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NONPARAMETRIC PRIORS FOR VECTORS OF

SURVIVAL FUNCTIONS

Ilenia Epifani and Antonio Lijoi

Politecnico di Milano and Università di Pavia

Abstract: The paper proposes a new nonparametric prior for two–dimensional vectors of sur-

vival functions (S1, S2). The definition we introduce is based on the notion of Lévy copula

and it will be used to model, in a nonparametric Bayesian framework, two–sample survival

data. Such an application will yield a natural extension of the more familiar neutral to the

right process of Doksum (1974) adopted for drawing inferences on single survival functions.

We, then, obtain a description of the posterior distribution of (S1, S2), conditionally on pos-

sibly right–censored data. As a by–product of our analysis, we find out that the marginal

distribution of a pair of observations from the two samples coincides with the Marshall–Olkin

or the Weibull distribution according to specific choices of the marginal Lévy measures.

Key words and phrases: Bayesian nonparametrics, Completely random measures, Dependent

stable processes, Lévy copulas, Posterior distribution, Right–censored data, Survival function

1. Introduction

A typical approach to the definition of nonparametric priors is based on the use of

completely random measures, namely random measures inducing independent random

variables when evaluated on pairwise disjoint measurable sets. The Dirichlet process

introduced by Ferguson (1974) is a noteworthy example being generated, in distribution,

by the normalization of a gamma random measure. Other well–known examples appear

in the survival analysis literature. In Doksum (1974), a prior for the survival function is

defined by

(1.1) S(t|µ) = P [Y > t |µ] = exp{−µ(0, t]} ∀t ≥ 0

where µ is a completely random measure defined on some probability space (Ω,F ,P) such

that P[limt→∞ µ((0, t]) = ∞] = 1. As shown in Doksum (1974) Equation (1.1) defines

a neutral to the right (NTR) prior, namely a random probability measure such that the

random variables

1− S(t1|µ), 1−
S(t2|µ)
S(t1|µ)

, . . . , 1− S(tn|µ)
S(tn−1|µ)

are mutually independent for any choice of 0 < t1 < t2 < · · · < tn <∞. When referring

to model (1.1) for a survival time Y , we will henceforth use the notation Y |µ ∼ NTR(µ).

According to an alternative approach established by Hjort (1990), a beta completely
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random measure is used to define a prior for the cumulative hazard function

(1.2) Λ(t|µ) =
∫ t

0
P[s ≤ Y ≤ s+ ds|Y ≥ s, µ] = µ(0, t].

These two constructions are equivalent. As shown in Hjort (1990), a prior for the survival

function is NTR if and only if its corresponding cumulative hazard is a completely random

measure. Moreover, if Y1, . . . , Yn are the first n elements of a sequence of exchangeable

survival times, one can explicitly evaluate the posterior distribution of the survival func-

tion and of the cumulative hazard as defined in (1.1) and in (1.2). The former can be

found in Ferguson (1974) and in Ferguson and Phadia (1979) and the latter was achieved

by Hjort (1990).

In the present paper we look for bivariate extensions of the previous definitions. We

wish to introduce priors for vectors of dependent survival (S1, S2) or cumulative hazard

(Λ1,Λ2) functions. This will be accomplished by resorting to vectors of completely random

measures (µ1, µ2), with fixed margins, such that µi gives rise to a univariate NTR prior.

The dependence between µ1 and µ2 will be devised in such a way that the vector measure

(µ1, µ2) is completely random, that is for any pair of disjoint measurable sets A and B

the vectors (µ1(A), µ2(A)) and (µ1(B), µ2(B)) are independent. An appropriate tool to

achieve this goal is represented by Lévy copulas. See Tankov (2003), Cont and Tankov

(2004) and Kallsen and Tankov (2006). A typical application where this model is useful

concerns survival, or failure, times related to statistical units drawn from two separate

groups such as, e.g., in the analysis of time-to-response outcomes in group-randomized

intervention trials. Suppose, for example, that statistical units are patients suffering from

a certain illness and they are split into two groups according to the treatment they are

subject to. Let Y
(1)
1 , . . . , Y

(1)
n1 and Y

(2)
1 , . . . , Y

(2)
n2 be the survival times related to n1 and

n2 units drawn from the first and the second group, respectively. Then, one can assume

that

S(u, v) = P

[

Y
(1)
i > u, Y

(2)
j > v

∣

∣

∣

∣

(µ1, µ2)

]

= exp{−µ1(0, u]− µ2(0, v]}(1.3)

P

[

Y
(i)
1 > t1, . . . , Y

(i)
n > tn

∣

∣

∣

∣

(µ1, µ2)

]

=
n
∏

j=1

exp {−µi(0, tj ]} i = 1, 2(1.4)

for any u, v, t1, . . . , tn positive. According to (1.3) and (1.4), we assume exchangeability

in each group and this seems natural since patients sharing the same treatment can be

thought of as homogeneous. On the other hand, given the marginal random survival

functions, the lifetimes, or times-to-event, are independent among the two groups. This

is similar to frailty models where, conditional on the frailty, the two survival times are

independent. The dependence among the data, which is reasonable since people from the

two groups share the same kind of illness, is induced indirectly by the dependence between
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the two marginal survival functions. It will be seen that this approach has some interesting

advantages: (i) it leads to a representation of the posterior distribution of (S1, S2), or of

(Λ1,Λ2), which is an extension of the univariate case; (ii) the resulting representation of

the Laplace functional of the bivariate process suggests the definition of a new measure

of dependence between survival functions; (iii) for appropriate choices of µ1 and µ2, the

marginal distribution of (Y (1), Y (2)) coincides with some well–known bivariate survival

functions such as the Marshall–Olkin and the Weibull distributions. Recently, Ishwaran

and Zarepour (2008) have faced a similar issue and provide a definition of vectors of

completely random measures based on series representations which are named bivariate

G–measures.

Even beyond applications to survival analysis, our results connect to a very active area

of research in Bayesian nonparametric statistics. Indeed, exchangeable models commonly

used in Bayesian inference are not well suited for dealing with regression problems and

a lot of effort has been recently put to define new priors which incorporate covariates

information. These are referred to as dependent processes, the most popular example

being the dependent Dirichlet process introduced in a few pioneering contributions by

MacEachern (1999, 2000, 2001). Later developments on dependent Dirichlet processes can

be found in De Iorio, Müller, Rosner and MacEachern (2004), Griffin and Steel (2006),

Rodriguez, Dunson and Gelfand (2008), Dunson, Xue and Carin (2008) and Dunson

and Park (2008). The idea, in these papers, is to construct a family {P̃z : z ∈ Z} of
random probability measures indexed by a covariate (or vector of covariates) z taking

values in some set Z. Hence, one defines P̃z as a discrete random probability measure
∑

i πi(z) δXi(z) with both random masses πi and atoms Xi depending on the z values,

and the πi’s determined through a stick–breaking procedure. The nonparametric prior

we propose here can be seen as a dependent process with Z consisting of two points

{z1, z2}: the dependence structure between P̃z1 and P̃z2 is determined by a Lévy copula.
The main advantage of our model is the possibility of deriving closed form expressions for

Bayesian estimators which, at least to our knowledge, cannot be achieved when resorting

to dependent stick–breaking processes. Another prior which fits into this framework is

the bivariate Dirichlet process defined in Walker and Muliere (2003).

The structure of the paper is as follows. In Section 2 we recall some elementary facts

concerning completely random measures. In Section 3 we describe the notion of Lévy

copula. Section 4 illustrates the new prior we introduce and some relevant properties it

features. In Section 5 a description of the posterior distribution is provided. Section 6

concisely describes the connection of our work with the analysis of cumulative hazards.

Section 7 illustrates an application with a dataset of right-censored samples. Finally,

Section 8 contains some concluding remarks. All proofs are deferred to the Appendix.

2. Some preliminaries
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In this section we briefly recall the notion of completely random measure (CRM)

which is the main ingredient in the definition of various commonly used priors in Bayesian

nonparametrics. A completely random measure µ on a complete and separable metric

space X is a measurable function defined on a probability space (Ω,F ,P) and taking

values in the space of all measures on X such that for any choice of sets A1, . . . , An in the

σ–field X of Borel subsets of X such that Ai∩Aj = ∅ for any i 6= j, the random variables

µ(A1), . . . , µ(An) are mutually independent. It is well–known that µ = µc +
∑q

i=1 Ji δxi

where µc is a CRM such that, for some measure ν̃ on X×R
+,

(2.1) E
[

e−λµc(A)
]

= e−
R

A×R+(1−e−λx) ν̃(ds,dx) ∀A ∈X ∀λ > 0,

x1, . . . , xq are fixed points of discontinuity in X and the jumps J1, . . . , Jq are independent

and non–negative random variables being also independent from µc. With no loss of

generality we can omit the consideration of the fixed jump points and in the sequel suppose

µ = µc. The measure ν̃ in (2.1) takes on the name of Lévy measure. See Kingman (1993)

for an elegant and deep account on CRMs. As anticipated in the previous section, when

X = R
+ a NTR process is defined as a random probability measure whose distribution

function {F (t) : t ≥ 0} has the same distribution as {1− e−µ(0,t] : t ≥ 0}.
If we wish to make use of (1.3) and (1.4), it would be desirable that the probability

distribution of (µ1, µ2) is characterized by

E
[

e−λ1 µ1(0,t]−λ2 µ2(0,t]
]

= e
−

R

(0,t]×(R+)2 [1−e−λ1x1−λ2x2 ] ν̃(ds,dx1,dx2)

for any t ≥ 0 and λ1, λ2 > 0. Hence the vector (µ1, µ2) has independent increments and

the measure ν̃ is the associated Lévy measure. Given its importance in later discussion,

for the sake of simplicity in notation we let

(2.2) ψt(λ1, λ2) :=

∫

(0,t]×(R+)2

[

1− e−λ1x1−λ2x2
]

ν̃(ds,dx1,dx2) ∀λ1, λ2 > 0

denote the Laplace exponent of the (vector) random measure (µ1, µ2). Introduce the

function ht1,t2(λ1, λ2) = ψt1∧t2(λ1, λ2)−ψt1∧t2(λ1, 0)−ψt1∧t2(0, λ2), with a∧b := min{a, b}
for any a, b ∈ R. Note that using the independence of the increments one has, for any

t1 > 0, t2 > 0,

(2.3) E
[

e−λ1µ1(0,t1]−λ2µ2(0,t2]
]

= e−ψ1,t1 (λ1)−ψ2,t2 (λ2)−ht1,t2 (λ1,λ2)

where

ψi,t(λ) :=

∫

(0,t]×R+

[1− e−λx] ν̃i(ds,dx) =
∫

R+

[1− e−λx] ν̃i,t(dx)

and ν̃i is the (marginal) Lévy measure of µi and ν̃i,t(dx) := ν̃i((0, t]× dx), for i ∈ {1, 2}.
Note that the marginal Lévy measures ν̃1 and ν̃2 can be deduced from ν since, for example,
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ν̃1(ds,dx) = ν̃(ds×dx×R+). Consequently, one has ψ1,t(λ) = ψt(λ, 0) and ψ2,t = ψt(0, λ).

