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Abstract: The problem of statistical inference has long been associated with quantitative
inequality research.  Within the last five years, however, significant developments have
occurred in both the theory and practice of conducting formal statistical inference with
common measures of inequality such as the Gini index.  These new techniques involve the
use of Monte Carlo, bootstrap resampling plans that seek to recover the standard error
and sampling distribution of inequality estimates directly through the empirical
distribution of the sample data, thereby facilitating statistical inference via confidence
interval estimation and hypothesis testing.  Using the income survey of the Luxembourg
Income Study (LIS) project, this paper provides an analytical evaluation of the bootstrap
procedure in the context of comparative inequality research, and uncovers patterns of
distributional change in the global North over the last two decades.  While it is now
generally accepted that inequality has increased in the United States and United Kingdom
during this period, the extent to which other wealthy nations have been able to avoid this
trend has generated some debate.  The paper presents new evidence to address this
discussion, demonstrating along the way how the ability to conduct formal statistical
inference with the Gini index provides an effective and important new evaluative tool. 
The paper provides an informative analysis of current methodological developments in
inequality research, and demonstrates how they may be applied in the specific context of
the LIS, but also can be used as a practical guide for handling the problems of statistical
inference in more general social scientific settings.
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Introduction
In the early 1980s researchers in the United States and the United Kingdom began to notice that,

after a long period of relative stability, the distribution of income was becoming noticeably more

unequal.  In 1988 the phenomenon was coined the “great U-turn” by Harrison and Bluestone in

recognition that there was something historically unique about rising levels of inequality in

wealthy, developed nations.  While no single “smoking gun” has been found to explain this trend

(Gustafsson and Johansson 1999), debates tend to implicate various forms of economic

restructuring (shifting patterns of trade, increased capital and labor mobility, deindustrialization,

and the rise of the skill-based economy) that fall under the “globalization” rubric.  Since this

restructuring characterizes the global North more broadly, academic and popular interpretations

have tended to discuss rising inequality as a nearly universal outcome of these processes in the

1980s and 1990s (Friedman 2000; Smeeding 2002).  As summarized by Ram (1997:577), “[t]he

somewhat cheerless distributional position recently noted for the U.S. seems to characterize most

of the postwar developed world.”

Others, however, have begun to question the extent to which trends in the United States

and United Kingdom were replicated throughout the global North.  Observers of these

contrasting outcomes argue that technological change has been less skill-based in parts of Europe

than in the U.S. and U.K., and that returns to education and skill increased less sharply in these

areas (because the supply of skilled workers increased faster), leading to “less of an increase, or

even no change” in wage inequality in these countries (Acemoglu 2002:1).  Another line of

interpretation has emerged around the general idea that politics and political institutions matter. 

Some argue, for example, that European labor policies and wage-setting institutions mitigate the

tendency toward increasing earnings inequality (Acemoglu 2002; Blau and Kahn 1996; Freeman

and Katz 1995; Nickell and Bell 1996).  In particular, many studies find that labor union density

significantly reduces inequality (Alderson and Nielsen 2002; Freeman 1993; Gustafsson and

Johansson 1999), and that policy liberalism/leftist government strongly drives the redistribution

process (Bradley, et al. 2003; Brady 2003; Kelly 2004). 

Using the surveys of the Luxembourg Income Study database (LIS), this analysis brings

new methodological considerations to bear on this debate.  More specifically, the paper

represents the first systematic evaluation of the LIS database using bootstrap inference

techniques to interpret levels and trends in inequality across the member countries.  The paper is

divided into two sections.  The first section examines the theoretical and practical aspects of
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conducting statistical inference via the new bootstrap procedures, both in the context of

inequality analysis generally, and with regard to the specific needs and constraints of the LIS

database more specifically.  The goal of this section is to provide a methodological guide to 

regularize application of bootstrap techniques in future inequality and poverty research.  The

second section presents and discusses the substantive findings of the project, demonstrating how

the ability to conduct statistical significance provides an effective and important new tool for

evaluating cross-national patterns of income inequality.

I.  Bootstrap Resampling Methods for Statistical Inference
The absence of statistical significance has been a glaring shortcoming in comparative research

more broadly and in inequality evaluations in particular.1  Practitioners seeking to quantify

inequality have traditionally relied on descriptive devices such as the Lorenz curve, quintile

income shares, or various summary indices like the popular Gini index.  In the absence of well

established and practically useful analytical error theories for these measures (theories that exist

for statistics like the mean for example), practitioners are left making evaluations – often

between relatively minor differences in measurements – informally based on little more that

visual or absolute-numerical comparisons.  As Rossi, et al. (2001:905) explain, “[p]oint estimates

unaccompanied by any precision measure are the rule rather than the exception, so that tracking

the changes of personal distribution through time rests to a large extent on scholars’ a priori

beliefs.”  As a result, error or random variation in the samples can produce discrepant portraits of

distributional change within countries even as scholars build models attempting to explain such

changes cross-nationally.  Moreover, minor changes in Gini coefficients might not warrant

directional conclusions at all, perhaps signaling instead that “no change” in inequality has

occurred (a description rarely used by scholars looking for trends).  In short, the conclusions we

tend to draw in empirical inequality research are “far more tentative than has often been realized”

(Mills and Zandvakili 1997:140).

Within the last few years, however, significant developments have occurred in both the

theory and practice of conducting formal statistical inference using methods that seek to

nonparametrically estimate (at least an approximation of) the sampling distribution of inequality

measures such as the Gini index.  Pioneered by Efron (1979), these methods employ Monte

Carlo, bootstrap resampling plans to evaluate a parameter estimate at reweighted versions of the
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empirical probability distribution found in the sample data.  The bootstrap procedure seeks to

recover the  standard error and sampling distribution numerically (as opposed to theoretically)

via repeated random samples drawn with replacement from the observed sample distribution,

thus allowing the construction of confidence intervals and hypothesis tests on inequality and

poverty indicators common in quantitative cross-national research (for general discussions of the

bootstrap, see Chernick 1999; Efron 1982; Efron and Tibshirani 1993).

a.  The Bootstrap Concept

The bootstrap technique is relatively straightforward, yet analytically powerful.  While

the mathematical justifications can be quite sophisticated (for more rigorous treatments see Hall

1992, and Shao and Tu 1995), the bootstrap method requires no theoretical calculations, applies

the same to any inequality measure currently in use, and is available no matter how

mathematically complicated the parameter estimate or its asymptotic standard error may be.

The bootstrap method is conceptually based on the “plug-in principle,” where known

sample values are taken as simple estimates of the entire population.  Say an empirical

distribution   is a known, random i.i.d (independent and identically{ }� ~ , ,...,F x x xn1 2

distributed) sample taken to estimate the entire population distribution . { }F X X X N= 1 2, ,...,

Similarly, let represent the pont estimate of an unknown population parameter of interest ,�θ θ

computed from .  The general idea behind the plug-in principle is to recover the variance of�F

through the known distribution .  This is obviously a straightforward affair when dealing�θ �F

with the mean, yet for most other statistical estimators it is difficult to evaluate the variance of

  theoretically though (see Shao and Tu (1995:10) for an elaboration of this point).  The�θ �F

bootstrap solution is to employ an old technique known as the Monte Carlo method to establish a

numerical approximation of the variance through repeated simulations – in other words evaluate

variance of  empirically through .2  The nonparametric, one-sample approximation works as�θ �F

follows.3
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First, randomly draw an independent data set  of size n with{ }x x x Fn

iid

1 2
* * *, ,..., ~ �

replacement from the sample distribution, so that each  represents a bootstrap version of xi
* xi

and has probability n-1 of being selected.  Replacement here refers to each draw not each sample,

thus some observations can be counted more than once, some not all in any given resample. 

