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Abstract

The purpose of this paper is two-fold. First, we develop the measurement theory
of polarization for the case in which asset distributions can be described using
density functions. Second, we provide sample estimators of population polar-
ization indices that can be used to compare polarization across time or entities.
Distribution-free statistical inference results are also derived in order to ensure
that the orderings of polarization across entities are not simply due to sampling
noise. An illustration of the use of these tools using data from 21 countries shows
that polarization and inequality orderings can often differ in practice.
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1. Introduction

Initiated by Esteban and Ray (1991, 1994), Foster and Wolfson (1992) and Wolf-
son (1994), there has been a recent upsurge of interest in the measurement of po-
larization1 and in the use of such measures as a correlate of different aspects of
socioeconomic performance. It seems fairly widely accepted that polarization is a
concept that is distinct from inequality, and that — at least in principle — it could
be connected with several aspects of social, economic and political change.2

Following Esteban and Ray (1991, 1994), we rely almost exclusively on what
might be called the identification-alienation framework. The idea is simple: social
polarization is related to the alienation that individuals and groups feel from one
another, but such alienation is fuelled by notions of within-group identity. In concen-
trating on such phenomena, we do not mean to suggest that instances in which
a single isolated individual runs amok with a machine gun are rare, or that they
are unimportant in the larger scheme of things. Rather, these are not the objects
of our enquiry. We are interested in the correlates of organized, large-scale social
unrest — strikes, demonstrations, processions, widespread violence, and revolt or
rebellion. Such phenomena thrive on differences, to be sure. But they cannot exist
without notions of group identity either.

This brief discussion immediately suggests that inequality is, at best, orthogonal
to the idea of polarization. To be sure, there are some obvious changes that would
be branded as both inequality- and polarization-enhancing. For instance, if two
income groups are further separated by increasing economic distance, inequality
and polarization would presumably both increase. However, local equalizations
of income differences at two different ranges of the income distribution will most
likely lead to two better-defined groups — each with a clearer sense of itself and
the other. In this case, inequality will have come down but polarization may be on
the rise.

The purpose of this paper is two-fold. First, we develop the measurement the-
ory of polarization for the case in which asset distributions can be described by
density functions. There are many such instances, the most important being in-
come, consumption and wealth – regrouped under “income" for short. The reason
for doing so is simple: with sample data aggregated along income intervals, it is
unclear how to provide a statistically satisfactory account of whether distributive
measures (based on such data) are significantly different across time or entities.
Indeed, a rapidly burgeoning literature on the statistics of inequality and poverty
measurement shows how to construct appropriate statistical tests for such mea-
sures using disaggregated data (see, e.g., Beach and Davidson, (1983), Beach and
Richmond (1985), Bishop et al. (1989), Howes (1993), Kakwani (1993), Anderson

1See Esteban and Ray (1991, 1994), Foster and Wolfson (1992), Wolfson (1994, 1997), Alesina and
Spolaore (1997), Quah (1997), Wang and Tsui (2000), Esteban, Gradín and Ray (1998), Chakravarty and
Majumder (2001), Zhang and Kanbur (2001) and Rodríguez and Salas (2002).

2See, for instance, D’Ambrosio and Wolff (2001), Collier and Hoeffler (2001), Fajnzylber, Lederman
and Loayza (2000), Garcia-Montalvo and Reynal-Querol (2002), Gradín (2000), Knack and Keefer (2001),
Milanovic (2000), Quah (1997) and Reynal-Querol (2002). See also Esteban and Ray (1999) for a formal
analysis of the connections between polarization and the equilibrium level of conflict in a model of
strategic interaction.
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(1996), and Davidson and Duclos (1997, 2000)). A rigorous axiomatic develop-
ment of the polarization concept in the “density case" is a prerequisite for proper
statistical examination of polarization.

In this paper we concentrate mainly on the axiomatics and estimation of “pure
income polarization”, that is, of indices of polarization for which individuals iden-
tify themselves only with those with exactly the same income level. This brings us
to the second, predominantly statistical, issue of how the estimation of polarization
is to be conducted. The main statistical problem is how to estimate the size of the
groups to which individuals belong. Fixing arbitrary income intervals would ap-
pear somewhat unsatisfactory. Instead, we estimate group size non-parametrically
using kernel density procedures. A natural estimator of the polarization indices is
then given by substituting the distribution function by the empirical distribution
function. Assuming that we are using a random sample of independently and
identically distributed observations of income, we show that the resulting estima-
tor has a limiting normal distribution with parameters that can be estimated free of
assumptions on the true (but unknown) distribution of incomes. Distribution-free
statistical inference can then be applied to ensure that the orderings of polarization
across entities are not simply due to sampling noise.

It is useful to locate this paper in the context of the earlier step in the measurement
of polarization in Esteban and Ray (1994) — ER thereafter. The measure derived in
ER was based on a discrete, finite set of income groupings located in a continuous
ambient space of possible income values. This generated two major problems, one
conceptual and the other practical. At the conceptual level we have the drawback
that the measure presents an unpleasant discontinuity. This is precisely due to
the fact that ER is based on a population distributed over a discrete and distinct
number of points.3 The practical difficulty is that the population is assumed to have
already been bunched in the relevant groups. This feature rendered the measure of
little use for many interesting problems.4 As mentioned above, the present paper
solves both problems and provides what we hope is a useable measure. In addition,
the main axioms that we use to characterize a measure of income polarization are
completely independent from the ones used in ER. We thus find it remarkable that
these new axioms end up characterizing a measure of polarization that turns out to
be the natural extension of ER to the case of continuous distributions. At a deeper
level, there are, however, important differences, such as the different bounds on
the “polarization-sensitivity” parameter α that are obtained.

In Section 2 we present a general introduction to the identity-alienation frame-
work. We consider different notions of identification and alienation, each leading
to a different class of measures. One of these cases is that of “pure” income polar-
ization, in which income (or wealth) alone is used to define groups. [In general,
other – possibly non-economic – criteria may be used to construct groups.] In Sec-
tion 3 we axiomatically characterize a measure of pure income polarization. In
Section 4, we turn to estimation and inference issues for polarization measures.
In Section 5, we illustrate the axiomatic and statistical results using data drawn
from the Luxembourg Income Study (LIS) data sets for 21 countries. We compute

3ER (Section 4, p. 846) mention this problem.
4In Esteban, Gradín and Ray (1998) we presented a statistically reasonable way to bunch the popu-

lation in groups and thus make the ER measure operational. Yet, the number of groups had to be taken
as exogenous and the procedure altogether had no clear efficiency properties.
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the Gini coefficient and the polarization measure for these countries for years in
Wave 3 (1989–1992) and Wave 4 (1994–1997), and show that the two indices furnish
distinct information on the shape of the distributions. All proofs are in Section 6.

2. Identification and Alienation

Although this paper is primarily concerned with income polarization, we begin
with a more general discussion. We take a broader perspective in which individual
characteristics other than income may matter, and introduce the identification-
alienation (IA) framework that informs all of our analysis.

Suppose that society is divided into G groups, the choice of which is left to the
applied researcher. These may be income or wealth groups, or divisions based on
other criteria: ethnicity, race, religion, caste, gender, region, and so on. The reason
why this choice must be left to the researcher is that no amount of measurement
theory can tell us which classifications are salient for a particular society.

With overall population normalized to unity, let F denote the cdf for overall
income distribution in society, and denote by Fj the unnormalized distributions for
each group j, so that

F (x) =
G∑

j=1

Fj(x)

for each income level x. We assume that this “true” distribution admits a density,
which we denote by f for the society as a whole, and fj (once again unnormalized)
for each group j. Letnj be the population mass andµj be the mean income of group
j. We will let F stand for the joint distribution summarized by (F ;F1, . . . , FG).

2.1. IA and Polarization. Here is the hypothesis underlying all that we do. Each
individual is assumed to be subject to two forces: he feels identification with those
he considers to be members of his “own group”, and alienation from those he
considers to be members of “other groups”. Thus, keeping matters deliberately
abstract for the moment, we suppose that a member of group j with income x feels
identification i = λj(x,F) with individuals in his own group j. We also suppose
that he experiences alienation from individuals in other groups (or perhaps the
same group): a = δjk(x, y) with respect to some member of group k with income
y (where δjk is some group-pair-specific distance function). The point is that our
individual’s effective antagonism towards the person with income y in group k is
his alienation weighted by the identification he feels. That is, alienation increases
effective antagonism, but in itself is not enough: for this to translate into social
tension, this individual must find like-minded compatriots. At any rate, this is the
provisional assumption on which everything here is based (and it is ultimately an
empirical question whether the resulting measure has any explanatory value).

Introducing, then, an increasing functionT (i, a) to capture effective antagonism,
we define polarization to be the “sum" of all effective antagonisms:

(1) P (F) ≡
∑

j

∑
k

∫
x

∫
y

T (λj(x,F), δjk(x, y)) dFj(x)dFk(y)

Described in this way, the measure is not very operational. Much is obviously left
to the choice of identification and alienation functions. Part of the goal of thinking
axiomatically is to narrow down these choices in some “reasonable" way.
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The analysis in Esteban and Ray [1994] (ER) — and in the text that follows —
imposes a certain structure on the identification and alienation functions for the
special case in which both identification and alienation are based on the same
characteristic. This characteristic can be income or wealth as well as any other
socio-political feature. The key restriction, however, is that whatever we choose
the salient characteristic to be, inter-group alienation has to be fuelled by the very
same characteristic. This seems natural in the cases of income or wealth. Yet, for
some relevant social characteristics this might not be a natural assumption. Think
of the case of ethnic polarization. It does not seem appropriate here to base inter-
ethnic alienation as depending on some suitably defined ethnicity distance. In
the cases of socially based group identification we consider more natural to take
a multi-dimensional approach to polarization, permitting alienation to depend on
characteristics other than the one that defines group identity. Because of these argu-
ments we consider that the most relevant instance of unidimensional polarization is
the case of economic polarization, whenever this is the appropriate salient feature.
We shall thus refer to this case as (pure) income polarization. In a later section, we
provide axiomatically derived measures for this concept. In this section, however,
we liberally transplant our findings to the case of social polarization (G ≥ 2), but
with no further axiomatic reasoning.

2.2. Leading Special Cases.

2.2.1. Income Polarization. First suppose thatG = 1, so that income is the only vari-
able of interest. What, then, is the source of identification? For any individual, this
source must be found in the measure of individuals in his immediate neighbor-
hood, with whom he shares a commonality of income. For a person with income
x, let us proxy this by the density f(x) at x.5 For two individuals x and y, let δ(x, y)
simply stand for the absolute difference |x − y|. The polarization measure in (1)
then acquires the format

(2) P (F) ≡
∫

x

∫
y

T (f(x), |x− y|) dF (x)dF (y).

Apart from the fact that we are looking at income polarization (G = 1), this is
not much of a specialization. The function T continues to incorporate a good deal
of arbitrariness. What we will show in Theorem 1, however, is that under some
axioms on the polarization ordering, the measure in (2) must reduce to

(3) P (F) �
∫

x

∫
y

f(x)α|x− y|dF (x)dF (y).

for some α > 0 (in fact, we also deduce some restrictions on α, on which more
later).

Notice that if α were to be set equal to zero in this equation, our measure would
simply reduce to the Gini coefficient, a well-known inequality measure. To be sure,
α cannot be set equal to zero: our axioms will rule this out. The extra weight on
density summarized by α is precisely how identification enters the picture: a larger
value of α corresponds to a higher weighting of alienation by identification.

