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Abstract

We propose an objective Bayesian method for the comparison of all Gaussian directed

acyclic graphical models defined on a given set of variables. The method, which is

based on the notion of fractional Bayes factor, requires a single default (typically

improper) prior on the space of unconstrained covariance matrices, together with a

prior sample size hyper-parameter, which can be set to its minimal value. We show

that our approach produces genuine Bayes factors. The implied prior on the con-

centration matrix of any complete graph is a data-dependent Wishart distribution,

and this in turn guarantees that Markov equivalent graphs are scored with the same

marginal likelihood. We specialize our results to the smaller class of Gaussian decom-

posable undirected graphical models, and show that in this case they coincide with

those recently obtained using limiting versions of hyper-inverse Wishart distributions

as priors on the graph-constrained covariance matrices.

Keywords: Bayes factor; Bayesian model selection; Directed acyclic graph; Expo-

nential family; Fractional Bayes factor; Gaussian graphical model; Objective Bayes;

Standard conjugate prior; Structural learning.



1 Introduction

Consider a set of variables whose independence structure can be represented by a

Directed Acyclic Graph (DAG). A DAGmodel is a (parametric) family of multivariate

distributions which are Markovian with respect to the DAG; see Cowell et al. (1999).

Different DAGs may define the same DAG model, in which case they are called

Markov equivalent. Nevertheless, it is often useful to confound a DAG with its model,

if invariance can be achieved within Markov equivalence classes. For a given DAG,

Bayesian inference requires the specification of a prior on the corresponding parameter

space, which we call a DAG-conditional parameter prior. If a collection of DAGs is

entertained, Bayesian model comparison requires: i) the elicitation of a parameter

prior for each DAG; ii) a prior distribution on the collection of DAGs. In this paper

we focus on the first point.

Geiger & Heckerman (2002) list a set of assumptions on DAG-conditional priors

which permit their construction, for all possible DAGs, starting from a single prior

associated to a complete DAG (a DAG where all pairs of vertices are directly con-

nected). Additionally, their method is such that Markov equivalent DAGs have the

same marginal likelihood. This is an important desideratum for model comparison,

whenever DAGs are regarded as models of conditional independence, as opposed to

causal models; see Lauritzen (2001) and Dawid (2003) for an appreciation of this

distinction. For Gaussian DAG models with zero expectation, the method of Geiger

& Heckerman (2002) requires a prior distribution on the unconstrained covariance

matrix associated to any complete DAG (all of them being equivalent). This specifi-

cation can be very hard, if a purely subjective viewpoint is adopted, especially when

many variables are involved. On the other hand, weakly informative (proper) priors

do not represent a viable solution for model determination; see Berger & Pericchi

(2001). Finally, default noninformative priors, which are typically improper, cannot

be used because the Bayes factors would depend on arbitrary constants.

The above remarks suggest the adoption of an objective approach, which requires

minimal prior inputs, and yet produces meaningful comparisons among models. The
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best known objective Bayesian methods for model determination to date are those

based on fractional Bayes factors (O’Hagan, 1995), intrinsic Bayes factors (Berger &

Pericchi, 1996), intrinsic priors (Moreno, 1997), and expected-posterior priors (Perez

& Berger, 2002). Pericchi (2005) provides a comprehensive review.

Recently, Carvalho & Scott (2009) have proposed an objective Bayesian model

selection procedure for Gaussian decomposable Undirected Graph (UG) models based

on a suitable improper prior and a Fractional Bayes Factor (FBF) approach. They

show the superiority of their method in terms of structural learning, relative to some

conventional proper priors supposedly believed to be weakly informative.

In this paper we propose an objective methodology based on the FBF to carry out

model determination in the class of Gaussian DAG models, which is strictly larger

than the class of Gaussian decomposable UG models; see Andersson et al. (1997). A

key result is that our method satisfies the assumptions of Geiger & Heckerman (2002)

and is thus invariant with respect to Markov equivalence. We show this by means

of a general interpretation of the FBF within the setup of exponential families and

generalized (possibly improper) standard conjugate priors. Since any decomposable

UG model coincides with some DAGmodel, and the approach by Geiger & Heckerman

(2002) does not discriminate between Markov equivalent DAGs, our method naturally

applies to the class of Gaussian decomposable UG models. We adapt our formulas

to deal with these models, and show that in this special case we obtain the results

presented in Carvalho & Scott (2009).

Our contribution can be seen from two perspectives. On the one hand, we reformu-

late the procedure by Geiger & Heckerman (2002) in the context of Gaussian models

using an objective approach, thus making it more easily applicable; incidentally, we

also correct a result in a crucial formula for computing the marginal likelihood of a

DAG. On the other hand, we extend the procedure by Carvalho & Scott (2009) to a

larger class of Gaussian graphical models. Interestingly, the latter result is achieved

using elementary distributional tools, namely ordinary Wishart distributions, whereas

Carvalho & Scott (2009) have to rely on the more elaborate notion of hyper-inverse

Wishart law.
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The rest of the paper is organized as follows: in section 2 we provide results

on marginal data distributions for subsets of multivariate Gaussian variables; sec-

tion 3 points out a useful interpretation of the FBF for exponential families; section 4

presents our method for comparing Gaussian DAG models, and section 5 applies it

to Gaussian decomposable UG models. Finally, Section 6 considers potential imple-

mentation of our method for searching a space of DAGs and discusses extensions to

non-local priors.

2 Multivariate Gaussian variables

In this section we report some results useful to compute marginal data distributions

for subsets of Gaussian variables. These will be needed in the sequel to obtain the

marginal likelihood of any DAG. Preliminarily, we set out notation for relevant dis-

tributions and discuss the important issue of conditioning and marginalization.

