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ABSTRACT 

 This paper explores the ability of some popular income distributions to model observed skewness 

and kurtosis.  We present the generalized beta type 1 (GB1) and type 2 (GB2) distributions’ skewness-

kurtosis spaces and clarify and expand on previously known results on other distributions’ skewness-

kurtosis spaces.  Data from the Luxembourg Income Study are used to estimate sample moments and 

explore the ability of the generalized gamma, Dagum, Singh-Maddala, beta of the first kind, beta of the 

second kind, GB1, and GB2 distributions to accommodate the skewness and kurtosis values.  The GB2 

has the flexibility to accurately describe the observed skewness and kurtosis.  
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1.  INTRODUCTION 
 

Pareto’s pioneering work in modeling the distribution of income was published more than a 

century ago.  He observed that, in many cases, an approximately linear relationship existed between 

different income levels and the number of individuals receiving at least that level of income.  While the 

Pareto distribution often provided an accurate model of the upper tail of the distribution, it did a poor job 

of describing the lower tail.  Since inaccurate estimates of distributions can result in misleading policy 

implications, this led to the consideration of different distributions that more accurately modeled income.  

Gibrat’s (1931) law of proportionate effect provided a theoretical foundation for the use of a two-

parameter lognormal distribution, which was studied in more detail by Aitchison and Brown (1969).  

Battistin, Blundell, and Lewbel (2009) used the lognormal to compare the distribution of income and 

consumption across households.  Other two-parameter models include the gamma (Salem and Mount, 

1974) and the Weibull (Bartels and Van Metele, 1975).  While these two-parameter models provide 

increased flexibility relative to single-parameter models, they do not allow for intersecting Lorenz curves, 

which frequently arise with income data.   

Intersecting Lorenz curves can be obtained by adding a third parameter.  Some common three-

parameter models that have been used to model income and allow for intersecting Lorenz curves include 

the beta of the first kind (B1), the beta of the second kind (B2), the Dagum (DAGUM), and the Singh-

Maddala (SM) distributions.  Thurow (1970) used the B1 to explore explanatory factors associated with 

the distribution of income for whites and blacks in the United States.  Chotikapanich, et al. (2010) used 

the B2 to analyze global income inequality.  Dagum’s (1977) distribution was based on theoretical 

foundations and provided a significant improved fit in many applications.  Singh and Maddala’s (1976) 

distribution also provided an improved fit relative to the two-parameter models previously considered.  

The generalized gamma (GG) is another three-parameter model that permits intersecting Lorenz curves 

and yields improved fit relative to the lognormal and gamma distributions.   

The generalized beta of the first and second kind (GB1 and GB2, respectively) are four-parameter 
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models that include each of the previously described models as special or limiting cases.  McDonald 

(1984) provided an early reference to the GB1 and GB2 and its special cases, along with applications. 

Distributional characteristics, such as moments and the Gini, Pietra, and Theil measures of inequality, can 

be expressed in terms of the distributional parameters.  Other distributions, such as the double-Pareto-

lognormal distributional distribution which have desirable properties and provide an excellent fit to 

empirical fit to empirical data (Kleiber and Kotz (2003), Reed and Jorgenson (2004), and Reed and Wu 

(2008) ), have been recently explored, the focus of this paper will be restricted to The GB1 and GB2 and 

its special cases.  

There is a substantial literature describing the properties, estimation procedures, and applications 

of these distributions.  Kleiber and Kotz’s book (2003) provides an excellent summary of these issues and 

includes more than 500 references to the theoretical foundations and diverse applications of these and 

other distributions in economics and actuarial science.   

Maximum likelihood estimation is a common method of estimating the parameters of income 

distributions, although other methods have been used.  Income data is often reported in a grouped format.  

Estimation with grouped data can be performed by maximizing a multinomial likelihood function or 

minimizing a Chi-square goodness of fit statistic.  Other estimators may be obtained by imposing 

restrictive assumptions (such as assuming that the observations appear at the midpoint of an income 

group) or by top coding—both of which ignore intra-group variability.  These restrictions can impact 

estimator precision.  Gastwirth (1972) studied the impact of grouping on estimating the Gini coefficient 

by deriving upper and lower bounds on the Gini coefficient.  The lower bound assumes all incomes in an 

interval equal the average income, and the upper bound corresponds to distributing the income to 

maximize the spread within each group.  McDonald and Ransom (1981) demonstrated that a failure to 

take account of sampling variation can lead to misleading results.   

More recently, continuous income data have become increasingly available and have expanded 

possible estimation methods and analysis.  These data include information drawn from the US Census 
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Bureau, Current Population Survey, and other sources, and they are readily available on the Internet.  The 

use of continuous observations yields more accurate estimation of such descriptive statistics as skewness, 

kurtosis, and Gini coefficients.   

In this paper we explore the ability of the GB1 and GB2 distributions to model skewness and 

kurtosis.  While many of the theoretical results are available in different sources, we summarize, clarify 

and expand on previously known results, and derive new skewness-kurtosis spaces for the GB1 and GB2 

distributions.  In addition, we present previously unknown relationships between the skewness-kurtosis 

spaces for different distributions.  We apply the results to the Luxembourg Income Study (LIS) for 

thirteen countries, three definitions of income, and two time periods.  The GB2 provides the flexibility to 

model the observed skewness and kurtosis levels in the cases considered.   

The next section summarizes basic characteristics of a number of popular distributions of income 

(for models of positive income only).  Their respective skewness-kurtosis spaces are described in the 

Appendix.  Some new results, corrections to previously published results, and known results are given.  

Section 3 reports the observed skewness and kurtosis values for different countries, definitions of income, 

and time periods and compares them to the permissible values based on the distributions considered.  

Section 4 summarizes our findings. 

2.  THE MODELS 

Since many of the most commonly used models for the distribution of income are special cases of 

the generalized beta type 1 (GB1) and type 2 (GB2) distributions, we begin by defining them, their 

moments, and some of their special cases.   