It is further assumed that

(2.4) ν̃t(dx1,dx2) := ν̃((0, t]× dx1 × dx2) = γ(t) ν(x1, x2) dx1 dx2

for some increasing and non–negative function γ : R+ → R
+ such that limt→∞ γ(t) =∞:

in this case we say that the vector measure (µ1, µ2) is homogeneous according to the

terminology in Ferguson and Phadia (1979) and for simplicity we refer to ν in (2.4) as

the corresponding bivariate Lévy density. It is immediate to check that, in this case,

ψt = γ(t)ψ. Whenever ν̃t is not representable as in (2.4), i.e. it cannot be expressed as a

product of a factor depending only on t and another depending only on (x1, x2), we say

that (µ1, µ2) is non–homogeneous. Finally, in the sequel we write (µ1, µ2) ∼ M2(ν; γ) to

denote a homogeneous vector of completely random measures characterized by (2.3) with

Lévy intensity representable as in (2.4).

3. Lévy copulae

The notion of Lévy copula parallels the concept of distribution copulas and enables

one to define a vector of completely random measures (µ1, µ2) on (R
+)2 starting from two

marginal CRMs µ1 and µ2 with respective Lévy intensities {ν̃1,t : t ≥ 0} and {ν̃2,t : t ≥ 0}.
Here below we explicitly consider the case where the Lévy measure can be represented as

follows

(3.1) ν̃i,t(dx) = γ(t) νi(x) dx i = 1, 2

for any t ≥ 0, where t 7→ γ(t) is a non–negative, increasing and differentiable function on

[0,∞) such that limt→∞ γ(t) =∞ and γ(0) ≡ 0. The function νi : R
+ → R

+ takes on the

name of Lévy density and it is such that
∫∞
0 (x ∧ 1) νi(x) dx < ∞. Correspondingly one

has ψi,t = γ(t)ψi where ψi(λ) =
∫∞
0 [1− e−λx]νi(x) dx for i = 1, 2. Moreover, the function

x 7→ Ui(x) =

∫ ∞

x
νi(s) ds

defines the tail–integral corresponding to νi, i ∈ {1, 2}, which is continuous and monotone
decreasing on R

+. If the bivariate Lévy density ν, as displayed in (2.4), is such that
∫∞
0 ν(x1, x2)dxi = νj(xj), for any i ∈ {1, 2} and j 6= i, then ν is the Lévy density of

the bivariate random measure (µ1, µ2). The problem we now face consists in applying a

procedure which enables to establish ν, given the marginals ν1 and ν2 have been assigned.

In order to do so, we use the notion of Lévy copula, recently introduced by Tankov (2003)

for Lévy processes with positive jumps and later extended in Kallsen and Tankov (2006) to

encompass Lévy processes with jumps of any sign. A full and exhaustive account on Lévy

copulas, with applications to financial modelling, can be found in Cont and Tankov (2004).

Let us first recall the definition of Lévy copula.
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Definition 1. A positive Lévy copula is a function C : [0,∞]2 → [0,∞] such that

(i) C(x1, 0) = C(0, x2) = 0;

(ii) for all x1 < y1 and x2 < y2 C(x1, x2) + C(y1, y2)− C(x1, y2)− C(y1, x2) ≥ 0;

(iii) C has uniform margins, i.e. C(x1,∞) = x1 and C(∞, x2) = x2.

There are some examples of Lévy copulas whose form is reminiscent of copulas for distri-

butions. As a first case, consider a vector (µ1, µ2) of CRMs with µ1 and µ2 independent.

By virtue of Proposition 5.3 in Cont and Tankov (2004) one has ν(A) = ν1(A1) + ν2(A2)

where A1 = {x1 : (x1, 0) ∈ A} and A2 = {x2 : (0, x2) ∈ A}. The corresponding

copula turns out to be C⊥(x1, x2) = x1 1x2=∞ + x2 1x1=∞. This is the independence

copula. The case of complete dependence arises when, for any positive s and t, one has

either µi(0, s] − µi(0, s−] < µi(0, t] − µi(0, t−], for any i = 1, 2, or µi(0, s] − µi(0, s−] >
µi(0, t] − µi(0, t−], for any i = 1, 2. A copula yielding a completely dependent bivariate

process with independent increments is C‖(x1, x2) = x1∧x2. Apart from these two extreme

cases, there are other forms of copulas which capture intermediate cases of dependence.

An example is the Clayton copula defined by

(3.2) Cθ(x1, x2) =
{

x−θ1 + x−θ2

}− 1
θ
, θ > 0

where, as we shall see, the parameter θ regulates the degree of dependence between µ1

and µ2.

When the copula C and the tail integrals are sufficiently smooth the bivariate Lévy

density ν, with fixed marginals ν1 and ν2, can be recovered from

(3.3) ν(x1, x2) =
∂2

∂u ∂v
C(u, v)

∣

∣

∣

∣

u=U1(x1), v=U2(x2)

ν1(x1) ν2(x2).

Combining (3.3) with the Clayton copula Cθ in (3.2) one can show that the following

holds true.

Proposition 1. Let ν1 and ν2 be two univariate Lévy densities such that, if ν( · , · ; θ) is

obtained from (3.3) with C = Cθ given in (3.2), one has that the integrability condition
∫

‖x‖≤1 ‖x‖ ν(x1, x2; θ) dx1 dx2 <∞ holds true. Then

ψ(λ1, λ2; θ) =

∫

(R+)2
[1− e−λ1x1−λ2x2 ] ν(x1, x2; θ) dx1dx2

= ψ⊥(λ1, λ2)− λ1λ2
∫

(R+)2
e−λ1x1−λ2x2 Cθ(U1(x1), U2(x2)) dx1 dx2(3.4)

where ψ⊥(λ1, λ2) = ψ1(λ1) + ψ2(λ2) is the Laplace exponent corresponding to the inde-

pendence case.

According to (3.4) in Proposition 1, the term responsible of the dependence is given by
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the quantity

κ(θ;λ1, λ2) := λ1λ2

∫

(R+)2
e−λ1x1−λ2x2 Cθ(U1(x1), U2(x2)) dx1 dx2

and this will be used to introduce a novel measure of association between µ1 and µ2. In

Tankov (2003) it is shown that, as θ → 0, one approaches the situation of independence,

ν(x1, x2) = ν1(x1)δ{0}(x2) + ν2(x2)δ{0}(x1) and the corresponding Laplace exponent re-

duces to ψ(λ1, λ2) = ψ⊥(λ1, λ2). On the other hand, as θ → ∞, the limiting two–

dimensional Lévy measure is concentrated on the set {(x1, x2) : U1(x1) = U2(x2)}. In
this case the limiting Lévy measure does not have a density with respect to the Lebesgue

measure on R
2, but it is still of finite variation. See Section A2 in Appendix for a proof

of this fact. The structure achieved through this limiting process is that of complete

dependence. When the two marginals coincide, i.e. ψ1 = ψ2 = ψ∗, the Laplace exponent

with complete dependence coincides with ψ(λ1, λ2) = ψ∗(λ1) + ψ∗(λ2)− ψ∗(λ1 + λ2).

Many common measures of association depend monotonically on θ through the func-

tion κ(θ) := κ(θ; 1, 1). This will become apparent in the next section. Here we confine

ourselves to pointing out a few properties of the function κ(θ).

Proposition 2. Let ν1 and ν2 be two Lévy densities such that if ν is obtained from (3.3)

with C = Cθ, one has
∫

‖x‖≤1 ‖x‖ ν(x1, x2) dx1 dx2 <∞. Then

(i) limθ→0 κ(θ) = 0;

(ii) limθ→∞ κ(θ) =
∫

(R+)2 e
−x1−x2 min{U1(x1), U2(x2)}dx1dx2;

(iii) θ 7→ κ(θ) is a non decreasing function.

One can thus note that, setting κ(∞) := limθ→∞ κ(θ), then

(3.5) κ̄(θ) =
κ(θ)

κ(∞)
∈ (0, 1).

Values of κ̄(θ) close to 0 suggest a weak dependence between the two CRMs µ1 and

µ2. On the other hand, values of κ̄(θ) close to 1 provide indication of the presence of a

strong dependence among the jumps of the underlying random measures. If µ1 and µ2 are

used to define NTR priors according to (1.3) and (1.4), the dependence between survival

functions can be measured through κ̄ and it does not depend on the point t at which the

survival functions S1 and S2 can be evaluated: this is a straightforward consequence of

the homogeneity of (µ1, µ2).