2.1 Distributions

We write u|µ,Ω ∼ Np(µ,Ω
−1) to say that the random vector u follows a p-dimensional

normal distribution conditionally on the expectation µ and covariance matrix Ω−1; Ω

is also referred to as the precision, or concentration, matrix. Unless explicitly stated

otherwise, we assume that the only constraint satisfied by the p(p+ 1)/2 elements of

Ω is that Ω be symmetric and positive definite (s.p.d.); occasionally, we will underline

this fact by writing that Ω is unconstrained. The lack of constraints on Ω characterizes

the complete Gaussian DAG (or UG for that matter) model.

Let U be a p× p unconstrained s.p.d. random matrix. We write U ∼ Wp(a,A) to

mean that U follows a Wishart distribution with density

pW (U) = c(p, a)|A| a2 |U |a−p−1
2 exp

{

−1
2
tr(UA)

}

, U ∈ U , (1)

and pW (U) = 0, U /∈ U , where U is the set of all unconstrained s.p.d. p× p-matrices,

A is a p× p s.p.d. matrix, a is a scalar strictly greater than p− 1 and

c(p, a) =

{
∫

U

|A|a2 |U |a−p−1
2 exp

{

−1
2
tr(UA)

}

dU

}−1
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=

{

2
ap

2 π
p(p−1)

4

p
∏

j=1

Γ

(

a+ 1− j

2

)

}−1

, (2)

where dU stands for the differential of the p(p+ 1)/2 distinct elements of U , i.e., the

Lebesgue measure element on R
p(p+1)/2. As for parameter interpretation, it can be

shown that, given a and A, E[U ] = aA−1. The notation Wp(a,A) for the density

(1) is essentially that employed by Geiger & Heckerman (2002), following DeGroot

(1970, p. 59); other authors (Press, 1982; Lauritzen, 1996) would instead use A−1 in

place of A in (1).

2.2 Conditioning and marginalization

Let u be a p-dimensional random vector with covariance matrix Σ (a p× p s.p.d. ma-

trix). Partition u as

u′ = [v′ w′], (3)

where v has dimension pv and w has dimension pw, with pv + pw = p; then partition

Σ and Ω = Σ−1 as

Σ =





Σvv Σvw

Σwv Σww



 , Ω =





Ωvv Ωvw

Ωwv Ωww



 . (4)

The block Σvv is the marginal covariance matrix of v. The partial covariance matrix

of v given w (defined as the residual variance associated to the linear least squares

predictor of v from w) is given by

Var(v|w) = Σvv − ΣvwΣ
−1
wwΣwv ≡ Σvv·w = (Ωvv)

−1, (5)

where Σvv·w is called the Schur complement of Σww in Σ. If u follows a multivariate

normal distribution, then Var(v|w) coincides with the conditional covariance matrix

of v given w; see for instance Whittaker (1990, Ch. 5).

Notice that (5) expresses a relationship between four blocks of Σ and a corre-

sponding block of Σ−1 = Ω. Hence, by switching the roles of Σ and Ω, we obtain

Σvv =
(

Ωvv − ΩvwΩ
−1
wwΩwv

)−1
. (6)
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Since Σvv = (Ω−1)vv, we can also write

((Ω−1)vv)
−1 = Ωvv − ΩvwΩ

−1
wwΩwv ≡ Ωvv·w. (7)

Thus, working with covariance matrices, marginalization corresponds to submatrix

extraction and conditioning to Schur complementation, whereas, working with preci-

sion matrices, marginalization corresponds to Schur complementation and condition-

ing to submatrix extraction.

Theorem 2.1 Let Ω ∼ Wp(a,A), with A an s.p.d. matrix and a > p − 1. If Ω is

partitioned as in (4), and A is partitioned accordingly, then

Ωvv·w ∼ Wpv(a− pw, Avv). (8)

Proof. See Press (1982, Theorem (5.1.4)), recalling that Press’s parameterization for

the Wishart differs from ours. More in detail, start with Ω ∼ W̃p(a,A
−1), where the

tilde reminds us that E[Ω] = aA−1, and use the theorem to conclude that Ωvv·w ∼
W̃pv(a − pw, (A

−1)vv·w), whence (8) follows because of (7). See also Lauritzen (1996,

Proposition C.15) with similar care for the notation.

2.3 Marginal data distributions

Let u1, . . . , un|Ω i.i.d.∼ Np(0,Ω
−1) and Ω ∼ Wp(a,A), with A an s.p.d. matrix and

a > p − 1. We want to compute the marginal density m(u1, . . . , un) of the data;

when model comparison is the focus this is also called the marginal likelihood (of the

underlying model). Let S =
∑n

i=1 uiu
′
i be the p × p matrix of sums of squares and

products of the coordinates of ui, i = 1, . . . n. The marginal data density is then

m(u1, . . . , un) =

∫

f(u1, . . . , un|Ω)pW (Ω)dΩ

=

∫

(2π)−
np

2 |Ω|n2 exp
{

−1
2
tr(ΩS)

}

c(p, a)|A|a2 |Ω|a−p−1
2 exp

{

−1
2
tr(ΩA)

}

dΩ

= (2π)−
np

2 c(p, a)|A|a2
∫

|Ω|a+n−p−1
2 exp

{

−1
2
tr(Ω(S + A))

}

dΩ

= (2π)−
np

2
c(p, a)

c(p, a+ n)

|A|a2
|S + A|a+n

2

, (9)
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where c(p, a) is defined in (2) and the integral is over the set of all s.p.d. matrices.

Now

c(p, a)

c(p, a+ n)
=

2
(a+n)p

2 π
p(p−1)

4

∏p
j=1 Γ

(

a+n+1−j
2

)

2
ap

2 π
p(p−1)

4

∏p
j=1 Γ

(

a+1−j
2

)

= 2
np

2

∏p
j=1 Γ

(

a+n+1−j
2

)

∏p
j=1 Γ

(

a+1−j
2

) ,

whence

m(u1, . . . , un) = (2π)−
np

2 2
np

2

∏p
j=1 Γ

(

a+n+1−j
2

)

∏p
j=1 Γ

(

a+1−j
2

)

|A| a2
|S + A|a+n

2

, (10)

leaving the factor (2π)−np/22np/2 untouched in view of future comparisons.