The GB1 and GB2 probability density functions (pdfs) are defined by  

( )( )
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The Pareto distribution can be viewed as a special case of the GB1:   
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as can the beta of the first kind (B1), used by Thurow (1970):  
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The moments of the Pareto and B1 distributions can easily be obtained from expressions for the 

GB1 moments with appropriate substitutions.   

The Singh-Maddala and Dagum distributions are obtained from the GB2 by substituting p=1 and 

q=1, respectively, into the GB2 pdf to obtain  
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The Dagum and Singh-Maddala distributions, respectively, are known as the Burr Type 3 and Burr Type 

12 distributions in the statistics literature (Kleiber and Kotz, 2003). 

 The beta of the second kind (B2), used by Chotikapanich, et al. (2010), is another three-parameter 

special case of the GB2: 
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The moments of the SM, Dagum, and B2 distributions can easily be obtained from expressions 

for the GB2 moments with appropriate substitutions.   

The generalized gamma (GG) was used by Kloek and Van Dijk (1978); Taillie (1981); McDonald 

(1984); Atoda, Suruga, and Tachibanaki (1988); and Bordley, et al. (1996) to study the income 

distribution in a number of different countries.  The GG pdf is obtained from the GB2 by taking the 

following limit 
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The moments of the GG can be expressed as   
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The gamma (GAM), Weibull (W), lognormal (LN), and power function (PF) pdfs are the 

following special or limiting cases of the generalized gamma: 

( ) ( )
( )

( )
/1

; , ; 1, ,  

                    =
yp

p

GAM y p GG y a p

y e
p

β

β β

β

−−

= =

Γ

 



7 

 

( ) ( )
( )/1

; , ; , , 1  

                  =
aya

a

W y a GG y a p

ay e β

β β

β

−−

= =

 

( ) ( )

( )( )2
2

2 /2
0 2 2

ln y

2

1; ,  = lim GG ; , ,  

e                         =
2

a
a

aLN y y a a p
a

y

μ

σ

μμ σ β σ
σ

π σ

→

−
−

+⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

( ) ( )
-1

; , lim ; , /

y                    = , 0 < y <   

aPF y GG y p a
θ

θ

β θ β θ

θ β
β

→∞= =
 

The moments of the gamma and Weibull distributions can easily be obtained from expressions for 

the GG moments with appropriate substitutions.  

The moments for the LN and PF are given by 
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Equations for the Pietra, Theil, and Gini measures of inequality expressed in terms of the 

distributional parameters have been derived by various authors and are summarized in Kleiber and Kotz 

(2003) and McDonald and Ransom (2008) for the LN, GG, GB1, GB2, and special cases.   

The purpose of this paper is to consider the ability of these distributions to model observed 

combinations of skewness and kurtosis arising in different income studies.  We use the standardized 

skewness and kurtosis measures respectively defined by   
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where μ  and 2σ  in these equations denote the mean and variance of the random variable of interest.  

Standardized skewness and kurtosis are often denoted by 1 2( , )β β  in the literature, but the notation 

1 2( , )γ γ  more clearly allows for positive and negative skewness.   

Skewness and kurtosis can also be expressed in terms of the distributional parameters.  For some 

pdfs the permissible skewness-kurtosis combinations yield relatively simple expressions of the 

distributional parameters.  For example, parametric expressions for feasible skewness and kurtosis 

combinations for the gamma can be written in terms of the distributional parameter p as 1=2/ pγ  and 

2 3 6 / ,pγ = +  which can be rewritten as ( ) 2
2 13 3 / 2γ γ= + .  For other distributions, tractable 

expressions for permissible kurtosis in terms of skewness have not been obtained, but parametric 

expressions for skewness and kurtosis are available.  The Pareto and lognormal are two examples of 

distributions with fairly simple parametric representations (see the Appendix) that trace out feasible 

skewness-kurtosis combinations in the 1 2( , )γ γ  plane.  Similarly, the Weibull corresponds to a line in the 

1 2( , )γ γ  plane.   

For the three-parameter distributions, the feasible skewness-kurtosis combinations correspond to 

two-dimensional regions (also referred to as spaces) in the 1 2( , )γ γ  plane, which are defined by upper (U) 

and lower (L) bounds.  Rodriguez (1977) explores feasible skewness-kurtosis combinations for the SM 

distribution.  Tadikamalla (1980) derives the upper and lower bounds defining the Dagum skewness-

kurtosis space and demonstrates that it includes the SM space as a proper subset.  Vargo, Pasupathy, and 

Leemis (2010) summarize the skewness-kurtosis space corresponding to a number of distributions 

(including the LN, B1, B2, GG, GAM, and SM) and provide expressions for bounding curves for some of 
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the distributions.  Pearson (1916) demonstrates that ( )2
2 1 1γ γ≥ +  for all distributions.  This inequality 

gives the lower bound for any empirical or theoretical distribution, and we refer to it as AD.  Klaasen, et 

al. (2000) show that ( )2
2 1 189 /125γ γ≥ +  defines a lower bound for unimodal distributions. 

In the Appendix, we give upper and lower skewness-kurtosis bounds for the GB1 and GB2, 

summarize and expand on previously reported results, and provide explicit expressions for the bounding 

curves.   

Figure 1 provides a graphical representation of the GB1, GB2, B1, B2, gamma, Pareto, 

lognormal, and normal skewness-kurtosis spaces.  The normal corresponds to the point (0,3) in the 

1 2( , )γ γ  plane.  The B1 and GB1 share the same skewness-kurtosis lower bound (represented in the figure 

as B1L and GB1L, with bounds for other distributions labeled similarly); the lower bound for all 

distributions is ADL.  The gamma curve provides the upper bound for the B1 skewness-kurtosis space and 

the lower bound for the B2 space.  The B2 allows for only positive skewness values, with the lower and 

upper bounds originating at (0,3).  The GB2 skewness values are always greater than -2.  For skewness 

values greater than -2, the GB2 lower bound is above the GB1 lower bound; however, the GB2 upper 

bound lies above the GB1 upper bound.  While not obvious from the figure, the Pareto curve is contained 

in the B2 and GB2 spaces, but it lies above the upper bound for the more general GB1 distribution for 

skewness values exceeding 3.5.  This is possible since the Pareto is a special case of the GB1 with a = -1, 

whereas the GB1, GB2, and their special cases correspond to 0.a ≥   The Pareto also has a vertical 

asymptote at skewness of 7.07.   
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Figure 1.  Skewness-kurtosis spaces for GB1, GB2, B1, B2, gamma, Pareto, lognormal, and normal 
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Note: The “L” subscript represents the lower bound and the “U” subscript represents the upper bound for 
the respective distribution’s skewness-kurtosis space. 