Next, evaluate , a bootstrap replication of  computed from the bth bootstrap resample. �*θ b
�θ

Independently repeat this procedure a large number of B times, each time obtaining bootstrap

replications .  The bootstrap standard error of can then be estimated as:� , � ,..., �* * *θ θ θb b B1 2
�θ

(1.0)se
B

boot b
b

B^
* *

/

� �=
−

−�
��

�
��

�
�
	



�
�=


1

1

2

1

1 2

θ θ

where   is the mean of the parameter estimates obtained in the B resamples. � �* *θ θ=
=


1

1B b
b

B

Based on the law of large numbers, as the number of B replications approaches infinity the

bootstrap standard error (1.0) converges to the estimate of the standard error found in the sample

.4�F

Several alternative methods have been suggested for assigning confidence intervals to

the unknown parameter based on the bootstrap distribution.  Hall (1988:927) identifies “an

almost bewildering array” of techniques in use today.  While it would be impossible to provide a

thorough treatment of all aspects of the various bootstrap confidence intervals that have been

suggested (see Davison and Hinkley 1997; Hall 1992; Shao and Tu 1995; Trede 2002), only two

types of intervals have been used in the specific context of inequality data – standard normal and

percentile intervals.  Each method has both a primary form and a more technical form that

introduced refinements designed to improve the coverage accuracy of the interval.
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i.  The Standard Normal Approach

Also called the “boot-t” or “normal approximation,” the standard normal approach for

obtaining confidence intervals is interpreted differently throughout the literature but is essentially

the same procedure as constructing confidence intervals for sample means.  In its primary form,

what Mills and Zandvakili (1997:143) call the “naive boot-t,” the variance of the parameter

estimate is evaluated as in (1.0) and the standard student’s t distribution is used to obtain 1 - �

confidence intervals in the traditional manner.

(2.0)� � � �
/ ,

^

/ ,

^
θ θ θ θα αLL n boot UL n boott se t se= − = +− −2 1 2 1

with  denoting the �/2th percentile of the t distribution on n-1degrees of freedom.  Thist nα / ,2 1−

method requires the least amount of computational effort, but also necessitates the parametric

assumption that distribution of the parameter estimate is normal.  This may be a reasonable

expectation as n gets large, but the t distribution may only be an approximation in small sample

situations.  Also, the use of the t-distribution does not adjust the confidence interval to account

for possible skewness in the underlying population or other errors that can result when  is not�θ

the sample mean.

A modified version of the standard normal method seeks to account for these errors by

obtaining accurate confidence intervals without having to make normality assumptions.  Here the

bootstrap is used to estimate the distribution of a “studentized pivot” directly from the data, in

essence building a unique t-table for the observed data.  Following the notation introduced above,

let T be a studentized statistic whose distribution in nonparametric situations is unknown.  Let  T

* represent a bootstrap estimate of T generated via B resamples.

(2.1)

( )
T

se
b

b

b

*
*

*
^

� �

=
−θ θ

where is the value of for the bth bootstrap resample, and  is the estimated standard error�*θ b
�θ seb

*
^

of  for the bth bootstrap resample.  An empirical probability distribution is thus developed�*θ b

with the �th percentile of estimated by the value  such thatTb
* �*tα
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(2.2)
{ }

α
α

=
≤# �* *T t

B
b

Thus a “bootstrap t-table” is constructed directly from the sample distribution, and tail

probabilities can be obtained for confidence intervals as in (2.0).  The t-values are found at the

and locations of the ordered array of all s .5  For example, to constructB th×α B th× −( )1 α Tb
*

a 90% confidence interval for B = 1000, simply locate the fifth percentile at the 50th largest value

of and the ninety-fifth percentile at the 950th largest value.  More generally, the lower andTb
*

upper limits are

(2.3)� � � � � �
/

* *
^

/
* *

^

θ θ θ θα αLL b UL bt se t se= − = +−1 2 2

Efron and Tibshirani (1993) mathematically show that in large samples the coverage of

bootstrap-t intervals (2.3) are closer than the coverage of intervals based on the t table itself,

which make sense given that the t table applies to all samples and all sample sizes, whereas the

bootstrap-t table applies only to the given sample.  Also notice that unlike (2.0), confidence

intervals (2.3) are not necessarily symmetric about (because is not symmetric about zero as�θ Tb
*

student’s t is).  In (2.3), intervals may be larger below and above leading to an important�θ

reason for the improvement in coverage of the confidence intervals.

There are two problems with the more elaborate bootstrap-t procedure, however, that all

but eliminate its use in applied settings.  First, this approach requires an estimate of the standard

error which is the standard deviation of for the bootstrap sample b.  This figure needs toseb
*

^
�*θ b

be estimated either via asymptotic theory or a two-level, nested bootstrap procedure – generate

B1 bootstrap data sets to approximate the distribution, then for each given bootstrap data set,

generate B2 bootstrap data sets to approximate the standard error of the estimate.  The former

method carries all of the disadvantages of analytical theory cited above and might not be

available for a given statistic, while the latter method is always available but implies a substantial

increase in computational burden.  For example, to estimate both the distribution of and theTb
*
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standard error  by Monte Carlo, we may want B1 to be as high as 1000 for the former,seb
*

^

whereas B2 can be much lower for the latter, say 200.  In this case, however, we would need a

total number of bootstrap resamples of B1B2 or 200,000.  Second, this version of the bootstrap-t is

not a transformation respecting procedure, in other words it may require variance stabilization

measures.  Since this procedure depends on the scale of the statistic under consideration, it can

return confidence interval limits that are beyond the range of the parameter itself (for example, a

lower limit less than zero in the case of the Gini index).

ii.  The Percentile Method

The percentile method is similar to the modified bootstrap-t in that it seeks to recover the

sampling distribution of  via a bootstrap cumulative distribution function, but instead of taking�θ

a studentized pivot the percentile method employs directly.  Let (3.0) represent the�*θ

cumulative sampling distribution of the parameter estimate .�θ

(3.0)( ) ( ){ }H x P x x x F xF n= ≤� , ,..., ,θ 1 2

where , the true population.  Following the same recipe for obtaining{ }x x x Fn

iid

1 2, ,..., ~

bootstrap standard error estimates (1.0), we can easily obtain the bootstrap approximation of

:( )H xF

(3.1)( ) ( ){ }� � , ,..., , �* * * *H x
B

I x x x F xboot b b b nb
b

B

= ≤
=


1
1 2

1

θ

where , b = 1, ... , B are independent bootstrap resamples from the observed{ }x x x Fb b nb

iid

1 2
* * *, ,..., ~ �

sample data.  Since in practice we must take a finite number of B replications, I denotes the

indicator function of the set which is the same way of saying that 

(3.2)( ) { }
�

# �*

H x
x

Bboot

b
=

≤θ
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The percentile method consists of establishing confidence interval limits directly from the

bootstrap distribution (3.1).  The method gets its name because the �/2th and 1- �/2th empirical

percentiles of the bootstrap distribution (3.1) are taken as two-sided �-level percentile confidence

interval boundaries, in the same manner as (2.2).  Thus no assumptions need to be made about

the a priori form of the distribution.6  Once the values of are ordered ascendingly,  �*θb
�θ LL

becomes the  value and  is the  value of the distribution.B th×α �θ UL B th× −( )1 α

Since (3.2) uses the empirical distribution in place of knowledge of the underlying

population distribution, in theory it would tend to underestimate the tails of the distribution of

(Efron and Tibshirani 1993).  Subsequent improvements have been suggested under more�*θ b

advanced “bias corrected” or “bias reduction” percentile bootstraps, but their adoption has not

been widespread in applied situations.  Bias-corrected intervals are also determined by

percentiles of the bootstrap distribution, but not necessarily the same ones.  The percentiles used

may be different based on a bias-correction value determined from the proportion of bootstrap

statistics that ended up being less than the original estimate .7  If exactly half of the�*θ �θ

bootstrap estimates are less than or equal to the original estimate, than the bias-correction value

is zero and the percentile intervals are taken as above.  The bias-correction yields more accurate

confidence intervals the extent to which the median of  differs from .  Table 1 summarizes�*θ �θ

the major advantages and disadvantages of these four confidence interval techniques.