We will also need the marginal density of the random sample v1, . . . , vn corre-

sponding to the subvector v in the partition of u defined in (3). To this aim, we first

note that v1, . . . , vn|Ω i.i.d.∼ Np(0, (Ωvv·w)
−1). Then, we obtain from Theorem 2.1 that

Ωvv·w ∼ Wpv(a− pw, Avv). Hence, we just need to make the following substitutions in

(9) and (10): p→ pv; a→ a− pw; A→ Avv; S → Svv. We conclude that

m(v1, . . . , vn) = (2π)−
npv
2

c(pv, a− pw)

c(pv, a− pw + n)

|Avv|
a−pw

2

|Svv + Avv|
a−pw+n

2

(11)

= (2π)−
npv
2 2

npv
2

∏pv
j=1 Γ

(

a−pw+n+1−j
2

)

∏pv
j=1 Γ

(

a−pw+1−j
2

)

|Avv|(a−pw)/2

|Svv + Avv|(a−pw+n)/2
. (12)

Since the sampling distribution of the unconstrained normal model belongs to an

exponential family (Lauritzen, 1996, Sect. 5.1.2), we can derive (10) and (12) as a

special case of a more general expression which holds for exponential families paired

with standard conjugate priors. This setting is especially useful in view of the FBF

interpretation which we present in section 3.

A statistical model for the random sample of size n, y ∈ Y , is an exponential

family if the sampling density of y can be written as

f(y|θ) = hn(y) exp {〈θ, s〉 − nM(θ)} , y ∈ Y , (13)

where s ≡ s(y) is the canonical statistic belonging to a real Euclidean vector space

endowed with inner product 〈·, ·〉, θ is the corresponding canonical parameter, and

enM(θ) is, for each given θ, the normalizing constant; we do not absorb the leading

6



factor hn(y) =
∏n

i=1 h1(yi) into the dominating measure, because we like the latter to

be a product of either Lebesgue or counting measures.

The standard conjugate prior density on θ with respect to the Lebesgue measure

is given by

pC(θ) = K(n•, s•) exp {〈θ, s•〉 − n•M(θ)} , (14)

where s• is a prior guess of s and n• is a prior sample size, while K(n•, s•) is the

corresponding normalizing constant, assuming it exists. An alternative term for the

prior (14) is DY-prior after Diaconis & Ylvisaker (1979); see also Consonni & Veronese

(1992) and Gutiérrez-Peña & Smith (1995) for extensive discussions on conjugate prior

families. The corresponding posterior density is

pC(θ|y) = K(n• + n, s• + s) exp {〈θ, s• + s〉 − (n• + n)M(θ)} . (15)

We can easily specialize the above setup to multivariate normal data with zero

mean. Let the random sample be ui|Ω ∼ Np(0,Ω
−1) independently for i = 1, . . . , n.

Then, s = −S/2, where S =
∑n

i=1 uiu
′
i belongs to the vector space of matrices with

inner product 〈A,B〉 = tr(A′B), and θ = Ω is the canonical parameter. Additionally

M(Ω) = − log |Ω|/2, while hn(u1, . . . , un) = (2π)−np/2. The standard conjugate prior

family on Ω is Wishart. In particular, if we set n• = a− p− 1 and s• = −A/2, then
we recover our originalWp(a,A) formulation, so that we can write with a slight abuse

of notation K(a,A) = c(p, a)|A|a/2.
We can now derive an expression for mC(y) =

∫

f(y|θ)pC(θ)dθ, the marginal
data density, in the exponential-conjugate family setup. In fact, from mC(y) =

f(y|θ)pC(θ)/pC(θ|y), we get

mC(y) = hn(y)
exp {〈θ, s〉 − nM(θ)}K(n•, s•) exp {〈θ, s•〉 − n•M(θ)}
K(n• + n, s• + s) exp {〈θ, s• + s〉 − (n• + n)M(θ)}

= hn(y)
K(n•, s•)

K(n• + n, s• + s)
. (16)

When the data are multivariate normal with zero mean, it is immediate to realize that

(16) specializes to (9), and hence to (10). With obvious modifications, the marginal

density of the data subset v1, . . . , vn in (11) and (12) can also be derived in the same

way (thanks to Theorem 2.1).
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3 Fractional Bayes factors

We first recall the definition of FBF, then we cast it into the exponential family-

conjugate prior setting, and finally we focus on the case of multivariate normal data

with zero mean.

3.1 Definition

Consider a collection of models Mk, k = 1, . . . , K, for the same observables y. Let

fk(y|θk) denote the sampling distribution of y under Mk, and let pk(θk) be the corre-

sponding prior density, which we assume proper. We focus on the comparison of Mk

with Mj through the Bayes Factor (BF)

Bkj(y) =
mk(y)

mj(y)
,

where mk(y) =
∫

fk(y|θk)pk(θk)dθk is the marginal likelihood of Mk.

In lack of specific prior information, we would like to take pk(θk) = pDk (θk) for some

default, noninformative, objective prior. However, objective priors are often improper

and they cannot be naively used to compute BFs, even when the marginal likelihoods

mk(y) are finite, because of the presence of arbitrary constants which do not cancel

out when taking their ratios. Several proposals to overcome this difficulty have been

put forward; see Pericchi (2005). In this paper we focus on the FBF introduced by

O’Hagan (1995).