5ER, in their discussion of the continuous case, posit a weighting function around the going income
which is used to aggregate nearby individuals for purposes of identification. For an appropriately
choosen weighting function, our formulation corresponds to the special case in which this weighting
function has vanishingly small support.
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2.2.2. Pure Social Polarization. The form of the polarization measure suggested by
(3) can be transplanted to social polarization without difficulty (though, as already
remarked, the axiomatization of such transplants remains a nontrivial endeavor).
Consider, for instance, the case of “pure social polarization”, in which income
plays no role. That is, there areGgroups. Each person is identified with every other
member of his group. Likewise, the alienation function takes on values that are
specific to group pairs and have no reference to income (formally, δjk(x, y) = ∆kj

for every pair of groups j and k no matter what the incomes x and y are). For
the special case in which inter-group social distances satisfy additivity6 pure social
polarization can be captured by the ER measure

(4) Ps(F) =
G∑

j=1

G∑
k=1

nα
j nk∆jk.

However, the additivity property of inter-group alienation is not always reason-
able. There are interesting instances in which individuals are interested only in the
dichotomous perception Us/They. In particular, in these instances, individuals are
not interested in differentiating between the different opposing groups. Perhaps
the simplest instance of this is a pure contest (Esteban and Ray [1999]), in which
one simply sets

(5) ∆jk = 1 if j � =k, and = 0 if j = k.

This yields the following variant of (3), [or equivalently of 4] which we might call
pure social polarization (Ps):7

(6) P̃s(F) =
G∑

j=1

∑
k �=j

nα
j nk.

2.2.3. Hybrids. Once the two extremes — pure income polarization and pure social
polarization — are identified, we may easily consider several hybrids. As examples,
consider the case in which notions of identification are mediated not just by group
membership but by income similarites as well, while the antagonism equation
remains untouched. [For instance, both low-income and high-income Hindus may
feel antagonistic towards Muslims as a whole while sharing very little in common
with each other.] Then we get what one might call social polarization with income-
mediated identification:

(7) Ps(F) =
G∑

j=1

∑
k �=j

∫
x

fj(x)αnkdFj(x).

One could expand (or contract) the importance of income further, while still staying
away from the extremes. For instance, suppose that — in addition to the income-
mediation of group identity — alienation is also income-mediated (for alienation,
two individuals must belong to different groups and have different incomes). Now
groups have only a demarcating role — they are necessary (but not sufficient) for

6That is, if ∆ki and ∆ij are the distance between groups k and i and i and j, respectively, then
∆kj = ∆ki + ∆ij .

7See Reynal-Querol [2002] for a similar analysis. D’Ambrosio and Wolff [2001] also consider a
measure of this type but with income distances across groups explicitly considered.
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identity, and they are necessary (but not sufficient) for alienation. The resulting
measure would look like this:

(8) P ∗(F) =
G∑

j=1

∑
k �=j

∫
x

∫
y

fj(x)α|x− y|dFj(x)dFk(y).

Note that we do not intend to suggest that other special cases or hybrids are not
possible, or that they are less important. The discussion here is only to show that
social and economic considerations can be profitably combined in the measurement
of polarization. In particular, these measures should certainly be used in place of
more commonly-used fragmentation measures in the analysis of conflict.

3. Measuring Income Polarization

The purpose of this section is to proceed towards a full axiomatization of income
polarization.

3.1. Starting Point. The domain under consideration is the class of all continu-
ous (unnormalized) densities in IR+, with their integrals corresponding to various
population sizes. Let f be such a density. An individual located at income x is
presumed to feel a sense of identification that depends on the density at x, f(x).
More generally, one might consider that individuals have a ”window of identifica-
tion”. However, the foundations for the width of such identification window seem
unclear. We have thus opted for defining our family of polarization measures for
the limit case when the window width becomes zero. But, as discussed in Section
3.4, even this seemingly narrow specification has broader implications.

An individual located at x feels alienation |x− y| as far as an individual located
at y is concerned. As in ER, we write the effective antagonism of x towards y (under
f ) as some nonnegative function

T (i, a),
where i = f(x) and a = |x − y|. It is assumed that T is increasing in its second
argument and that T (0, a) = T (i, 0) = 0, just as in ER. Finally, we take polarization
to be proportional to the “sum" of all effective antagonisms:

(9) P (F ) =
∫ ∫

T (f(x), |x− y|) f(x)f(y)dxdy,

The idea is to place some axioms on this starting point so as to narrow down the
functional form of T .

3.2. Axioms.

3.2.1. Densities and Basic Operations. Our axioms will largely be based on domains
that are unions of one or more symmetric “basic densities." The densities will be
scaled down and up to accommodate varying populations. The populations that
inhabit each basic density will not be normalized in any way. The building block
for these densities we will call kernels. These are symmetric, unimodal density
functions f with compact support that we always situate on the interval [0, 2], so
that their mean is one. By symmetry we mean that f(x) = f(2−x) for all x ∈ [0, 1],
and by unimodality we mean that f is nondecreasing on [0, 1]. We take the overall
population of a kernel to be unity. To be sure, a kernel f can be population scaled to
any population p by simply multiplying f pointwise by p to arrive at a new density
pf . Likewise, any kernel (or density for that matter) can undergo a slide. A slide to
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the right by x is just a new density g such that g(y) = f(y − x). Likewise for a slide
to the left. And a kernel f can be income scaled to any new mean µ that we please as
follows: g(x) = (1/µ)f(x/µ) for all x, This will give rise to a new density g that has
support [0, 2µ] and a mean of µ.8 Any scaling or slide (or combinations thereof) of a
kernel we will call a basic density. The operations described above are all standard
and do not require much explanation. What we shall also use is the notion of a
squeeze, defined as follows. Let f be any density with mean µ and let λ lie in (0, 1].
A λ-squeeze of the density f is a transformation of this density as follows:

(10) fλ(x) ≡ 1
λ
f

(
x− [1 − λ]µ

λ

)
.

A (λ-) squeeze is, in words, a very special sort of mean-preserving reduction in the
spread of a density. It concentrates more weight on the global mean of the distribu-
tion, as opposed to what would be achieved, say, with a progressive Dalton transfer
on the same side of the mean. Thus a squeeze truly collapses a density inwards
towards its global mean. The following properties can be formally established.

[P.1] For each λ ∈ (0, 1), fλ is a density.

[P.2] For each λ ∈ (0, 1), fλ has the same mean as f .

[P.3] If 0 < λ < λ′ < 1, then fλ second-order stochastically dominates fλ′
.

[P.4] As λ ↓ 0, fλ converges weakly to the degenerate measure granting all weight
to µ.

Notice that there is nothing in the definition that requires a squeeze to be applied
to symmetric unimodal densities with compact support. In principle, a squeeze as
defined could be applied to any density. However, the axioms to be placed below
acquire additional cogency when limited to such densities.

3.2.2. Statement of the Axioms. We will impose four axioms on the polarization
measure.

Axiom 1. If a distribution is composed of a single basic density, then a squeeze of
that basic density cannot increase polarization.

Axiom 1 is self-evident. A squeeze, as defined here, corresponds to a global
compression of any basic density. If only one of these makes up the distribution,
then the distribution is globally compressed and we must associate this with no
higher polarization. Viewed in the context of our background model, however,
it is clear that Axiom 1 is going to generate some interesting restrictions. This is
because a squeeze creates a reduction in inter-individual alienation but also serves
to raise identification for a positive measure of agents — those located “centrally"
in the distribution. The implied restriction is, then, that the latter’s positive impact
on polarization must be counterbalanced by the former’s negative impact.

Our next axiom considers an initial situation composed of three disjoint den-
sities, derived from identical kernels as shown in the diagram. The situation is
completely symmetric, with densities 1 and 3 having the same total population

8The reason for this particular formulation is best seen by examining the corresponding cumula-
tive distribution functions, which must satisfy the property that G(x) = F (x/µ), and then taking
derivatives.
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Income

Figure 1: A Single Squeeze Cannot Increase Polarization.

and with density 2 exactly midway between densities 1 and 3. Finally, assume that
all supports are disjoint.

Axiom 2. If a symmetric distribution is composed of three basic densities drawn
from the same kernel, with mutually disjoint supports, then a symmetric squeeze
of the side densities cannot reduce polarization.

In some sense, this is the defining axiom of polarization. This is precisely what
we used to motivate the concept. Notice that this axiom argues that a particular
“local" squeeze (as opposed to the “global" squeeze of the entire distribution in
Axiom 1) must not bring down polarization. At this stage there is an explicit
departure from inequality measurement.

Our third axiom considers a symmetric distribution composed of four basic den-
sities, once again all generated by the same kernel.

Axiom 3. Consider a symmetric distribution composed of four basic densities
drawn from the same kernel, with mutually disjoint supports, as in Figure 3. Slide
the two middle densities to the side as shown (keeping all supports disjoint). Then
polarization must go up.

Our final axiom is a simple population-invariance principle. It states that if one
situation exhibits greater polarization than another, it must continue to do so when
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Income

Figure 2: A Double Squeeze Cannot Lower Polarization.

populations in both situations are scaled up or down by the same amount, leaving
all (relative) distributions unchanged.

Axiom 4. If P (F ) ≥ P (G) and p > 0, then P (pF ) ≥ P (pG), where pF and pG
represent (identical) population scalings of F and G respectively.

3.3. Characterization Theorem.

Theorem 1. A measure P , as described in (9), satisfies Axioms 1–4 if and only if it is
proportional to

(11) Pα(F ) ≡
∫ ∫

f(x)1+αf(y)|y − x|dydx,

where α ∈ [0.25, 1].

3.4. Discussion . Theorem 1 states that a measure of polarization satisfying the
preceeding four axioms has to be proportional to the measure we have characterized.
We may wish to exploit this degree of freedom to make the polarization measure
scale-free. Homogeneity of degree zero can be achieved by multiplying Pα(F ) by
µα−1, where µ is mean income.

The theorem represents a particularly sharp characterization of the class of po-
larization measures that satisfy both the axioms we have imposed and the IA struc-
ture. In fact, we will see in later discussion that there are several other measures
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Income

Figure 3: A “Symmetric Outward Slide” Must Raise Polarization.

which satisfy Axioms 1–4. The IA framework is, therefore, an essential part of the
argument.

Notice that the characterized measures bear a superficial resemblance to the
Gini coefficient. Indeed, if α = 0, the measure is the Gini coefficient. However,
our theorem ensures that not only is α > 0, it cannot go below some uniformly
positive lower bound, which happens to be 0.25. Where, in the axioms and in the
IA structure, does such a bound lurk? To appreciate this, consider Axiom 2, which
refers to a double-squeeze of two “side" basic densities. Such squeezes bring down
internal alienations in each component densities. Yet the axiom demands that
overall polarization not fall. It follows, therefore, that the increased identifications
created by the squeeze must outweigh the decreased within-component alienation.
This restricts α. It cannot be too low.9

By a similar token, α cannot be too high either. The bite here comes from Axiom
1, which decrees that a single squeeze (in an environment where there is just one
basic component) cannot increase polarization. Once again, alienation comes down
and some identifications go up (as the single squeeze occurs), but this time we want

9Indeed, it is possible to impose additional requirements (along the lines explored by ER, for instance)
to place narrower bounds on α. But we do not consider this necessarily desirable. For instance, the upper
value α = 1 has the property that all λ − squeezes of any distribution leave polarization unchanged.
We do not feel that a satisfactory measure must possess this feature. This is the reason we are more
comfortable with a possible range of acceptable values for α.
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the decline in alienation to dominate the proceeedings. This is tantamount to an
upper bound on α.10

These restrictions — as well as a casual examination of the proof of Theorem 1
— make clear that the approach to our characterization, while superficially similar
to Esteban and Ray [1994], is actually quite different. There we assumed discrete
groups, which necessitated a very different set of axioms. It is comforting that
both yield the same functional characterization, albeit with different numerical
restrictions on the value of α.