 

As most studies of income distributions employ special cases of the GB2 distribution, it is 

instructive to focus on the skewness-kurtosis spaces for the GB2 and its special cases, which are depicted 

in Figure 2.  The GB2 upper bound lies above all of the upper bounds of its special and limiting cases.  

The Dagum and Singh-Maddala distributions share the same upper bound for positive skewness but differ 

slightly for negative skewness; the Dagum lower bound, however, lies below the Singh-Maddala lower 

bound (given by the Weibull skewness-kurtosis curve).  The Dagum skewness-kurtosis space includes the 



11 

 

SM space as a proper subset, which helps explain why the Dagum distribution often provides a better fit 

than the Singh-Maddala distribution.  The upper bound for the GG corresponds to the LN curve for 

positive skewness.  The GB2, Dagum/SM, and B2 upper bounds have vertical asymptotes at skewness 

values of 2.30, 4.28, and 5.66, respectively. The generalized gamma, Dagum, and GB2 all share the same 

lower bound, which lies above the all distribution lower bound.  Not surprisingly, the GB2 skewness-

kurtosis space includes the spaces for all of its limiting and special cases.   

 

Figure 2.  Skewness-kurtosis spaces for GB2, Dagum, Singh-Maddala, B2, generalized gamma, 
lognormal, Weibull, and gamma 
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Note: The “L” subscript represents the lower bound and the “U” subscript represents the upper bound for 
the respective distribution’s skewness-kurtosis space. 
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Table 1 reports upper and lower bounds (which define feasible skewness-kurtosis combinations) 

for the B1, B2, GG, Dagum, Singh-Maddala, GB1, and GB2.  These bounds were used to construct 

Figures 1 and 2 and can assist researchers in selecting an appropriate distribution.  Some of the 

distributions, such as the B2 and GG, have bounds that involve the skewness and kurtosis equations for 

other pdfs, such as the power function (PF), inverse gamma (IGAM), and log gamma (LGAM).  Other 

distributions, such as the Dagum and SM, have bounds that are limiting or special cases of their own 

skewness and kurtosis equations.  It is also worth noting that many bounds are segmented into two 

sections—one for the positive skewness part of the skewness-kurtosis plane and one for the negative 

skewness part.  The Appendix includes skewness and kurtosis equations for all the distributions 

considered, a summary of the definitions and related properties of the additional pdfs mentioned above, 

and equations for the different skewness-kurtosis bounds.   

To illustrate the interpretation of the results in Table 1, consider the B1 distribution.  The possible 

combinations of ( )1 2,γ γ  that can be modeled by the B1 are defined by the region bounded below by the 

all distribution lower bound ( 2
2 1 1γ γ= + ) and bounded above by the gamma skewness-kurtosis curve 

and its mirror image ( ( ) 2
2 13 3 / 2γ γ= +  for 1γ  real).   
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Table 1.  Bounds for skewness-kurtosis spaces 

pdf Lower bound Upper bound 
B1 ( )1 2,

AD
γ γ  ( )1 2,

GAM
γ γ  and its mirror image  

B2 ( )1 2,
GAM

γ γ  ( )1 2,
IGAM

γ γ  
GG ( )1 2,

PF
γ γ  Negative skewness: ( )1 2,

LGAM
γ γ   

Positive skewness: ( )1 2,
LN

γ γ   
Dagum ( )1 2,

PF
γ γ  Negative skewness: ( )1 2lim ,a DAGUM

γ γ→∞  

Positive skewness:  ( )1 2,
DAGUM

γ γ   
   with p=1 

Singh-Maddala ( )1 2,
Weibull

γ γ  Negative skewness: ( )1 2lim ,a SM
γ γ→∞  

Positive skewness: ( )1 2,
SM

γ γ with q=1 
GB1 ( )1 2,

AD
γ γ  Negative skewness: Mirror image of    

   ( )1 2,
GAM

γ γ to the point (-2,9) and then   

   ( )1 2,
LGAM

γ γ  from (-2,9) to (0,3) 

Positive skewness: ( )1 2,
LN

γ γ  
GB2 ( )1 2,

PF
γ γ  Negative skewness:  

( ),  1 2lim ,p kq a GB2
γ γ→ →∞  

Positive Skewness: See the Appendix 
 

Note: Equations for and details about the various bounds are found in the Appendix. 
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We now consider an application of these models to actual income data and investigate which pdfs 

are sufficiently flexible to accommodate observed skewness and kurtosis values.    

3.  EMPIRICAL APPLICATION: LUXEMBOURG INCOME STUDY DATA 

Household income data were obtained from the Luxembourg Income Study (LIS) database for 13 

countries.  The income measures we considered were earnings, gross income, and disposable income.  

Two time periods were used: Wave 5 of the survey (occurring in approximately 2000) and Wave 6 

(occurring in approximately 2004).  We looked at each country having data for each of the three income 

definitions for the time periods considered: Australia, Canada, Denmark, Finland, Germany, Israel, 

Norway, Poland, Sweden, Switzerland, Taiwan, United Kingdom, and the United States.  An advantage 

of using the LIS data set is that the data from each country are uniformly formatted, especially with 

respect to the definition of income, thus facilitating inter-country comparisons.  In all cases, income was 

measured in nominal local currency units.  Because of government regulations and privacy laws, data on 

individual observations cannot be downloaded.  Instead, we accessed the LIS microdata through their 

server to calculate the sample size, mean, variance, skewness, kurtosis, and Gini coefficient for each 

country, income definition, and year.  Another advantage of using LIS data is that the income variables 

are continuous, not grouped, which makes the calculation of these measures more accurate.   

