
Ascari, Guido; Branzoli, Nicola

Working Paper

Inflation persistence, Price Indexation and Optimal Simple
Interest Rate Rules

Quaderni di Dipartimento, No. 129

Provided in Cooperation with:
University of Pavia, Department of Economics and Quantitative Methods (EPMQ)

Suggested Citation: Ascari, Guido; Branzoli, Nicola (2010) : Inflation persistence, Price Indexation and
Optimal Simple Interest Rate Rules, Quaderni di Dipartimento, No. 129, Università degli Studi di
Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ), Pavia

This Version is available at:
https://hdl.handle.net/10419/95318

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/95318
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 

Quaderni di Dipartimento 
 
 
 
 
 

Inflation persistence, Price Indexation and Optimal 
Simple Interest Rate Rules 

 
 

Guido Ascari 
(Università di Pavia) 

 
 

Nicola Branzoli 
(University of Wisconsin Madison) 

 
 
 
 

 
 

 
 

 
 
 
 
 

# 129 (11-10) 
 
 
 
 
 
 
 

Dipartimento di economia politica 
e metodi quantitativi 

Università degli studi di Pavia 
Via San Felice, 5 

I-27100 Pavia 
 

Novembre 2010 



In�ation persistence, Price Indexation and Optimal

Simple Interest Rate Rules

Guido Ascari

University of Pavia

Nicola Branzoli

University of Wisconsin Madison

November 12, 2010

Abstract

We study the properties of the optimal nominal interest rate policy under dif-

ferent levels of price indexation. In our model indexation regulates the sources of

in�ation persistence. When indexation is zero, the in�ation gap is purely forward-

looking and in�ation persistence depends only on the level of trend in�ation, while

full indexation makes the in�ation gap persistent and it eliminates the e¤ects of

trend in�ation.

We show that in the former case the optimal policy is inertial and targets in�ation

stability while in the latter the optimal policy has no inertia and targets the real

interest rate. We compare our results with empirical estimates of the FED�s policy

in the post-WWII era.

JEL classi�cation: E31, E52.
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1 Introduction

Since the Furher and Moore (1995) seminal contribution, persistence has long been

recognized as one of the main properties of the in�ation process. Recently a stimulating

debate in the literature focused on the sources of in�ation persistence and its changes

over time.

In�ation persistence was initially assumed to be an "intrinsic" phenomenon of the in-

�ation process. The modelling strategy was therefore to introduce an endogenous lagged

term in the New Keynesian Phillips Curve (NKPC henceforth) to match the in�ation

persistence found in the data (see e.g., Galí and Gertler, 1999, Mankiw, 2001, Rudd

and Whelan, 2007). Following this strategy, Christiano et al. (2005) (CEE henceforth)

introduced backward-looking price and wage indexation in the Calvo pricing setup. This

modelling device is now commonly used in standard workhorse DSGE New Keynesian

models of the business cycle (e.g., Schmitt-Grohé and Uribe, 2006, 2007b, Smets and

Wouters, 2003, 2007, and Altig et al., 2004).

More recently, however, some papers show that to understand in�ation persistence

is useful to distinguish between trend in�ation, i.e., a low frequency component of the

in�ation process, and the in�ation-gap, i.e., the di¤erence between actual in�ation and

trend in�ation. It is then natural to think of trend in�ation as the Federal Reserve�s

long-run target for in�ation. Cogley and Sbordone (2008) show that an NKPC with no

intrinsic in�ation persistence, but that allows for shifts in trend in�ation, successfully

describes US in�ation dynamics. Hence, if (exogenous) shifts in the level of trend in�a-

tion are taken into account, the in�ation gap has no persistence and there is no need to

assume backward-looking indexation.1 Cogley et al. (2010) show that the persistence

in the in�ation-gap increased during the Great In�ation and declined after the Volcker

disin�ation. The main reason behind this shift in in�ation volatility and persistence is

the stability of the Fed�s long-run in�ation target.2 The �ndings in Benati (2008) are

similar in spirit. Using data from the US, UK, Euro Area, Switzerland, Canada, New

Zeland and Japan, Benati (2008) shows that in�ation persistence has not been constant

across policy regimes, providing empirical evidence about the relationship between in�a-

1See also Benati (2009) for similar results using international data, and Barnes et al. (2009) for a

critique of their results.
2 Ireland (2007) is the �rst attempt to endogenize the in�ation target of the Central Bank.
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tion persistence and trend in�ation. When these countries adopted an explicit in�ation

target, reducing the average level of in�ation, the in�ation gap showed no persistence.