We end this section with a discussion of our choice of basing identification on the
point density. In section 3.1. we mentioned that we may more generally consider
that individuals have a “window of identification” as in ER, section 4. Individu-
als within this window would be considered “similar" — possibly with weights
decreasing with the distance — and would contribute to a sense of group identity.
At the same time, individuals would feel alienated only from those outside the
window. Thus, broadening one’s window of identification has two effects. First,
it includes more neighbors when computing one’s sense of identification. Second,
it reduces one’s sense of distance with respect to aliens —because the width of the
identification window affects the “starting point” for alienation.

These two effects can be simultaneously captured in our seemingly narrower
model. Let k be the parameter of the broadness of the sense of identification.
Suppose that this just means that each individual x will consider an individual
with income y to be at the point (1 − k)x + ky. It can be easily shown that the
polarization measure resulting from this extended notion of identification is then
proportional to our measure by the factor k1−α. Therefore, broadening the sense
of identification simply amounts to a rescaling of the measure defined for the limit
case when one is identified to individuals with exactly the same income.

It is also possible to directly base identification on the average density over
a nondegenerate window. It can be shown that when our polarization measure
is rewritten to incorporate this notion of identification, it converges precisely to
the measure in Theorem 1 as the size of the window converges to zero. Thus
an alternative view of point-identification is that it is a robust approximation to
“narrow" identification windows.

4. Estimation and Inference

We now turn to estimation issues regarding Pα(F ), and associated questions of
statistical inference.

4.1. Estimating Pα(F ). The following rewriting of Pα(F ) will be useful:
Observation 1. For every distribution function F with associated density f and mean µ,

(12) Pα(F ) =
∫
y

f(y)αg(y) dF (y) ≡
∫
y

pα(y) dF (y),

with g(y) ≡ µ+ y (2F (y) − 1) − 2µ∗(y), where µ∗(y) =
∫ y

−∞ xdF (x) is a partial mean
and where pα(y) = f(y)αg(y).

10One might ask: why do the arguments in this paragraph and the one just before it lead to exactly
the same thresholds for α? The reason is this: in the double-squeeze, there are cross-group alienations as
well which permit a given increase in identification to have a stronger impact on polarization. Therefore
the required threshold on α is smaller.
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Examining Observation 1, we may interpret pα(y) as the contribution of indi-
viduals with income y to the overall index of polarization. As noted, pα(y) has two
multiplicative components. The first, f(y)α, captures the identification effect as
we have already noted: the larger the value of α, the more urgent are “feelings of
identification” in capturing polarization. The component g(y) is the contribution
of the alienation or distance effect in measuring polarization. When the identifi-
cation effect is not important, that is, when α = 0, we have that p0(y) = g(y) and
P0 =

∫
g(y) dF (y) then equals 2µ times the Gini index.

Suppose that we wish to estimate Pα(F ) using a random sample of n iid obser-
vations of income yi, i = 1, ..., n, drawn from the distribution F (y) and ordered
such that y1 ≤ y2 ≤ ... ≤ yn. A natural estimator of Pα(F ) is Pα(F̂ ), given by
substituting the distribution function F (y) by the empirical distribution function
F̂ (y), by replacing f(y)α by a suitable estimator f̂(y)α (to be examined below), and
by replacing g(y) by ĝ(y). Hence, we have

(13) Pα(F̂ ) =
∫
f̂(y)αĝ(y)dF̂ (y) = n−1

n∑
i=1

f̂(yi)αĝ(yi),

with the corresponding p̂α(yi) = f̂(yi)αĝ(yi). Note that yi is the empirical quantile
for percentiles between (i− 1) /n and i/n. Hence, we may use

(14) F̂ (yi) =
1
2

(
(i− 1)
n

+
(i)
n

)
= 0.5n−1 (2i− 1)

and

(15) µ̂∗(yi) = n−1

i−1∑
j=1

yj +
i− (i− 1)

2
yi

 ,

and thus define ĝ(yi) as

(16) ĝ(yi) = µ̂+ yi

(
n−1 (2i− 1) − 1

) − n−1

2
i−1∑
j=1

yj + yi

 .

where µ̂ is the sample mean.
We have not yet discussed the estimator f̂(y)α, but will do so presently. Observe,

however, that an exact replication of the sample to the original sample should not
change the value of the estimator Pα(F̂ ). Indeed, presuming that the estimators
f̂(·)α are invariant to sample size, this is indeed the case when formulae (13) and
(16) are used. We record this formally as
Observation 2. Let y = (y1, y2, ..., yn) and ỹ = (ỹ1, ỹ2, ..., ỹ2n) be two vectors of sizes
n and 2n respectively, ordered along increasing values of income. Suppose that for each
i ∈ {1, . . . , n}, yi = ỹ2i−1 = ỹ2i for all i = 1, ..., n. Let Pα(Fy) be the polarization index
defined by (13) and (16) for a vector of income y. Then, provided that fy(yi) = fỹ(yi) for
i = 1, . . . , n, it must be that Pα(Fy) = Pα(Fỹ).
Remark. We may call this feature (sample) population-invariance.11 When obser-
vations are weighted (or “grouped"), with wi being the sampling weight on obser-
vation i and with w =

∑n
j=1 wj being the sum of weights, a population-invariant

11It is not to be confused with the conceptual discussion of what happens to polarization if the true
population size is changed (and not that of the sample).
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definition of ĝ(yi) is then:

(17) ĝ(yi) = µ̂+ yi

w−1

2
i∑

j=1

wj − wi

 − 1

 − w−1

2
i−1∑
j=1

wjyj + wiyi

 .

(16) is a special case of (17) obtained when wi = 1 for all i. Setting α = 0 in (13)
and using (17) gives 2µ times the population-invariant Gini inequality index using
a weighted sample. For analytical simplicity, however, we focus in what follows
on the case of samples with unweighted iid observations.

4.2. f(yi)α and the Sampling Distribution of Pα(F̂ ). For the measurement of po-
larization, it will be generally desirable to adjust our estimator of f(yi)α to sample
size. The reason is that it will be statistically preferable to design our estimation of
the identification effect to take into account the “quantity" of identifying informa-
tion that exists in a sample, so as to minimize the sampling error of estimating the
polarization indices.

To facilitate a more detailed discussion of this issue, we first decompose the
estimator Pα(F̂ ) across its separate sources of sampling variability:

Pα(F̂ ) − Pα(F ) =
∫

(p̂α(y) − pα(y)) dF (y) +
∫
pα(y)d(F̂ − F )(y)

+
∫

(p̂α(y) − pα(y)) d(F̂ − F )(y).(18)

The first source of variation, p̂α(y)−pα(y), comes from the sampling error made in
estimating the identification and the alienation effects at each point y in the income
distribution. It can be decomposed further as:

p̂α(y) − pα(y) =
(
f̂(y)α − f(y)α

)
g(y) + f(y)α (ĝ(y) − g(y))

+
(
f̂(y)α − f(y)α

)
(ĝ(y) − g(y))(19)

As can be seen by inspection, ĝ(y) − g(y) is of order O(n−1/2). Assuming that
f̂(y)α − f(y)α vanishes as n tends to infinity (as will be shown in the proof of
Theorem 2), the last term in (19) is of lower order than the others and can therefore
be ignored asymptotically.

This argument also shows that p̂α(y) − pα(y) ∼ o(1). Because F (y) − F̂ (y) =
O(n−1/2), the last term in (18) is of order o(n−1/2) and can also be ignored. Using
all this information and combining (18) and (19), we see that for large n,

Pα(F̂ ) − Pα(F ) ∼=
∫ (

f̂(y)α − f(y)α
)
g(y)dF (y)(20)

+
∫
f(y)α (ĝ(y) − g(y)) dF (y)(21)

+
∫
pα(y)d(F̂ − F )(y).(22)

The terms (21) and (22) are further developed in the proof of Theorem 2 in the
appendix.

We thus turn to the estimation of f(y)α in (20), which we propose to do nonpara-
metrically using kernel density estimation. To this end, we make use of a kernel
function K(u), defined such that

∫ ∞
−∞K(u)du = 1 (this guarantees the desired
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property that
∫ ∞

−∞ f̂(y)dy = 1) and K(u) ≥ 0 (this guarantees that f̂(y) ≥ 0). It
is also convenient to choose a kernel function that is symmetric around 0, with∫
uK(u)du = 0 and

∫
u2K(u)du = σ2

K < ∞. The estimator f̂(y) is then defined as

(23) f̂(y) ≡ n−1
n∑

i=1

Kh (y − yi) ,

where Kh (z) ≡ h−1K (z/h). The parameter h is usually referred to as the band-
width (or window width, or smoothing parameter) for the kernel estimation pro-
cedure. For simplicity, we assume it to be invariant across y. We will see later how
it should optimally be set as a function of the sample size, conditional on a choice
of functional form for K(u).

One kernel function that has nice continuity and differentiability properties is
the Gaussian kernel, defined by

(24) K(u) = (2π)−0.5 exp−0.5u2
,

a form that we will use later for illustrative purposes.12

With f(y)α estimated according to this general technique, we have the following
theorem on the asymptotic sampling distribution of P̂α.

Theorem 2. Assume that the order-2 population moments ofy, pα(y), f(y)α,
∫ y

−∞ zf(z)αdF (z)
and y

∫ y

−∞ f(z)αdF (z) are finite. Let h in Kh(·) vanish as n tends to infinity. Then

n0.5
(
Pα(F̂ ) − Pα(F )

)
has a limiting normal distribution N(0, Vα), with

(25) Vα =var
f(y)

(aα(y)) ,

where

(26) aα(y) = (1 + α)pα(y) + y

∫
f(x)αdF (x) + 2

∫ ∞

y

(x− y) f(x)αdF (x).

Observe that the assertion of Theorem 2 is distribution-free since everything in
(25) can be estimated consistently without having to specify the population distri-
bution from which the sample is drawn. Pα(F̂ ) is thus a root-n consistent estimator
ofPα(F ), unlike the usual non-parametric density and regression estimators which
are often n2/5 consistent. The strength of Theorem 2 also lies in the fact that so long
as h tends to vanish as n increases, the precise path taken by h has a negligible
influence on the asymptotic variance since it does not appear in (25).

4.3. The Minimization of Sampling Error. In finite samples, however, Pα(F̂ ) is
biased. The bias arises from the smoothing techniques employed in the estimation
of the density function f(y). In addition, the finite-sample variance ofPα(F̂ ) is also
affected by the smoothing techniques. As is usual in the non-parametric literature,
the larger the value of h, the larger the finite-sample bias, but the lower is the finite-
sample variance. We can exploit this tradeoff to choose an “optimal" bandwidth
for the estimation of Pα(F̂ ), which we denote by h∗(n).

A common technique is to select h∗(n) so as to minimize the mean square error
(MSE) of the estimator, given a sample of sizen. To see what this entails, decompose

12Note that the Gaussian kernel has the property that σ2
K = 1.
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(for a givenh) the MSE into the sum of the squared bias and of the variance involved
in estimating Pα(F ):

(27) MSEh(Pα(F̂ )) =
(

biash

(
Pα(F̂ )

))2
+ varh

(
Pα(F̂ )

)
,

and denote by h∗(n) the value of h which minimizes MSEh(Pα(F̂ )). This value is
described in the following theorem:
Theorem 3. For large n, h∗(n) is given by

(28) h∗(n) =

√
− cov (aα(y), p′′

α(y))

ασ2
K

(∫
f ′′(y)pα(y)dy

)2n
−0.5 +O

(
n−1) .

It is well known that f
′′
(y) is proportional to the bias of the estimator f̂(y). A

large value of ασ2
K

(∫
f ′′(y)pα(y)dy

)2 will thus necessitate a lower value of h∗(n)
in order to reduce the bias. Conversely, a larger negative correlation between
aα(y) and p′′

α(y) will militate in favor of a larger h∗(n) in order to decrease the
sampling variance. More importantly, the optimal bandwidth for the estimation
of the polarization index is of order O(n−1/2), unlike the usual kernel estimators
which are of significantly larger order O(n−1/5). Because of this, we may expect
the precise choice of h not to be overly influential on the sampling precision of
polarization estimators.