Table 2 summarizes the definitions of income used in this study.  Earnings measures income 

before taxes and transfer payments. Gross income measures income and transfer payments before taxes 

are withheld.  Disposable income measures income after adjusting for taxes and transfer payments.  We 

followed the recommendation of LIS group and used the weighted data, which can correct for non-

sampling errors and sample bias.  For additional details on the weighting procedures, see 

http://www.lisproject.org/techdoc.htm.  
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Table 2.  Definitions of LIS income measures used 

Earnings (income before taxes and transfer payments) 
• Gross cash wage and salary income 
• Farm self-employment income 
• Non-farm self-employment income 

Gross income (income before taxes and after transfer payments) 
• Earnings 
• Cash property income (includes cash interest, dividends, rents, annuities, royalties, etc.) 
• Private occupational and other pensions 
• Public sector occupational pensions 
• Sickness benefits 
• Occupational injury and disease benefits 
• Disability benefits 
• Maternity and other family leave benefits 
• Military/veterans/war benefits 
• Other social insurance benefits 
• State old-age and survivors benefits 
• Child/family benefits 
• Unemployment compensation benefits 
• Social assistance cash benefits 
• Near-cash benefits 
• Alimony/child support 
• Regular private transfers 
• Other cash income 

Disposable income (income after taxes and transfer payments) 
• Gross income 
• Minus: 

o Mandatory contributions for self-employed (includes social security, unemployment, etc.) 
o Mandatory employee contributions 
o Income taxes 

 

Source: http://www.lisproject.org/techdoc/sumincvar.xls. 
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Table 3 reports the sample size and distributional characteristics of interest for households 

reporting positive income. Not surprisingly, the income data exhibit positive skewness.  There is 

considerable variation in the estimated values for standardized skewness and kurtosis. One questionable 

observation in the Sweden 2005 data had a value for interest and dividends that was nearly 200 times as 

large as the next reported value, which greatly affected skewness and kurtosis; hence, the observation was 

dropped for all our analyses (see notes to Table 3).  As measured by the Gini coefficient, transfer 

payments and taxes result in a more egalitarian distribution in ten of the thirteen countries considered, 

with only Australia, Taiwan, and the UK having similar Gini coefficients for earnings and disposable 

income.  In all cases, taxes applied to gross income resulted in smaller Gini coefficients; however, the 

decrease in Switzerland and Poland was quite small.   
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Table 3.  Moments and Gini coefficients for LIS annual household income data 
 

Country Year Definition n Mean Std Dev Skew Kur Gini
Australia 2001 Earnings 4510 59838 44358 2.902 20.90 0.360 
  Gross income 6699 51288 45621 3.483 27.63 0.417 
  Disposable income 6697 41786 31475 2.993 24.74 0.370 
 2003 Earnings 6741 64936 49704 4.056 45.23 0.363
  Gross income 10087 55916 49276 4.457 54.28 0.412 
  Disposable income 10086 44870 33037 3.209 32.66 0.365 
Canada 2000 Earnings 22298 56295 57237 6.555 95.91 0.437 
  Gross income 28936 56859 56367 7.688 139.02 0.413 
  Disposable income 28902 43824 36684 5.989 90.43 0.373 
 2004 Earnings 21594 61690 63207 6.741 117.54 0.451 
  Gross income 27776 64030 61225 7.109 132.43 0.412 
  Disposable income 27774 50777 41204 4.899 70.06 0.375 
Denmark 2000 Earnings 59549 364336 267158 2.130 22.28 0.386 
  Gross income 81916 367090 284729 7.934 241.12 0.360 
  Disposable income 81904 243828 163848 9.142 389.48 0.322 
 2004 Earnings 59824 402943 308210 2.978 38.06 0.392 
  Gross income 83220 407209 310706 6.289 144.85 0.358 
  Disposable income 83178 276847 187778 7.888 264.98 0.323 
Finland 2000 Earnings 8916 184190 161674 29.34 3537.9 0.406 
  Gross income 10420 199933 238812 83.84 14375 0.379 
  Disposable income 10415 145051 145006 59.21 7455.6 0.338 
 2004 Earnings 9358 35526 27538 1.723 11.70 0.410
  Gross income 11226 39312 45717 22.00 845.86 0.389 
  Disposable income 11220 29286 31328 24.41 989.47 0.349 
Germany 2000 Earnings 8051 74823 58503 3.247 32.45 0.386 
  Gross income 10982 71752 60239 4.831 71.64 0.392 
  Disposable income 10982 52682 39517 6.886 169.17 0.345 
 2004 Earnings 8297 40009 31625 2.942 28.13 0.394 
  Gross income 11290 39008 55806 71.045 7580.9 0.393 
  Disposable income 11288 29239 49607 98.088 11873 0.346 
Israel 2001 Earnings 4382 149884 152131 4.815 67.21 0.457 
  Gross income 5768 145455 153356 6.164 95.35 0.447
  Disposable income 5768 111356 98716 8.651 213.7 0.384 
 2005 Earnings 4762 147007 139566 3.939 43.15 0.447 
  Gross income 6259 148009 156337 7.028 110.60 0.441 
  Disposable income 6255 120024 116068 10.493 240.49 0.394 
Norway 2000 Earnings 11474 376575 295371 4.747 123.53 0.392 
  Gross income 12888 398639 402778 13.433 411.36 0.387 
  Disposable income 12870 300334 312958 19.976 787.06 0.355 
 2004 Earnings 10947 409276 337594 3.533 58.51 0.417 
  Gross income 13116 474134 906537 62.127 5679.68 0.396 
  Disposable income 13112 360090 849079 71.487 6964.48 0.370
Poland 1999 Earnings 24201 19542 23610 48.927 4995.8 0.428 
  Gross income 31273 23141 21117 51.820 5890.7 0.325 
  Disposable income 31253 20600 20024 60.742 7320.1 0.323 
 2004 Earnings 23534 22952 24490 8.773 268.61 0.461 
  Gross income 32032 26284 21695 9.196 311.27 0.354 
  Disposable income 32027 24414 20412 10.281 384.77 0.352 
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Table 3—cont. 
 