Let 0 < b < 1 be a quantity depending on the sample size n, and define

mk(y; b) =

∫

fk(y|θk)pD(θk)dθk
∫

f b
k(y|θk)pD(θk)dθk

, (17)

where f b
k(y|θk) is the sampling density of model Mk raised to the b-th power, and the

integrals are assumed to be finite and nonzero. We refer to mk(y; b) as the fractional

marginal likelihood for the k-th model. For later purposes it is useful to rewrite (17)

as

mk(y; b) =

∫

f 1−b
k (y|θk)pF (θk|b, y)dθk, (18)

8



where pF (θk|b, y) ∝ f b
k(y|θk)pD(θk) is the implied fractional prior (actually a “poste-

rior” based on the b-fractional likelihood). The FBF ofMk againstMj is then defined

as

FBFkj(y; b) =
mk(y; b)

mj(y; b)
.

Clearly, the FBF depends on the choice of b. Usually b will be small, so that

the dependence on the data of the prior will be weak. Consistency is achieved as

long as b → 0 for n → ∞, and O’Hagan (1995, Sect. 4) suggests three possible

choices: i) b = n0/n, where n0 is the minimal (integer) training sample size for

which the fractional marginal likelihood is well defined; ii) b = max{n0,
√
n}/n; iii)

b = max{n0, log n}/n. Choice i) is suggested as the standard option, when robustness
issues are of little concern, while ii) is recommended when robustness is a serious

concern, and iii) represents an intermediate option. Moreno (1997) has an argument

for i) being the only valid choice, and we stick to this choice in this paper.

3.2 Interpretation for exponential families

For exponential families and conjugate priors, the FBF admits a simple and intuitive

interpretation, which both puts it on firmer grounds and makes its computation

straightforward. We detail this interpretation below, and exploit it in section 4 for

Gaussian DAG model comparison.

Suppose the sampling density can be written as in (13). Furthermore, suppose

the default prior has a conjugate form

pD(θ|nD
• , s

D
• ) ∝ exp{〈θ, sD• 〉 − nD

• M(θ)}, (19)

where we allow nD
• and sD• to be such that (19) is an improper prior. In this way (19)

includes Jeffreys’s prior on Ω in the multivariate normal family, and more generally

Jeffreys’s prior for the canonical parameter of exponential families having a simple

quadratic variance function; see Gutiérrez-Peña & Smith (1995). Now write the

fraction b as b = n0/n for some 0 < n0 < n, as suggested at the end of the previous

subsection. The fractional likelihood becomes

f(y|θ)
n0
n = hn(y)

n0
n exp{〈θ, n0s̄〉 − n0M(θ)},

9



where s̄ = s/n is the average value of the canonical statistic. By writing hn(y) = h̄n,

where h̄ ≡ h̄(y) is the geometric mean of {h1(yi), i = 1, . . . , n}, the fractional (n0/n)-

likelihood can be interpreted as an ordinary likelihood based on n0 observations,

canonical statistic n0s̄ and leading factor h̄
n0 . The same can be said for the fractional

likelihood f(y|θ)(n−n0)/n appearing in (18), with canonical statistic (n− n0)s̄, sample

size n− n0 and leading factor h̄
n−n0 , which will be paired with the fractional prior

pF (θ|n0) ∝ exp{〈θ, n0s̄+ sD• 〉 − (n0 + nD
• )M(θ)} (20)

to compute the fractional marginal likelihood. Specifically, assuming n0 is such that

pF (θ|n0, s̄) is proper, the fractional marginal likelihood m(y; b) ≡ m(y;n0) will be

written, using (18) without the unnecessary subscript k and (16), as

m(y;n0) = h̄n−n0
K(nD

• + n0, s
D
• + n0s̄)

K(nD
• + n, sD• + s̄)

.

Notice that in the p-dimensional normal case h̄ = (2π)−p/2 independently of y.

We have thus shown that, when the model is an exponential family and the default

prior belongs to the family (19), the fractional marginal likelihood corresponds to an

ordinary conjugate marginal likelihood based on a particular data-dependent prior.

Specifically, the sample size is split as n = n0 + (n − n0), with n0 usually much

smaller than n. Notice that s̄ is used both as data and as prior information, which we

believe is a sensible choice, because it reduces prior-likelihood conflicts lying at the

heart of many difficulties surrounding the comparison of nested models. We believe

this discussion lends support to the use of the FBF in the setting we have described,

because it adheres to the principle laid out in Berger & Pericchi (2001, Sect. 3),

namely that “Testing and model selection methods should correspond, in some sense,

to actual Bayes factors, arising from reasonable default prior distributions”.

3.3 Marginal distributions for normal data

Assume u1, . . . , un|Ω i.i.d.∼ Np(0,Ω
−1) with Ω unconstrained (s.p.d.), so that the joint

density is

f(u1, . . . , un|Ω) = (2π)−
np

2 |Ω|n2 exp
{

−1
2
tr(ΩS)

}

,

10



where S =
∑

i uiu
′
i is the matrix of sums of squares and products of coordinates. We

shall write S̄ to denote n−1S.

Let

pD(Ω) ∝ |Ω|
aΩ−p−1

2 , (21)

be a default improper prior. Notice that if aΩ = 0 we recover Jeffreys’s prior. Indeed,

Jeffreys’s prior on Σ is given by pJ(Σ) ∝ |Σ|− p+1
2 (Press, 1982, p. 76). Consider now

the transformation Ω = Σ−1. The Jacobian of this transformation is J(Σ → Ω) =

|Ω|−(p+1) (Press, 1982, p. 47 (2.15.8)), whence pJ(Ω) ∝ |Ω| p+1
2 |Ω|−(p+1) = |Ω|− p+1

2 ,

which coincides with (21) if aΩ = 0. On the other hand, if aΩ = p− 1, then pD(Ω) ∝
|Ω|−1. Since J(Ω → Σ) = |Σ|−(p+1), we find pD(Σ) ∝ |Σ|−p. We will use this prior

later on for comparison with existing results.