To compute h∗(n), two general approaches can be followed. On the one hand,
we can assume that f(y) is not too far from a parametric density function, such
as the normal or the log-normal, and use (28) to compute h∗(n) (in the manner of
Silverman (1986, p.45), for instance, for point density estimation). On other hand,
we can estimate the terms in (28) directly from the empirical distribution, using an
initial value of h to compute the f(y) in the aα(y) and pα(y) functions. For both
of these approaches (and particularly for the last one), expression (28) is clearly
distribution specific, and it will also generally be very cumbersome to estimate.

It would thus seem useful to devise a "rule-of-thumb" formula that can be used
to provide a readily-computable value for h. When the true distribution is that of
a normal distribution with variance σ2, and when a Gaussian kernel (see (24)) is
used to estimate f̂(y), h∗ is approximately given by:

(29) h∗ ∼= 5.32σ
n0.5α0.65 .

This formula works well with the normal distribution13 since it is rarely farther
than 10% from the h∗ that truly minimizes the MSE. It also seems to perform rela-
tively well with other distributions, including the popular log-normal one. (29) is
clearly also easily computed.

The use of this simple approximate rule may also be justified by the fact that
the MSE of the polarization indices does not appear to be overly sensitive to the
choice of the bandwidth h. This is shown for P1 on Figure 6, again for the case of a
normal distribution with σ = 1, and for n = 1000. Figure 6 shows the square root
of the MSE for different choices of h, and is therefore an indication of the absolute
amount by which we can expect estimates of polarization indices to differ from

13Extensive numerical simulations were made using various values of n ≥ 500, σ and α = 0.25 to
1. The results are available from the authors upon request.
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the true population value14. Note that
√
MSE increases rather slowly as h moves

away from its optimal value. Even with variations of ±0.2 around h∗, for instance,√
MSE barely changes.

5. An Illustration

We illustrate the above axiomatic and statistical results using data drawn from
the Luxembourg Income Study (LIS) data sets15 on 21 countries for each of Wave
3 (1989–1992) and Wave 4 (1994–1997). The list of the countries, survey years and
abbreviations is to be found in Table 1. [All figures and tables for this section
are located at the end of the paper.] We use household disposable income (adult-
equivalence scale defined as h0.5, where h is household size. Observations with
negative incomes are removed as well as those with incomes exceeding 50 times
the average (this affects less than 1% of all samples). Household observations are
weighted by the LIS sample weights times the number of persons in the household.
As suggested in the discussion of Theorem 1, the usual homogeneity-of-degree-zero
property is imposed throughout by multiplying the indices Pα(F ) by µα−1.

Tables 2 and 3 show estimates of the Gini (Pα=0) and of two polarization indices
(Pα for α = 0.25, 1) in each of the 21 countries of each of the two waves, along with
their asymptotic standard deviations in italics. The polarization indices are typi-
cally rather precisely estimated, with often only the third decimal of the estimators
being subject to sampling variability. The rankings of the countries are very close
forP0 andP0.25. But they differ considerably betweenP0 andP1, and betweenP0.25
and P1. For instance, for Wave 3, the Czech Republic has the lowest Gini index
of all countries, but ranks 11 in terms of P1. Conversely, Canada, Australia and
the United States exhibit high Gini inequality, but relatively low P1 polarization.
Hence, with these data at least, it seems that whether inequality comparisons re-
semble polarization comparisons depend on the differential ethical weight which
is put on the alienation versus the identification effects.

To interpret the cross-country variability in the estimated value of these indices, it
is useful to show graphically how each income level "contributes" to the total value
of the indices. Recall equation (12): the polarization index Pα(F ) is the integral
of pα(y)f(y) (a "polarization curve"), and the Gini index Pα=0(F ) is the integral of
g(y)f(y) (an "alienation curve"). The difference between these two factors is the
identification factor f(y)α. For illustrative purposes, these three factors (for α = 1)
are graphed on Figures 7 and 8 for the United States (1991) – us91 – and for the
Czech Republic (1992) – cz92 – against income values normalized by the mean. The
area underneath the pα=1(y)f(y) and g(y)f(y) curves then gives respectively the
polarization index Pα=1 and (twice) the Gini index. Figure 9 shows the Czech-US
difference for each of these curves.

By definition, the area underneath each of the f(y) density curves gives 1, and
the area covered by their difference gives 0. From Figure 9, it is clear why Gini
inequality is lower in cz92 than in us91: the us91 alienation curve (the curve with
the rectangular dots) is almost everywhere larger than the cz92 alienation curve.

14Note that around the optimal value of h (which is about 0.16), the absolute value of the bias is of
the order of one tenth of

√
(MSE) – in the case of this example at least, its computation could therefore

be safely avoided.
15http://lissy.ceps.lu for detailed information on the structure of these data.
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The area defined by the polarization curve (the curve with the circular dots) is,
however, slightly positive, and this explains why polarization is slightly larger in
cz92.

The reasons for these differences can be seen from Figures 7 and 8. Roughly
speaking, for a given level of inequality, a country will exhibit a large level of polar-
ization if there is a strong correlation between the inequality or alienation component
g(y) and the identification one f(y)α. Ceteris paribus, such a strong correlation will
lead to a large area underneath the pα(y)f(y) curve. An example of such a sharp
correlation can be seen for the Czech Republic in 1992 (Figure 8 ). The density is
concentrated where alienation is felt most: in this example, this is around a nor-
malized income of about 0.75. A converse example of a weaker correlation is that
of the USA in both Wave 3 and Wave 4. In Figure 7, the density is relatively flat,
and not obviously concentrated where alienation is most felt, that is, at normalized
incomes of about 0.4.

Differences in alienation-identification correlations thus explain why the in-
equality and polarization rankings of countries differ sometimes very significantly
in Tables 2 and 3. Some countries such as Finland, Sweden and Denmark rank low
both in terms in inequality and polarization (and for both waves). Other countries
show low inequality but relatively high polarization, while others exhibit the re-
verse relative rankings. Some countries, most strikingly Russia and Mexico, finally
rank consistently high both in terms in inequality and polarization.

Tables 4 to 6 show which ones of these cross-country rankings are statistically
significant and can therefore be reasonably attributed to true population differences
in inequality and polarization. The results are for Wave 3 countries, and for α =
0, 0.25 and 1. The Tables show p-values of tests that the countries listed on the first
row show more inequality (Table 4) or polarization (Tables 5 and 6) than countries
on the first column. Roughly speaking, these p-values indicate the probability
that an error is made when one rejects the null hypotheses that countries on the
first row do not have a larger Pα than countries on the first column, in favor of
the alternative hypotheses that Pα is indeed greater for the countries on the first
row. More formally, such p-values are the maximal test sizes that will lead to the
rejection of the above null hypotheses. Using a conventional test size of 5%, it can
be seen that many (all those with a *, viz, around 90%) of the possible cross-country
comparisons are statistically significant. This is true for all three values of α.

As mentioned above, there are many country pairs whose polarization ordering
sometimes differs from their Gini ordering, and whose polarization ordering also
varies with the choice of α. One way to shed light on this issue is to estimate the
range of α values for which one country has a higher Pα index than another. To
illustrate this, take the case of us91, cz92 and uk91. Ignoring sampling variability,
cz92 has a lower Pα index than us91 for all α < 0.98, including the Gini index.
In such a case, it would therefore seem that inequality and polarization rankings
almost agree, although not quite completely. uk91 has, however, a higher polar-
ization index than us91 for all (and only for) α > 0.33, and thus has a lower Gini
index than us91. Clearly then, the Gini ranking of uk91 and us91 will differ from
their ranking according to most of this paper’s polarization indices. In these sit-
uations, incorporating identification effects would therefore appear to change the
distributive picture substantially.
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6. Proofs

Proof of Theorem 1. In the first half of the proof, we show that axioms 1–4 imply
(11).
Lemma 1. Let g be a continuous real-valued function defined on IR such that for all x > 0
and all δ with 0 < δ < x,

(30) g(x) ≥ 1
2δ

∫ x+δ

x−δ

g(y)dy.

Then g must be a concave function.
Proof. This is a well-known implication of Jensen’s characterization of concave
functions.

In what follows, keep in mind that the basic structure of our measure only
considers income differences across people, and not the incomes per se. Therefore
we may slide any distribution to the left or right as we please, without disturbing the
analysis (even negative incomes may be considered when these are expositionally
convenient).
Lemma 2. The function T must be concave in a for every i > 0.
Proof. Fix x > 0, some i > 0, and some value of δ ∈ (0, x). Consider the following
specialization of the setting of Axiom 2. We take three basic densities as in that
Axiom (see also Figure 1) but specialize as shown in Figure 4; each is a transform
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of a uniform kernel. The bases are centered at −x, 0 and x. The side densities
are of width 2δ and height h, and the middle density is of width 2ε and height i.
In the sequel, we shall vary ε and h but to make sure that Axiom 2 applies, we
choose ε > 0 such that δ + ε < x. It is easy to check that a λ-squeeze of the side
densities simply implies that the base of the rectangle is contracted to a width 2λδ
(keeping the centering unchanged), while the height is raised to h/λ. See Figure
4. For each λ, we may decompose the polarization measure (9) into five distinct
components. First, there is the “internal polarization" of the middle rectangle, call
it Pm. This component is unchanged as we change λ so there will be no need to
explicitly calculate it. Next, there is the “internal polarization" of each of the side
rectangles, call itPs. Third, there is the total effective antagonism felt by inhabitants
of the middle towards each side density. Call this Ams. Fourth, there is the total
effective antagonism felt by inhabitants of each side towards the middle. Call this
Asm. Finally, there is the total effective antagonism felt by inhabitants of one side
towards the other side. Call this Ass. Observe that each of these last four terms
appear twice, so that (writing everything as a function of λ),

(31) P (λ) = Pm + 2Ps(λ) + 2Ams(λ) + 2Asm(λ) + 2Ass(λ),

Now we compute the terms on the right hand side of (31). First,

Ps(λ) =
1
λ2

∫ x+λδ

x−λδ

∫ x+λδ

x−λδ

T (h/λ, |b′ − b|)h2db′db,

where (here and in all subsequent cases) b will stand for the “origin" income (to
which the identification is applied) and b′ the “destination income" (towards which
the antagonism is felt). Next,

Ams(λ) =
1
λ

∫ ε

−ε

∫ x+λδ

x−λδ

T (i, b′ − b)ihdb′db.

Third,

Asm(λ) =
1
λ

∫ x+λδ

x−λδ

∫ ε

−ε

T (h/λ.b− b′)hidb′db,

And finally,

Ass(λ) =
1
λ2

∫ −x+λδ

−x−λδ

∫ x+λδ

x−λδ

T (h/λ, b′ − b)h2db′db.

The axiom requires that P (λ) ≥ P (1). Equivalently, we require that [P (λ) −
P (1)]/2h ≥ 0 for all h, which implies in particular that

(32) lim inf
h→0

P (λ) − P (1)
2h

≥ 0.

If we divide through by h in the individual components calculated above and then
send h to 0, it is easy to see that the only term that remains is Ams. Formally, (32)
and the calculations above must jointly imply that

(33)
1
λ

∫ ε

−ε

∫ x+λδ

x−λδ

T (i, b′ − b)db′db ≥
∫ ε

−ε

∫ x+δ

x−δ

T (i, b′ − b)db′db,

and this must be true for all λ ∈ (0, 1) as well as all ε ∈ (0, x − δ). Therefore we
may insist on the inequality in (33) holding as λ → 0. Performing the necessary
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calculations, we may conclude that

(34)
1
ε

∫ ε

−ε

T (i, x− b)db ≥ 1
ε

∫ ε

−ε

∫ x+δ

x−δ

T (i, b′ − b)db′db

for every ε ∈ (0, x− δ). Finally, take ε to zero in (34). This allows us to deduce that

(35) T (i, x) ≥
∫ x+δ

x−δ

T (i, b′)db′.