Country Year Definition n Mean Std Dev Skew Kur Gini
Sweden 2000 Earnings 10319 291187 265613 5.557 90.12 0.425 
  Gross income 14473 316451 331621 32.828 2417.71 0.379 
  Disposable income 14470 221536 211460 39.730 3285.33 0.347 
 2005 Earnings 11950 334616 295442 5.988 174.03 0.420
  Gross income 16254 373877 291425 6.471 167.45 0.355 
  Disposable income 16251 269439 181934 4.749 87.15 0.327 
Switzer. 2000 Earnings 3015 93973 70423 11.226 363.34 0.328 
  Gross income 3641 96491 76939 11.326 285.40 0.320 
  Disposable income 3627 73143 60555 13.535 382.77 0.318 
 2004 Earnings 2596 97945 60182 1.777 11.40 0.320 
  Gross income 3267 98638 61917 4.091 57.03 0.305 
  Disposable income 3245 73580 44750 3.169 32.17 0.301 
Taiwan 2000 Earnings 12301 844894 571044 2.634 23.18 0.340 
  Gross income 13801 934142 648958 2.658 20.27 0.345 
  Disposable income 13800 893449 609208 2.562 19.60 0.341 
 2005 Earnings 11903 832582 576645 1.981 12.99 0.357 
  Gross income 13681 915325 681198 2.863 21.63 0.364 
  Disposable income 13679 872331 640298 2.878 22.41 0.359 
UK 1999 Earnings 15199 28716 29158 11.061 276.97 0.401 
  Gross income 24944 24589 26516 11.428 327.73 0.426 
  Disposable income 24830 19596 20515 14.157 471.86 0.398 
 2004 Earnings 17025 35719 38471 11.299 258.90 0.408
  Gross income 27684 31028 34088 11.496 294.32 0.421 
  Disposable income 27574 24800 27417 12.965 332.26 0.398 
USA 2000 Earnings 39621 58669 58185 3.341 19.35 0.442 
  Gross income 49304 57698 58508 3.438 20.84 0.450 
  Disposable income 49294 44785 39883 3.511 23.91 0.404 
 2004 Earnings 62366 63012 65661 4.066 29.05 0.448 
  Gross income 75746 61877 64727 4.145 31.99 0.453 
  Disposable income 75736 49534 46568 4.371 38.97 0.414 
 
Notes: All values are expressed in units of national currency in use at time of data collection. One 
questionable observation in the Sweden 2005 data has reported interest and dividends (which is included 
in gross and disposable income but not in earnings) of 1,526,993,544, whereas the next largest value is 
8,448,972 and the mean value of interest and dividends, after dropping the outlier, is 8,794. Thus, the 
observation has been dropped. Keeping the observation results in a mean, standard deviation, skewness, 
kurtosis, and Gini coefficient for gross income of 374,602, 1,094,773, 1,305, 1,831,523, and 0.357, 
respectively.  It results in a mean, standard deviation, skewness, kurtosis, and Gini coefficient for 
disposable income of 269,945, 758,053, 1,333, 1,883,894, and 0.328, respectively.   

  
 



19 

 

Table 4 reports the percent of the 78 cases (13 countries, 3 income definitions, 2 time periods) 

included in each of skewness-kurtosis spaces considered.  While maximum likelihood estimators would 

not match sample and theoretical moments (as would method of moments estimators), these results shed 

light on the relative ability of the different pdfs to accommodate the observed distributional characteristics 

in the data considered.  Only 3 of the 78 (3.85%) cases fall in the B1 skewness-kurtosis space; whereas, 

the B2 space includes 66 of the 78 (84.62%) cases considered.  The Dagum clearly outperforms the 

Singh-Maddala distribution, accounting for all but one of the observations.  Although the GB1 lower 

bound lies below the GG lower bound, the two distributions perform equally as well (none of the data 

points fall in the GB1’s extended region). 
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Table 4. Percent of 78 data points included in each skewness-kurtosis space 

pdf % of data included in skewness-kurtosis space 
GB2 100.00 
Dagum 98.72 
B2 84.62 
SM 65.38 
GB1 57.69 
GG 57.69 
B1 3.85 
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Figure 3 illustrates 62 of the 78 observed skewness and kurtosis combinations along with the 

skewness-kurtosis spaces considered.  The scale of the figure was selected to facilitate distinguishing the 

different bounds, with 16 of the larger skewness-kurtosis data points being omitted. 

 

Figure 3. Skewness-kurtosis data points and skewness-kurtosis spaces 
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4.  SUMMARY AND CONCLUSIONS 

The ability of some popular income distributions to model distributional characteristics was 

investigated.  The GB1 and GB2 skewness-kurtosis spaces were evaluated, and prior results on the spaces 

for the Pareto, lognormal, gamma, Weibull, generalized gamma, Dagum, Singh-Maddala, and beta 

distributions were given, expanded on, and compared.  Of the models considered, the GB2 allowed for the 

highest kurtosis values for positive skewness, which appears to be important in modeling the distribution 

of income.  The skewness-kurtosis values observed for thirteen countries, three definitions of income, and 

two time periods were able to be modeled by the GB2. Of the three-parameter models, the Dagum 

performed the best and nearly as well as the more general GB2. 