4. Priors for dependent survival functions

The model we are going to consider can be described as follows. Suppose there are

two distinct groups of individuals or statistical units and denote with Y (1) and Y (2) the

survival time for any individual in the first group and in the second group, respectively.
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It is further assumed that

Y
(i)
j | (µ1, µ2) ind∼ NTR(µi) i = 1, 2(4.1)

(µ1, µ2) ∼ M2(ν; γ)

Hence, each sequence (Y
(i)
j )j≥1 is exchangeable and governed by a NTR(µi) prior, with i ∈

{1, 2}. Given (µ1, µ2), any two observations Y (1)
j and Y

(2)
l are independent. Nonetheless,

they are marginally dependent in the sense that dependence arises when integrating out

the vector (µ1, µ2) and it is generated via a Lévy copula. It is worth noting that, by

virtue of Proposition 3 in Dey, Erickson and Ramamoorthi (2003), if each marginal Lévy

measure in (3.1) is such that γ(t) > 0 for any t > 0 and νi is supported by R
+, then

the support of t 7→ Si(t) = 1 − exp{−µi(0, t]}, with respect to the topology of weak

convergence, coincides with the whole space S of survival functions on R
+. Hence, the

support of the vector (S1, S2), with respect to the usual product topology, coincides with

the space S2 of bivariate vectors of survival functions.
An interesting consequence of the proposed model concerns the form of such a marginal

distribution for the vector of survival times (Y (1), Y (2)). Indeed one obtains an expression

which encompasses some well–known bivariate distributions used in survival analysis such

as the Marshall–Olkin and the Weibull model.

Proposition 3. Suppose the vector Y (1) and Y (2) are survival times modeled as in (4.1).

Then

(4.2) P

[

Y (1) > s, Y (2) > t
]

= exp{−γ(s) ξ1 − γ(t) ξ2 − γ(s ∨ t)ξ1,2}

where a ∨ b = max{a, b}, ξ1 = ψ(1, 1) − ψ(0, 1) > 0, ξ2 = ψ(1, 1) − ψ(1, 0) > 0 and

ξ1,2 = ψ(1, 0) + ψ(0, 1)− ψ(1, 1) > 0.

Note that the expression on the right of (4.2) is a typical representation for a bivariate

survival distribution P[Y (1) > s, Y (2) > t]: in fact γ(s)ξ1 and γ(t) ξ2 have the mean-

ing of marginal cumulative hazard functions, whereas γ(s ∨ t)ξ1,2 defines the association
structure. If γ(t) ≡ t, then the above survival function reduces to the Marshall–Olkin

model. When γ(t) ≡ tα, one obtains a bivariate Weibull distribution. When we exploit

the Clayton copula, in (4.2) one has

ξ1,2 =

∫

(R+)2
e−x1−x2 Cθ(U1(x1), U2(x2)) dx1dx2 = κ(θ).

The random probability distribution arising from the specification in (4.1) can also

be described in terms of random partitions in the same spirit of the characterization of

the univariate NTR priors given in Doksum (1974).

Proposition 4. Let F be a bivariate random distribution function on (R+)2 and µi,t =
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µi(0, t], for i ∈ {1, 2} and t > 0. Then F (s, t) has the same distribution as {1 −
e−µ1,s}{1− e−µ2,t}, for some bivariate completely random measure (µ1, µ2), if and only if

for any choice of k ≥ 1 and 0 < t1 < · · · < tk there exist k independent random vectors

(V1,1, V2,1), . . . , (V1,k, V2,k) such that

(4.3)
(

F (t1, t1), F (t2, t2), . . . , F (tk, tk)
)

d

=

d

=
(

V1,1V2,1, [1− V̄1,1V̄1,2][1− V̄2,1V̄2,2], . . . , [1−
k
∏

j=1

V̄1,j ][1−
k
∏

j=1

V̄2,j ]
)

where V̄i,j = 1− Vi,j for any i and j.

One can use k̄(θ) as a measure of dependence between µ1 and µ2, i.e. between the two

random marginal survival functions. The statistical meaning of the association measure

κ̄(θ) becomes apparent if we compare it with the traditional correlation ρ
θ
(t) between the

marginal NTR survival functions S1(t) = P
[

Y (1) > t |µ1
]

and S2(t) = P
[

Y (2) > t |µ2
]

.

Indeed, one can show that the following holds true

Proposition 5. Let κi :=
∫∞
0 (1− e−x)2νi(x) dx, for each i ∈ {1, 2}. Then

(4.4) ρ
θ
(t) =

eγ(t)κ(θ) − 1
√

[eγ(t)κ1 − 1] [eγ(t)κ2 − 1]

for any t > 0 and θ > 0. Moreover, if ν1 = ν2 = ν∗ then κ(∞) =
∫∞
0 (1 − e−x)2ν∗(x) dx

and ρ
θ
(t) < κ̄(θ) for any t > 0 and θ > 0.

Hence, when the two marginals coincide, κ̄(θ) is an upper bound for ρ
θ
(t), for any t > 0.

The merit of resorting to the approach of Lévy copulas, with the Clayton family {Cθ :
θ > 0}, is that it enables one to specify and compare situations of complete dependence
with the actual structure of dependence between the marginal random survival functions.

Turning attention to the concordance between survival times Y (1) and Y (2) from the

two samples, one can prove the following interesting fact.

Proposition 6. If ρ
θ
(Y (1), Y (2)) is the correlation coefficient between survival times Y (1)

and Y (2) one has that for any θ > 0

(4.5) ρ
θ
(Y (1), Y (2)) =

∫∞
0

∫∞
0 e−γ(t)ψ1(1)−γ(s)ψ2(1)

{

eγ(s∧t)κ(θ) − 1
}

dsdt
∏2
i=1

√

2
∫∞
0 t e−γ(t)ψi(1) dt−

(∫∞
0 e−γ(t)ψi(1) dt

)2

where we recall that ψi(λ) =
∫∞
0 [1− e−λx] νi(x) dx for any i ∈ {1, 2}.

In the special case where γ(t) ≡ t, it is immediate to deduce from (4.5) that ρ
θ
(Y (1), Y (2)) =

κ(θ)/[ψ1(1)+ψ2(1)−κ(θ)] for any θ > 0. Hence, one can express the correlation between

Y (1) and Y (2) in terms of the quantity κ(θ) which contributes to measuring the dependence
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between the random measures µ1 and µ2. Moreover, as expected, θ 7→ ρ
θ
(Y (1), Y (2)) is

an increasing function.

We close the present section with an example of prior for nonparametric inference

that will also be employed in the illustrative section.

Example 1. (Stable processes). Let µ1 and µ2 be α1–stable and α2–stable random

measures, respectively. This means that µi is characterized by the Lévy density νi(x) =

Ax−1−αi/Γ(1 − αi), where αi is a parameter in (0, 1), for i ∈ {1, 2}, and A > 0 is a

constant. The i–th tail integral is Ui(x) = Ax−αi/[αiΓ(1 − αi)] for any x > 0. Using

the copula Cθ described in (3.2), one can determine the following two–dimensional Lévy

density on R
+ ×R

+:

(4.6) ν(x1, x2; θ) = A(1 + θ)(α1α2)
θ+1(Γ(1− α1)Γ(1− α2))θ ×

× xα1θ−11 xα2θ−12
{

αθ1Γ
θ(1− α1)xα1θ1 + αθ2Γ

θ(1− α2)xα2θ2

}1/θ+2
.

If the two marginal Lévy densities coincide, i.e. α1 = α2 = α, (4.6) reduces to

(4.7) ν(x1, x2; θ) =
A(1 + θ)α

Γ(1− α) ×
(x1x2)

αθ−1
{

xαθ1 + xαθ2
}1/θ+2

.

According to the discussion above, the correspondence between the triplet (ν1, ν2, Cθ) and

ν is one–to–one. It is easy to find that the two–dimensional Lévy density on (R+)2 given

in (4.6) is of finite variation. Indeed, using the polar coordinates transformation, the

integral
∫

‖x‖≤1 ‖x‖ ν(x1, x2) dx1dx2 is proportional to

∫ ∞

0
dρ

∫ π/2

0
du

ρα1θ+α2θ cos(u)α1θ−1 sin(u)α2θ−1
[

αθ1Γ
θ(1− α1)(ρ cos(u))α1θ + αθ2Γ

θ(1− α2)(ρ sin(u))α2θ
]1/θ+2

which is finite for any θ > 0. As for the Laplace exponent corresponding to ν in (4.6),

one finds out that ψ(λ1, λ2; θ)/A coincides with

λα11
α1

+
λα22
α2

− λ1λ2
∫

(R+)2

e−λ1x1−λ2x2
(

αθ1Γ
θ(1− α1)xα1θ1 + αθ2Γ

θ(1− α2)θxα2θ2

)1/θ
dx1 dx2 .

Hence, in this case

κ(θ) = A

∫

(R+)2
e−x1−x2

(

αθ1Γ
θ(1− α1)xα1θ1 + αθ2Γ

θ(1− α2)θxα2θ2

)−1/θ
dx1 dx2

and this expression can only be evaluated numerically or via some suitable simulation

scheme. As for the Laplace exponent ψ(λ1, λ2; θ), letting θ →∞ one finds that ψ(λ1, λ2;∞)/A
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coincides with

λα11
α1

+
λα22
α2

− λ2
α2Γ(1− α2)

∫

R+

e
−λ1

“

α2Γ(1−α2)
α1Γ(1−α1)

”1/α1
xα2/α1−λ2x x−α2 dx−

− λ1
α1Γ(1− α1)

∫

R+

e
−λ2

“

α1Γ(1−α1)
α2Γ(1−α2)

”1/α2
xα1/α2−λ1x x−α1 dx.

If one further assumes that α1 = α2 = α, then ψ(λ1, λ2;∞) = A{λα1 +λα2 − (λ1+λ2)α}/α.
Here below we depict the behavior of the correlation coefficient t 7→ ρθ(t) for different

values of θ > 0 and for α1 = α2 = 0.5. In Figure 4.1 one notices an ordering of the curves

describing the correlations between the marginal survival functions: the line at the top

corresponds to the largest value of θ being considered and the lowest line is associated to

the smallest value for θ.