This suggests that in�ation persistence is not an "intrinsic" feature of the in�ation

process, but it depends on the particular monetary policy regime. Thus the empirical

evidence suggests that the main driving force behind in�ation persistence could be ei-

ther the in�ation-gap or trend in�ation, depending on the historical periods and on the

monetary policy regimes.3

It matters for monetary policy whether the source of in�ation persistence is intrinsic

or comes from trend in�ation. For example, optimal monetary policy di¤ers whether

in�ation persistence is intrinsic (see Steinsson, 2003) or derives from changes to trend

in�ation (see Ascari and Ropele, 2007).

Our aim is to investigate how optimal monetary policy, in the form of optimal simple

rules, varies with changes in the source of in�ation persistence. From a theoretically

perspective, there is an easy way to distinguish these two cases in a standard medium-

scale New Keynesian DSGE model. In our model there are two sources of in�ation

persistence: the level of trend in�ation and the persistence in the in�ation gap. We

observe that the degree of backward-looking indexation is the key parameter regulating

the strength of these two sources. When indexation to past in�ation is full, then in�ation

persistence is all due to the in�ation-gap, and there is no e¤ect of trend in�ation on

the dynamics of the model (see Ascari, 2004). When past in�ation indexation is zero,

instead, the in�ation-gap is a forward-loooking variable, while trend in�ation a¤ects the

dynamics of the model inducing inertia in the adjustment (see Amano et al., 2007 and

Yun, 2005). Trend in�ation increases the dispersion of prices across di¤erent sectors,

raising the persistence of the in�ation process. The intuition starts from the observation

that price-resetting �rms take into account that many �rms are not keeping up with the

pace of in�ation. The optimal reset price will therefore increase less. Thus the price

level takes longer to adjust to its long run value and in�ation becomes more persistent.

Technically, the in�ation process is a¤ected by price dispersion which is a backward-

3 In the last section of their work, Cogley et al. (2010) provides a very helpful discussion of their

results in relation to the previous literature on in�ation persistence. So we refer the reader to it for a

more comprehensive discussion of the literature. In particular, see Cogley and Sargent (2005), Cogley

et al. (2006), Primiceri (2006) and Stock and Watson (2007).
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looking variable, and thus induces persistence in in�ation.4 This inertial adjustment

mechanism is corrected with full indexation. In this case, the e¤ects of price dispersion

on the dynamics of the model is only of second-order (see Schmitt-Grohé and Uribe,

2004a, 2006). Hence, the degree of backward-looking indexation parametrizes how much

the persistence of in�ation is due to an "intrinsic" in�ation-gap component, and how

much is induced by trend in�ation, through price dispersion. So to ask how the source

of in�ation persistence a¤ects the optimal policy rule, we will investigate how the degree

of indexation a¤ects the optimal policy rule and welfare.

We need to make several modelling choices to answer our research question. First, we

use an "operational" medium-scale model, more precisely the model in Schmitt-Grohé

and Uribe (2004a) (SGU henceforth) or CEE. This model has been largely used for its

empirical success in replicating the behavior of the US and Euro area business cycles.

Second, we con�ne our analysis to optimal, "simple and implementable" monetary policy

rules, following closely SGU.