Table 1 about here

iii. Bootstrap Hypothesis Testing

Bootstrap inference can be undertaken either through confidence interval estimation, or

by computing a bootstrap p-value, p*, the proportion of bootstrap samples that yield a test

statistic more extreme than the actual test statistic computed from the data.  Following similar

procedures in 2.2 and 3.2 above, a one-tailed test that rejects above the test statistic can be

approximated as:
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(4.0){ }p
B

I
b

B

b
* *� �= ≥

=


1

1

θ θ

where I denotes the indicator function of the set.

In the two-sample context, when confidence intervals around two estimates (either

between units or within them over time) do not overlap, we can unambiguously assess this

difference to be statistically significant (at level �).  In the presence of overlap, however, it does

not immediately follow that the difference is not statistically significant.  In this case, an

hypothesis test is required that tests for the difference in parameter estimates.

Following the procedure outlined in Efron and Tibshirani (1993), say we have two i.i.d.

samples x (size n) and y (size m) taken to represent populations X and Y, and we want to test the

null hypothesis Ho: X = Y.  The hypothesis test requires a test statistic t(s) which could be a

parameter estimate but not necessarily.  In the cross-national application presented in this�θ

paper, t(s) = Ginix - Giniy, the difference between the inequality estimates say in two countries, or

in one country in two time periods.  As in conventional hypothesis testing using the mean, we

attempt to find a one-sided  p-value defined as the probability of finding at least that large of a

difference when the null hypothesis is true.

(4.1){ }p value P t s t sHo
− = ≥( ) ( )*

where t(s) is fixed at its observed value and t(s*) is distributed under the assumption that the null

hypothesis is true.  Since this distribution Fo is unknown, the bootstrap method derives a “plug-

in” distribution Fo* in the following manner.

Under the assumption that the two samples are randomly drawn and independent, first

draw a bootstrap resample sx* of size n with replacement from x so that the probability for

selection in sx* is 1/n, and calculate the statistic of interest Gx*.  Then draw a bootstrap resample

sy* of size m in the same manner and again calculate the statistic of interest Gy*.  Repeat the

procedure a B number of times, each time evaluating the difference between the Gini coefficients

t(s)* = Gx* -  Gy* (4.2) 

Construct a bootstrap confidence interval of t(s)*, and the difference between Gx* and Gy* is

then said to be statistically significant (at �) if zero is not contained in the interval (p* values can

then be approximated by 4.0 above).
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b.  The Numerical Performance of the Bootstrap

Soon after Efron’s pioneering work, Singh (1981) and Bickel and Freedman (1981)

mathematically demonstrated the asymptotic validity of the bootstrap in a large number of

situations.  Recent work suggests that the procedure is not only valid, but that bootstrap tests will

outperform tests based on asymptotic theory in finite samples in that they will commit errors that

are of lower order in the sample size n.  Performance in this regard can be measured by

evaluating the “size distortion,” or what Davidson and MacKinnon (1999) term the “error in

rejection probability” (ERP), of an inference test – the difference between the nominal level of a

test and its actual rejection probability.  The current consensus is that for a sample size n, the

ERP committed by tests based on the bootstrap is generally reduced by a factor of n-1/2 in one-

tailed tests and n-1 or more in two-tailed tests.  In theory, then, the bootstrap provides a higher-

order, asymptotic approximation in that the difference between the test’s actual and nominal

levels decrease more rapidly with increasing sample size than it would if the distribution of a test

statistic is obtained via asymptotic theory (Davidson and MacKinnon 1999; Hall 1992; Horowitz

1994, 1997).  In addition, several studies now provide evidence from Monte Carlo simulation

experiments that the numerical performance of bootstrap tests improve asymptotic

approximations (Davison and MacKinnon 1999a; Horowitz 1994, 1997; Shao and Tu 1995).  The

bootstrap, it is now generally regarded, almost always minimizes the ERP in fixed sample sizes

that occur when critical values are obtained via asymptotic theory; and in cases when asymptotic

and bootstrap critical values are very different, it is almost certain that the asymptotic values are

inaccurate (Davidson and MacKinnon 2000).8

A few simulation experiments have been performed in the context of income distribution

data, and again all conclude that statistical inference based on bootstrap procedures outperform,

often quite dramatically, asymptotic theory (Biewen 2002; Cowell and Flachaire 2002; Mills and

Zandvakili 1997; Trede 2002).  Given the newness of these methods in inequality applications,

the precise accuracy of the bootstrap for the various indicators (or the extent of the improvement

over asymptotic theory) is still an empirical matter.  Early research in fact has illustrated an

apparent contradiction between the theoretical expectations of using the bootstrap with inequality

indicators and its numerical performance.  For example, Beran (1988) shows that bootstrap

inference is unproblematic when the indicator is asymptotically pivotal (i.e., its distribution does

not depend on any unknown parameters) which is the case for every inequality measure except

the Gini index.  Yet Cowell and Flachaire (2002:15) conducted a number of simulation



12

experiments in what to date is the only direct comparison of the different indicators, and

concluded that among the most popular inequality measures, “the bootstrap does well only for

the Gini.”  In addition, all studies have found that confidence intervals around various inequality

indices are too narrow (Biewen 2002; Cowell and Flachaire 2002; Davidson and Flachaire 2004).

In an effort to gauge the coverage accuracy of the confidence intervals established in this

study, a Monte Carlo simulation experiment was performed on the Finland 2000 survey of the

LIS.  Following a similar procedure in Mooney (1996), the Gini index for this survey is taken a

priori to be the “true” population parameter.  Drawing B = 1000 replications of a five percent

subsample (521 households), a bootstrap “sample” Gini index and 95 percent confidence

intervals are established.  After 600 simulations, the accuracy of the intervals in capturing the

“true” Gini index is evaluated via the ERP.  Table 2 presents the results of this experiment,

indicating that all three methods are very close, and that all three intervals are slightly too

narrow, implying that inference tests based on them over-reject the null hypothesis.  Said

differently, the tests would result in more Type I errors than are nominally allowed.  The bias-

corrected method (.055) came the closest to yielding the exact nominal alpha level, followed by

the normal approximation (.057), and the percentile (.063).  Like other studies, then, the finding

is that the intervals around the Gini index are close yet too narrow.9

Table 2 about here

In sum, the state of knowledge on using the bootstrap with inequality measures indicates

that: a) The standard bootstrap is valid with all common indices, and preliminary tests suggest

that the Gini index numerically outperforms the others; b) ERP distortions are reduced for all

measures when using the bootstrap, thus it now generally regarded as practical method for

improving upon distributional approximations based on asymptotic theory; and c) Bootstrap

critical values, although better, are still approximations, and the future direction of research in

econometrics will explore ways to adjust the bootstrap to further reduce the ERP in income

distribution data (see early attempts by Davidson and Flachaire 2004;  Xu 2000).
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c.  Bootstrap Inference With the LIS Database

In the analysis that follows, bootstrap inference techniques are systematically applied to the

income surveys of the Luxembourg Income Study (LIS) database.  The bootstrap procedures in

this study employ resampling plans in the case of an independent and identically distributed (iid)

sample of fixed size n from an unknown population.10  Inequality is measured by the Gini index

as specified according to the methodological recommendations of the LIS project as more fully

outlined in Appendix A.  The unit of analysis is the household, adjusted for size using an

equivalence scale, and income is measured as net, disposable household income subjected to

both top and bottom coding.  Also based on LIS specifications, the bootstrap resampling

procedures are weighted by “person weights” – the product of the household weight (the weights

established by the procedure used in the original dataset, not by LIS ) and the number of persons

in the household.11

i. Standard Errors in the LIS Database

In the first part of the analysis, ten recent LIS income surveys were selected on the basis

of obtaining a group with varying sample sizes – from one of the smallest surveys (Luxembourg

with 1,813 households) to one of the largest (United States with 49,351 households) – to conduct

a more detailed evaluation of the various bootstrap methods.  Table 3 reports the bias and

standard error of the Gini index, and the 95 percent confidence intervals under the standard

normal, percentile, and bias-corrected procedures for the ten surveys.   To assess the impact of

the number of bootstrap replications B, the intervals are calculated at 250, 500, and 1000

replications.