0 2 4 6 8 10

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

 

 

Figure 4.1: Correlation coefficient ρθ(t) corresponding to α = 0.5 and θ = 10 (first line from the top),

θ = 1 (second line), θ = 0.5 (third line), θ = 0.3 (fourth line).

Some simplification for the above expressions of κ(θ) and ψ(λ1, λ2; θ) (with θ < ∞)

arises when α1 = α2 = α and θ = 1/α. In this case one has, for λ1 6= λ2,

κ(1/α;λ1, λ2)

A
=

λ1λ2
αΓ(1− α)Γ(α)

∫ ∞

0

uα−1

(λ1 + u)(λ2 + u)
du

=
λ1λ2

αΓ(1− α)Γ(α) πcosec(απ)
λα−11 − λα−12

λ2 − λ1
=
λ1λ2 [λ

α−1
1 − λα−12 ]

α[λ2 − λ1]

since πcosec(απ) = Γ(1 − α)Γ(α). On the other hand, if λ1 = λ2 = λ > 0, then

κ(1/α;λ, λ) = Aα−1(1− α)λα and ψ(λ, λ; 1/α) = Aα−1(1 + α)λα.

When α1 = α2 = α and θ = 1/α one can also deduce from Proposition 5 the (prior)
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correlation between S1(t) and S2(t) which takes on the form

(4.8) ρ
1/α
(t;A) =

e
A(1−α)

α
t − 1

e
A(2−2α)

α
t − 1

for any t > 0. It is worth pointing out a few properties of ρ
1/α

in (4.8). Given A > 0 and

t > 0, the function α 7→ ρ
1/α
(t;A) is decreasing with

lim
α→0

ρ
1/α
(t;A) = 1 lim

α→1
ρ
1/α
(t;A) =

1

2 log 2
.

Hence, this prior specification leads to a sensible linear correlation between S1(t) and

S2(t). Furthermore, one finds out that A 7→ ρ
1/α
(t;A) is decreasing for any t and α and

lim
A→0

ρ
1/α
(t;A) =

1− α
2− 2α

= κ̄(1/α) .

Hence, a prior opinion reflecting strong correlation between S1(t) and S2(t) should suggest

using a low value of A.

5. Posterior analysis

Given the framework described in Section 4, we now tackle the issue of the determi-

nation of the posterior distribution of (µ1, µ2), given possibly right–censored data; this

will also allow us to determine a Bayesian estimate of the survival functions S1 and S2

and to evaluate the change in the dependence structure determined by the observations.

The data consist of survival times from the two groups of individuals or generic

statistical units {Y (1)
j }n1j=1 and {Y

(2)
j }n2j=1. Next we let {c

(1)
j }n1j=1 and {c

(2)
j }n2j=1 represent

the sets of censoring times corresponding to the first and second group of survival times,

respectively. If T
(i)
j = min{Y (i)

j , c
(i)
j } and ∆

(i)
j = 1

(0,c
(i)
j ]
(Y

(i)
j ) for i ∈ {1, 2}, the actual

data are given by D = ∪2i=1{(T
(i)
j ,∆

(i)
j )}ni

j=1. It is clear, from these definitions, that
∑2

i=1

∑ni
j=1∆

(i)
j = ne is the number of exact observations being recorded, whereas nc =

n1 + n2 − ne represents the number of censored ones regardless of the group they come

from. Among the observations there might well be ties so that it is worth introducing

{(T (1)∗j ,∆
(1)∗
j )}k1j=1 and {(T

(2)∗
j ,∆

(2)∗
j )}k2j=1 as the sets of distinct values of the observations

relative to each group of survival data. Since some of the distinct and unique data might be

shared by both groups, i.e. one can have that {(T (1)∗j ,∆
(1)∗
j )}k1j=1∩{(T

(2)∗
j ,∆

(2)∗
j )}k2j=1 6= ∅,

then the total number of distinct observations k in the whole sample might be less than

k1 + k2. Obviously k ≤ n1 + n2.

For our purposes it is useful to consider the order statistic (T(1), . . . , T(k)), i.e. 0 <

T(1) < · · · < T(k), of the set of k1 + k2 observations ∪2i=1{T
(i)∗
1 , . . . , T

(i)∗
ki
} regardless of

the group of survival times they come from. Moreover, we introduce the following set
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functions

A 7→ κi(A) =

ni
∑

r=1

∆(i)
r 1A(T

(i)
r ) A 7→ κci (A) =

ni
∑

r=1

(1−∆(i)
r )1A(T

(i)
r )

for i ∈ {1, 2}. Their meaning is apparent: κi(A) and κci (A) are the number of exact

and censored (respectively) observations from group i belonging to set A. By exploiting

the functions κi and κ
c
i we define N̄i(s) := κi((s,∞)), Ñ c

i (s) := κci ((s,∞)) and, for any

j ∈ {1, . . . , k} and i ∈ {1, 2},

nj,i = κi({T(j)}) ≥ 0 ncj,i = κci ({T(j)}).

These two last quantities denote the number of exact and censored (respectively) observa-

tions from group i coinciding with T(j). For example, if max{nj,1, nj,2} = 0, then it must

be min{ncj,1, ncj,2} ≥ 1 and T(j) is a censored observation for group 1 or group 2 or for both

groups. We also need to introduce cumulative frequencies such as n̄j,i =
∑k

r=j nr,i and

ñcj,i =
∑k

r=j n
c
r,i, for any j ∈ {1, . . . , k}. Complete these definitions by setting n̄k+1,i ≡ 0.

We are now able to provide a description of the posterior distribution of (µ1, µ2)

given the actual data D. Before stating the main result of the section we recall that

henceforth νt(dx1,dx2) = νt(x1, x2) dx1dx2 for any t > 0 and x1, x2 > 0. Moreover, when

t 7→ νt(x1, x2) is differentiable at t = t0, we let ν
′
t0(x1, x2) =

∂νt(x1, x2)

∂t

∣

∣

t=t0
.

Proposition 7. Let (µ1, µ2) be a two–dimensional completely random measure whose

Lévy intensity is such that t 7→ νt(x1, x2) is differentiable on R
+. Suppose that µ1 and µ2

are dependent. Then, the posterior distribution of (µ1, µ2), given data D, coincides with

the distribution of the random measure

(5.1) (µ∗1, µ
∗
2) +

∑

{r: max{∆(1)
r ,∆

(2)
r }=1}

(Jr,1δT(r) , Jr,2δT(r))

where

(i) (µ∗1, µ
∗
2) is a bivariate completely random measure with Lévy intensity given by

ν∗t (x1, x2) =

{

∫

(0,t]
e−(Ñ

c
1 (s)+N̄1(s))x1−(Ñc

2 (s)+N̄2(s))x2 νs(x1, x2) ds

}

(ii) the vectors of jumps (Jr,1, Jr,2), for r ∈ {i : max{∆(1)
i ,∆

(2)
i } = 1}, are mutually

independent and the r(j)–th jump corresponding to the exact observation yer(j) = T(j)

has density function

(5.2) fr(j),j(x1, x2) ∝ ν ′ye
r(j)

(x1, x2)

2
∏

i=1

e−(ñ
c
j,i+n̄j+1,i)xi

(

1− e−xi
)nj,i
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(iii) the random measure (µ∗1, µ
∗
2) is independent from the jumps {(Jr,1, Jr,2) : r =

1, . . . , ke}, with ke denoting the total number of exact (distinct) observations in the

sample.

Proposition 7 implies a conjugacy property. Indeed, the bivariate survival function is still

of the type (4.1) and it is induced by a vector of CRMs arising as the sum of: (i) a vector

of CRMs with an updated Lévy intensity and without fixed jumps and (ii) a set of jumps

corresponding to the exact observations. Hence, in our model we are able to preserve

the conjugacy property which is known to hold true for univariate NTR priors. See

Doksum (1974). Note that when νt is generated via a copula with marginals as in (3.1), in

Proposition 7 one just needs t 7→ γ(t) to be differentiable and ν ′t0(x1, x2) = γ′(t0) ν(x1, x2).

It is worth noting that the assumption of dependence between µ1 and µ2 can be

removed. In this case, however, a slightly different representation of the posterior distri-

bution of (µ1, µ2) holds true. Indeed, one has that, conditional on the observed data, µ1

and µ2 are still independent with

P[µ1 ∈ A1, µ2 ∈ A2|D] = P[µ1 ∈ A1 |D1] P[µ2 ∈ A2 |D2]

where D1 := {(T (1)i ,∆
(1)
i )}n1i=1, D2 = {(T (2)i ,∆

(2)
i )}n2i=1 and one can easily verify that

the representation of each marginal posterior coincides with the one provided in Dok-

sum (1974). See also Ferguson (1974) and Ferguson and Phadia (1979).

6. Cumulative hazards

The approach on dependent survival functions we have undertaken in Sections 4 and 5

can be easily adapted to deal with vectors of cumulative hazards. A Bayesian nonparamet-

ric prior for a single cumulative hazard Λ has been first proposed by Hjort (1990), namely

the celebrated beta process which is a process with independent increments. Moreover, as

shown in Hjort (1990), a prior for the cumulative hazard coincides with an independent

increments process if and only if the corresponding cumulative distribution function is

neutral to the right. This correspondence holds true also when one considers vectors of

survival or cumulative hazard functions. Firstly, following Basu (1971), define

λ(s, t) := lim
∆s→0∆t→0

P

[

s ≤ Y (1) ≤ s+∆s, t ≤ Y (2) ≤ t+∆t

∣

∣

∣

∣

Y (1) ≥ s, Y (2) ≥ t

]

as the hazard rate function of the vector (Y (1), Y (2)) and, then, set

Λ(s, t) :=

∫ s

0

∫ t

0
λ(u, v) du dv

as the cumulative hazard. By mimicking the construction highlighted in (1.3), one can
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assess a prior for Λ as follows

Λ(s, t |µ1,H , µ2,H) = µ1,H(0, s] µ2,H(0, t]

where (µ1,H , µ2,H) is a vector of CRMs whose dependence is specified through a copula

which gives a Lévy measure ν̃H . We will suppose that ν̃H((0, t],dx1,dx2) =

= γ(t) νH(x1, x2) dx1 dx2 where γ is a non decreasing and continuous function on R
+.