 

APPENDIX: SKEWNESS-KURTOSIS SPACES FOR SELECT DISTRIBUTIONS 

A.1. Skewness and kurtosis equations 

The evaluation of feasible skewness-kurtosis combinations is facilitated by analyzing a 

reparameterization of the standardized skewness and kurtosis given above: 

( )
( )

2 3
0 3 0 1 2 1

1 3/ 22
0 2 1

3 2λ λ λ λ λ λ
γ

λ λ λ

− +
=

−
 

( )
( )

3 2 2 4
0 4 0 1 3 0 1 2 1

2 22
0 2 1

4 6 3λ λ λ λ λ λ λ λ λ
γ

λ λ λ

− + −
=

−
 

where the '
hλ s for different pdfs are presented in Table A.1.  Expressions for the '

hλ s correspond to the 

moment equations without the scale parameter and terms not involving h that cancel out in calculating the 

standardized skewness and kurtosis.   
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Table A.1.  '
hλ s used to calculate skewness and kurtosis for different pdfs 

pdf  ( )hλ  h=0,1,2,3,4   

GB1 ( ) ( )/ / /p h a p q h aΓ + Γ + +  
GB2 ( ) ( )/ /p h a q h aΓ + Γ −  
Dagum (Burr3)  ( ) ( )/ 1 /p h a h aΓ + Γ −  
Singh-Maddala (Burr12) ( ) ( )1 / /h a h i aΓ + Γ −  
Generalized gamma ( )/p h aΓ +  
Weibull ( )1 /h aΓ +  
Gamma ( )p hΓ +  
Inverse gamma ( )1/ p hΓ −  
Log gamma p

h
β

β
⎛ ⎞
⎜ ⎟−⎝ ⎠

 

Power function ( )1/ hθ +  
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A.2. Skewness-kurtosis spaces 

Pareto curve: The feasible combinations of ( )1 2,γ γ  for the Pareto distribution can be expressed 

parametrically as 
( )( )

( ) ( )

2

1 2

3 2 3 2+1 = 2 1-2/ ,  3< ,  and , 
-3 3 4

p p pp p p
p p p p

γ γ
− + +⎛ ⎞

=⎜ ⎟ − −⎝ ⎠
4<p (Kleiber and 

Kotz, 2003).  

Power function curve: The feasible combinations of ( )1 2,γ γ  for the power function can be expressed 

parametrically as  
( )

1

2 1 1 2 /
3

θ θ
γ

θ
− +

=
+

 and 
( )( )

( )( )

2

2

3 3 2 1 2 /
3 4

θ θ θ
γ

θ θ

− + +
=

+ +
 (Kleiber and Kotz, 

2003).1 

Gamma curve: 1 2
2 6 =  and 3

pp
γ γ = +  or 2

2 1
33
2

γ γ= +  (Kleiber and Kotz, 2003).   

Inverse gamma curve: ( ) ( ); , ; 1, ,IGAM y p GG y a pβ β= = − . 

( )( )1 2
4 -2 30 66=  and 3 ,

-3 3 4
p p

p p p
γ γ −

= +
− −

 p > 4 (Vargo, et al., 2010).   

Log gamma curve: ( )( ; , ) ( ; , ) / ,LGAM y p GAM n y p yβ β= l  1 y<  (Kleiber and Kotz, 2003).   

( )
( )( )1 3/ 2

''

'

p

p

ψ
γ

ψ
=  and

( )
( )( )2 2

'''

'

p

p

ψ
γ

ψ
=  (Farebrother, 1990).   

Lognormal curve: 
2 23 2

1 3 4e eσ σγ = + −  and 
2 2 24 3 2

2 2 3 3e e eσ σ σγ = + + −  (Kleiber and Kotz, 2003).     

Weibull curve: 
( ) ( ) ( ) ( )

( ) ( )( )
3

1 3/ 22

3 / 1 3 2 / 1 1/ 1 2 1/ 1

2 / 1 1/ 1

a a a a

a a
γ

Γ + − Γ + Γ + + Γ +
=

Γ + −Γ +
 and  

                                                      
1 Kleiber and Kotz (2003)  inadvertently  indicate that the PF  is a  limiting case of the GG as  0a →  with 

/ ;p aθ= the correct limit is  a →∞  with  / .p aθ=  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )
2 4

2 22

4 / 1 4 3/ 1 1/ 1 6 2 / 1 1/ 1 3 1/ 1

2 / 1 1/ 1

a a a a a a

a a
γ

Γ + − Γ + Γ + + Γ + Γ + − Γ +
=

Γ + −Γ +
 (Rodriguez, 

1977). 

B1 space:   

Upper bound: 2
2 1

33
2

γ γ= + , corresponding to the gamma for positive skewness and the mirror 

image for negative skewness (Vargo, et al., 2010).  The limit of the B1 as q →∞ is a gamma pdf.  

Lower bound: 2
2 11γ γ= + , the boundary for all distributions (Johnson and Kotz, 1995; Vargo, et 

al., 2010).  

B2 space:   

Upper bound: 1
4 2

3
p

p
γ

−
=

−
 and 

( )( )2
30 663 ,

3 4
p

p p
γ −

= +
− −

 p > 4, which corresponds to the 

inverse gamma family (Vargo, et al., 2010). 

Lower bound: 2
2 1

33
2

γ γ= + , corresponding to the gamma, the limit of ( )1 2 2
,

B
γ γ  as q →∞  

(Vargo, et al., 2010). 

Dagum space:  

 Upper bound:   

• Negative skewness: ( ) ( )1 2 1 2, lim ,a DAGUM
γ γ γ γ→∞= (Tadikamalla, 1980), which 

gives 
( ) ( )
( )( )1 3/ 22

6 6 '' 1 ''

6 '

p

p

ψ ψ
γ

π ψ

− −⎡ ⎤⎣ ⎦=
+

 and 

( ) ( )( ) ( )( )
( )( )

24 2

2 22

9 3 20 ' 60 ' 20 '''
,

5 6 '

p p p

p

π π ψ ψ ψ
γ

π ψ

+ + +
=

+
 0<p<1 

(obtained using Mathematica). 
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• Positive skewness: ( )1 2,
DAGUM

γ γ  with p = 1 and a >4 (Tadikamalla, 1980). 