Third, methodologically, we decide for a painstaking grid-search algorithm for the

results in the main Section of the paper. As in SGU, we consider nine di¤erent cases,

combining on the one hand backward-looking, current-looking and forward-looking Tay-

lor rules and, on the other hand, no inertia, inertial and superinertial Taylor rules. This

allows us to focus on the implications of the degree of backward-looking indexation for

both the shape and the coe¢cients of the optimal simple rule from the point of view of

the stochastic steady state. The grid search method allows us to �nd the global maxi-

mum in our parameter grid, but it is computationally very costly. We therefore switch

to a numerical maximization algorithm, as in Schmitt-Grohé and Uribe (2006, 2007a,b),

in the robustness section of the paper, i.e., Section 6. Therefore, this section will also

indirectly provide a robustness check of our results over the employed methodology.

Fourth, we just focus on the degree of indexation of prices, and not of wages. The

main reason is that, given our research strategy, the curse of dimensionality is very high,

so we could not perform both the analysis.5 Moreover assuming full wage indexation

seems more compelling from both an empirical and theoretical point of view,6 and also

4Section 3 describes the details of this transmission.
5For the main Section of the paper, we performed 677448 simulations, each of one take 90 seconds

(on a standard Pentium IV (R) 3GHz), reaching a total of 16936.2 computer hours (almost 2 years).
6For example, Levin et al. (2006) estimates the average price indexation between 0.11 and 0.19
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from anecdotal evidence.

Recall that the empirical literature shows that trend in�ation and in�ation persis-

tence are related across regimes. This paper highlights the role of price dispersion as

the prominent mechanism through which trend in�ation a¤ects in�ation persistence,

and hence the optimal interest rate rule, in a medium-scale DSGE model. Our main

results con�rm that the shape of the optimal policy is mainly driven by the degree of

price dispersion in the economy. For a given level of trend in�ation, the lower the degree

of indexation, the higher is price dispersion, and the associated costs for the economy.

The optimal response of the policy is to stabilize in�ation in order to contain price dis-

persion. Indeed, we show that the variance of price dispersion decreases, while the one

of in�ation increases with indexation. Moreover, a general prescription for monetary

policy is that the lower is the degree of indexation, the larger should be the response

of the monetary policy to in�ation gap. This con�rms the SGU result that in�ation

volatility under the optimal rule is signi�cant if there is full indexation, while near zero

if there is no indexation. Moreover, as in SGU, we �nd that none of the several optimal

policies in the various cases features a substantial reaction to output.7

Moreover, we �nd that the more trend in�ation a¤ects in�ation persistence, the

more inertial is the optimal policy. A robust �nding is that the optimal rule is no

inertial for high levels of indexation, while it is inertial or superinertial for low levels

of indexation. The lower is indexation, therefore, the more important is the ability to

exploit the expectational channel of monetary policy in order to stabilize in�ation and

price dispersion. In general, by changing the source of in�ation persistence, the degree

of price indexation changes the trade-o¤s monetary policy is facing in a non-obvious

way.

Another important, and not much debated, issue regards the �rst order e¤ects of

changing the degree of indexation.8 Our results show that the di¤erence in conditional

while the average wage indexation between 0.77 and 0.86 (see also Smets and Wouters, 2003, 2007).

Furthermore Ascari and Branzoli (2010) shows that full wage indexation maximizes the steady state

welfare for every level of price indexation.
7With the exception of the rules maximizing unconditional welfare, see Section 6.
8First order e¤ects derive from a change in the steady state of the model, while second order e¤ects

derive from changes that do not in�uence the steady state (but only the dynamics around the steady

state). In this sense, a change of the degree of indexation causes �rst-order e¤ects because it a¤ects

the steady state, while a change in the policy rule parameters cause only second-order e¤ects because it
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welfare across the various cases is mainly driven by the �rst order steady state e¤ects,

suggesting that the literature often ends focusing on second-order analysis (as the shape

of optimal policy in an approximated model), overlooking important �rst-order aspects

(as the calibration of the degree of indexation) that strongly in�uence the shape of the

optimal policy and have important welfare e¤ects.