Table 3 about here

As seen in Table 3, the number of replications has little impact either on estimating the

standard error of the Gini index or in establishing the confidence intervals (confidence interval

boundaries established with 500 replications are never more than .001 off the intervals

established with 1000 replications, which always translates into a less than 0.5 percent

difference).12  In contrast, however, larger sample sizes did lead to smaller standard errors as

would be expected.  Looking not only at Table 3 but at all 120 income surveys in the LIS
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database, we see that generally: sample sizes more than 10,000 lead to confidence intervals no

bigger than one percentage point in the Gini index; samples between 10,000 and 5,000 lead to

confidence intervals no bigger than two percentage points; and samples under 5,000 may be three

percentage points wide.  No confidence interval in the LIS database is wider than three

percentage points in the Gini index.

While these findings provide an interesting guide for practitioners, there are exceptions

and variations to this rule for samples of various sizes.  For example, the width of the confidence

intervals for Luxembourg and the Slovak Republic in Table 3 are roughly the same despite big

differences in sample size.  These variations in sampling error are caused by the differential

ability of the bootstrap to consistently capture from sample to sample the full range of incomes,

creating greater variation across the resamples.  In part this reflects two interrelated

characteristics of the underlying survey, features separate from the degree of inequality itself:  1)

The shape of the population structure with regard to incomes, specifically the extent of income

“clustering” and the importance of the upper tail of the distribution; and/or 2) The ability of the

survey instrument to proportionately sample from the entire distribution.  Thus we should expect

higher standard errors in situations where income are less fluid, or when the when the upper tail

is long (relatively higher incomes accrued to relatively fewer households), or if the survey

instrument “creates” these characteristics through inadequate sampling.  In these situations – in

economies less fully monetized, perhaps, or where inequality is very high, or when

administrative and other resource issues limit the survey’s effectiveness – greater variation will

exist from survey to survey in the population, and thus from resample to resample in the

bootstrap.

Surveys based on tax records or other national accounts, for example, will

proportionately capture the full range of incomes better than those based on household surveys,

where the sample space is typically more narrow and sampling the two tails of the distribution

(richest and poorest) in particular is more difficult.  Szekely and Hilgert (1999) show how

income surveys in Latin America systematically can not capture incomes from the richest sectors

of society, leading to an upper tail that is consistently under-represented.  As a result, they find

bootstrap standard errors much greater than those reported here – standard errors for Colombia

were higher than any in the LIS despite sample sizes over 100,000.  Within the LIS itself, the

surveys for Mexico, with sample sizes 10,000 or more, have standard errors as big as surveys in

Western Europe one-third that size.
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In this sense the importance of sample specifications such as population coverage, length

of income period, and top coding in accounting for sampling errors are not entirely independent

of the impact of non-sampling, or unsystematic, measurement errors on inequality estimates,

although practitioners have long recognized the greater potential for the latter.  The ability of a

survey to proportionateley sample the full range of incomes, however, is not the same as errors

resulting from misreporting, imprecision, non-response, and other measurement errors prone to

income data.  Thus, inadequate representation from the tails of the distribution will not only

increase the sampling error associated with inequality estimates in places like Latin America, the

consistent under-reporting of non-labor (especially self-employment and investment) income

within the richer segments of society also leads to a substantial underestimation of measured

inequality in that region.

ii.  Comparing Confidence Interval Methods 

While Table 3 shows that sampling error, while highly correlated with sample size, can

still vary among surveys, it also shows that the method used to construct confidence intervals

seems to have very little impact on interval locations.  Users of the LIS database can currently

access bootstrap standard errors in the on-line user files, thereby facilitating the construction of

standard normal confidence intervals.  Comparing these intervals to the two other methods most

easily calculable within the constraints of the LIS project (the percentile and the bias-corrected),

indicates that little difference exists in establishing interval boundaries.  There is never more than

a .001 difference across the methods, suggesting that the three methods are very close, and that

this conformity is consistent as one moves from relatively small samples to relatively large ones. 

Figure 1 illustrates the close agreement across the three types of intervals.

Figure 1 about here  

The close conformity of the confidence interval methods is consistent with previous

performance comparisons in the literature.  For example, Mills and Zandvakili (1997) calculate

bootstrap confidence intervals using both the percentile and standard normal methods for several

inequality indices, as well as for the components of a decomposition of the Theil coefficient by

subgroup.  They find the standard normal intervals compared closely to the percentile intervals in
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each case.  Biewen (2002) compares the performance of different variants of the bootstrap using

Monte Carlo results on 1996 German wage and income data, finding all intervals to be very close

(generally differing by only a fraction of a percentage point).  For large samples, there was not a

practical difference between the methods.  Similarly, Van Kerm (2002) employs both

hypothetical distributions and a panel study of households in Belgium and, in the context of

complex sampling schemes, finds the same small, one percentage point variation in coverage

between the various confidence intervals.  In Trede’s (2002:281) review of the various

confidence interval procedures, he concludes that, while performance varied under different

conditions, “[t]here is not much evidence on which bootstrap method performs best for inequality

measures.”

Since comparisons usually result in little functional difference across confidence interval

estimates (especially as sample size gets large), the decision regarding which interval to report

can be based on more practical considerations.  At least four arguments favor the percentile

method, and this is the method most often used in the applied literature.  Referring back to Table

1, first, the standard normal method involves implicit assumptions (e.g., shape and symmetry of

the distribution, an unbounded statistic) not necessary when using the bootstrap distribution

directly, and the bootstrap-t  requires an empirically burdensome estimation of the variance of

the bootstrap statistic (either via asymptotic theory or nested bootstrapping).13  Second, the

percentile method is transformation preserving, meaning that “confidence intervals for a

transformation of the statistic are identical to the transformed confidence intervals” (Trede

2002:268).  Third, it provides asymmetrical and range preserving intervals that will never extend

beyond the permissible range of a bounded statistic.  Fourth, it is computationally simple to

execute, more so than the bias-corrected method, and thus quite accessible in practical

applications.

II.  Patterns of Inequality in the LIS
As discussed at the outset, while it is now generally accepted that inequality has substantially

increased in the United States and United Kingdom during the 1908s and 1990s, whether or not

other wealthy nations have been able to avoid this trend has generated some debate.  Recent

debate has also focused around the extent to which different institutional and political contexts

shape distributional outcomes.  This section presents new evidence to address these discussions,
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demonstrating along the way how the ability to conduct formal statistical inference with the Gini

index provides an effective and important new evaluative tool for empirical inequality research.

a.  Cross-National Levels of Inequality

In Table 4, the Gini index, bootstrap standard error, and 95 percent confidence intervals

are reported for LIS member countries for circa 1990 and circa 2000.  The countries are grouped

as global North (or the developed wealthy countries of the world), and Eastern Europe (including

Russia), and are sorted within groups alphabetically.  Cross-national comparisons of inequality

levels have traditionally involved linear “rankings” from low inequality to high based on the

absolute value of a summary estimate such as the Gini index, thus in circa 2000 comparing

Western Europe and other global North nations, and Eastern Europe and other former communist

countries in the LIS database the following picture would emerge:

Country Gini Index
Finland       .247
Slovenia       .249
Belgium       .250
Norway       .251
Sweden       .252
Netherlands       .256
Luxembourg       .260
Germany       .264
Austria       .266
Romania       .277
Poland       .293
Hungary       .295
Canada       .302
Ireland       .323
Italy       .333
United Kingdom       .345
Estonia       .361
United States       .368

In the absence of formal means to assess the statistical significance of these measured

differences, our only recourse at this point is to conclude that a countries with a Gini index

greater than others have more unequal distributions of income and that these differences are

theoretically worthy of explanation.14

Table 4 about here
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But would our impression of this ranking change in light of statistical inference?  Figure

2 plots the 95 percent confidence intervals (using the percentile method) for these Gini estimates

(the line in the middle of the interval marks the location of the Gini index within the interval). 