Lower bound: ( )1 2,
DAGUM

γ γ with 0p → and a varying (Tadikamalla, 1980).  This bound is 

numerically equivalent to the power function curve.  

Singh-Maddala space:   

Upper bound:    

Negative skewness: ( ) ( )1 2 1 2, lim ,a SM
γ γ γ γ→∞= (Rodriguez, 1977), yielding   

( ) ( )
( )( )1 3/ 22

6 6 '' 1 ''

6 '

q

q

ψ ψ
γ

π ψ

−⎡ ⎤⎣ ⎦=
+

 and 

( ) ( )( ) ( )( )
( )( )

24 2

2 22

9 3 20 ' 60 ' 20 '''

5 6 '

q q q

q

π π ψ ψ ψ
γ

π ψ

+ + +
=

+
, 1<q  

  (obtained using Mathematica).  

Positive skewness: ( ) ( )1 2 1 2 SM
, ,γ γ γ γ=  with q=1 and a>4 (Rodriguez, 1977).   

Lower bound: Use the Weibull curve, which corresponds to the limit of the SM as 

q →∞ (Rodriguez, 1977), with the bounds intersecting at ( )1 2,γ γ = (-1.14, 5.35).  

Generalized gamma space:  

Bounds for the GG with 0a ≥  were found by using the GG skewness and kurtosis equations to optimize 

2γ  subject to different values of 1γ  and to optimize 1γ  subject to different values of 2γ .  Relationships 

with bounds for other distributions were investigated and various limits were evaluated.  To confirm these 

results, skewness-kurtosis points were calculated for over a million different combinations of parameter 

values and then plotted.  (See Johnson and Kotz (1972) for the GG bounds without the 0a ≥  restriction.) 

Upper bound:   

• Negative skewness: use the log gamma 
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( ) ( )
( )( )

( )1 13/ 2

''
lim

'
a GG LGAM

p

p

ψ
γ γ

ψ
→∞ = =  

( ) ( )
( )( )

( )2 22

'''
lim 3

'
a GG LGAM

p

p

ψ
γ γ

ψ
→∞ = + =  

• Positive skewness: use ( ) ( )1 2 0 1 2, lim ,aLN GG
γ γ γ γ→=  

Lower bound: 1
12 1 2 /

3
θγ θ

θ
−⎛ ⎞= +⎜ ⎟+⎝ ⎠

 and 
( )( )

( )( )

2

2

3 1 2 / 3 2
,

3 4
θ θ θ

γ
θ θ

+ − +
=

+ +
 0 θ< , which 

intersects the upper bound at (-2, 9).  This corresponds to the power function curve and to 

( )1lim
GG

γ with a →∞  and ap θ= .  

GB1 space:  

Bounds for the GB1 with 0a ≥  were found by using the GB1 skewness and kurtosis equations to 

optimize 2γ  subject to different values of 1γ  and to optimize 1γ  subject to different values of 2γ .  

Relationships with bounds for other distributions were investigated and various limits were evaluated.  To 

confirm these results, skewness-kurtosis points were calculated for over a million different combinations 

of parameter values and then plotted.   

 Upper bound:  

• Negative skewness: ( ) ( )1 2 , 1 1 2, lim ,q a GB1
γ γ γ γ→∞ == =  mirror image of ( )1 2,

GAM
γ γ to 

the point (-2,9) and then ( )1 2,
LGAM

γ γ  from (-2,9) to (0,3).  

• Positive skewness: ( ) ( ) ( )1 2 0, 1 2 1 2, lim , ,a q GB1 LN
γ γ γ γ γ γ→ →∞= =   

Lower bound: 2
2 11γ γ= + , the lower bound for all distributions.  

GB2 space:   

Bounds for the GB2 with 0a ≥  were found by using the GB2 skewness and kurtosis equations to 

optimize 2γ  subject to different values of 1γ  and to optimize 1γ  subject to different values of 2γ .    
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Relationships with bounds for other distributions were investigated, various limits were evaluated, and for 

the upper bound for positive skewness Padé approximations were used.  To confirm these results, 

skewness-kurtosis points were calculated for over a million different combinations of parameter values 

and then plotted. 

Upper bound:  

• Negative skewness: ( )1 2,γ γ = ( ),  1 2lim ,p kq a GB2
γ γ→ →∞  = 

( )
( )

( )
( )

3 2 4

3/ 2 22 2

2 1 3 3 2 3
, ,

1 1

k k k

k k

⎛ ⎞− + +⎜ ⎟
⎜ ⎟+ +⎝ ⎠

 0 k≤ .  (-2,9) is the left endpoint.  

• Positive skewness: This part of the upper bound does not appear to be a limiting or 

special case of the GB2, and it also does not correspond to any of the other bounds 

examined in this paper.  A Padé approximation for the bound is 

( ) ( )5 4 3 2 3 2
2 0 1 2 3 4 5 1 2 3= /x x x x x x x xγ γ γ γ γ γ γ δ δ δ+ + + + + + + +  

where 1=x γ  and the estimated coefficients and 95% confidence intervals are given by  

 

0

1

2

3

4

        = -3640  (-1.497e+007, 1.496e+007)
         4349  (-1.79 007,  1.79 007)
         6.776 004  (-2.784 008,  2.785 008)
         - 5.444 004  (-2.237 008,  2.236 008)
         2.03

e e
e e e

e e e

γ
γ
γ
γ
γ

= + +
= + + +
= + + +

=

5

1

2

3

3 005  (-8.353 008,  8.357 008)
         -1.203 004  (-4.947 007,  4.944 007)
         -1.494 004  (-6.141 007,  6.138 007)
         3.526 004  (-1.449 008,  1.449 008)
         - 2065 

e e e
e e e
e e e

e e e

γ
δ
δ
δ

+ + +
= + + +

= + + +
= + + +
=  (-8.487 006,  8.483 006)e e+ +

 

One thousand optimized data points between skewness values of 0 and 2.3037 (the 

vertical asymptote) were used to fit the approximating equation, resulting in a RMSE of 

0.0006 and a corresponding R2 of 1.0000. 
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Lower bound: ( )1 2,γ γ  corresponding to  

( )0, / 1 2lim ,p a p GB2θ γ γ→ → =
( ) ( )( )

( ) ( )

23 1 2 / 3 22 1 1 2 /
,

3 3 4
θ θ θθ θ

θ θ θ

⎛ ⎞+ − +− +
⎜ ⎟
⎜ ⎟+ + +⎝ ⎠

 

with the left endpoint (-2,9) being obtained from θ →∞ , 0 ,θ< which is identical to the power 

function curve.    

