes, and, in some datasets, 

expenditures. 

5.1 Results for Norway 

For the Norwegian data, defining income as the sum of wage income, income from self-employment 

and capital income, we have excluded those individuals whose income is less than the minimum 

pension benefit for single people. In 1994 this amount was 60,700 kroner.3 The sub-population 

obtained by this censoring consists of 5,618 people. Without such censoring the income distribution in 

Norway is bimodal. The estimates of the parameters of the Pareto-Lévy distribution are shown in 

Table 1. 

 

(Table 1 and Figure 1 inserted here) 

  

For the Pareto-Lévy distribution the limited-information maximum-likelihood method is based 

solely on 30 equally distributed selected data points, as discussed in Section 4.4. Two versions of the 

least-squares method are applied. The first uses all the income data of the selected sub-population and 

the second is based solely on the same 30 data points as were used for the maximum-likelihood 

method. The second is applied for the sake of comparison with the maximum-likelihood method. The 

precision of the Koutrouvelis method will depend on the choice of { }r .λ  The calculation of standard 

errors of the parameters of the Koutrouvelis method can be made using the procedure of Koutrouvelis 

and Bauer (1982). The calculation of the standard errors of the least-squares method is, however, not 

straightforward. We have estimated standard errors by applying the bootstrap approach for the 

Koutrouvelis and the least-squares methods. Bootstrap estimates are obtained by simulating 25 

replications. As indicated in Section 4.2, it is possible to obtain an informal test of stability by plotting 

the empirical counterpart of the left-hand side of (4.1)  against ln λ . This plot is displayed in Figure 

1, where the data are scaled as suggested in Koutrouvelis (1980). Figure 1 shows that the plot is fairly 

linear up to ln 0.7λ ≈ . Table 1 shows that the different methods yield modest variations in the 

estimates. For example, the estimates of the index of stability do not differ significantly according to 

confidence intervals based on twice the standard deviation on both sides. According to Table 1, it 

seems, not surprisingly, that McCulloch’s method produces considerably higher standard errors of the 

                                                      

3 The corresponding amount for married people was about 10,000 kroner less than for single people. People with incomes 
below 60,700 kroner occur in the data. Our interpretation is that people declaring incomes below the subsistence level 
received undeclared income from other sources: for example, their spouses. The exchange rate in 1994 was 1 US dollar to 
around 7.05 kroner. 
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estimates of α and c than the other methods. Apart from the estimates obtained by McCulloch’s 

method, the Gini coefficients calculated by (3.3) vary little from the estimation method and are close 

to the empirical one, calculated by applying the estimator in (3.7) on all observations.  

 Remember that our sub-population can in fact be viewed as censored, as we have removed the 

information about those with incomes below 60,700 kroner. In one estimation procedure we have 

therefore also applied the corresponding censored theoretical distribution in a limited-information 

maximum-likelihood estimation procedure.  

The Pareto-Lévy c.d.f. has been simulated by means of tables provided by McCulloch and 

Panton (1997).  To assess how well the Pareto-Lévy distribution fits the data, we have displayed the 

cumulative empirical and the fitted cumulative Pareto-Lévy distribution estimated by the least-squares 

method. In Figure 2 we display the empirical c.d.f. together with the corresponding fitted Pareto-Lévy 

c.d.f. by the least-squares and the censored least-squares procedures respectively. We note that the 

respective plots are almost indistinguishable. 

 

(Figure 2, 3, 4 inserted here) 

 

In Figures 3 and 4 we show Quantile–Quantile (Q–Q) and Percentile–Percentile (P–P) plots of 

the cumulative empirical distribution functions against the fitted Pareto-Lévy distribution. We note 

that they are close to straight lines, which indicates a good fit.   

 For the sake of comparison we have also fitted the GB2 distribution to the income data. The 

parameter estimates of the GB2 distribution are given in Table 2. We note that these estimates vary 

considerably across different estimation methods. This may indicate that the parameters of the GB2 

distribution do not each represent different and separate qualitative properties of the distribution, as a 

result of which small changes in the data or estimation method may result in large changes in 

parameter estimates. This contrasts with the estimates of the Pareto-Lévy distribution, which seem to 

be fairly stable across different estimation methods. We believe that this is because the parameters ,α c 

and δ capture different and ‘orthogonal’ qualitative properties of income distribution.  

 

 (Table 2, 3 inserted here) 

  

Table 3 shows how selected goodness of fit measures vary depending on distributions and 

estimation methods. Based on 30 equally distributed points of the empirical c.d.f., we have used the 

log-likelihood, root of the mean square error and the mean absolute deviation as goodness of fit 

measures. These measures have been calculated as follows: after the unknown parameters of the 

Pareto-Lévy income distribution were estimated, we calculated the mean square from the formula in 

Section 4.3 and the mean absolute deviation as the mean absolute difference between the empirical 
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c.d.f. and the corresponding estimated Pareto-Lévy c.d.f. When the least-squares method is applied, 

both the Pareto-Lévy and the GB2 distributions give an excellent fit, with the latter slightly better than 

the former. However, when the limited-information maximum-likelihood method is used, the Pareto-

Lévy distribution seems to perform better than the GB2 distribution, despite the fact that the former 

has only three parameters while the latter has four. The corresponding likelihood functions are almost 

equal, with the likelihood for the Pareto-Lévy distribution slightly higher than the likelihood for the 

GB2 distribution. 