As (35) must hold for every x > 0 and every δ ∈ (0, x), we may invoke Lemma 1
to conclude that T is concave in x for every i > 0.
Lemma 3. Let g be a concave, continuous function on IR+, with g(0) = 0. Suppose that
for each a and a′ with a > a′ > 0, there exists ∆̄ > 0 such that

(36) g(a+ ∆) − g(a) ≥ g(a′) − g(a′ − ∆)

for all ∆ ∈ (0, ∆̄). Then g must be linear.
Proof. Given the concavity of g, it is easy to see that

g(a+ ∆) − g(a) ≤ g(a′) − g(a′ − ∆)

for all a > a′ ≥ ∆ > 0. Combining this information with (36), we may conclude
that for each a and a′ with a > a′ > 0, there exists ∆̄ > 0 such that

g(a+ ∆) − g(a) = g(a′) − g(a′ − ∆)

for all ∆ ∈ (0, ∆̄). This, coupled with the premises that g is concave and g(0) = 0,
shows that g is linear.
Lemma 4. There is a continuous function φ(i) such that T (i, a) = φ(i)a for all i and a.
Proof. Fix numbers a and a′ with a > a′ > 0, and i > 0. Consider the following
specialization of Axiom 3: take four basic densities as in that Axiom (see also Figure
3) but specialize as shown in Figure 5; each is a transform of a uniform kernel. The
bases are centered at locations −y, −x, x and y, where x ≡ (a− a′)/2 and y ≡ (a+
a′)/2. The “inner" densities are of width 2δ and height h, and the “outer" densities
are of width 2ε and height i. In the sequel, we shall vary δ, ε and h but to make
sure that the basic densities have disjoint support, we restrict ourselves to values
of δ and ε such that ε < x and δ + ε < y − x− ∆̄ for some ∆̄ > 0. For convenience,
the rectangles have been numbered 1, 2, 3 and 4 for use below. The exercise that
we perform is to increase x by the small amount ∆, where 0 < ∆ < ∆̄, as defined
above. Given this configuration, we may decompose the polarization measure
(9) into several distinct components. First, there is the “internal polarization" of
each rectangle j; call it Pj , j = 1, 2, 3, 4. These components are unchanged as we
change x so there will be no need to calculate them explicitly. Next, there is the total
effective antagonism felt by inhabitants of each rectangle towards another; call this
Ajk(x), where j is the “origin" rectangle and k is the “destination" rectangle. [We
emphasize the dependence on x, which is the parameter to be varied.] Thus total
polarization P (x), again written explicitly as a function of x, is given by

P (x) =
4∑

j=1

Pj +
∑

j

∑
k �=j

Ajk(x)

=
4∑

j=1

Pj + 2A12(x) + 2A13(x) + 2A21(x) + 2A31(x) + 2A23(x) + 2A14,
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Figure 5:

where the second equality simply exploits obvious symmetries andA14 is noted to
be independent of x. Let’s compute the terms in this formula that do change with
x. We have

A12(x) =
∫ −y+ε

−y−ε

∫ −x+δ

−x−δ

T (i, b′ − b)ihdb′db,

A13(x) =
∫ −y+ε

−y−ε

∫ x+δ

x−δ

T (i, b′ − b)ihdb′db,

A21(x) =
∫ −x+δ

−x−δ

∫ −y+ε

−y−ε

T (h, b− b′)ihdb′db,

A31(x) =
∫ x+δ

x−δ

∫ −y+ε

−y−ε

T (h, b− b′)ihdb′db,

and

A23(x) =
∫ −x+δ

−x−δ

∫ x+δ

x−δ

T (h, b− b′)h2db′db.

Now, the axiom requires that P (x+ ∆) − P (x) ≥ 0. Equivalently, we require that
[P (x+ ∆) − P (1)]/2ih ≥ 0 for all h, which implies in particular that

lim inf
h→0

P (x+ ∆) − P (x)
2ih

≥ 0.
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Using this information along with the computations for P (x) and the various
Ajk(x)’s, we see that∫ −y+ε

−y−ε

∫ x+δ

x−δ

[T (i, b′ − b+ ∆) − T (i, b′ − b)] db′db

≥
∫ −y+ε

−y−ε

∫ −x+δ

−x−δ

[T (i, b′ − b) − T (i, b′ − b− ∆)] db′db,

where in arriving at this inequality, we have carried out some elementary sub-
stitution of variables and transposition of terms. Dividing through by δ in this
expression and then taking δ to zero, we may conclude that∫ −y+ε

−y−ε

[T (i, x− b+ ∆) − T (i, x− b)] db ≥
∫ −y+ε

−y−ε

[T (i,−x− b) − T (i,−x− b− ∆)] db,

and dividing this inequality, in turn, by ε and taking ε to zero, we see that

T (i, a+ ∆) − T (i, a) ≥ T (i, a′) − T (i, a′ − ∆),

where we use the observations that x + y = a and y − x = a′. Therefore the
conditions of Lemma 3 are satisfied, and T (i, .) must be linear for every i > 0
since T (0, a) := 0. But this only means that there is a function φ(i) such that
T (i, a) = φ(i)a for every i and a. Given that T is continuous by assumption, the
same must be true of φ.
Lemma 5. φ(i) must be of the form Kiα, for constants (K,α) � 0.
Proof. As a preliminary step, observe that

(37) φ(i) > 0 whenever i > 0.

[For, if this were false for some i, Axiom 3 would fail for configurations constructed
from rectangular basic densities of equal height i.] Our first objective is to prove
that φ must satisfy the fundamental Cauchy equation

(38) φ(p)φ(p′) = φ(pp′)φ(1)

for every strictly positive p and p′. To this end, fix p and p′ and define r ≡ pp′.
In what follows, we assume that p ≥ r. [If r ≥ p, simply permute p and r in
the argument below.] Consider the following configuration. There are two basic
densities, both of width 2ε, the first centered at 0 and the second centered at 1.
The heights are p and h (where h is any strictly positive number, soon to be made
arbitrarily small). It is easy to see that the polarization of this configuration, P , is
given by

P = ph[φ(p) + φ(h)]{
∫ ε

−ε

∫ 1+ε

1−ε

(b′ − b)db′db}

+[p2φ(p) + h2φ(h)]{
∫ ε

−ε

∫ ε

−ε

|b′ − b|db′db}

= 4ε2ph[φ(p) + φ(h)] +
8ε3

3
[p2φ(p) + h2φ(h)],(39)

where the first equality invokes Lemma 4 and both equalities use routine com-
putations. Now change the height of the first rectangle to r. Using (37) and the
provisional assumption that p ≥ r, it is easy to see that for each ε, there must exist
a (unique) height for the second rectangle — call it h(ε), such that the polarizations
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of the two configurations are equated. Invoking (39), we equivalently choose h(ε)
such that

ph[φ(p) + φ(h)] +
2ε
3

[p2φ(p) + h2φ(h)]

= rh(ε)[φ(r) + φ(h(ε))] +
2ε
3

[r2φ(r) + h(ε)2φ(h(ε))].(40)

By Axiom 4, it follows that for all λ > 0,

λ2ph[φ(λp) + φ(λh)] +
2ε
3

[(λp)2φ(λp) + (λh)2φ(λh)]

= λ2rh(ε)[φ(λr) + φ(λh(ε))] +
2ε
3

[(λr)2φ(λr) + [λh(ε)]2φ(λh(ε))].(41)

Notice that as ε ↓ 0, h(ε) lies in some bounded set. We may therefore extract a
convergent subsequence with limit h′ as ε ↓ 0. By the continuity of φ, we may pass
to the limit in (40) and (41) to conclude that

(42) ph[φ(p) + φ(h)] = rh′[φ(r) + φ(h′)]

and

(43) λ2ph[φ(λp) + φ(λh)] = λ2rh′[φ(λr) + φ(λh′)].

Combining (42) and (43), we see that

(44)
φ(p) + φ(h)
φ(λp) + φ(λh)

=
φ(r) + φ(h′)
φ(λr) + φ(λh′)

.

Taking limits in (44) as h → 0 and noting that h′ → 0 as a result (examine (42) to
confirm this), we have for all λ > 0,

(45)
φ(p)
φ(λp)

=
φ(r)
φ(λr)

.

Put λ = 1/p and recall that r = pp′. Then (45) yields the required Cauchy equation
(38). To complete the proof, recall that φ is continuous and that (37) holds. The
class of solutions to (38) (that satisfy these additional qualifications) is completely
described by φ(p) = Kpα for constants (K,α) � 0 (see, e.g., Aczél [1966, p. 41,
Theorem 3]).

Lemmas 4 and 5 together establish “necessity", though it still remains to establish
the bounds on α. We shall do so along with our proof of “sufficiency", which we
begin now. First notice that each basic density f with mass p, support [a, b] and
mean µ may be connected to its kernel — call it f∗ — by means of three numbers.
First, we slide the density so that it begins at 0; this amounts to a slide of a to the
left. The new mean is now m ≡ µ− a. Second, we income-scale the density so as
to change its mean fromm = µ− a to 1. Finally, we population-scale to change the
overall mass of the density from p to unity.
Lemma 6. Let f be a basic density with mass p and meanµ on support [a, b]. Letm ≡ µ−a
and let f∗ denote the kernel of f . Then, if fλ denotes some λ-squeeze of f ,
(46)

P (Fλ) = 4kp2+α(mλ)1−α

∫ 1

0
f∗(x)1+α

{∫ 1

0
f∗(y)(1 − y)dy +

∫ 1

x

f∗(y)(y − x)dy
}
dx

for some constant k > 0.
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Proof. Let f be given as in the statement of the lemma. Recall that a slide of the
entire distribution has no effect on the computations, so we may as well set a = 0
and b = 2m, where m = µ− a is now to be interpreted as the mean. Given (11),

(47) P (F ) = k

∫ ∫
f(x)1+αf(y)|y − x|dydx

for some k > 0. Using the fact that f is symmetric, we can write

P (F ) = 2k
∫ m

0

∫ 2m

0
f(x′)1+αf(y′)|x′ − y′|dy′dx′

= 2k
∫ m

0
f(x′)1+α

{∫ x′

0
f(y′)(x′ − y′)dy′ +

∫ m

x′
f(y′)(y′ − x′)dy′

+
∫ 2m

m

f(y′)(y′ − x′)dy′}dx′
}
.(48)

Examine the very last term in (48). Change variables by setting z ≡ 2m − y′, and
use symmetry to deduce that∫ 2m

m

f(y′)(y′ − x′)dy′ =
∫ m

0
f(z)(2m− x′ − z)dz.

Substituting this in (48), and manipulating terms, we obtain
(49)

P (F ) = 4k
∫ m

0
f(x′)1+α

{∫ m

0
f(y′)(m− y′)dy′ +

∫ m

x′
f(y′)(y′ − x′)dy′

}
dx′.

Now suppose that fλ is a λ-squeeze of f . Note that (49) holds just as readily for
fλ as for f . Therefore, using the expression for f given in (10), we see that

P (Fλ) = 4kλ−(2+α)
∫ m

(1−λ)m
f

(
x′ − (1 − λ)m

λ

)1+α
{∫ m

(1−λ)m
f

(
y′ − (1 − λ)m

λ

)
(m− y′)dy′

+
∫ m

x′
f

(
y′ − (1 − λ)m

λ

)
(y′ − x′)dy′}dx′

}
.