Since pD(Ω) in (21) can be written as in (19), with nD
• = aΩ−p−1 and sD• = 0, we

obtain from (20) that the fractional prior for Ω isWp(aΩ+n0, n0S̄). If we set aΩ = p−1
then the fractional prior is proper provided n0 > 0, so that the minimal training

sample size is n0 = 1 and the corresponding fraction becomes b = n0/n = 1/n. Thus,

the fractional marginal likelihood for data v1, . . . , vn relative to the subvector v can

be deduced from (12) by replacing the quantities which appear therein according to

the scheme below:

a→ aΩ + n0; A→ n0S̄; n→ (n− n0); S → (n− n0)S̄.

The result is

m(v1, . . . , vn;n0) =
2

(n−n0)pv
2

(2π)
(n−n0)pv

2

∏pv
j=1 Γ

(

aΩ−pw+n+1−j
2

)

∏pv
j=1 Γ

(

aΩ−pw+n0+1−j
2

)

n
(aΩ−pw+n0)pv

2
0

n
(aΩ−pw+n0)pv

2 |Svv|
(n−n0)

2

. (22)

Notice that (22) is valid provided |Svv| > 0; in particular this implies that n ≥ pv.

4 Objective priors for Gaussian DAG models

We first review the approach by Geiger & Heckerman (2002, henceforth G&H); then

we discuss their formulas for the Gaussian case, and finally we present our proposal.

11



Although we aim at giving a self-contained presentation, for reasons of space we

must assume the reader is familiar with the basics of graphical modeling theory and

notation; see for instance Cowell et al. (1999), Lauritzen (1996), Whittaker (1990).

4.1 Geiger and Heckerman’s approach

With the aim of comparing DAG models using marginal likelihoods (or equivalently

BFs), G&H propose a method for the construction of (DAG-conditional) parameter

priors on all DAG models with given vertex set, which is particularly attractive

because of its simplicity and because it satisfies a natural compatibility requirement

for Markov equivalent DAGs.

G&H lay down five assumptions which must be satisfied by their procedure. The

first three concern regularity conditions on the sampling distribution of the data,

which are naturally fulfilled in the Gaussian case (as detailed by the authors). The

next two concern structural properties of the prior and represent the cornerstone of

their approach. Recall that in the model specified by a DAG D the joint density of the

p-dimensional random vector (u(1), . . . , u(p))′, where coordinate u(j) is the variable

associated to vertex j of D, can be written as

fD(u(1), . . . , u(p)|θ) =
p

∏

j=1

f(u(j)|u(paD(j)); θj), (23)

where paD(j) denotes the parents of j in D, i.e., all nodes in D from which a directed

edge points to j, while θ is the collection of all θjs, and u(paD(j)) is the collection of

variables belonging to the vertex set paD(j). Assumption 4, called prior modularity,

requires that, given two DAGs D1 and D2 prescribing the same set of parents for

node j, the parameter prior on θj should be the same for the two corresponding

models. Assumption 5, called global parameter independence, states that for every

DAG model the parameters θjs should be a priori independent; equivalently the joint

density pD(θ) should factorize as
∏

j p
D
j (θj). Both these assumptions had already been

used in earlier works containing Bayesian analyses of DAG models, as recounted in

Cowell et al. (1999, Sect. 9.2 & 9.4), and they are feasible within the Gaussian setting

because parameters pertaining to distinct local structures are variation independent.

12



A first basic result of G&H is reported in their Theorem 1: under Assumptions

1–5, the parameter prior for any DAG model is determined by a specified parameter

prior for an arbitrary complete DAG model. As a consequence, once we specify

the parameter prior for one complete DAG model, all other priors can be generated

automatically. A crucial implication of this result concerns the computation of the

marginal likelihood for a general DAG model. This is contained in Theorem 2 of

G&H. Assume u1, . . . , un is a sample of complete (no missing) data, where u′i =

(ui(1), . . . , ui(p)), i = 1, . . . , n. For any complete DAG Dc and any DAG D, the
marginal data density of (u1, . . . , un) given D, equivalently the marginal likelihood

for D, can be written as

mD(u1, . . . , un) =

p
∏

j=1

mDc
(u1(faD(j)), . . . , un(faD(j)))

mDc
(u1(paD(j)), . . . , un(paD(j)))

, (24)

where faD(j) = paD(j) ∪ {j} is the family of j in D and ui(S) represents the i-th

observation on the collection of variables indexed by set S. The great advantage of

(24) is that we simply need to compute the required factors for a single complete

DAG. The particular features of the DAG structure D under consideration enter (24)

only through the specification of the set of parents for each node j.

Another consequence of Assumptions 1-5 is that every two Markov equivalent

DAGs have the same marginal likelihood; see Theorem 4 of G&H. As recalled in the

Introduction, this feature is clearly attractive whenever DAGs are regarded purely as

models of conditional independence, as opposed to causal models. Notice that, as a

consequence of this feature, we can always consider D as a subgraph of Dc, in (24),

because all complete DAGs are Markov equivalent.

4.2 Geiger and Heckerman for Gaussian DAG models

G&H also address the specific issue of constructing parameter priors for the com-

parison of Gaussian DAG models. Let the underlying p-dimensional distribution

be Np(µ,Ω
−1). Assuming a complete DAG model, equivalently that Ω be uncon-

strained (s.p.d.), G&H deduce from Assumptions 1–5 that the prior for (µ,Ω) must

be Normal-Wishart: µ normally distributed conditionally on Ω and Ω ∼ Wp(aΩ, A).

13



More specifically, Theorem 10 of G&H establishes that, if p ≥ 3, global parameter

independence holds if and only if the prior on (µ,Ω) is Normal-Wishart. The other

assumption on the prior, namely prior modularity, is automatically satisfied when-

ever the prior on the parameter θj of each conditional distribution appearing in the

factorization (23) is derived through a unique prior on the parameter indexing the

joint distribution. If µ = 0, as in our simplified setup, which is often adopted when

dealing with graphical models, global parameter independence holds if and only if the

prior on Ω is Wishart; see Theorem 7 of G&H.