While rank ordering coefficients as above gives the impression that comparing inequality levels

across countries is a straightforward affair, looking at the confidence intervals in Figure 2 allows

a more careful interpretation of cross-national differences.  As opposed to a linear ranking from

low to high, we see groups of countries that show significant levels of inequality between them

but not necessarily within them.  These differences can be more formally evaluated via bootstrap

null hypothesis testing as discussed above, and with access to the microdata, such procedures are

readily available in the LIS database.  Table 5 presents the results of the bootstrap hypothesis

tests conducted on each pair of countries in Figure 2 where confidence intervals overlap.

Figure 2 and Table 5 about here

The exercise reported in Table 5 provides interesting insights into interpreting

differences in the Gini index in the cross-national context.  For each hypothesis test, three

comparisons are provided – the absolute difference in the two Gini indices, the percentage

difference, and the one-sided p*-value.  Across the 40 tests, all percent differences bigger than

4.5 percent are statistically significant at � = .05.  Conversely, all percent differences smaller

than 2.5 percent are statistically insignificant, suggesting that countries with Gini indices this

close or closer should not be thought off as having different levels of inequality.  The smallest

statistically significant difference is 3.0 percent between Poland (Gini index = .293) and Canada

(.302), due in part to both country’s relatively narrow confidence intervals.  Illustrating the

potential analytical power of these procedures, notice that the same 3.0 percent difference

between Ireland (.323) and Italy (.333) is statistically insignificant given the large amount of

sampling error associated with the Irish survey.  The largest insignificant difference is 4.4

percent between Slovenia (.249) and Luxembourg (.260).  Differences between 2.5 and 4.5

percent represent a “grey area” where the size of the standard error and the subsequent width of

the two intervals matters – sometimes leading to statistical significance and sometimes not. 

Obviously this exercise does not provide a substantive interpretation of what these differences

mean in terms of distributional variation, but it does give us a basis by which we can evaluate the



19

extent to which differences in observed Gini coefficients previously considered meaningful are

better attributed to error or random chance. 

In Table 6, the results of the hypothesis tests are used to create a new, more nuanced 

ranking system in which each country now has one of three affiliations to the others.  Countries

in lower case above the box demonstrate significantly lower inequality, those in upper case

below the box demonstrate significantly higher inequality, and those in the box demonstrate

statistically the same amount of inequality.  For example, looking at Luxembourg (LUX), we see

that Finland shows significantly lower levels of inequality.  Slovenia, Belgium, Norway,

Germany, Sweden, the Netherlands, and Austria all have inequality levels that can not be

statistically distinguished from sampling error or random chance.  The remaining nine countries

all show significantly higher levels of inequality than Luxembourg.15

Table 6 about here

b.  Distributional Change in the Global North: 1980 – 2000

The bootstrap procedures can also be employed to evaluate longitudinal change.  In contexts

where we can assume that the bootstrap replications are drawn from independent populations, the

testing procedures outlined above are straightforward.  In dependent data conditions, however –

such as the LIS surveys employing panel designs – bootstrap resampling should be drawn

simultaneously (as opposed to separately) so that the resample inherits the correlations of

incomes between time t1 and t2 of the panel.  This task turns out to be difficult in the LIS

database where there is no clean way to track households over time.  The overall closeness of the

bootstrap methods, and the relatively minor effects of various bootstrap corrections found across

the econometric literature, however, suggest that these refinements are unlikely to produce very

different intervals than reported here (see, for example Trede 2002).  Nonetheless the reader

should be aware that Ireland, Luxembourg, Germany, and the Netherlands involve tests where

both samples come from the same panel and that these tests are likely to be slightly biased in a

conservative direction.

With attention to statistical inference, across the 17 nations in the LIS database that

constitute the Global north, not one but three patterns of distributional change are evident over

the period – a “Continental” pattern, an “Anglo” pattern, and a “Scandinavian” pattern (trends
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for other LIS member countries are presented in Appendix B).  The three patterns, and the

specific trends in inequality found in the constituent countries, are now described in turn. 

Historical trends in inequality for individual nations are presented in a series of figures that chart

the movement in the Gini index inclosed within the bootstrap 95 percent confidence interval.  For

various sub-periods within the 20-year period (marked by two vertical arrows), the magnitude of

changes in the Gini index are evaluated using the following format:

   �______________�

    .008        � Absolute change in the Gini coefficient
      2.8     � Percentage change in the Gini coefficient

                  .016  � One-sided p*-value of the null hypothesis test (if the intervals overlap)

i.  The Continental Pattern – Steady States

Looking at the bootstrap results in Figures 3a through 3c, the prevailing trend in

Continental Europe is one of little distributional change – or change that at least is not large

enough to reach statistical significance.  The Continental pattern is characterized by relatively

moderate levels of inequality which remain essentially unchanged throughout the period,

although in a few cases inequality actually declined.

� Exemplars of the Continental Pattern:  Seven countries form what can be called the exemplar

Continental group – experiencing essentially no change in (or declining) levels of inequality over

the period.  France shows statistically no change in inequality since 1979 (and significantly less

inequality than in 1984); Germany is just the opposite, showing significantly less (although

substantively maybe the same) inequality than in 1973, with no change since 1984; the

Netherlands shows no change since 1983;  Italy and Canada illustrate the influence of

beginning and end points in defining historical trends.  Taking 1986 as the starting point for Italy,

the trend shows significantly more inequality, but since 1987 Italy shows no change (and also no

change since 1993).  The last two data points for Canada (1998 and 2000) come from a different

survey source than the rest, so the observed uptick in inequality may be attributed in part to

survey inconsistencies.  However, even using the 2000 figure, Canada shows significantly less

inequality than in 1971, a span of some 30 years.  Using the 1997 figure, Canada shows no
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change since 1975.  Switzerland and Spain have only two data points, but show no change over

the 1980s.

� A Caveat Country:  Ireland represents a “hybrid” pattern where overall levels of inequality are

more on par with the Anglo pattern (i.e., relatively high), but shows no change in inequality

levels since 1987, as is the prevailing trend in the Continental pattern.

Figures 3a - 3c about here

� A Caveat Group:  Three countries form a caveat group within the Continental pattern.  Each

basically exhibit the overall pattern, but each also experience a significant increase in inequality

over one survey in the 1990s.  Luxembourg shows no change in inequality from 1985-1994, but

an increase in inequality between the 1994 and 1997 surveys means inequality is significantly

higher than in 1994.  The same is true for neighboring Belgium which shows no change from

1985-1992, but a significant increase between the 1992 and 1997 surveys means inequality is

significantly higher than in 1992.  Austria shows a significant increase between the 1987 and

1994 surveys, but shows no change since 1994.  Austria’s trend may also be partially attributed

to changes in survey sources, and in this case the two surveys have noticeably different sample

sizes.

Figure 3d about here

ii.  The Anglo Pattern – Divergence From the Continent

As discussed in the introduction, the Anglo pattern is now a well known and much

analyzed phenomena.  Often overlooked, however, is the fact that at the start of the 1980s, levels

of inequality are in line with those found in Continental Europe.  Beginning sometime in the late-

1970s/early-1980s inequality then begins to increase, rapidly in some instances, leading to the

continuous separation of these countries from inequality levels found on the continent.