Perform the change of variables x′′ = x′−(1−λ)m
λ and y′′ = y′−(1−λ)m

λ . Then it is
easy to see that

P (Fλ) = 4kλ1−α

∫ m

0
f(x′′)1+α

{∫ m

0
f(y′′)(m− y′′)dy′′ +

∫ m

x′′
f(y′′)(y′′ − x′′)dy′′

}
dx′′.

To complete the proof, we must recover the kernel f∗ from f . To this end, first
population-scale f to h, where h has mass 1. That is, f(z) = ph(z) for all z. Doing
so, we see that

P (Fλ) = 4kp2+αλ1−α

∫ m

0
h(x′′)1+α

{∫ m

0
h(y′′)(m− y′′)dy′′ +

∫ m

x′′
h(y′′)(y′′ − x′′)dy′′

}
dx′′.

Finally, make the change of variables x = x′′/m and y = y′′/m. Noting that
f∗(z) = mh(mz), we get (46).

Lemma 7. Let f and g be two basic densities with disjoint support, with their means
separated by distance d, and with population masses p and q respectively. Let f have mean
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µ on support [a, b]. Letm ≡ µ−a and let f∗ denote the kernel of f . Then for any λ-squeeze
fλ of f ,

(50) A(fλ, g) = 2kdp1+αq(mλ)−α

∫ 1

0
f∗(x)1+αdx,

whereA(fλ, g) denotes the total effective antagonism felt by members of fλ towards mem-
bers of g.
Proof. To begin with, ignore theλ-squeeze. Notice that there is no loss of generality
in assuming that every income under g dominates every income under f . It also
makes no difference to polarization whether or not we slide the entire configuration
to the left or right. Therefore we may suppose that f has support [0, 2m] (with mean
m) and g has support [d, d + 2m] (where obviously we must have d ≥ 2m for the
disjoint support assumption to make sense). Because (47) is true, it must be that

A(f, g) = k

∫ 2m

0
f(x)1+α

[∫ d+2m

d

g(y)(y − x)dy

]
dx

= k

∫ 2m

0
f(x)1+α

[∫ d+m

d

g(y)(y − x)dy +
∫ d+2m

d+m

g(y)(y − x)dy

]
dx

= k

∫ 2m

0
f(x)1+α

[∫ d+m

d

g(y)2(m+ d− x)dy

]
dx

= kq

∫ 2m

0
f(x)1+α(m+ d− x)dx

= 2dkq
∫ m

0
f(x)1+αdx,

where the third equality exploits the symmetry of g,16 the fourth equality uses the
fact that

∫ d+m

d
g(y) = q/2, and the final equality uses the symmetry of f .17 To be

sure, this formula applies to any λ-squeeze of f , so that

A(fλ, g) = 2dkq
∫ m

0
fλ(x′)1+αdx′

= 2dkqλ−(1+α)
∫ m

(1−λ)m
f

(
x′ − (1 − λ)m

λ

)1+α

dx′,

and making the change of variables x′′ = x′−(1−λ)m
λ , we may conclude that

A(fλ, g) = 2dkqλ−α

∫ m

0
f(x′′)1+αdx′′.

To complete the proof, we must recover the kernel f∗ from f . As in the proof of
Lemma 6, first population-scale f to h, where h has mass 1. That is, f(z) = ph(z)
for all z. Doing so, we see that

A(fλ, g) = 2dkp1+αqλ−α

∫ m

0
h(x′′)1+αdx′′.

16That is, for each y ∈ [d, d + m], g(y) = g(d + 2m − (y − d)) = g(2d + 2m − y). Moreover,
[y − x] + [(2d + 2m − y) − x] = 2(d + m − x).

17That is, for each x ∈ [0, m], f(x) = f(2m−x). Moreover, [m+d−x]+ [m+d− (2m−x)] = 2d.
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Finally, make the change of variables x = x′′/m. Noting that f∗(z) = mh(mz), we
get (50).
Lemma 8. Define, for any kernel f and α > 0,

(51) ψ(f, α) ≡
∫ 1
0 f(x)1+αdx∫ 1

0 f(x)1+α
{∫ 1

0 f(y)(1 − y)dy +
∫ 1

x
f(y)(y − x)dy

}
dx
.

Then — for anyα > 0 —ψ(f, α) attains its mimimum value when f is the uniform kernel,
and this minimum value equals 3.
Proof. It will be useful to work with the inverse function

ζ(f, α) ≡ ψ(f, α)−1 =

∫ 1
0 f(x)1+α

{∫ 1
0 f(y)(1 − y)dy +

∫ 1
x
f(y)(y − x)dy

}
dx∫ 1

0 f(x)1+αdx
.

Note that ζ(f, α) may be viewed as a weighted average of

(52) L(x) ≡
∫ 1

0
f(y)(1 − y)dy +

∫ 1

x

f(y)(y − x)dy

as this expression varies over x ∈ [0, 1], where the “weight" on a particular x is just

f(x)1+α∫ 1
0 f(z)1+αdz

which integrates over x to 1. Now observe that L(x) is decreasing in x. Moreover,
by the unimodality of a kernel, the weights must be nondecreasing in x. It follows
that

(53) ζ(f, α) ≤
∫ 1

0
L(x)dx.

Now

L(x) =
∫ 1

0
f(y)(1 − y)dy +

∫ 1

x

f(y)(y − x)dy

=
∫ 1

0
f(y)(1 − x)dy +

∫ x

0
f(y)(x− y)dy

=
1 − x

2
+

∫ x

0
f(y)(x− y)dy.(54)

Because f(x) is nondecreasing and integrates to 1/2 on [0, 1], it must be the case
that

∫ x

0 f(y)(x− y)dy ≤ ∫ x

0 (x− y)/2dy for all x ≤ 1. Using this information in (54)
and combining it with (53),

ζ(f, α) ≤
∫ 1

0

[
1 − x

2
+

∫ x

0

x− y

2
dy

]
dx

=
∫ 1

0

[∫ 1

0

[
1 − y

2

]
dy +

∫ 1

x

[
y − x

2

]
dy

]
dx

= ζ(u, α),(55)

where u stands for the uniform kernel taking constant value 1/2 on [0, 2]. Simple
integration reveals that ζ(u, α) = 1/3.
Lemma 9. Given that P (F ) is of the form (47), Axiom 1 is satisfied if and only if α ≤ 1.
Proof. Simply inspect (46).
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Lemma 10. Given thatP (F ) is of the form (47), Axiom 2 is satisfied if and only ifα ≥ 0.25.

Proof. Consider a configuration as given in Axiom 2: a symmetric distribution
made out of three basic densities. By symmetry, the side densities must share the
same kernel; call this f∗. Let p denote their (common) population mass andm their
(common) difference from their means to their lower support. Likewise, denote
the kernel of the middle density by g∗, by q its population mass, and by n the
difference between mean and lower support. As in the proof of Lemma 2, we may
decompose the polarization measure (47) into several components. First, there are
the “internal polarizations" of the middle density (Pm) and of the two side densities
(Ps). Next, there are various subtotals of effective antagonism felt by members of
one of the basic densities towards another basic density. LetAms denote this when
the “origin" density is the middle and the “destination" density one of the sides.
Likewise, Asm is obtained by permuting origin and destination densities. Finally,
denote byAss the total effective antagonism felt by inhabitants of one side towards
the other side. Observe that each of these last four terms appear twice, so that
(writing everything as a function of λ), overall polarization is given by

(56) P (λ) = Pm + 2Ps(λ) + 2Ams(λ) + 2Asm(λ) + 2Ass(λ).

Compute these terms. For brevity, define for any kernel h,

ψ1(h, α) ≡
∫ 1

0
h(x)1+α

{∫ 1

0
h(y)(1 − y)dy +

∫ 1

x

h(y)(y − x)dy
}
dx

and

ψ2(h, α) ≡
∫ 1

0
h(x)1+αdx.

Now, using Lemmas 6 and 7, we see that

Ps(λ) = 4kp2+α(mλ)1−αψ1(f∗, α),

while

Ams(λ) = 2kdq1+αpn−αψ2(g∗, α).

Moreover,

Asm(λ) = 2kdp1+αq(mλ)−αψ2(f∗, α),

and

Ass(λ) = 4kdp2+α(mλ)−αψ2(f∗, α),

(where it should be remembered that the distance between the means of the two side
densities is 2d). Observe from these calculations that Ams(λ) is entirely insensitive
to λ. Consequently, feeding all the computed terms into (56), we may conclude
that

P (λ) = C

[
2λ1−α +

d

m
ψ(f∗, α)λ−α{q

p
+ 2}

]
+D,

where C and D are positive constants independent of λ, and

ψ(f∗, α) =
ψ2(f∗, α)
ψ1(f∗, α)
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by construction; see (51) in the statement of Lemma 8. It follows from this expres-
sion that for Axiom 2 to hold, it is necessary and sufficient that for every three-
density configuration of the sort described in that axiom,

(57) 2λ1−α +
d

m
ψ(f∗, α)λ−α

[
q

p
+ 2

]
must be nonincreasing in λ over (0, 1]. An examination of the expression in (57)
quickly shows that a situation in which q is arbitrarily close to zero (relative to p)
is a necessary and sufficient test case. By the same logic, one should make d/m
as small as possible. The disjoint-support hypothesis of Axiom 2 tells us that this
lowest value is 1. So it will be necessary and sufficient to show that for every kernel
f∗,

(58) λ1−α + ψ(f∗, α)λ−α

is nonincreasing in λ over (0, 1]. For any f∗, it is easy enough to compute the
necessary and sufficient bounds on α. Simple differentiation reveals that

(1 − α)λ−α − αψ(f∗, α)λ−(1+α)

must be nonnegative for every λ ∈ (0, 1]; the necessary and sufficient condition for
this is

(59) α ≥ 1
1 + ψ(f∗, α)

.

Therefore, to find the necessary and sufficient bound onα (uniform over all kernels),
we need to minimize ψ(f∗, α) by choice of f∗, subject to the condition that f∗ be a
kernel. By Lemma 8 , this minimum value is 3. Using this information in (59), we
are done.

Lemma 11. Given that P (F ) is of the form (47), Axiom 3 is satisfied.

Proof. Consider a symmetric distribution composed of four basic densities, as in
the statement of Axiom 3. Number the densities 1, 2, 3 and 4, in the same order
displayed in Figure 5. Let x denote the amount of the slide (experienced by the
inner densities) in the axiom. For each such x, let djk(x) denote the (absolute)
difference between the means of basic densities j and k. As we have done several
times before, we may decompose the polarization of this configuration into several
components. First, there is the “internal polarization" of each rectangle j; call it
Pj , j = 1, 2, 3, 4. [These will stay unchanged with x.] Next, there is the total
effective antagonism felt by inhabitants of each basic density towards another; call
thisAjk(x), where j is the “origin" density and k is the “destination" density. Thus
total polarization P (x), again written explicitly as a function of x, is given by

P (x) =
4∑

j=1

Pj +
∑

j

∑
k �=j

Ajk(x)

so that, using symmetry,

(60) P (x) − P (0) = 2{[A12(x) +A13(x)] − [A12(0) +A13(0)]} + [A23(x) −A23(0)]

Now Lemma 7 tells us that for all i and j,

Aij(x) = kijdij(x),
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where kij is a positive constant which is independent of distances across the two
basic densities, and in particular is independent of x. Using this information in
(60), it is trivial to see that

P (x) − P (0) = A23(x) −A23(0) = kijx > 0,

so that Axiom 3 is satisfied.

Given (47), Axiom 4 is trivial to verify. Therefore Lemmas 9, 10 and 11 complete
the proof of the theorem.

Proof of Observation 1. First note that |x− y| = x + y − 2 min(x, y). Hence, by
(11),

Pα(F ) =
∫
x

∫
y

f(y)α (x+ y − 2 min(x, y)) dF (y) dF (x).