The corresponding bivariate survival function is given by

(6.1) S(s, t |µ1,H , µ2,H) =
∏

u∈(0,s]
{1− µ1,H(du)}

∏

v∈(0,t]
{1− µ2,H(dv)}

where
∏

u∈(a,b](1 − µ(du)) is the usual notation for the integral product. See Gill and

Johansen (1990). In order to establish the relationship between the definitions in (1.3)

and in (6.1), suppose s < t and set {um,j}km
j=1 to be an arbitrary sequence of ordered points

0 = um,1 < um,2 < · · · < um,km = t such that limm→∞max1≤j≤km−1(um,j+1 − um,j) = 0.

According to this notation, (6.1) leads to

S(s, t) = lim
m→∞

∏

{j: um,j∈(0,s]}
{1− µ1,H(Im,j)} {1− µ2,H(Im,j)} ×

× lim
m→∞

∏

{j: um,j∈(s,t]}
{1− µ2,H(Im,j)}

where for simplicity of notation we have dropped the dependence of S on (µ1,H , µ2,H)

and Im,j = (um,j−1, um,j ]. Given the independence of the increments of (µ1,H , µ2,H), the

evaluation of E[Sn(s, t)] can be accomplished if one determines moments of the type E[{1−
µ1,H(Im,j)}n{1 − µ2,H(Im,j)}n]. The latter can be deduced from the Lévy–Khintchine

representation of the Laplace transform of (µ1,H , µ2,H) which yields

E[{1− µ1,H(Im,j)}n{1− µ2,H(Im,j)}n] =

= ∆γ(Im,j)

∫

(0,1)2
[1− (1− x1)n(1− x2)n] νH(dx1,dx2) + o(∆γ(Im,j))

as m→∞, where ∆γ(Im,j) = γ(um,j)− γ(um,j−1). Hence

E [Sn(s, t)] = exp

{

−γ(s)
∫

(0,1)2
[1− (1− x1)n(1− x2)n] νH(dx1,dx2)

}

×

× exp

{

−(γ(t)− γ(s))
∫

(0,1)
[1− (1− x2)n] ν2,H(dx2)

}

This coincides with the n–th moment of S(s, t) defined according to (1.3) if and only if

νH({(x1, x2) ∈ (0, 1)2 : (− log(1 − x1),− log(1 − x2)) ∈ A}) = ν(A) for any measurable
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subset A of (0,∞)2, where ν is the Lévy intensity of the vector (µ1, µ2). Given this

correspondence between priors for bivariate cdf’s and priors for cumulative hazards, one

naturally expects that the copula yielding ν from the marginals ν1 and ν2 coincides with

the copula which gives rise to νH when starting from marginals ν1,H and ν2,H . And one

can show this is, indeed, the case.

Remark 1. It should be noted that an alternative model for the marginal cumulative

hazards consists in the use of kernel mixtures of completely random measures. In other

words, if ki : R
+ × X → R

+, for i = 1, 2, are kernel functions, then one can set marginal

cumulative hazards Λi(t) as

Λi(t) =

∫ t

0

∫

R+

ki(x, s)µi(ds) dx

where µi is a CRM with intensity measure of the form in (3.1). This yields the ran-

dom survival function S(t1, t2) = exp{−Λ1(t1) − Λ2(t2)} where it is apparent that the
bivariate process {(Λ1(t),Λ2(t)) : t ≥ 0} does not have independent increments. For the
univariate case, this approach has been undertaken by Dykstra and Laud (1981) with

a kernel k(x, s) = 1[s,∞)(x) which yields monotone increasing hazard rates. A treat-

ment for a general kernel has been provided by Lo and Weng (1989). In our setting,

(
∫

k(x, s) µ1(ds),
∫

k(x, s) µ2(ds)) defines a prior for a vector of hazard rates which al-

lows to draw inferences on the correspponding vector of survival functions. Note that if

one uses the kernel in Dykstra and Laud (1981), one then has Λi(t) =
∫ t
0 (t − s) µi(ds).

Correspondingly

E [S(t1, t2)] = exp

{

−
∫ t1

0
ψ1(t1 − s) γ′(s) ds−

∫ t2

0
ψ2(t2 − s) γ′(s) ds

}

× exp

{

−
∫ t1

0
ζ(t1 − s, t2 − s) γ′(s) ds

}

where ζ(u, v) =
∫∞
0

∫∞
0 (1− e−ux1) (1− e−vx2) ν(x1, x2) dx1dx2 for any u, v > 0. This

model selects an absolutely continuous distribution for each component of the vector of

survival functions, thus leading to smoother posterior estimates of the marginal survival

functions. One can also deduce the posterior distribution of (µ1, µ2) given right–censored

data, thus extending a result obtained in James (2005). It is however expected that, in a

similar fashion as in the univariate case, one should resort to some simulation algorithm for

obtaining a numerical evaluation of Bayesian estimates of quantities of interest. However

we will not linger on this point and leave it as an issue to be dealt in future work.

7. Estimate of the survival functions

The results we have achieved so far easily yield a Bayesian estimate of the survival

functions S1 and S2 and the correlation between them. The starting point is the Bayesian
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estimate of the survival function S(t1, t2) defined in (1.3) that will be taken to coincide

with the posterior mean of P[Y (1) > t1, Y
(2) > t2 | (µ1, µ2)]. This will enable us to

estimate S1 and S2 and to evaluate the posterior correlation which requires the knowledge

of the posterior second moment of P[Y (i) > t | µi]. One has

Corollary 1. Let It = {j : ∆
(1)
j ∧ ∆(2)

j = 1} ∩ {j : T(j) ≤ t} be the set of indices

corresponding to the exact observations recorded up to time t and let T(k+1) = ∞. For

any t > 0, the posterior mean Ŝ(t, t) of P[Y (1) > t, Y (2) > t | (µ1, µ2)], given data D,

coincides with

(7.1) exp







−
k+1
∑

j=1

[

γ(t ∧ T(j))− γ(T(j−1))
]

1[T(j−1),∞)(t) ψ
∗
j (1, 1)







×

×
∏

j∈It

∫

(R+)2
e−x1−x2 fr(j),j(x1, x2) dx1 dx2

where ψ∗j (λ1, λ2) =
∫

(R+)2

[

1− e−λ1x1−λ2x2
]

e−
P2

i=1(ñ
c
j,i+n̄j,i)xi ν(x1, x2)dx1dx2 and the

fr(j),j are the density functions of the jumps as described in (5.2).

The expression of Ŝ(t, t) provided in (7.1) is the building block for obtaining the estimate

of S corresponding to any pair of points (t1, t2) ∈ (R+)2. First of all notice that, for any

t > 0, Ŝ(t, 0) and Ŝ(0, t) provide estimates of the marginal survival functions of Y (1) and

Y (2), respectively. They both can be determined from (7.1).

Setting I1,t = {j : ∆(1)
j = 1} ∩ {j : T(j) ≤ t}, one has

Ŝ(t, 0) = exp







−
k+1
∑

j=1

[

γ(t ∧ T(j))− γ(T(j−1))
]

1[T(j−1),∞)(t) ψ
∗
j (1, 0)







×

×
∏

j∈I1,t

∫

(R+)2 e
−P2

i=1(1+ñ
c
j,i+n̄j+1,i)xi (1− e−x1)nj,1(1− e−x2)nj,2 ν(x1, x2) dx1 dx2

∫

(R+)2 e
−

P2
i=1[ñ

c
j,i+n̄j+1,i]xi (1− e−x1)nj,1(1− e−x2)nj,2 ν(x1, x2) dx1 dx2

.

With the appropriate modifications, one determines an expression for Ŝ(0, t) as well.

Finally, using the independence of the increments of the random measure in (5.1) and

supposing that s > t, one has Ŝ(s, t) = Ŝ(t, t) Ŝ(s, 0)/Ŝ(t, 0). A similar expression can be

found for the case where s < t.

Furthermore, the posterior second moment of the marginal survival S1 is given by

Ŝ12(t) = exp







−
k+1
∑

j=1

[

γ(t ∧ T(j))− γ(T(j−1))
]

1[T(j−1),∞)(t) ψ
∗
j (2, 0)







×
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×
∏

j∈I1,t

∫

(R+)2 e
−

P2
i=1(2+ñ

c
j,i+n̄j+1,i)xi (1− e−x1)nj,1(1− e−x2)nj,2 ν(x1, x2) dx1 dx2

∫

(R+)2 e
−

P2
i=1[ñ

c
j,i+n̄j+1,i]xi (1− e−x1)nj,1(1− e−x2)nj,2 ν(x1, x2) dx1 dx2

.

It follows that an estimate of the correlation between S1, S2 can be obtained as

(7.2) ρ̂(S1(t), S2(t)) =
Ŝ(t, t)− Ŝ(t, 0)Ŝ(0, t)

√

(Ŝ12(t)− Ŝ2(t, 0))(Ŝ21(t)− Ŝ2(0, t))
.

From a computational point of view, one can usefully resort to the simple identity

ψ∗j (λ1, λ2) = ψ(λ1 + ñcj,1 + n̄j,1, λ2 + ñcj,2 + n̄j,2)− ψ(ñcj,1 + n̄j,1, ñ
c
j,2 + n̄j,2) and to

∫

(R+)2
e−q1x1−q2x2(1− e−x1)nj,1(1− e−x2)nj,2 ν(x1, x2) dx1 dx2 =

= 1{0}c(nj,1)

nj,1
∑

k=1

(

nj,1
k

)

(−1)k+1 [ψ(k + q1, q2)− ψ(q1, q2)]

+ 1{0}c(nj,2)

nj,2
∑

k=1

(

nj,2
k

)

(−1)k+1 [ψ(q1, k + q2)− ψ(q1, q2)]

− 1{0}c(nj,1)1{0}c(nj,2)

nj,1
∑

k1=1

nj,2
∑

k2=1

(

nj,1
k1

)(

nj,2
k2

)

(−1)k1+k2 ×

× [ψ(k1 + q1, k2 + q2)− ψ(q1, q2)] .