 

 



30 

 

REFERENCES 

Aitchison, J. and J. A. C. Brown (1969).  The Lognormal Distribution with Special Reference to  

its uses in Economics. London: Cambridge University Press.   

Atoda, N., Suruga, T., and T. Tachibanaki (1988).  Statistical Inference of Functional Form for  

Income Distribution, Economic Studies Quarterly, 39, 14-40. 

Battistin, E., R. Blundell, and A. Lewbel (2009).  Why is Consumption More Log Normal than  

Income? Gibrat’s Law Revisited.  Journal of Political Economy, 117(6), 1140-1154.   

Bordley, R. F., J. B. McDonald, and A. Mantrala (1996).  Something New, Something Old:  

Parametric Models for the Size Distribution of Income.  Journal of Income Distribution,  

6, 91-103.  

Burr, I. W. (1942).  Cumulative Frequency Functions.  Annals of Mathematical Statistics, 13,  

215-232.  

Chotikapanich, D., W. E. Griffiths, D. S. P. Rao, and V. Valencia (2010).  Global Income  

Distributions and Inequality, 1993 and 2000: Incorporating Country-Level Inequality  

Modeled with Beta Distributions.  Forthcoming in The Review of Economics and Statistics.   

Dagum, C. (1977).  A New Model of Personal Distribution: Specification and Estimation.   

Economie Appliquée, 30, 413-437. 

Farebrother, R. W. (1990).  The Cumulants of the Logarithm of a Gamma Variable.  Journal of  

Statistical Computation and Simulations, 36, 243-246.   

Gastwirth, J. L (1972).  The Estimation of the Lorenz Curve and Gini Index.  The Review of  

Economics and Statistics, 54, 306-316. 

Johnson, N. L., S. Kotz, and N. Balakrishnan (1994).  Continuous Univariate Distributions, Vol.  

1, New York: Wiley-Interscience.   

Johnson, N. L., S. Kotz, and N. Balakrishnan (1995).  Continuous Univariate Distributions, Vol.  

2, New York: Wiley-Interscience.   



31 

 

Johnson, N. L. and S. Kotz (1972). Power Transformations of Gamma Variables, Biometrika  

59(1), 226-229.Klaassen, C. A. J., P. J. Mokveld, and B. van Es (2000).  Squared Skewness 

minus kurtosis bounded by 186/125 for unimodal distribuitions, Statistics and Probability Letters, 

50(2), 131-135.   

Kleiber. C. and S. Kotz  (2003).  Statistical Size Distributions in Economics and Actuarial  

Sciences, New Jersey: John Wiley and Sons.  

Kloek, T. and H. K. van Dijk (1977).  Efficient Estimation of Income Distribution  

Parameters, Journal of Econometrics, 8, 61-74. 

Luxembourg Income Study (LIS) Database, http://www.lisdatacenter.org (multiple countries; {accessed  

6/25/10-7/23/10}). 

McDonald, J. B. (1984).  Some Generalized Functions for the Size Distribution of Income,  

Econometrica 52(3), 647-663.   

McDonald, J. B. and M. R. Ransom (1981).  An Analysis of the Bounds for the Gini Coefficient, Journal 

of Econometrics, 17(2), 177-188. 

McDonald, J. B. and M. R. Ransom (2008). The Generalized Beta Distribution as a Model for the  

Distribution of Income: Estimation of Related Measures of Inequality, in Modeling Income 

Distributions and Lorenz Curves, edited by Duangkamon Chotikapanich, Volume 5 in Economic 

Studies in Equality, Social Exclusion and Well-Being, Springer-Springer. 

Pearson, K. (1916).  Mathematical Contributioins to the Theory of Evolution, XIX; Second  

supplement to a memoir on skew variation, Philos. Trans. Roy. Soc. London Ser. A 216, 429-457.   

Reed, W. J. and M. Jorgensen (2004).  The Double-Pareto Lognormal Distribution—A New Parametric 

Model for Size Distribution, Communications in Statistics-Theory and Methods, 33, 1733-1753. 

Reed, W. J. and F. Wu (2008).  New Four- and Five- Parameter Models for Income Distributions,  in 

Modeling Income Distributions and Lorenz Curves, edited by Duangkamon Chotikapanich, 

Volume 5 in Economic Studies in Equality, Social Exclusion and Well-Being, Springer-Springer.   



32 

 

Rodriguez, R. N. (1977).  A Guide to the Burr Type XII Distributions, Biometrika, 64(1), 129- 

134. 

Singh, S. K. and G. S. Maddala (1976).  A Function for the Size Distribution of Incomes,  

Econometrica, 44, 963-970. 

Tadikamalla, P. R. (1980).  A Look at the Burr and Related Distributions, International  

Statistical Review, 48(3), 337-344.  

Taillie, C. (1981).  Lorenz Ordering Within the Generalized Gamma Family of Income  

Distributions, Statistical Distributions in Scientific Work, 6 181-192. 

Thurow, L. C. (1970).  Analyzing the American Income Distribution, American Economic  

Review, 48, 261-269. 

Vargo, E., R. Pasupathy, and L. M. Leemis (2010).  Moment-Ratio Diagrams for Univariate  

Distributions, Journal of Quality Technology, 42(3), 1-11.  

  

 