G&H produce the marginal data density for a subset of the p-variables, which

is necessary to implement formula (24). As already remarked, their discussion is

slightly more general than ours because they allow for µ 6= 0. Their result on the

marginal data density must however specialize to ours upon choosing a prior for µ|Ω
that is degenerate on zero. This does not occur: their result, reported in Geiger

& Heckerman (2002, p. 1425, formula (18)), when adapted to our zero-expectation

context, disagrees with our formula (11). We believe that formula (18) of G&H’ is

incorrect. A detailed explanation of our claim is provided in the Appendix.

4.3 Fractional Bayes factors for Gaussian DAG models

The approach by Geiger & Heckerman (2002) requires to specify (m, aµ, aΩ, A) or,

when µ = 0, simply (aΩ, A). This can be problematic, especially when the dimen-

sion of the problem is large. Even when substantial prior information on (aΩ, A) is

available, special care must be exercised because, as recalled in the Introduction, the

BF is typically quite sensitive to the choice of these inputs. For these reasons we

find it advisable to proceed using an objective method, at least as a way to provide

a benchmark result. In the following we develop a proposal based on the notion of

FBF.

The key to our proposal is the interpretation of the FBF pointed out in subsec-

tion 3.2, which holds true in particular for the normal model, so that the fractional

marginal likelihood corresponds to an actual marginal likelihood (with a reduced sam-

ple size) based on a data-dependent proper conjugate prior. Hence, the FBF can be
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accommodated within the approach by Geiger & Heckerman (2002). Specifically, for

a complete DAG Dc, we will use the prior Ω ∼ Wp(aΩ + n0, n0S̄) and pair it to an

ordinary Gaussian likelihood with (n−n0) observations and mean canonical statistic

S̄. Then, formula (24) will give us the marginal likelihood of any DAG D.
As for the specific expression of mD(u1, . . . , un), using (22) the j-th term in the

numerator of (24) becomes

mDc
(u1(faD(j)), . . . , un(faD(j))) = (2π)−

(n−n0)pj
2 2

(n−n0)pj
2 |SfaD(j)faD(j)|−

(n−n0)
2

·
∏pj

j=1 Γ
(

aΩ+n−p+pj+1−j

2

)

∏pj
j=1 Γ

(

aΩ+n0−p+pj+1−j

2

)

n
(aΩ+n0−p+pj)pj

2
0

n
(aΩ+n0−p+pj)pj

2

,(25)

where pj ≡ |faD(j)| is the cardinality of the set faD(j). To understand (25) simply

apply the following substitution into (22): v → faD(j), pv → pj, pw ≡ p−pv → p−pj.

On the other hand, the j-th term in the denominator of (24) is exactly as in (25), but

with faD(j) replaced by paD(j). Clearly, for (25) to exist SfaD(j)faD(j) must be positive

definite, which requires n ≥ pj. Since this condition must hold for all j = 1, . . . , p, it

is necessary that n ≥ max{pj, j = 1, . . . , p}.

5 Application to decomposable UG models

It is well known that a decomposable UG is Markov equivalent to some DAG; see

Andersson et al. (1997). It follows that the methodology developed in subsection 4.3

can be applied to perform Bayesian model determination for decomposable UGs.

Notice that the decomposability of an UG G is equivalent to: i) the cliques of G can

be ordered to form a perfect sequence; ii) the vertices of G admit a perfect numbering;
see Lauritzen (1996, Proposition 2.17).

Now let G be a decomposable UG. Let C1, . . . , CK be a perfect sequence of cliques.

For k = 2, . . . , K, define Hk = C1∪ . . .∪Ck; Sk = Ck∩Hk−1; Rk = Ck \Hk−1. Call Hk

the history, Sk the separator and Rk the residual. Notice that C1∪R2∪ . . .∪RK = V ,

where V is the vertex set of G. Additionally Rk∩Rk′ = ∅, k 6= k′. Let the vertices of G
be numbered with first those in C1, then those in R2, R3, and so on. The numbering
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so obtained is perfect; see Lauritzen (1996, Lemma 2.12). Given a perfect numbering

of the vertices in G, we can construct its perfect directed version G<, which is a DAG

Markov equivalent to G, simply by directing its edges from lower to higher numbered

vertices; see Lauritzen (1996, p. 18).

Now recall the fundamental factorization of a density fG(u) which is Markovian

with respect to the UG G:

fG(u) =

∏

C∈C f(u(C))
∏

S∈S f(u(S))
, (26)

where C is the set of cliques, S the set of separators, u(C) is the collection of u(j)

with j ∈ C, and similarly for u(S). We can write (26) as

fG(u) =
K
∏

k=1

f(u(Rk)|u(Sk)), (27)

with the understanding that R1 ≡ C1 and S1 = ∅. Since the vertices of G are perfectly
numbered, one could further decompose f(u(Rk)|u(Sk)) into a product of univariate

terms (one for each node) thus making it clear that the joint density also factorizes

according to the perfect DAG G<; we omit details. Since the prior satisfies global

parameter independence, the marginal data density is also Markovian with respect

to G and we can write

mG(u1, . . . , un) =

∏K
k=1 m(u1(Ck), . . . , un(Ck))

∏K
k=1 m(u1(Sk), . . . , un(Sk))

. (28)

Notice that Ck and Sk are complete sets. Hence the k-th factor in the numera-

tor and denominator of (28) is formally equivalent to (25). Consider in particular

m(u1(Ck), . . . , un(Ck)). Omitting the subscript k we get for the generic clique C

m(u1(C), . . . , un(C)) =
2

(n−n0)pC
2

(2π)
(n−n0)pC

2

∏pC
j=1 Γ

(

aΩ+n−p+pC+1−j
2

)

∏pC
j=1 Γ

(

aΩ+n0−p+pC+1−j
2

)

· n
(aΩ+n0−p+pC )pC

2
0

n
(aΩ+n0−p+pC )pC

2

|SCC |−
(n−n0)

2 , (29)

where pC ≡ |C| is the cardinality of the clique C. An analogous expression holds for
the denominator of (28): simply replace C with S; this will create the somewhat cum-

bersome expression SSS, which of course represents the matrix of sums of squares and
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products of the data whose vertices belong to the separator S. Formula (28) will be

well defined provided each term (29) exists; a necessary condition for this is therefore

n ≥ max{pC}, where C runs over the set of all cliques. We conclude that the marginal

likelihood of the decomposable UG G is given by (28), where m(u1(Ck), . . . , un(Ck))

is defined in (29) and m(u1(Sk), . . . , un(Sk)) has an analogous expression.