These formulae make it clear that the only difficulty in evaluating posterior estimates,

given the (possibly right–censored) data, lies in the evaluation of the bivariate Laplace

exponent ψ(λ1, λ2) for a set of non–negative integer values of (λ1, λ2). In particular,

if the two–dimensional completely random measure (µ1, µ2) is constructed by means of

a Clayton copula Cθ, Proposition 1 suggests that ψ(λ1, λ2) can be easily evaluated ei-

ther numerically or through some simulation scheme. Indeed, it is unlikely that one can

obtain a closed analytic form for κ(θ;λ1, λ2) since it is hard to evaluate exactly the two–

dimensional integral in that case. However, one can hope to evaluate κ(θ;λ1, λ2) through

some numerical integration rule or via a simple Monte Carlo simulation scheme. As for the

latter, one just needs to simulate a sample {(x(i)1 , x
(i)
2 )}Mi=1 from the distribution of a vec-

tor of independent and exponentially distributed random variables with rate parameters

λ1 and λ2, respectively. Hence, one obtains

(7.3) κ̂M (θ;λ1, λ2) =
1

M

M
∑

i=1

Cθ(U1(x
(i)
1 ), U2(x

(i)
2 ))

as an approximate evaluation of κ(θ;λ1, λ2) which can be used to compute ψ(λ1, λ2; θ).

Considering the α1 and α2 marginal stable processes with a Clayton copula Cθ, as
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discussed in Example 1, one has

Cθ(U1(x1), U2(x2)) = A
{

[α1Γ(1− α1)xα11 ]θ + [α2Γ(1− α2)xα22 ]θ
}−1/θ

so that an approximated evaluation of ψ(λ1, λ2; θ) coincides with

A

α1
λα11 +

A

α2
λα22 − A

M

M
∑

i=1

{

[

α1Γ(1− α1)(x(i)1 )α1
]θ
+

[

α2Γ(1− α2)(x(i)2 )α2
]θ
}−1/θ

.

These approximate evaluations can be replaced by exact computations when α1 = α2 =

α = 1/θ since, as highlighted in Example 1, one has

(7.4) ψ(λ1, λ2; 1/α) =
A

α

{

λα+12 − λα+11

λ2 − λ1
1λ1 6=λ2 + (1 + α)λα 1λ1=λ2=λ

}

.

In the remaining part of the present section we deal with an illustrative example where

we point out a possible MCMC sampling scheme to be implemented.

Example 2. (Skin grafts data). The dataset we are now going to examine has been al-

ready studied in the literature by Woolson and Lachenbruch (1980), Lin and Ying (1993)

and Bulla, Muliere and Walker (2007). The data consist of survival times of closely

matched and poorly matched skin grafts, with both grafts applied to the same burn

patient. The strength of matching between donor and recipient has been evaluated in

accordance with the HL-A transplantation antigen system. The data can, then, be split

into two groups Y (1) and Y (2) including the days of survival of closely matched and

poorly matched, respectively, skin grafts on burn patients. In this case one has Y (1) =

{37, 19, 57+, 93, 16, 22, 20, 18, 63, 29, 60+} and Y (2) = {29, 13, 15, 26, 11, 17, 26, 21,
43, 15, 40}, where data denoted as t+ stand for right–censored times. For our purposes,

we consider a model in which

ν1(x) = ν2(x) =
A

Γ(1− α) x
−α−1

and Clayton copula C1/α which can be easily seen to produce a bivariate Lévy intensity

given by

ν(x1, x2) =
A(1 + α)

Γ(1− α) (x1 + x2)
−α−2

According to Proposition 3, the prior guess at the shape of the survival function, condi-

tional on a specific value of α, is

E
[

P

[

Y (1) > s, Y (2) > t | (µ1, µ2)
]]

= e
−A

h

s+t+
(1−α)

α
(t∨s)

i

for any s, t ≥ 0. If a prior for α is specified, one can adopt a Metropolis–Hastings algorithm
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to evaluate a posterior estimate of S(t1, t2) given by

Ŝ(t1, t2) =

∫

(0,1)
E
[

e−µ1(0,t1]−µ2(0,t2]
∣

∣D, α
]

π(dα |D)

π( · |D) denoting the posterior distribution of α given the data D. Hence, one generates

a sample {α(1), . . . , α(M)} from the posterior distribution π( · |D) of α, given the data D,

and evaluate Ŝ(t1, t2) ≈ (1/M)
∑M

i=1 E
[

e−µ1(0,t1]−µ2(0,t2]
∣

∣D, α(i)
]

. In this case the imple-

mentation of the Metropolis–Hastings algorithm is straightforward. Indeed the likelihood

turns out to be equal to

exp







−
N
∑

j=1

[

γ(T(j))− γ(T(j−1))
]

ψ(ñcj,1 + n̄j,1, ñ
c
j,2 + n̄j,2)







×

×
∏

j∈I
γ′(T(j))

∫

(R+)2
e−

P2
i=1(ñ

c
j,i+n̄j+1,i)xi (1− e−x1)nj,1(1− e−x2)nj,2 ν(x1, x2) dx1 dx2

and it can be computed exactly since the Laplace exponent ψ has a very simple form

as described in (7.4). In order to implement the simulation scheme we fixed a prior

beta(0.5, 5), which is highly concentrated around zero and reflects a strong prior opinion of

a high degree of correlation between the marginal survival functions S1 and S2. Moreover,

we choose a uniform distribution on (0, 1) as the proposal of the algorithm and set A =

0.01. Of course, one could also set a prior for A and incorporate it into the sampling

scheme. We did not address such an issue here. We have performed 10000 iterations, the

first 2000 of which were dropped as burn–in moves. The first interesting thing about the

results we have obtained is that, despite the particular structure of the prior of α, the

posterior estimate of α̂ = (1/M)
∑M

i=1 α
(i) is equal to α̂ ≈ 0.7306. The plots of sections of

the estimates of the survival functions t1 7→ Ŝ(t1, t2) for t2 ∈ {0, 11, 40, 93} are depicted
on the left–hand side of Figure 7.2 whereas the plots of the function t2 7→ Ŝ(t1, t2) for

t1 ∈ {0, 13, 26, 43, 93} are given on the right–hand side of Figure 7.2.
We have also examined the correlation structure as modified by the data. In par-

ticular, one can note that the data have induced the following effects on the dependence

between S1 and S2: (a) they have determined a sensible reduction of the magnitude of

the correlation at any value of t from values in [0.77, 0.95] to values ranging between 0.37

and 0.64; (b) the correlation function is not monotone. See Figure 7.3, where a plot

of the correlations between survival functions S1 and S2 are plotted for values of t up

to the maximum value among the observations, i.e. 93. The prior correlation has been

evaluated, for any t, by means of a simple Monte Carlo procedure by drawing a sample

of α’s from the beta(0.5, 5) distribution and, then, averaging the expression in (4.8). As
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Figure 7.2: The estimated marginal survival functions of Y (1) and Y (2) arising from the application of

a MCMC algorithm for the skin grafts data. On the left–hand side the plots of t1 7→ Ŝ(t1, t2) for t2 = 0

(solid line) and t2 ∈ {11, 40, 93} (dashed lines in decreasing order). On the right–hand side the plots of

t2 7→ Ŝ(t1, t2) for t1 = 0 (solid line) and t1 ∈ {13, 26, 43, 93} (dashed lines in decreasing order).

for the posterior correlations, we have used the output of the MCMC algorithm in order

to evaluate mixed and marginal posterior moments of S1 and S2 according to formula

(7.2). The comparison between prior and posterior correlations is quite interesting. As

expected, the prior correlation is a decreasing function of t and it takes on values very

close to 1: this is explained by the fact that the prior for α is concentrated around 0 which

identifies the situation of complete dependence in the Clayton copula (3.2) with θ = 1/α.

On the other hand, a posteriori the data have a sensible impact on the correlation. First

one notes that there is no monotonicity. Secondly, the points where the correlation is

decreasing identify time intervals where the observed behaviour of Y (1) and Y (2) sensibly

differs. For example, in [11, 16) one observes only failures for Y (2). The correlations,

then, reaches a local minimum at t = 26 where two exact observations for Y (2) have been

recorded. Other local minima are located at t = 57 and t = 60 which are censored data

for Y (1).

8. Concluding remarks

The results we have achieved allow for Bayesian inference on vectors of survival, or

cumulative hazard, functions. Nonetheless, the idea of using Lévy copulas for building

vectors of completely random measures might also be the starting point for defining

nonparametric priors for vectors of paired survival data (Y (1), Y (2)). While there is a

wealth of papers on Bayesian nonparametric estimation of univariate survival functions,

we are not aware of many contributions to inference for bivariate survival functions. An

example is given by Bulla, Muliere and Walker (2007) where a generalized Pólya urn

scheme is used to obtain a bivariate reinforced process which, in turn, can be applied to

deduce an estimator of the bivariate survival function. Moreover, in Nieto–Barajas and

Walker (2007) the authors assume conditional independence between lifetimes and model
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Figure 7.3: Plots of the correlation between S1(t) and S2(t) for values of t coinciding with the observed

data, both exact and censored. Red dashed lines for prior correlations and continuous line for posterior

correlations.

nonparametrically each marginal density: the bivariate density is then obtained as a

mixture. In Ghosh, Hjort, Messan and Ramamoorthi (2006) a nonparametric prior based

on beta processes is adopted and the updating rule is described: the authors show it does

not lead to inconsistencies analogous to those featured by some frequentist nonparametric

estimators.