5.2 Results for the other selected countries 

Household income data for the other seven OECD countries have been taken from LIS. Many of the 

LIS data providers do not allow direct access to their microdata. However, access to the LIS micro 

databases can be achieved through a remote-execution system, which supports only the standard 

statistical packages SPSS, STATA and SAS. We have generated grouped data through the remote-

execution system ourselves. The grouped data we have used are the 5th, 10th, ..., and the 95th 

percentiles generated from the LIS household income data for each country.  

Following Bandourian et al. (2002), we define the income variable for the dataset as gross 

wage and salaries, farm income and any self-employment income. As no direct access to the micro-

database of LIS is permitted and because of the difficulty of fitting Paréto-Lévy distribution using the 

standard statistical packages utilized by LIS, we have resorted to grouped data instead. We obtained 

data grouped into 20 equal-probability intervals, corresponding to the fifth to the ninety-fifth 

percentiles. 

The estimates of the distribution parameters were obtained by applying the limited-

information maximum-likelihood estimator proposed in Section 4.4. The estimates of the parameters 

of the Pareto-Lévy distribution and the GB2 distribution are presented in Table 4. Goodness of fit 

measures are reported in Table 5. 

 

[Table 4-5 here.] 

 

Table 5 shows that the fit of these two distribution functions is quite close, except perhaps for the US 

data.4 This means that the Pareto-Lévy distribution is flexible enough to fit the empirical income data. 

Pareto-Lévy distribution fits the data better than the GB2 distribution for four of the seven countries 

based on the limited-information maximum-likelihood method and using the log-likelihood as a 

goodness of fit measure.  
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6. Conclusions 

In this paper we have discussed the Pareto-Lévy distribution as a framework for analysing income 

distributions. We have reviewed the theoretical properties of this distribution and we have argued that 

its parameters have a clear and intuitive interpretation. Specifically, the three parameters of this 

distribution – namely, ,α δ  and c– can be interpreted as tail fatness, mean and scale respectively. 

Although the variance of the Pareto-Lévy distribution is infinite, the interpretation of the scale 

parameter is entirely similar to the conventional standard deviation as a measure of spread of 

distribution. Furthermore, we have shown how the Gini coefficient can be expressed as a simple 

formula in terms of these parameters. We have also argued that the selection of a parametric 

framework for fitting empirical income distributions should not be based solely on goodness of fit 

criteria or on the method of estimation. Qualitative properties such as interpretation of parameters and 

the invariance-under-aggregation property have an essential role to play.  

We have gone on to fit the Pareto-Lévy distribution from a sample of Norwegian micro-data 

on income, as well as on grouped income data from seven other selected countries taken from the LIS 

database. As regards estimation methods, we have applied several methods in order to illustrate their 

benefits and drawbacks.  

For the sake of comparison, we have also fitted the data to the GB2 distribution, which is a 

rather flexible four-parameter distribution. Even though the Pareto-Lévy distribution has only three 

parameters, we have demonstrated in our empirical applications that in terms of goodness of fit it can 

compete well with the four-parameter-distribution GB2. Unfortunately, the GB2 distribution, as well 

as other types of distributions that have been proposed in the literature, does not have parameters that 

can be given such an intuitive interpretation as is the case with the Pareto-Lévy law. Moreover, the 

parameter estimates of the GB2 distribution do not seem to be stable with respect to different 

estimation methods. 
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Appendix A 

The Generalized Beta type II distribution (GB2) 

Several researchers have applied the GB2 distribution to represent the distribution of income data. 

This distribution is fairly flexible and has density function 

 ( )
( ) ( )( )

ap 1

p qaap

a yg y;a,b,p,q
b B p,q 1 y b

−

+=
+

 

where a,b,p,q are unknown parameters and B(p,q) is the Beta function 

 ( ) ( )
(p) (q)B p,q

p q
Γ Γ

=
Γ +

. 

The mean in this distribution is given by 

 
( ) ( )b p 1 a q 1 a

(p) (q)
Γ + Γ −

Γ Γ
. 

Thus the GB2 distribution has four parameters, but unfortunately their interpretation is not so clear. 

Also the formula for the Gini coefficient is quite complicated. For more details we refer to McDonald 

(1984) and McDonald and Xu (1995). 