� Exemplars of the Anglo Pattern: Three counties in the LIS database illustrate the pattern (see

Figure 4).  For the United Kingdom, inequality levels remain constant until the 1980s, and at the
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start of the decade are lower than in France, Canada, Spain, and Switzerland.  Inequality then

begins to steadily increase beginning in 1979 and continues over the course of the period.  Most

evidence shows that inequality was also fairly stable in the United States prior to the 1980s, and

at the start of the decade inequality in the U.S. is lower than Spain and Switzerland.  Beginning

in 1980, inequality begins to increase and also continues throughout the period (the down-turn

seen in the last survey is not statistically significant).  The LIS has less data for Australia, but

here the pattern is also repeated – continuously rising inequality throughout the period.

Figure 4 about here

iii.  The Scandinavian Pattern – Convergence to the Continent

The Scandinavian pattern is characterized by relatively low levels of inequality at the

start of the period that consistently increase throughout the 1980s and 1990s as they converge to

levels of inequality seen on the Continent.  This increase, however, still leaves these countries

with perhaps the lowest levels of inequality in the world.

� Exemplars of the Scandinavian Pattern:  Three Scandinavian countries illustrate the pattern

(see Figure 5).  In Norway, Sweden, and Finland, Gini coefficients at the start of the 1980s are

as low as .197, then increase by 18 percent or more throughout the period.  Although in Sweden,

the Gini index in 2000 is still not higher than in 1967.

Figure 5 about here

iv.  Summary of Patterns in the Global North

As opposed to a universal tendency toward rising inequality, the prevailing pattern in the

global North (prevailing in that more countries fit this pattern than the other two) is the one

found in Continental Europe (and Canada).  This pattern is characterized by moderate levels of

inequality that are generally maintained throughout the period (with a few countries experiencing

declining levels of inequality).  The other two patterns are both characterized by rising levels of

inequality, but should be described in relation to the Continental pattern – the context of the
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Anglo Pattern of rising inequality is divergence from Continental levels of inequality, while the

context of the Scandinavian pattern of rising inequality is convergence to these levels.  The

average Gini indices for the three patterns over time are plotted in Figure 6.

Figure 6 about here

As evidenced here, there are large differences in inequality trajectories for rich nations,

and it seems that the tripartite typology of welfare-state regimes famously argued by Esping-

Anderson (1990) still has descriptive power today.  As Bradley et al. (2003) recently found, the

different institutional configurations and political traditions underling Social-Democratic,

Christian-Democratic, and Liberal welfare states play a decisive role in determining

distributional outcomes.  Given that these countries face a common set of socio-economic

phenomena – continued de-industrialization, aging populations, immigration from the global

South – and experience them from the same advantaged locations within the global hierarchy, the

fact that distributional outcomes vary suggests that “globalization” has not usurped the

importance of national policy or led to the insignificance of the state; world-economic processes

do not compel any single national trajectory.  This finding is consistent with recent literature,

discussed at the outset, that emphasizes the importance of national political processes in

counteracting market driven inequality.  Strong leftist government (Bradley, et al. 2003; Brady

2003; Kelly 2004), high levels of democratic participation (Mueller and Stratman 2003), and low

public tolerance for inequality (Lambert, Millimet, and Slottje 2003) are all associated with more

equal income distributions.  As summarized by Smeeding (2002:28),  “[t]he overall distribution

of income in a country depends on the domestic political, institutional, and economic choices

made by those individual countries.”

Conclusion
This project applied bootstrap resampling techniques to the income surveys of the LIS database

in an effort to interpret patterns of distributional change in the global North over the last 20

years.  The bootstrap allows us to perform conventional statistical inference and compare

alternative distributions using measures that were previously only descriptive devices.  These

techniques provide analytically powerful methods to estimate the statistical accuracy of
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parameter estimates regardless of whether an analytical formula for its standard error is known.

The bootstrap does not require assumptions about the underlying form of the data, alleviates the

need to work with complex mathematical derivations, and in other cases provides answers when

analytical solutions either do not exist or are inappropriate.

The utility of this evaluative tool for comparative research was evident, illustrating in

particular that for a sizable number of countries, representing a “Continental” pattern of

distributional change, inequality levels at the end of the period were not statistically

distinguishable from levels at the start.  Where previously even small changes in the Gini index,

such as those observed here, would lead scholars to make normative determinations of inequality

trends, statistical inference provides new grounds to substantiate conclusions that “no change” in

inequality has occurred.16  It also suggests why others, evaluating inequality estimates in absolute

terms, simultaneously argue that inequality has increased universally across the global North. 

These findings provide empirical support to recent arguments emphasizing the impact of political

contexts and collective social forces on distributional outcomes, and in particular that such

contexts have mitigated the tendency for rising inequality in Continental Europe. 

  In the end, the ability to conduct formal statistical inference improves the quality of our

empirical descriptions, which in turn helps focus theoretical explanations of distributional

variation across countries and over time.  The descriptions presented here, for example, can be

useful in reorienting future studies of inequality in the global North from specifying the general

relationship between globalization and inequality, to uncovering the processes by which specific

institutional configurations and power arrangements can a) modify the extent to which different

sectors within a population are included/excluded from global-economic processes; and b) shape

the distribution of the gains and losses that result from such economic change.
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Appendix A
Estimating the Gini Index

Gini coefficients estimated in this study are based on the following methodological
recommendations of the LIS.

Definition of Income – The unit of analysis is the household, and income is measured as net
disposable household income:

gross income - direct taxes - employee social security contributions

Weights – Used to make adjustments in the relative influence of households in the survey to
account for biases in the characteristics of the groups of non-respondents.  The LIS does not
carry out the weighting procedure, they are constructed by the survey sources themselves, so the
exact impact of the weight variable varies throughout the database.  The bootstrap procedure in
this study resamples using person weights – the household weight multiplied by household size – 
standardized so that the weighted sample size equals the number of households instead of the
population.  The LIS standardizes person weights to handle deleted observations that nonetheless
have non-zero weights (if one wishes to drop certain observations, for example, than the
remaining weights will be adjusted accordingly).  This procedure in no way effects the bootstrap
results, which are identical with or without weight normalization. 

Equivalence Scale – Used to adjust for economies of scale in households with different numbers
of people (i.e., because a household’s economic needs are related in part to its size).  The
equivalence scale used in this study is the square root of household size.

Top and Bottom Coding – Used to correct for possible measurement errors in the database.
Incomes at the top of the distribution are capped at ten times non-equivalized median income. 
Incomes at the bottom are limited to one percent equivalized mean income.  For comparable
cross-national evaluations, bottom and top codes can not be set differently across the countries,
the lowest top code and highest bottom code must be applied to all.  These particular limits
represent the lowest top code (Canada) and highest bottom code (Australia) of all the countries in
the landmark LIS study (Atkinson, Rainwater, and Smeeding 1995), and have been applied to all
LIS datasets since.
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Appendix B

Trends in Inequality in Other LIS Member Countries

Figures 7 and 8 plot observed trends for the six LIS member countries not in the global North

group (Slovenia, the Slovak Republic, and the Czech Republic are also LIS member countries but

do not have data over time).

Figures 7 and 8 about here

Using the patterns identified in the global North, we see that Hungary illustrates the Continental

Pattern of moderate and essentially constant inequality levels in the 1990s.  Poland and Israel

also show the Continental Pattern, but would belong to the caveat group where inequality

increased in one survey.  Israel shows constant inequality until 1992, then a significant increase

between the 1992 and 1996 surveys.  Poland’s only increase comes between the 1992 and 1995

surveys.  Taiwan clearly illustrates the Scandinavian Pattern of low and gradually rising

inequality levels.