An important issue we did not consider concerns an investigation of the properties of

consistency of the prior we have proposed. In other terms, if one supposes the data are

independently generated by survival function S1,0 and S2,0, it is worth to check whether the

posterior distribution of (S1, S2) concentrates on a suitable neighbourhood of (S1,0, S2,0)

as the sample size increases. It is expected that in this case one can extend results

similar to those achieved in Kim and Lee (2001) for NTR priors or results in Draghici and

Ramamoorthi (2003) and De Blasi, Peccati and Prünster (2009) for the mixture models

mentioned in the previous Remark 1. This will be pursued in future work.

Acknowledgements. The authors wish to thank Massimo Santini (Dep. of Computer

Science, Università di Milano) for his valuable support in developing the MCMC algorithm

adopted in Example 2.

Appendix

A1. Proof of Proposition 1. Set C(2)(U1(x1), U2(x2)) :=
∂2

∂u ∂v
C(u, v)

∣

∣

u=U1(x1), v=U2(x2)
.

Since the Lévy intensity ν(x1, x2) in (3.3) is of finite variation, the Laplace exponent is

ψ(λ1, λ2) =

∫

(R+)2

[

1− e−λ1x1−λ2x2
]

C(2)(U1(x1), U2(x2)) ν1(x1) ν2(x2) dx1 dx2

= (θ + 1)

∫

(R+)2

[

1− e−λ1x1−λ2x2
] Uθ1 (x1)U

θ
2 (x2) ν1(x1)ν2(x2)

{

U θ1 (x1) + U θ2 (x2)
}1/θ+2

dx1 dx2 .
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When integrating by parts the above integral, one obtains the expression in (3.4). �

A2. Proof of Proposition 2. As θ → 0, the Lévy density tends to the independence case

and in (3.4) one has ψ(λ1, λ2) = ψ⊥(λ1, λ2) for any λ1 > 0 and λ2 > 0. This implies (i).

Moreover, Cθ(U1(x1), U2(x2)) ≤ min{U1(x1), U2(x2)} for any θ > 0. The Lévy measure

ν(dx1,dx2;∞) corresponding to the perfect dependence case does not admit a density on

(R+)2 but it still of finite variation. Indeed, if U−1i denotes the inverse of the i–th tail

integral (i = 1, 2), one has

∫

‖x‖≤1
‖x‖ ν(dx1,dx2;∞) =

∫

{‖x‖≤1}∩{U1(x1)=U2(x2)}
(x21 + x22)

1/2 ν(dx1,dx2;∞)

=

∫

n

x2+(U−12 (U1(x)))
2≤1

o

∩{U1(x)≤U2(x)}

(

x2 +
(

U−12 (U1(x))
)2
)1/2

ν1(x) dx+

+

∫

n

x2+(U−12 (U1(x)))
2≤1

o

∩{U1(x)>U2(x)}

(

x2 +
(

U−12 (U1(x))
)2
)1/2

ν1(x) dx

≤
√
2

∫

{x≤U−11 (U2(1/
√
2))}

x ν1(x) dx+
√
2

∫

{x≤1/
√
2}
U−12 (U1(x)) ν1(x) dx

=
√
2

∫

{x≤U−11 (U2(1/
√
2))}

x ν1(x) dx+
√
2

∫

{x≤U−12 (U2(1/
√
2))}

x ν2(x) dx <∞

and this is finite since both ν1 and ν2 are of finite variation. Consequently, the Laplace

functional transform of the two–dimensional independent increments process correspond-

ing to the complete dependence case admits a Lévy–Khintchine representation. This

implies that min{U1(x1), U2(x2)} is integrable on (R+)2 with respect to e−x1−x2 . A sim-

ple application of the dominated convergence theorem now yields (ii). Finally, (iii) holds

true since θ 7→ Cθ(x, y) is an increasing function for any x, y > 0. �

A3. Proof of Proposition 3. By virtue of the adopted model P(Y (1) > s, Y (2) >

t) = E
[

e−µ1(0,s]−µ2(0,t]
]

. If s ≤ t, as noted in Equation (2.3), the independence of the

increments of (µ1, µ2) implies

P[Y (1) > s, Y (2) > t] = E
[

e−µ1(0,s]−µ2(0,s]
]

E
[

e−µ2(s,t]
]

= exp{−γ(s)ψ(1, 1)− (γ(t)− γ(s))ψ2(1)} .

A similar representation holds true for s > t and the conclusion stated in (4.2) follows.

The positivity of the coefficients ξ1, ξ2 and ξ1,2 follows from the definition of the Laplace

exponent ψ. �

A4. Proof of Proposition 4. If (F1(s), F2(t))
d

= (1 − e−µ1,s , 1 − e−µ2,t), then it is

easy to find that F = F1F2 satisfies condition (4.3), with Vi,j = 1 − e−(µi,tj
−µi,tj−1

),

for i ∈ {1, 2}, j = 1, . . . , k and t0 = 0. Conversely, let µi,t = − log(1 − Fi(t)), for

i ∈ {1, 2} and suppose that for any choice of k ≥ 1 and 0 < t1 < · · · < tk there exist

k independent random vectors (V1,1, V2,1), . . . , (V1,k, V2,k) such that condition (4.3) holds.
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It follows by Theorem 3.1 in Doksum (1974) that both the marginal processes µ1,s and

µ2,t start from (0, 0) and are stochastically continuous, almost surely non-decreasing and

transient. Furthermore, (µ1,tj − µ1,tj−1 , µ2,tj − µ2,tj−1) = (− log(1− V1,j),− log(1− V2,j)),
for j = 1, . . . , k. Hence, the process (µ1,t, µ2,t)t≥0 has independent increments. We can

conclude that (µ1, µ2) is a completely random measure.

A5. Proof of Proposition 5. First of all, it can be easily seen that

Cov(F1(t), F2(t)) = Cov(S1(t), S2(t)) = e−γ(t)ψ⊥(1,1)
{

e−γ(t)[ψ(1,1)−ψ⊥(1,1)] − 1
}

and Var(Fi(t)) = e−2γ(t)ψi(1)
{

e−γ(t)[ψi(2)−2ψi(1)] − 1
}

so that Formula (4.4) follows by

noting that ψ(1, 1) − ψ⊥(1, 1) = −κ(θ) and ψi(2) − 2ψi(1) = −κi. Moreover, if the two
marginal Lévy densities coincide, i.e. ν1 = ν2 = ν∗, then one has

κ(∞) =

∫

(R+)2
e−x1−x2 min{U1(x1), U2(x2)} dx1dx2

=

∫

(R+)2
e−x1−x2 U∗(x1 ∧ x2)} dx1dx2 = 2

∫ ∞

0
e−x2

∫ x2

0
e−x1U2(x2) dx1 dx2

= 2

∫ ∞

0
(1− e−x) e−x U∗(x) dx =

∫ ∞

0
(1− e−x)2 ν∗(dx) = κ1 = κ2

where U∗(x) =
∫∞
x ν∗(s) ds for any x > 0. From this representation of κ(∞) and (4.4)

one has ρ
θ
(t) = [eγ(t)κ(θ) − 1]/[eγ(t)κ(∞) − 1]. Recalling the properties of the function γ,

one has that limt→0 ρθ
(t) = κ̄(θ). On the other hand, t 7→ ρ

θ
(t) is a decreasing function

since κ(θ) < κ(∞), for any θ > 0, with limt→∞ ρ
θ
(t) = 0. Hence ρ

θ
(t) < κ̄(θ). �

A6. Proof of Proposition 6. Proposition 3 provides P(Yi > t) = exp{−γ(t)ψi(1)}.
From this one deduces that E[Yi] =

∫∞
0 P (Yi > t) dt =

∫∞
0 e−γ(t)ψi(1) dt and

Var[Yi] = 2

∫ ∞

0
tP (Yi > t) dt− (E[Yi])

2 = 2

∫ ∞

0
t e−γ(t)ψi(1) dt−

(
∫ ∞

0
e−γ(t)ψi(1) dt

)2

.

Finally

E[Y1Y2] =

∫ ∞

0

∫ ∞

0
P(Y1 > s, Y2 > t) dsdt =

∫ ∞

0

∫ ∞

0
e−γ(s) ξ1−γ(t) ξ2−γ(s∨t)ξ1,2 dsdt

=

∫ ∞

0

∫ ∞

0
e−γ(t)ψ1(1)−γ(s)ψ2(1)+γ(s∧t)κ(θ) dsdt .

The expression in (4.5) now easily follows. �

A7. Proof of Proposition 7. In order to prove Proposition 7 we adopt a technique

similar to the one exploited in Lijoi, Prünster and Walker (2008). Firstly, we need to

introduce a preliminary lemma.

Lemma A.1. Let (µ1, µ2) be a bivariate completely random measure and suppose that µ1
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and µ2 are not independent. Let the Lévy intensity νt(x1, x2) of (µ1, µ2) be differentiable

with respect to t on R
+. If s1 and s2 are two integers such that max{s1, s2} ≥ 1 and r1, r2

are two non–negative numbers with min{r1, r2} ≥ 1, then

E
[

e−r1µ1(Aε)−r2µ2(Aε)
(

1− e−µ1(Aε)
)s1 (

1− e−µ2(Aε)
)s2]

= ε

∫

(R+)2
e−r1 x1−r2 x2(1− e−x1)s1(1− e−x2)s2ν ′t0(x1, x2) dx1dx2 + o(ε)

as ε ↓ 0, where Aε = {t > 0 : t0 − ε < t ≤ t0}.