To prove (12), note that

(61)
∫
x

∫
y

x f(y)α dF (y) dF (x) = µ

∫
y

f(y)α dF (y)

and that ∫
x

∫
y

f(y)α min(x, y) dF (y)dF (x)

=
∫
x

∫ y=x

y=−∞
yf(y)αdF (y)dF (x) +

∫
x

∫ ∞

y=x

xf(y)αdF (y)dF (x).(62)

The first term in (62) can be integrated by parts over x:∫ y=x

y=−∞
yf(y)αdF (y)F (x)

∣∣∣∣∞
−∞

−
∫
xf(x)αF (x)dF (x)

=
∫
yf(y)αdF (y) −

∫
xf(x)αF (x)dF (x)

=
∫
yf(y)α (1 − F (y)) dF (y).(63)

The last term in (62) can also be integrated by parts over x as follows:∫
x

∫ ∞

y=x

xf(y)αdF (y)dF (x) =
∫
x

∫ ∞

y=x

f(y)αdF (y)x dF (x)

= µ∗(x)
∫ ∞

y=x

f(y)αdF (y)
∣∣∣∣x=∞

x=−∞
+

∫
x

µ∗(x)f(x)αdF (x)

=
∫
y

µ∗(y)f(y)αdF (y),(64)

where µ∗(x) =
∫ x

−∞ zdF (z) is a partial mean. Adding terms yields (12), and com-
pletes the proof.

Proof of Observation 2. It will be enough to show that 2gy(yi) = gỹ(ỹ2i−1)+gỹ(ỹ2i)
since we have assumed that fy(yi) = fỹ(ỹ2i−1) = fỹ(ỹ2i) for all i = 1, . . . , n.
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Clearly, µy = µỹ. Note also that gỹ(ỹ2i−1) can be expressed as
(65)

gỹ(ỹ2i−1) = µy + yi

(
(2n)−1 (2(2i− 1) − 1) − 1

)
− (2n)−1

2
2i−2∑
j=1

ỹj + ỹ2i−1

 .

Similarly, for gỹ(ỹ2i), we have

(66) gỹ(ỹ2i) = µy + yi

(
(2n)−1 (2(2i) − 1) − 1

)
− (2n)−1

2
2i−1∑
j=1

ỹj + ỹ2i

 .

Summing (65) and (66), we find

gỹ(ỹ2i−1) + gỹ(ỹ2i) = 2

µy + yi

(
n−1(2i− 1) − 1

) − n−1

2
i−1∑
j=1

yj + yi


= 2gy(yi).(67)

Adding up the product of fy(ỹj)gỹ(ỹj) across j and dividing by 2n shows that
Pα(Fy) = Pα(Fỹ).

Proof of Theorem 2. Consider first (20). Note that

∫ (
f̂(y)α − f(y)α

)
g(y)dF (y) ∼=

∫
αf(y)α−1

(
f̂(y) − f(y)

)
g(y)dF (y)

= α

∫
pα−1(y)n−1

n∑
i=1

Kh (y − yi) dF (y) − α

∫
pα(y)dF (y)

= αn−1
n∑

i=1

∫
pα−1(y)Kh (y − yi) dF (y) − α

∫
pα(y)dF (y).(68)

Taking h → 0 as n → ∞, and recalling that
∫
Kh (y − yi) dy = 1, the first term in

(68) tends asymptotically to

αn−1
n∑

i=1

∫
pα−1(y)Kh (y − yi) dF (y) ∼= αn−1

n∑
i=1

pα−1(yi)f(yi) = αn−1
n∑

i=1

pα(yi).

Thus, we can rewrite the term on the right-hand side of (20) as

∫ (
f̂(y)α − f(y)α

)
g(y)dF (y) ∼= αn−1

n∑
i=1

(pα(yi) − Pα) = O(n−1/2).



31

Now turn to (21). Let I be an indicator function that equals 1 if its argument is true
and 0 otherwise. We find:∫

f(y)α (ĝ(y) − g(y)) dF (y)

=
∫
f(y)α

[(
µ̂+ y

(
2F̂ (y) − 1

)
− 2µ̂∗(y)

)
− g(y)

]
dF (y)

∼=
∫
f(y)α

(
n−1

∑n

i=1
{yi + y (2I[yi ≤ y] − 1) − 2yiI[yi ≤ y]} − g(y)

)
dF (y)

= n−1
∑n

i=1

∫
f(y)α (yi [1 − 2I[yi ≤ y]] + 2yI[yi ≤ y]) dF (y)

−
∫
f(y)α (µ+ 2yF (y) − 2µ∗(y)) dF (y)

= n−1
∑n

i=1

(∫
f(y)αdF (y) yi − 2yi

∫ ∞

yi

f(y)αdF (y) + 2
∫ ∞

yi

yf(y)αdF (y)
)

−
∫
f(y)α (µ+ 2yF (y) − 2µ∗(y)) dF (y)

= O(n−1/2).

Now consider (22):∫
pα(y)d

(
F̂ − F

)
(y) = n−1

∑n

i=1
(f(yi)αg(yi) − Pα) = O(n−1/2).

Collecting and summarizing terms, we obtain:

Pα(F̂ ) − Pα(F ) ∼= n−1
∑n

i=1

(
(1 + α)f(yi)αg(yi) +

∫
f(y)αdF (y) yi + 2

∫ ∞

yi

(y − yi) f(y)αdF (y)
)

−
(

(1 + α)Pα(F ) +
∫
f(y)α (µ+ 2(yF (y) − µ∗(y))) dF (y)

)
.(69)

Applying the law of large numbers toPα(F̂ )−Pα(F ), note that limn→∞ IE
[
n0.5

(
Pα(F̂ ) − Pα(F )

)]
=

0. The central limit theorem then leads to the finding that n0.5
(
Pα(F̂ ) − Pα(F )

)
has a limiting normal distribution N(0, Vα), with Vα as described in the statement
of the theorem.

Proof of Theorem 3. Using (20)–(22), we may write biash(F̂α) = IE
[
Pα(F̂ ) − Pα(F )

]
as:

IE
[
Pα(F̂ ) − Pα(F )

] ∼=
∫

IE
[
f̂(y)α − f(y)α

]
g(y)dF (y)

+
∫
f(y)αIE [ĝ(y) − g(y)] dF (y) +

∫
pα(y)dIE

[
F̂ − F

]
(y)

=
∫

IE
[
f̂(y)α − f(y)α

]
g(y)dF (y),(70)

since ĝ(y) and F̂ (y) are unbiased estimators of (y) and F (y) respectively. For

IE
[
f̂(y)α − f(y)α

]
, we may use a first-order Taylor expansion around f(y)α :

IE
[
f̂(y)α − f(y)α

] ∼= αf(y)α−1IE
[
f̂(y) − f(y)

]
.
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For symmetric kernel functions, the bias IE
[
f̂(y) − f(y)

]
can be shown to be ap-

proximately equal to (see for instance Silverman (1986, p.39))

(71) 0.5h2σ2
Kf

′′(y),

where f ′′(y) is the second-order derivative of the density function. Hence, the bias

IE
[
Pα(F̂ ) − Pα(F )

]
is approximately equal to

(72) IE
[
Pα(F̂ ) − Pα(F )

] ∼= 0.5ασ2
Kh

2
∫
f ′′(y)pα(y)dy = O(h2).

It follows that the bias will be low if the kernel function has a low variance σ2
K :

it is precisely then that the observations “closer” to y will count more, and those
are also the observations that provide the least biased estimate of the density at y.
But the bias also depends on the curvature of f(y), as weighted by pα(y): in the
absence of such a curvature, the density function is linear and the bias provided by
using observations on the left of y is just (locally) outweighed by the bias provided

by using observations on the right of y. For the variance varh

(
Pα(F̂ )

)
, we first

reconsider the first term in (68), which is the dominant term through which the

choice of h influences var
(
Pα(F̂ )

)
. We may write this as follows:

αn−1
n∑

i=1

∫
pα(y)Kh (y − yi) dy = αn−1

n∑
i=1

∫
pα(yi − ht)K (t) dt

∼= αn−1
n∑

i=1

∫
K (t)

(
pα(yi) − htp′

α(yi) + 0.5h2t2p′′
α(yi)

)
dt

= αn−1
n∑

i=1

(
pα(yi) + 0.5σ2

Kh
2p′′

α(yi)
)
,(73)

where the first equality substitutes t for h−1(yi −y), where the succeeding approxi-
mation is the result of Taylor-expanding pα(yi−ht) around t = 0, and where the last
line follows from the properties of the kernel function K(t). Thus, combining (73)
and (25) to incorporate a finite-sample correction for the role of h in the variance
of F̂α, we can write:

varh

(
Pα(F̂ )

)
= n−1 var

f(y)

(
0.5ασ2

Kh
2p′′

α(y) + aα(y)
)

= O(n−1).

For small h, the impact of h on the finite sample variance comes predominantly
from the covariance between aα(y) and p′′

α(y) since var
(
0.5ασ2

Kh
2p′′

α(y)
)

is then
of smaller order h4. This covariance, however, is not easily unravelled. When
the covariance is negative (which we do expect to observe), a larger value of h

will tend to decrease varh

(
Pα(F̂ )

)
since this will tend to level the distribution of

0.5ασ2
Kh

2p′′
α(y) + aα(y), which is the random variable whose variance determines

the sampling variance of Pα(F̂ ). Combining squared-bias and variance into (27),
we obtain:

MSEh(Pα(F̂ )) =
(

0.5ασ2
Kh

2
∫
f ′′(y)pα(y)dy

)2

+ n−1 var
f(y)

(
0.5ασ2

Kh
2p′′

α(y) + aα(y)
)
.
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h∗(n) is found by minimizing MSEh(Pα(F̂ )) with respect to h. The derivative of
MSEh(Pα(F̂ )) with respect to h gives:

h3
[
ασ2

K

∫
f ′′(y)pα(y)dy

]2
+ n−1ασ2

Kh

∫ [(
0.5ασ2

Kh
2p′′

α(y) + aα(y)
)

−
(

0.5ασ2
Kh

2
∫
p′′

α(y)dF (y) +
∫
aα(y)dF (y)

)] [
p′′

α(y) −
∫
p′′

α(y)dF (y)
]
dF (y).(74)

Since h∗(n) > 0 in finite samples, we may divide (74) by h, and then find h∗(n) by
setting this first-order condition to 0. This yields:

(75) h∗(n)2 = − n−1cov (aα(y), p′′
α(y))

ασ2
K

((∫
f ′′(y)pα(y)dy

)2 − 0.5n−1var (p′′(y)pα(y))
)

For large n (and thus for a small optimal h), h∗(n) is thus given by

(76) h∗(n) =

√
− cov (aα(y), p′′

α(y))

ασ2
K

(∫
f ′′(y)pα(y)dy

)2n
−0.5 +O

(
n−1)

This completes the proof.
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Table 1: LIS country codes

• as = Australia
• be = Belgium
• cn = Canada
• cz = Czech Republic
• dk = Denmark
• fi = Finland
• fr = France
• ge = Germany
• hu = Hungary
• is = Israel
• it = Italy
• lx = Luxembourg
• mx = Mexico
• nl = Netherlands
• nw = Norway
• pl = Poland
• rc = Republic of China and Taiwan
• ru = Russia
• sw = Sweden
• uk = United Kingdom
• us = United States
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Table 2: Ranking from LIS’ Wave 3

LIS Index Ranking Index Ranking Index Ranking
Country StdDev StdDev StdDev
α = 0 0.25 1
cz92 0.2082 1 0.1770 1 0.1574 11