Furthermore, one of the main message of this paper is that full indexation is a very

special assumption. Full indexation nulli�es the e¤ects of trend in�ation, and limits to

second-order the e¤ects of price dispersion, which is one of the key variables in the Calvo

type price staggering models. When prices that are not repotimized are fully anchored

to in�ation, price dispersion become irrelevant not only from a long-run perspective (as

it is obvious), but also in the dynamics of the model. Full indexation is a very special

case, almost like a discontinuity point, because it cancels one of the main mechanism of

the model.

Finally, we also compare model-predicted optimal policies under di¤erent levels of

indexation with the empirical estimates of the Taylor rules under di¤erent policy regimes.

The FED�s policy across regimes is very similar to the optimal one implemented in the

model where in�ation persistence is induced by trend in�ation and not by the in�ation

gap. Therefore, coherently with Cogley et al. (2010), our results also suggest that policy

sources of the Great Moderation should be found mainly in movements of other policy

instruments, such as the in�ation target.

Our analysis is close to Sbordone (2007), who studies optimal policies under di¤erent

models of in�ation persistence and distinguishing two cases. In the �rst case, in�ation

persistence is embedded in trend in�ation, modeled as a random walk with drift. In

the second case persistence is hardwired in the in�ation gap. She �nds that the optimal

policy is sensitive to the model assumed. We extend and complement her �ndings in

two directions. First, we consider simple monetary policy rules rather than the fully

optimal ones. Thus our analysis can be interpreted as a discussion on the robustness

of her study to the class of policy rules available to the Central Bank. We con�rm

that the shape of the optimal policy is sensitive to how persistence is induced into the

model. This becomes very clear in our analysis, because the degree of indexation is

the key parameter that governs the dynamics of the model. Therefore, we share with

does not a¤ect the steady state of the model.

5



Sbordone (2007) the conclusion that one needs to think deeply about how persistence

is hardwired into the model before drawing policy conclusions. Second, in addition to

Sbordone (2007), we use a medium-scale model of the business cycle rather than one of

only output and in�ation, to take the normative analysis to the data.

The rest of the paper is organized as follows. Section 2 brie�y sketches the main

properties of the model, that is formally described in the Appendix. Section 3 analyzes

the role of price indexation in the dynamics of the model, highlighting how it in�uences

the e¤ect of trend in�ation and in�ation persistence. Section 4 and 5 present the main

results of the paper and discusses the similarities between the optimal model-based

policy and the empirical estimates from the literature. Section 6 checks the robustness

of the main results to di¤erent degrees of price stickiness, type of indexation and measure

of welfare. The last Section concludes.

2 Model Description

The basic setup is a medium-scale macroeconomic model, obtained by augmenting the

standard New Keynesian model with nominal and real frictions. Theses are crucial

elements in replicating the dynamics of US business cycle. Since the model is exactly

the one described in many papers (e.g., SGU and CEE), we will brie�y introduce here the

key elements, leaving to the Appendix all the details about the model and calibration.

The real frictions of the model are monopolistic competition, habit persistence in

consumption, �xed cost in an otherwise standard Cobb-Douglas production function,

variable capacity utilization and adjustment costs in investment. Money is introduced

into the model via real balances in the utility function and a cash-in-advance constraint

on wage payments of �rms. The long-run level of in�ation is set equal to the average

in�ation of the US in the post World-War II period. Wages and prices are sticky à la

Calvo-Yun.

Prices that are not re-optimized each period are indexed to past in�ation. Woodford

(2003) already shows how the degree of backward-looking indexation a¤ects the appro-

priate microfounded loss function and the dynamics implied by the NKPC in a basic

log-linear model. Moreover, in a non-linear model with positive trend in�ation, price

dispersion is another important channel through which backward-looking indexation
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a¤ects the dynamics of the model and welfare (see Schmitt-Grohé and Uribe, various

papers). Therefore we study a second-order Taylor approximation of the model around

the non-stochastic steady state using the method developed in Schmitt-Grohé and Uribe

(2004b).