Proof. Note that the left–hand–side above can be rewritten as

s1
∑

j1=0

s2
∑

j2=0

(

s1
j1

)(

s2
j2

)

(−1)j1+j2 e−ψt0 (r1+j1,r2+j2)+ψt0−ε(r1+j1,r2+j2)

= e−ψt0 (r1,r2)+ψt0−ε(r1,r2) + e−ψt0 (r1,r2)+ψt0−ε(r1,r2) ×

×







s1
∑

j1=1

s2
∑

j2=1

(

s1
j1

)(

s2
j2

)

(−1)j1+j2 exp
{

−∆t0
t0−ε [ψt(r1 + j1, r2 + j2)− ψt(r1, r2)]

}

+

s1
∑

j1=1

(

s1
j1

)

(−1)j1 exp
{

−∆t0
t0−ε [ψt(r1 + j1, r2)− ψt(r1, r2)]

}

+

s2
∑

j2=1

(

s2
j2

)

(−1)j2 exp
{

−∆t0
t0−ε [ψt(r1, r2 + j2)− ψt(r1, r2)]

}







where ψt(λ1, λ2) is given in Equation (2.2) and ∆
t0
t0−εψt = ψt0 − ψto−ε. Note now that

∆t0
t0−ε [ψt(r1 + j1, r2 + j2)− ψt(r1, r2)] =

=

∫

e−r1x1−r2x2(1− e−j1x1−j2x2) (νt0+ε(x1, x2)− νt0(x1, x2)) dx1dx2

and that as ε ↓ 0:

exp
{

−∆t0
t0−ε [ψt(r1 + j1, r2 + j2)− ψt(r1, r2)]

}

=

= 1− ε
[
∫

e−r1x1−r2x2(1− e−j1x1−j2x2) ν ′t0(x1, x2) dx1dx2

]

+ o(ε) .

Furthermore we have
∑s

i=1

(

s
i

)

(−1)i(1− e−ix) = −(1− e−x)s and

(8.1)

s1
∑

j1=1

s2
∑

j2=1

(

s1
j1

)(

s2
j2

)

(−1)j1+j2 (1− e−j1x1−j2x2) =

= (1− e−x1)s1 + (1− e−x2)s2 − (1− e−x1)s1(1− e−x2)s2 .
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This yields, as ε ↓ 0, the desired result. �

Note that the case of independence between µ1 and µ2 can be included into the

statement of Lemma A.1. The result would be slightly modified and one has

E
[

e−r1µ1(Aε)−r2µ2(Aε)
(

1− e−µ1(Aε)
)s1 (

1− e−µ2(Aε)
)s2]

= ε2×

×
(
∫

R+

e−r1x1(1− e−x1)s1ν ′t0(x1) dx1

)(
∫

R+

e−r2x2(1− e−x2)s2ν ′t0(x2) dx2

)

+ o(ε2)

as ε ↓ 0, where Aε = {t > 0 : t0 − ε < t ≤ t0}.
Define, now, the set

Γn,ε :=
2
⋂

i=1

k
⋂

j=1

{

(t
(i)
1 ,∆

(i)
1 , . . . , t

(i)
ni
,∆(i)

ni
) : κi(Aj,ε) = nj,i, κ

c
i ({T(j)}) = ncj,i

}

where Aj,ε = (T(j) − ε, T(j)]. The value of ε is chosen in such a way that the sets Aj,ε

are pairwise disjoint. It follows from the partial exchangeability of two samples Y (1), Y (2)

that, in order to establish a description of the posterior distribution of (µ1, µ2), given data

D, we have to evaluate

(8.2) E
[

e−λ1 µ1(0,t]−λ2 µ2(0,t]
∣

∣ D

]

= lim
ε↓0

E
[

e−λ1µ1(0,t]−λ2 µ2(0,t] 1Γn,ε(D)
]

P [D ∈ Γn,ε]
.

We can now prove the main result in Proposition 7.

Proof of Proposition 7. As anticipated, the proof consists in the determination of

the posterior Laplace transform of (µ1(0, t], µ2(0, t]). As for the numerator in (8.2), one

has that it coincides with the expected value of the following quantity

e−λ1 µ1(0,t]−λ2 µ2(0,t]
k
∏

j=1

e−n
c
j,1µ1(0,T(j)]−nc

j,2µ2(0,T(j)]
2
∏

i=1

(

e−µi(0,T(j)−ε] − e−µi(0,T(j)]
)nj,i

= e−λ1 µ1(0,t]−λ2 µ2(0,t]
k
∏

j=1

e−n
c
j,1µ1(0,T(j)]−nc

j,2µ2(0,T(j)]×
2
∏

i=1

e−nj,iµi(0,T(j)−ε]
(

1− e−µi(Aj,ε)
)nj,i

.

If we suppose that t ∈ [T(l), T(l+1)), then µi(0, t] =
∑l

j=1{µi(Aj,ε) + µi(Cj)} + µi(T(l), t]

where Cj = (T(j−1), T(j) − ε], for any j ∈ {1, . . . , k}, provided that T(0) ≡ 0. Moreover,

µi(0, T(j)] =

j
∑

r=1

µi(Ar,ε) +

j
∑

r=1

µi(Cr)

µi(0, T(1)−ε] = µi(C1) and µi(0, T(j)−ε] =
∑j−1

r=1 µi(Ar,ε)+
∑j

r=1 µi(Cr), for j ≥ 2. These



Priors for dependent survival functions 27

also imply that

k
∑

j=1

ncj,iµi(0, T(j)] =
k

∑

j=1

ñcj,iµi(Aj,ε) +
k

∑

j=1

ñcj,iµi(Cj)

and
k

∑

j=1

nj,iµi(0, T(j) − ε] =
k−1
∑

j=1

n̄j+1,iµi(Aj,ε) +

k
∑

j=1

n̄j,i µi(Cj) .

If we define C ′ε = R
+ \ (∪kj=1Aj,ε), it is easily seen that

E
[

e−λ1µ1(0,t]−λ2 µ2(0,t] 1Γn,ε({(T
(i)
j ,∆

(i)
j )}j=1,...,ni;i=1,2

]

= E[I1,ε] E[I2,ε]

where

I1,ε =

k
∏

j=1

2
∏

i=1

e−[λi 1(0,t](T(j))+ñ
c
j,i+n̄j+1,i]µi(Aj,ε)

(

1− e−µi(Aj,ε)
)nj,i

(with n̄k+1,i = 0) and

I2,ε =

2
∏

i=1

e
−

R

C′ε
[λi 1(0,t](s)+Ñ

c
i (s)+N̄i(s)]µi(ds) .

The independence of the increments yields

E[I1,ε] =

k
∏

j=1

E

[

2
∏

i=1

e−[λi 1(0,t](T(j))+ñ
c
j,i+n̄j+1,i]µi(Aj,ε)

(

1− e−µi(Aj,ε)
)nj,i

]

.

In order to simplify the notation that is going to appear in the sequel, let ζ(x,nj) :=
∏2
i=1(1 − e−xi)nj,i , where x = (x1, x2) ∈ (R+)2 and nj = (nj,1, nj,2) is vector of non–

negative integers. If I = {j : T(j) is an exact observation}, for any j ∈ I one has

max{nj,1, nj,2} ≥ 1 and Lemma A.1 applies, i.e., as ε ↓ 0

E

[

2
∏

i=1

e−[λi 1(0,t](T(j))+ñ
c
j,i+n̄j+1,i]µi(Aj,ε)

(

1− e−µi(Aj,ε)
)nj,i

]

= ε

∫

(R+)2
e−

P2
i=1(λi1(0,t](T(j))+ñ

c
j,i+n̄j+1,i)xi ζ(x,nj) ν

′
T(j)

(x1, x2) dx1dx2 + o(ε)

If j 6∈ I, then nj,i = 0 and the continuity of νt(x, y) implies

lim
ε↓0

E

[

2
∏

i=1

e−[λi 1(0,t](T(j))+ñ
c
j,i+n̄j+1,i]µi(Aj,ε)

(

1− e−µi(Aj,ε)
)nj,i

]

=

= lim
ε↓0

E

[

2
∏

i=1

e−[λi 1(0,t](T(j))+ñ
c
j,i+n̄j+1,i]µi(Aj,ε)

]

= 1 .
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Reasoning along the same line, it is immediate that

E [I2,ε] = e
−

R

C′ε
ψs(λ11(0,t]+Ñ

c
1+N̄1 , λ21(0,t]+Ñ

c
2+N̄2) ds → e−

R

R+ ψs(λ11(0,t]+Ñ
c
1+N̄1 , λ21(0,t]+Ñ

c
2+N̄2) ds.

As far as the denominator in (8.2), this follows along the same lines and it turns out to

be equal to

e
−

R

C′ε
ψs(Ñc

1+N̄1 , Ñ
c
2+N̄2 ) ds ×

× εke
∏

j∈I

{

∫

(R+)2
e−

P2
i=1(ñ

c
j,i+n̄j+1,i)xi ζ(x,nj) ν

′
T(j)

(x1, x2)dx1dx2 + o(1)

}

where ke denotes the total number of exact (distinct) observations in the sample. Hence,

if one considers the ratio of the two terms we have just determined and let ε tend to 0,

one obtains that the posterior Laplace transform in (8.2) is given by

e−
R

∞

0 [ψs(λ11(0,t]+Ñ
c
1+N̄1, λ21(0,t]+Ñ

c
2+N̄2)−ψs(Ñc

1+N̄1, Ñ
c
2+N̄2)] ds ×

×
∏

j∈I

∫

(R+)2 e
−

P2
i=1(λi1(0,t](T(j))+ñ

c
j,i+n̄j+1,i)xi ζ(x,nj) ν

′
T(j)

(x1, x2)dx1dx2
∫

(R+)2 e
−

P2
i=1(ñ

c
j,i+n̄j+1,i)xi ζ(x,nj) ν ′T(j)(x1, x2)dx1dx2

and this proves the statement. �
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Rodŕıguez, A. Dunson, D. and Gelfand, A. (2008). The nested Dirichlet process. J.

Amer. Statist. Assoc. 103, 1131–1144.

Tankov, P. (2003). Dependence structure of spectrally positive multidimensional Lévy
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