5.1 Relationship to the work by Carvalho and Scott

Carvalho & Scott (2009) consider Bayesian model determination for Gaussian de-

composable UG models using an FBF approach. Let G be a decomposable UG and

Σ ∈ M+(G) be the corresponding covariance matrix, where M+(G) is the set of all
constrained s.p.d. matrices such that (Σ−1)ij ≡ Ωij = 0 for all i 6= j not joined by an

edge in G. Carvalho & Scott (2009) assign to Σ the default noninformative prior

pD(Σ) ∝
∏

C∈C |ΣCC |pC
∏

S∈S |ΣSS|pS
, Σ ∈M+(G),

which is a limiting form of hyper-inverse Wishart distribution; see Dawid & Lauritzen

(1993) and Letac & Massam (2007). When G is complete, the latter noninformative

prior specializes to pD(Σ) ∝ |Σ|−p, or equivalently pD(Ω) ∝ |Ω|−1, which corresponds
to aΩ = p − 1 in our general notation of subsection 3.3. If we substitute this value

into (29) and its analogous expression for m(u1(S), . . . , un(S)), we obtain from (28),

after some algebra, the expression for the fractional marginal likelihood of Carvalho

& Scott (2009, Theorem 1); notice that there is a typo in their formula (1), where

(2π)−np/2 should be replaced by (2π)−(n−n0)p/2.

6 Discussion

Our procedure has been developed under the assumption that the observables to be

modeled have zero mean, as it is customary in the analysis of graphical models, which

is focussed on the covariance, or precision, matrix. We could extend our procedure

to cover the case Np(µ,Ω
−1) with little extra computations. The implied fractional
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prior would then belong to the Normal-Wishart family, as in the approach of Geiger

& Heckerman (2002), and the analysis would go through in a very similar fashion.

Our paper is focused on priors for an objective approach to Gaussian DAG model

selection. Actual implementation of our method would require setting up a search

algorithm over a model space, as for instance the one based on feature inclusion

stochastic search implemented in Scott & Carvalho (2009): this would effectively

generalize their method to the larger class of DAG models. In this connection effi-

ciency considerations related to exploring only equivalence classes of DAGs should be

taken into consideration; see Andersson et al. (1997). When the number of variables

is very large and the sample size relatively small, as in some current applications to

genomic data, searching for the highest probability models may be hopeless. Hence

one could resort to learning only some features of the DAG, such as the presence of

an edge; see for instance Friedman & Koller (2003).

The parameter priors used in this paper are local, in that when comparing nested

models the prior under the larger model does not vanish on the subspace correspond-

ing to the smaller model. This is current practice in Bayesian hypothesis testing and

model selection, but Johnson & Rossell (2010) have recently advocated the use of

non-local priors in order to accelerate the rate of learning about the smaller model

(when this is actually true) in any pairwise comparison between two nested models.

We believe that the rationale behind non-local priors is sound and promising, but in

the setting of this paper their use would imply modifying the implied fractional prior,

which would no longer be a Wishart. As a consequence, marginal likelihoods would

not be invariant within Markov equivalence classes, because this property character-

izes the Wishart family, as shown by Geiger & Heckerman (2002). On the other hand,

when a fixed ordering of the variables is available, Markov equivalence is not an issue,

and an application of non-local priors to Gaussian DAG model comparison can be

found in Consonni & La Rocca (2011).
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Appendix

We provide a detailed explanation of the reason why formula (18) on p. 1425 of Geiger

& Heckerman (2002, G&H) is incorrect. For the sake of clarity we first summarize

G&H’s distributional assumptions using their notation (but omitting boldface fonts)

and specialize their result to the µ = 0 case.

The sampling distribution is Nn(µ,W
−1); the prior is µ|W ∼ Nn(ν, (aµW )−1) and

W ∼ Wn(aw, T ). G&H represent the variables as (X1, . . . , Xn) and denote by d a

random sample of N complete cases, with xi the i-th n-dimensional observation of

(X1, . . . , Xn). In order to specialize G&H’s results to the µ = 0 case, it is enough to

set ν = 0 and let aµ → ∞. If we do so, the following two expressions, appearing on

p. 1424 and 1425 of G&H, become

aµ
aµ +N

→ 1

R ≡ T + SN +
aµN

aµ +N
(ν − x̄N)(ν − x̄N)

′ → T + SN +Nx̄N x̄
′
N = T + S,

where SN ≡ ∑

i(xi − x̄N)(xi − x̄N)
′ and S ≡ ∑

i xix
′
i. Table 1 exhibits the corre-

spondence between our notation and the notation employed by G&H. In this way we

can compare formula (18) of G&H with our corresponding formula (11). One realizes

that everything agrees except for the definition of TY and RY . According to G&H it

should be TY = ((T−1)Y Y )
−1 and analogously RY = ((R−1)Y Y )

−1, whereas according

to our calculations it should be TY = TY Y and RY = RY Y . Indeed, only in the latter

case does the term TY match our term Avv, and RY match our term Svv + Avv.