Russia and Mexico have by far the highest levels of inequality in the LIS database, and

their trends are unique to the three patterns uncovered here.
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1. Until recently, attempts at conducting formal statistical inference in the context of inequality
data were limited to theories of asymptotic normality, where mathematical theory is used to
analytically derive the limiting behaviors of parameter estimators (as the sample size tends to
infinity).  While in practice the sample size cannot increase indefinitely, the asymptotic normal
approximation is taken as a guide for the “true” behavior of an estimate as sample sizes get
reasonably large.  Inference making via asymptotic theory has a long tradition in the statistical
sciences, even as applied to inequality measurement, yet scholars have long sought alternatives
primarily because asymptotic theory often yields poor approximations to the distribution of test
statistics in the context of finite samples.  Also, no generally accepted asymptotic procedure
exists for conducting hypothesis tests for differences in inequality estimates between units or
over time, a major shortcoming in applied settings.

2. Technically speaking, the bootstrap and Monte Carlo methods are separate techniques with
different traditions.  But today this is more or less a semantical distinction.  Efron’s pioneering
contribution in fact was to recognize the benefits of marrying the two techniques, seeing that a
“disparate, almost anecdotal” concept such as the bootstrap could be beneficent to all sorts of
applications if Monte Carlo simulations were available via increasing computer power (Hall
1992:35).  According to Hall (1992:35), the effect of combining these two ideas on statistical
practice and theory “has been profound.”

3. This procedure is called the “nonparametric bootstrap” because the bootstrap approximation
of the standard error is based on the sample distribution, which is taken to be a nonparametric
estimate of the unknown population distribution.

4. The simulations can also be used to establish the bias of a functional statistic,
approximated as:

� � � � �* *ε θ θ θ θ= − = −
=


1

1B b
b

N

5. If (B x �) is not an integer Efron and Tibshirani (1993:160) suggest the following procedure. 
Assuming that � is �.5, let k = [(B+1 + �)], the largest integer � (B+1)�.  The lower and upper

limits are then established by taking the kth and (B+1 - k)th values of .�*θb

6. As explained by Efron (1982), since and , the percentile( )α θ= � �Hboot LL ( )1− =α θ� �Hboot UL

method confidence interval consists of the central 1 - 2� proportion of the bootstrap distribution.
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where the lower limit of the confidence interval is the 100 x �th empirical percentile of the

distribution of  and the upper limit is the 100 x (1-�)th .�*θb

Endnotes
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7. More formally, Efron and Tibshirani (1993:186) define the bias-correction value as 
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where indicates the inverse function of the standard normal curve.  Thus = 1.645. Φ −1 ( )Φ −1 95.

This measures the “median bias” of , or the discrepancy between the median of  and .�*θ �*θ �θ

8. In this sense, the bootstrap is a test of the reliability of asymptotic theory and thus should
always be preferred.  If the asymptotic and bootstrap critical values are similar in a given
application, then one should use the bootstrap since it has already been computed.  If the two are
very different, than the bootstrap “provides an indication that asymptotic approximations are
inaccurate” in that particular context (Horowitz 1997:202).

9. Davidson and Flachaire (2004) attribute the over-rejection primarily to the sensitivity of
inequality measures to outliers in the upper-tail of the income distribution, which is usually
described as being “heavy tailed” (i.e., as incomes get larger the tail decays slowly).  Hall (1990)
and Horowitz (2000) have shown that the bootstrap performs less well in these situations because
a small number of extreme values can greatly influence the bootstrap distribution during
resampling.  The asymptotically pivotal indicators such as Theil and Atkinson are more sensitive
to outliers in the upper tail than the Gini index which tends to be mid-range sensitive (see Cowell
and Flachaire 2002 for a full discussion of this issue).  While the coverage accuracy of the
intervals is not perfect, at least the bias is known and is in a conservative direction.  These
methods, to paraphrase Chernick (1999:149), do not “get us something for nothing,” but instead
should be better interpreted as “getting the most from the little that is available.”

10. The bootstrap procedures in this study employ resampling plans in the case of an
independent and identically distributed (iid) sample of fixed size n from an unknown population. 
Although relatively undeveloped in the statistical literature, some have explored extensions of
the iid bootstrap to data collected under complex sampling designs (Biewen 2002; Rao and Wu
1988; Jäntti 2003).  Due to the constraints of working with cross-national aggregations of survey
data, however, the LIS does not allow us to evaluate the usefulness of these extensions.

11. Adherence to the LIS guidelines was meant to assure maximum comparability of these
findings to other quantitative analyses of the LIS database, and also in an effort to “test” the
bootstrap procedures in the context of current LIS procedures.

12. Efron and Tibshirani (1993:52) find that “very seldom are more than B = 200 replications
needed for estimating a standard error” and “even a small number...say B = 50 is often good
enough to give a good7 estimate...”  To establish bootstrap confidence intervals, most
acknowledge that B must be much larger (as much as 1000 or more), however the literature
offers little formal guidance on establishing B for confidence interval estimation.

13. If the bootstrap distribution of is roughly normal (and the central limits theorem tells us�*θ b

that it is as n � �), than the standard normal and percentile intervals will nearly agree as they do
in the LIS data analyzed here.
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14. Even though “Lorenz dominance” is the only unambiguous condition in which this would be
true, it’s standard practice to make assessments in this manner under conditions of intersecting
Lorenz curves as well.

15. Obviously at lower alpha levels less statistical significance exists, meaning that the boxes in
Table 6 would contain more nations.  The one-sided p-values are provided in Table 5 to allow
readers to make these assessment as they wish.

16. While the bootstrap procedures are effective tools when one has access to the microdata, the
findings presented here are potentially useful to researchers attempting to interpret differences
and changes in Gini coefficients in situations where this access is limited or not possible. 
Specifically the hypothesis tests conducted here suggest the following guidelines when
comparing two Gini coefficients over time:

• less than 2.5 percent difference =   conclude that the difference is not
statistically significant

• between 2.5 and 5.0 percent difference = conclusion is ambiguous and likely
determined by size of the sampling
error, hypothesis test probably required

• more than 5.0 percent difference = conclude that the difference is
statistically significant
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Table 1.  Bootstrap Methods for Constructing Confidence Intervals

               Disadvantages               AdvantagesMethod

� May lose accuracy for statistics other than 
        the mean� Computationally easy and most familiarStandard Normal
� Provides symmetric intervals
� Intervals may not be range preserving
� Requires distributional assumptions

� Requires standard error estimates� Corrects for disadvantages of standardBootstrap-t
       (nested bootstrap is computationally          normal method
        burdensome)
� May require variance-stabilization
� Intervals may not be range preserving

� Caution in small sample sizes� Requires no standard error estimates
� May require bias correction procedures� Requires no variance stabilizingPercentile

� Intervals are range preserving
� Computationally easy

� Added computational burden� Corrects for disadvantages of percentileBias-Corrected Percentile
� Adjustments may not be necessary in          method
        large sample sizes



Table 2. Simulation Analysis of CI Performance Using Finland 2000, 5% Subsample

Gini parameter = 0.2474; n = 521 households; B reps = 1,000; Monte Carlo trials = 600

PseudoMedianMedianConfidence Interval
ERP**�-Level*Upper-BoundLower-BoundMethod

0.0070.0570.27030.2220Standard Normal

0.0130.0630.27090.2231Percentile

0.0050.0550.27340.2252Bias-Corrected

*   Proportion of trials in which the interval fails to capture 0.2474.
** Difference between actual and nominal probabilities of rejection.