 

Tables and Figures 

Table 1 Parameter estimates by different methods for Norwegian data, 1994* 

Method 

Estimates 

(Standard deviation) Theoretical 

Gini 

Empirical 

Gini 
α c (1,000) δ  (1,000) 

Least-squares, 

all observations 

1.67 

(0.02) 

56.17 

(0.6) 

214.08 

(2.5) 
0.280  

Least-squares, 

30 points 

1.65 

(0.04) 

56.02 

(0.9) 

214.45 

(3.2) 
0.282 0.275 

Koutrouvelis 
1.60 

(0.02) 

54.50 

(0.6) 

214.80 

(2.5) 
0.295  
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McCulloch 
1.57 

(0.05) 

54.60 

(1.4) 

214.80 

(2.5) 
0.308  

Maximum-likelihood, 

30 points 

1.61 

(0.02) 

52.70 

(0.6) 

215.60 

(2.0) 
0.281  

Maximum-likelihood 

censored, 30 points 

1.67 

(0.02) 

49.58 

(0.6) 

211.76 

(1.7) 
  

# Observations   5,618   

* For the Koutrouvelis and the McCulloch estimation procedures δ  is estimated by the sample mean. 

 

Table 2 Parameter estimates of the GB2 distribution, Norwegian data 1994 

Method 

Estimates 

(Standard deviation) 
  

a b p q 

Least-squares, all observations 
8.05 

(0.4) 

213.96 

(5.8) 

0.30 

(0.2) 

0.44 

(0.2) 

Least-squares, 30 points 
4.45 

(0.4) 

290.52 

(25.4) 

0.58 

(1.8) 

2.54 

(1.8) 

Maximum-likelihood,  

all observations 

3.15 

(0.4) 

191.50 

(5.1) 

1.24 

(0.3) 

1.28 

(0.2) 

Maximum-likelihood, 30 points 
1.13 

(0.3) 

281.17 

(25.7) 

6.32 

(1.9) 

9.74 

(3.6) 

 

Table 3 Goodness of fit measures 

Distribution and estimation 

method 

Root of mean square 

error 
Mean absolute error Log-likelihood 

Pareto-Lévy, least-squares 0.854 ⋅ 10-2 0.703 ⋅ 10-2  

GB2, least–squares 0.709 ⋅ 10-2 0.682 ⋅ 10-2  

Pareto-Lévy, maximum-

likelihood, 30 points 
1.324 ⋅ 10-2 1.162 ⋅ 10-2 -19057.4 

GB2, maximum-likelihood,  

30 points 
1.784 ⋅ 10-2 1.501 ⋅ 10-2 -19070.7 
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Table 4 Parameter estimates for income distribution in seven OECD countries, LIS data 

 Australia Belgium Canada France Germany Italy US 

Pareto-Lévy 
distribution 

   

α  1.65 1.58 1.61 1.52 1.68 1.55 1.43 

 (0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) 

δ  44,489.31 1,781,278.00 51,336.04 173,445.43 69,816.83 36,282.59 55,389.86 

 (192.38) (658.50) (200.40) (83.55) (547.09) (24.30) (145.60) 

c 16,668.57 555,667.10 19,699.72 58,544.26 24,247.63 11,239.83 18,311.78 

 (75.34) (753.20) (56.20) (313.82) (179.82) (17.30) (49.24) 

GB2         

a 4.57 3.00 4.72 3.91 6.29 3.45 3.65 

 (0.29) (0.26) (0.16) (0.31) (0.62) (0.18) (0.01) 

b 64,723.92 2,265,405.00 76,520.87 206,761.73 84,662.93 40,039.00 65,792.73 

 (806.05) (62,107.00) (506.74) (4,458.50) (690.40) (285.80) (164.36) 

p 0.26 0.63 0.22 0.34 0.23 0.53 0.30 

 (0.02) (0.08) (0.01) (0.03) (0.03) (0.05) (0.01) 

q 0.93 1.56 0.87 0.85 0.56 1.05 0.84 

 (0.07) (0.19) (0.04) (0.10) (0.06) (0.09) (0.03) 
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Table 5 Goodness of fit measures, LIS data 

Goodness of fit 
measure 

Australia Belgium Canada France Germany Italy US 

Pareto-Lévy 
distribution 

   

Log-likelihood -16,102.1 -8,735.3 -75,244.7 -23,656.1 -13,830.4 -16,555.9 -119,656.3

GB2    

Log-likelihood -16,152.3 -8,734.8 -74,981.4 -23,675.4 -13,851.5 -16,559.8 -119,377.2

 

 

Figure 1 The regression line under the Koutrouvelis estimation procedure 

 ( )2ˆx ln , y ln ln ( )= λ = − ϕ λ  
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Figure 2 Estimated Pareto-Lévy cdf and the empirical cdf, Norwegian data, 1994 
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Figure 3 Q–Q plots for two estimation procedures, Norwegian data, 1994 

 
 

 

Figure 4 P–P plots for two estimation methods, Norwegian data, 1994 

 
 

 