We believe that the source of error be the following. In the first line of p. 1425

G&H state that, according to their Theorem 5, the distribution of ((W−1)Y Y )
−1 is
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Geiger & Heckerman Consonni & La Rocca

Xj u(j)

n p

N n

W Ω

aw a

T A

l pv

xi ui

Y v

a′w ≡ aw − n+ l a− p+ pv ≡ a− pw

Table 1: Correspondence between G&H’s notation and our notation.

W (a′w, TY ≡ ((T−1)Y Y )
−1). Theorem 5 is correct, but the derivation of the distribu-

tion of ((W−1)Y Y )
−1 is incorrect. Indeed, rephrasing Theorem 5 in the notation of for-

mula (18) on p. 1425, one concludes that WY Y ·X\Y has distribution W (a′w, TY Y ); this

agrees with our result (8). Consequently, since ((W−1)Y Y )
−1 is precisely WY Y ·X\Y ,

as we have argued in (7), ((W−1)Y Y )
−1 must have distribution W (a′w, TY Y ). If this

had been realized, then formula (18) of G&H would have been correctly written. As

a double check, notice that T is a covariance-type matrix, because E[W ] = awT
−1,

and thus marginalization on Y necessarily corresponds to extracting the submatrix

TY Y ; see subsection 2.2.

References

Andersson, S. A., Madigan, D. & Perlman, M. D. (1997). On the Markov equivalence

of chain graphs, undirected graphs, and acyclic digraphs. Scand. J. Statist. 24,

81–102.

Berger, J. & Pericchi, L. (1996). The intrinsic Bayes factor for model selection and

20



prediction. Journal of the American Statistical Association 91, pp. 109–122.

Berger, J. O. & Pericchi, L. R. (2001). Objective Bayesian methods for model se-

lection: introduction and comparison. In Model selection, vol. 38 of IMS Lecture

Notes Monogr. Ser. Inst. Math. Statist., Beachwood, OH, pp. 135–207.

Carvalho, C. & Scott, J. (2009). Objective Bayesian model selection in Gaussian

graphical models. Biometrika 96, 497–512.

Consonni, G. & La Rocca, L. (2011). On moment priors for Bayesian model choice

with applications to directed acyclic graphs. In J. M. Bernardo, M. J. Bayarri, J. O.

Berger, A. P. Dawid, D. Heckerman, A. Smith & M. West, eds., Bayesian Statistics

9 – Proceedings of the Ninth Valencia International Meeting. Oxford University

Press. To appear.

Consonni, G. & Veronese, P. (1992). Conjugate priors for exponential families having

quadratic variance functions. J. Amer. Statist. Assoc. 87, 1123–1127.

Cowell, R. G., Dawid, P. A., Lauritzen, S. L. & Spiegelhalter, D. J. (1999). Proba-

bilistic networks and expert systems. Springer, New York.

Dawid, A. P. (2003). Causal inference using influence diagrams: the problem of partial

compliance. In P. Green, N. L. Hjort & S. Richardson, eds., Highly structured

stochastic systems. Oxford Univ. Press, Oxford, pp. 45–81.

Dawid, A. P. & Lauritzen, S. L. (1993). Hyper Markov laws in the statistical analysis

of decomposable graphical models. The Annals of Statistics 21, 1272–1317.

DeGroot, M. H. (1970). Optimal statistical decisions. McGraw-Hill Book Co., New

York.

Diaconis, P. & Ylvisaker, D. (1979). Conjugate priors for exponential families. Ann.

Statist. 7, 269–281.

21



Friedman, N. & Koller, D. (2003). Being Bayesian about network structure. a

Bayesian approach to structure discovery in Bayesian networks. Machine Learning

50, 95–125.

Geiger, D. & Heckerman, D. (2002). Parameter priors for directed acyclic graphical

models and the characterization of several probability distributions. Ann. Statist.

30, 1412–1440.

Gutiérrez-Peña, E. & Smith, A. F. M. (1995). Conjugate parameterizations for natural

exponential families. J. Amer. Statist. Assoc. 90, 1347–1356. Erratum ibidem 91

(1996), page 1757.

Johnson, V. & Rossell, D. (2010). On the use of non-local prior densities in bayiesian

hypothesis tests. Journal of the Royal Statistical Society, series B 72, 143–170.

Lauritzen, S. L. (1996). Graphical models. Oxford University Press, Oxford.

Lauritzen, S. L. (2001). Causal inference from graphical models. In Complex stochastic

systems (Eindhoven, 1999), vol. 87 of Monogr. Statist. Appl. Probab. Chapman &

Hall/CRC, Boca Raton, FL, pp. 63–107.

Letac, G. & Massam, H. (2007). Wishart distributions for decomposable graphs. Ann.

Statist. 35, 1278–1323.

Moreno, E. (1997). Bayes factors for intrinsic and fractional priors in nested models.

Bayesian robustness. In Y. Dodge, ed., L1-statistical procedures and related topics.

Institute of Mathematical Statistics, pp. 257–270.

O’Hagan, A. (1995). Fractional Bayes factors for model comparison. Journal of the

Royal Statistical Society. Series B (Methodological) 57, 99–138.

Perez, J. M. & Berger, J. O. (2002). Expected-posterior prior distributions for model

selection. Biometrika 89, pp. 491–511.

22



Pericchi, L. R. (2005). Model selection and hypothesis testing based on objective prob-

abilities and Bayes factors. In D. Dey & C. R. Rao, eds., Bayesian thinking: mod-

eling and computation, vol. 25 of Handbook of Statistics. Elsevier/North-Holland,

Amsterdam, pp. 115–149.

Press, S. J. (1982). Applied multivariate analysis: Using Bayesian and frequentist

methods of inference. Krieger Publishing Company, Inc., Malabar, FL.

Scott, J. & Carvalho, C. (2009). Feature-inclusion stochastic search for gaussian

graphical models. J. Comp. Graph. Stat. 17, 790–808.

Whittaker, J. (1990). Graphical models in applied multivariate statistics. Wiley, New

York.

23