Table 3. Survey Descriptions and 95% Confidence Intervals, Subsample of Ten LIS Surveys:
                     Replication Analysis

      Bias Corrected          Percentile    Standard NormalNumber ofGiniSampleSurvey
ULLLULLLULLLStd. ErrorBiasReplicationsIndexSizeYear

0.2460.2260.2460.2260.2450.2260.00490.00022500.2351,8131994Luxembourg
0.2460.2260.2450.2250.2450.2250.0050-0.0002500(LUX)
0.2450.2260.2450.2250.2450.2260.0050-0.00041000

0.3110.2820.3100.2810.3080.2820.0066-0.00012500.2952,0131999Hungary
0.3100.2810.3090.2810.3090.2810.0073-0.0004500(HUN)
0.3100.2820.3090.2810.3090.2810.0073-0.00041000

0.4470.4200.4480.4210.4470.4210.0066-0.00022500.4343,0552000Russia
0.4470.4220.4470.4210.4480.4210.0067-0.0003500(RUS)
0.4490.4210.4480.4210.4480.4210.0069-0.00031000

0.2650.2500.2650.2510.2640.2510.0035-0.00002500.2575,1461994Netherlands
0.2640.2500.2650.2520.2640.2510.00340.0004500(NLD)
0.2640.2510.2640.2510.2640.2510.00340.00001000

0.3510.3330.3510.3330.3510.3330.00450.00012500.3428,1201995Italy
0.3530.3330.3520.3330.3510.3320.0048-0.0002500(ITA)
0.3520.3330.3510.3320.3510.3320.0048-0.00011000

0.2540.2410.2540.2410.2540.2410.00330.00022500.24710,4212000Finland
0.2540.2410.2540.2410.2540.2410.0031-0.0001500(FIN)
0.2530.2420.2530.2420.2530.2420.0029-0.00001000

0.2560.2460.2570.2470.2570.2460.00260.00012500.25114,4912000Sweden
0.2580.2470.2570.2470.2570.2460.00260.0001500(SWE)
0.2570.2460.2570.2460.2570.2470.0026-0.00011000

0.2490.2340.2490.2330.2490.2330.0040-0.00012500.24116,1971996Slovak Rep.
0.2500.2330.2500.2330.2490.2320.00430.0003500(SVK)
0.2500.2330.2500.2330.2490.2330.0041-0.00001000

0.3490.3400.3490.3400.3490.3410.00210.00002500.34524,9761999United Kingdom
0.3490.3400.3490.3400.3490.3400.00230.0000500(GBR)
0.3490.3400.3490.3400.3490.3400.0023-0.00001000

0.3720.3640.3720.3640.3720.3640.0020-0.0001250
0.3720.3650.3720.3650.3720.3640.00200.00005000.36849,3512000United States
0.3720.3640.3720.3640.3720.3640.00200.00001000(USA)
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Figure 1. Standard Normal, Percentile, and Bias Corrected 95% Confidence Intervals; Subsample of Ten Surveys



Table 4.  Income Inequality in the LIS Database

            c2000            c1990            c1980

         95% CIStandardGini         95% CIStandardGini         95% CIStandardGini
ULLLErrorIndexULLLErrorIndexULLLErrorIndexCode

Global North
.318.304.0037.311*.308.299.0023.304.285.277.0020.281AUS       Australia
.277.255.0056.266.232.222.0025.227AUT       Austria
.257.243.0036.250.240.224.0040.232BEL       Belgium
.308.297.0028.302.287.275.0030.281.288.280.0023.284CAN       Canada

.242.232.0026.236DEN       Denmark
.254.241.0033.247.213.207.0016.210FIN       Finland
.294.282.0029.288*.294.280.0033.287.299.278.0053.288FRA       France
.270.258.0032.264.269.246.0057.257.253.234.0048.244DEU       Germany
.346.304.0011.323.339.317.0057.328IRE       Ireland
.342.324.0048.333.299.282.0044.290ITA       Italy
.270.250.0051.260.252.226.0063.239LUX       Luxembourg
.265.248.0043.256.276.256.0051.266.278.246.0083.260NLD       Netherlands
.257.244.0034.251.240.224.0042.231.228.219.0025.223NOR       Norway

.309.298.0027.303.323.314.0025.318ESP       Spain
.256.246.0025.252.234.225.0022.229.201.193.0022.197SWE       Sweden

.318.297.0055.307.319.300.0050.309CHE       Switzerland
.349.340.0023.345.344.329.0039.336.275.264.0029.270GBR       United Kingdom
.372.364.0020.368.341.331.0025.336.306.297.0023.301USA       United States

.296.280.003.288.280.265.004.272.278.264.004.270       Group Average

.039.039.001.039.040.040.001.040.036.035.002.035       Group Std. Dev.

Russia and Eastern Europe
.263.254.0022.259^.212.202.0024.207CZE       Czech Rep.
.371.352.0050.361EST       Estonia
.309.280.0075.295.297.269.0071.283HUN       Hungary
.297.289.0019.293.281.266.0037.274POL       Poland
.282.273.0023.277ROM       Romania
.447.420.0069.434.405.385.0049.395RUS       Russia
.249.233.0040.241^.193.186.0018.189SVK       Slovak Rep.
.257.242.0039.249SVN       Slovenia

.309.293.004.301.277.262.004.270       Group Average

.063.059.002.061.075.070.002.073       Group Std. Dev.

Other LIS Countries
.355.338.0043.346.313.298.0038.305.314.292.0057.303ISR       Israel
.504.478.0067.491.478.457.0054.467.462.432.0077.448MEX       Mexico
.301.292.0023.296.275.268.0019.271.271.263.0019.267TWN       Taiwan

.387.369.004.363.355.341.004.348.349.329.005.339       Group Average

.086.079.002.084.088.083.001.086.082.073.002.078       Group Std. Dev.

.310.294.004.302.288.273.004.280.293.278.004.285       Overall Average

.061.059.002.060.061.059.002.060.057.053.002.056      Overall Std. Dev.

Notes:  All Gini indices are based on net, disposable household income, see Apendix A

           Reported confidence intervals are percentile method

          *1994 ; ^1996
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Table 5. Null Hypothesis Tests for Differences in Inequality Levels, circa 2000

Absolute Diff.
USAESTGBRITAIRECANHUNPOLROMAUTDEULUXNLDSWENORBELSVNFINPercentage Diff.
.368.361.345.333.323.302.295.293.277.266.264.260.256.252*.251.250.249.247One-Sided p*

FIN

.002
0.8SVN

.367

.001.003
0.41.2BEL

.432.294

.001.002.004
0.40.81.6NOR

.423.391.259

.001.002.003.005
0.40.81.22.0SWE

.405.351.329.160

.004.005.006.007.009
1.62.02.42.83.6NLD

.194.171.153.124.045

.004.008.009.010.011.013
1.53.23.54.04.45.3LUX

.313.074.067.067.042.018

.004.008.012.013.014.015.017
1.53.04.54.95.35.76.4DEU

.238.067.001oooo

.002.006.010.014.015.016.017.019
0.82.33.85.65.66.46.87.1AUT

.369.181.072.006.012.008.007o

.011
4.1ROM

.022

POL

.002.018
0.76.5HUN

.422.006

.007.009
2.33.0CAN

.189.007

.021
6.5IRE

.023

.010
3.0ITA

.189

.012.022
3.66.4GBR

.014.024

EST

.007
1.9USA

.081
* Sweden's Gini index is .2515
Notes:  Blank cells or "o" in p* cell indicate that confidence intervals overlap
            Bolded numbers indicate that the difference is statistically significant at � = .05



Table 6.  Ranking Levels of Inequality using Statistical Significance, circa 2000 
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Figure 3a. The Continental Pattern of Inequality
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Figure 3b. The Continental Pattern of Inequality
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Figure 3c. The Continental Pattern of Inequality
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Figure 3d. The Continental Pattern of Inequality
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Figure 4. The Anglo Pattern of Inequality
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Figure 5. The Scandinavian Pattern of Inequality
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Figure 6. Patterns of Distributional Change in the Global North, 1980 - 2000



Figure 7.  Russia and Eastern Europe
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Figure 8.  Other LIS Member Countries
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