0.0023 0.0014 0.0012
fi91 0.2086 2 0.1785 2 0.1437 1

0.0017 0.0011 0.0005
be92 0.2236 3 0.1903 4 0.1489 3

0.0028 0.0018 0.0011
sw92 0.2267 4 0.1892 3 0.1459 2

0.0019 0.0012 0.0006
nw91 0.2315 5 0.1925 5 0.1504 5

0.0029 0.0018 0.0011
dk92 0.2367 6 0.1970 6 0.1502 4

0.0026 0.0015 0.0011
lx91 0.2389 7 0.2013 7 0.1569 10

0.0051 0.0033 0.0023
ge89 0.2479 8 0.2031 8 0.1537 7

0.0049 0.0029 0.0021
nl91 0.2633 9 0.2127 9 0.1591 16

0.0054 0.0032 0.0025
rc91 0.2708 10 0.2193 10 0.1603 17

0.0019 0.0012 0.0009
pl92 0.2737 11 0.2198 11 0.1575 13

0.0032 0.0019 0.0013
fr89 0.2815 12 0.2233 12 0.1577 14

0.0033 0.0019 0.0014
hu91 0.2828 13 0.2237 13 0.1582 15

0.0066 0.0040 0.0027
it91 0.2887 14 0.2315 15 0.1575 12

0.0028 0.0017 0.0012
cn91 0.2891 15 0.2312 14 0.1521 6

0.0018 0.0012 0.0006
is92 0.3055 16 0.2427 17 0.1625 18

0.0036 0.0021 0.0015
as89 0.3084 17 0.2427 16 0.1547 8

0.0020 0.0012 0.0007
uk91 0.3381 18 0.2612 18 0.1706 19

0.0053 0.0029 0.0025
us91 0.3394 19 0.2631 19 0.1548 9

0.0019 0.0012 0.0006
ru92 0.4017 20 0.2962 20 0.1778 20

0.0066 0.0036 0.0030
mx89 0.4909 21 0.3452 21 0.2132 21

0.0055 0.0033 0.0033
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Table 3: Ranking from LIS’ Wave 4

LIS Index Ranking Index Ranking Index Ranking
Country (StdDev) (StdDev) (StdDev)
α = 0 0.25 1
sw95 0.2218 1 0.1848 1 0.1496 2

0.0019 0.0012 0.0008
fi95 0.2257 2 0.1890 2 0.1508 6

0.0028 0.0016 0.0012
lx94 0.2353 3 0.1984 4 0.1553 10

0.0043 0.0029 0.0019
nw95 0.2403 4 0.1972 3 0.1521 7

0.0049 0.0029 0.0024
dk95 0.2532 5 0.2077 5 0.1503 4

0.0026 0.0015 0.0011
be97 0.2544 6 0.2097 6 0.1502 3

0.0029 0.0018 0.0010
nl94 0.2558 7 0.2101 7 0.1491 1

0.0029 0.0018 0.0010
cz96 0.2589 8 0.2109 8 0.1618 13

0.0017 0.0010 0.0008
ge94 0.2649 9 0.2137 9 0.1546 8

0.0048 0.0030 0.0022
rc95 0.2781 10 0.2238 10 0.1613 12

0.0021 0.0013 0.0010
cn94 0.2859 11 0.2296 12 0.1503 5

0.0011 0.0007 0.0003
fr94 0.2897 12 0.2287 11 0.1631 14

0.0031 0.0018 0.0014
as94 0.3078 13 0.2442 14 0.1549 9

0.0028 0.0017 0.0011
pl95 0.3108 14 0.2393 13 0.1641 16

0.0024 0.0014 0.0011
hu94 0.3248 15 0.2491 15 0.1683 18

0.0081 0.0048 0.0037
is97 0.3371 16 0.2605 17 0.1657 17

0.0044 0.0025 0.0019
it95 0.3406 17 0.2604 16 0.1639 15

0.0037 0.0021 0.0015
uk95 0.3429 18 0.2630 18 0.1732 19

0.0041 0.0023 0.0020
us94 0.3622 19 0.2755 19 0.1602 11

0.0010 0.0006 0.0004
ru95 0.4497 20 0.3230 20 0.1858 20

0.0061 0.0036 0.0029
mx96 0.4953 21 0.3477 21 0.2192 21

0.0046 0.0028 0.0029
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Table 4: p-values for polarization indices, α = 0 (Gini)

Wave 3 data (a * indicates a p-value ≤ 5%)

cz92 fi91 be92 sw92 nw91 dk92 lx91 ge89 nl91 rc91 pl92 fr89 hu91 it91 cn91 is92 as89 uk91 us91 ru92 mx89

cz92 0.50 0.45 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

fi91 0.55 0.50 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

be92 1.00 1.00 0.50 0.18 0.02* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

sw92 1.00 1.00 0.82 0.50 0.09 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

nw91 1.00 1.00 0.98 0.91 0.50 0.09 0.10 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

dk92 1.00 1.00 1.00 1.00 0.91 0.50 0.35 0.02* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

lx91 1.00 1.00 1.00 0.99 0.90 0.65 0.50 0.10 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

ge89 1.00 1.00 1.00 1.00 1.00 0.98 0.90 0.50 0.02* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

nl91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.50 0.09 0.05* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

rc91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.50 0.22 0.00* 0.04* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

pl92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.78 0.50 0.05* 0.11 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

fr89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.50 0.43 0.05* 0.02* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

hu91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.89 0.57 0.50 0.21 0.18 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

it91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.79 0.50 0.45 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

cn91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.82 0.55 0.50 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

is92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.24 0.00* 0.00* 0.00* 0.00*

as89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.76 0.50 0.00* 0.00* 0.00* 0.00*

uk91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.41 0.00* 0.00*

us91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.59 0.50 0.00* 0.00*

ru92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00*

mx89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
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Table 5: p-values for polarization indices, α = 0.25

Wave 3 data (a * indicates a p-value ≤ 5%)

cz92 fi91 sw92 be92 nw91 dk92 lx91 ge89 nl91 rc91 pl92 fr89 hu91 cn91 it91 as89 is92 uk91 us91 ru92 mx89

cz92 0.50 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

fi91 1.00 0.50 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

sw92 1.00 0.99 0.50 0.21 0.18 0.01* 0.02* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

be92 1.00 1.00 0.79 0.50 0.45 0.06 0.07 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

nw91 1.00 1.00 0.82 0.55 0.50 0.09 0.08 0.00* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

dk92 1.00 1.00 0.99 0.94 0.91 0.50 0.24 0.00* 0.00* 0.02* 0.00* 0.00* 0.00* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

lx91 1.00 1.00 0.98 0.93 0.92 0.76 0.50 0.34 0.31 0.15 0.06 0.06 0.06 0.06 0.09 0.05* 0.00* 0.00* 0.00* 0.00* 0.00*

ge89 1.00 1.00 1.00 1.00 1.00 1.00 0.66 0.50 0.44 0.18 0.03* 0.02* 0.03* 0.03* 0.10 0.04* 0.00* 0.00* 0.00* 0.00* 0.00*

nl91 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.56 0.50 0.19 0.03* 0.02* 0.03* 0.03* 0.11 0.05* 0.00* 0.00* 0.00* 0.00* 0.00*

rc91 1.00 1.00 1.00 1.00 0.99 0.98 0.85 0.82 0.81 0.50 0.43 0.40 0.41 0.39 0.36 0.26 0.09 0.02* 0.00* 0.00* 0.00*

pl92 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.97 0.97 0.57 0.50 0.46 0.47 0.45 0.39 0.27 0.02* 0.00* 0.00* 0.00* 0.00*

fr89 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.98 0.98 0.60 0.54 0.50 0.50 0.48 0.41 0.29 0.03* 0.01* 0.00* 0.00* 0.00*

hu91 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.97 0.97 0.59 0.53 0.50 0.50 0.48 0.42 0.29 0.04* 0.01* 0.00* 0.00* 0.00*

cn91 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.97 0.97 0.61 0.55 0.52 0.52 0.50 0.43 0.31 0.05* 0.01* 0.00* 0.00* 0.00*

it91 1.00 1.00 1.00 1.00 1.00 0.99 0.91 0.90 0.89 0.64 0.61 0.59 0.58 0.57 0.50 0.40 0.23 0.08 0.00* 0.00* 0.00*

as89 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.96 0.95 0.74 0.73 0.71 0.71 0.69 0.60 0.50 0.33 0.13 0.00* 0.00* 0.00*

is92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.98 0.97 0.96 0.95 0.77 0.67 0.50 0.11 0.00* 0.00* 0.00*

uk91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 0.99 0.99 0.92 0.87 0.89 0.50 0.00* 0.00* 0.00*

us91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.03* 0.00*

ru92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.50 0.00*

mx89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
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Table 6: p-values for polarization indices, α = 1

Wave 3 data (a * indicates a p-value ≤ 5%)

fi91 sw92 be92 dk92 nw91 cn91 ge89 as89 us91 lx91 cz92 it91 pl92 fr89 hu91 nl91 rc91 is92 uk91 ru92 mx89

fi91 0.50 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

sw92 1.00 0.50 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

be92 1.00 0.99 0.50 0.21 0.18 0.01* 0.02* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

dk92 1.00 1.00 0.79 0.50 0.45 0.06 0.07 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

nw91 1.00 1.00 0.82 0.55 0.50 0.09 0.08 0.00* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

cn91 1.00 1.00 0.99 0.94 0.91 0.50 0.24 0.00* 0.00* 0.02* 0.00* 0.00* 0.00* 0.00* 0.01* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

ge89 1.00 1.00 0.98 0.93 0.92 0.76 0.50 0.34 0.31 0.15 0.06 0.06 0.06 0.06 0.09 0.05* 0.00* 0.00* 0.00* 0.00* 0.00*

as89 1.00 1.00 1.00 1.00 1.00 1.00 0.66 0.50 0.44 0.18 0.03* 0.02* 0.03* 0.03* 0.10 0.04* 0.00* 0.00* 0.00* 0.00* 0.00*

us91 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.56 0.50 0.19 0.03* 0.02* 0.03* 0.03* 0.11 0.05* 0.00* 0.00* 0.00* 0.00* 0.00*

lx91 1.00 1.00 1.00 1.00 0.99 0.98 0.85 0.82 0.81 0.50 0.43 0.40 0.41 0.39 0.36 0.26 0.09 0.02* 0.00* 0.00* 0.00*

cz92 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.97 0.97 0.57 0.50 0.46 0.47 0.45 0.39 0.27 0.02* 0.00* 0.00* 0.00* 0.00*

it91 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.98 0.98 0.60 0.54 0.50 0.50 0.48 0.41 0.29 0.03* 0.01* 0.00* 0.00* 0.00*

pl92 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.97 0.97 0.59 0.53 0.50 0.50 0.48 0.42 0.29 0.04* 0.01* 0.00* 0.00* 0.00*

fr89 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.97 0.97 0.61 0.55 0.52 0.52 0.50 0.43 0.31 0.05* 0.01* 0.00* 0.00* 0.00*

hu91 1.00 1.00 1.00 1.00 1.00 0.99 0.91 0.90 0.89 0.64 0.61 0.59 0.58 0.57 0.50 0.40 0.23 0.08 0.00* 0.00* 0.00*

nl91 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.96 0.95 0.74 0.73 0.71 0.71 0.69 0.60 0.50 0.33 0.13 0.00* 0.00* 0.00*

rc91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.98 0.97 0.96 0.95 0.77 0.67 0.50 0.11 0.00* 0.00* 0.00*

is92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 0.99 0.99 0.92 0.87 0.89 0.50 0.00* 0.00* 0.00*

uk91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.03* 0.00*

ru92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.50 0.00*

mx89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
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Figure 6: The square root of P1’s MSE for different bandwidths
Normal distribution, σ = 1
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Figure 7: Polarization (α = 1) and Inequality, United States 1991
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Figure 8: Polarization (α = 1) and Inequality, Czech Republic 1992
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Figure 9: Differences in Polarization (α = 1) and Inequality: Czech
Republic 1992 and United States 1991