As in SGU, we consider only monetary policy rules that are simple and imple-

mentable. Simple because they are a function of a few readily observable macroeconomic

variables. Implementable because they must deliver an unique rational expectation equi-

librium and induce an equilibrium that satisfy a constraint on the lower bound on the

nominal interest rates.9

We thus consider monetary policy rules of the following class (where variables ex-

pressed in log deviation from steady state�s values are denoted with a hat):

R̂t = ��Et�̂t i + �yEtŷt i + �REtR̂t i; (1)

where i 2 f 1; 0; 1g. We hence consider nine di¤erent cases, combining on the one hand

backward-looking, current-looking and forward-looking Taylor rules and, on the other

hand, no inertia, inertial and superinertial Taylor rules. This allows us to focus on the

implications of the source of in�ation persistence for the shape and the coe¢cients of

the optimal simple rule.

3 The Macroeconomic E¤ects of Price Indexation

In this section we look into the details of the e¤ects of indexation on the dynamics of

the model.

Persistence in the in�ation gap depends directly upon the degree of indexation.

Log-linearizing Eq(32) for the in�ation gap (see Appendix) and substituting the steady

state values, we can express the in�ation gap as a function of its own past values and

the expectations component:

�̂t = �
���

1 �
�̂t 1 + ��

(� 1)
h
1 ���(� 1)(1 �)

i
b~pt (2)

where � measures complementarity across consumptions goods, � is the Calvo parame-

ter, � is the level of price indexation and b~pt denotes the price level set by optimizing
9Following SGU, we assume commitment to the rules. Results will be generally di¤erent under

discretion. We leave this interesting question to further research.

7



�rms, which depends solely on expectations about future in�ation and output gap.

Eq.(2) shows that indexation, by construction, induce inertial adjustment in the in�a-

tion level.

By changing the degree of price indexation, we do not only in�uence the persis-

tence of the in�ation gap, but we also regulate the e¤ects of trend in�ation on in�ation

persistence. Consider the case of no indexation. Under the assumption of monopolistic

competition, optimizing �rms look at the price index, and in particular at the dispersion

of prices, to set b~pt. In particular, since some �rms do not move up with the pace of

in�ation, optimizing �rms look also at the price dispersion generated by trend in�ation:

Many �rms have a low relative price. An increase in trend in�ation makes this gap

bigger, therefore making the optimizing �rms adjust slower to a change in current and

expected conditions. Full indexation counteracts this e¤ect, because it allows also the

non price-resetting �rms to adjust with the long-run growth of prices, thus reducing

the e¤ect on trend in�ation on price dispersion. Partial indexation, instead, increases

price dispersion and the e¤ect of thsi mechanism on the persistence of in�ation. The

higher the degree of indexation, the less trend in�ation would impact on the the optimal

relative price b~pt and on the adjustment of of in�ation.10

Log-linearizing the Eq.(25) and Eq.(32) in the Appendix, and then substituting the

term referring to the newly reset price, it yields the following expression for the log-

linearized dynamics of price dispersion, i.e., s :11

ŝt =

"
����(� 1)(1 �)

 
��1 �  1

�

1 ���(� 1)(1 �)

#
(�̂t  ��̂t 1) + ���

�(1 �)ŝt 1: (3)

Note that the higher the level of �; the lower is persistence in the price dispersion

term. If one assumes full indexation, the price dispersion is constant in the log-linearized

version of the model (� = 1 =) ŝt = 0). On the other hand, the autoregressive term

given by ����(1 �) is maximized when � = 0: Figure 1 shows that full indexation is indeed

a very special assumption, because it nulli�es the e¤ects of price dispersion, while it

matters at �rst-order with partial indexation.12 When prices that are not re-optimized

10See also Ascari and Ropele (2007) for a thourough discussions of the e¤ects of trend in�ation on

optimal policy in New Keynesian models.
11 In (3), �̂t is the log-deviation of in�ation, � is the degree of price indexation, �� is trend in�ation, �

is the degree of price stickiness and � is the elasticity of substitution across goods.
12We shock the model with a 1% increase in aggregate productivity under a standard current looking
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are fully anchored to in�ation, price dispersion become irrelevant in the dynamics of the

model. In Figure 2 we show the impulse response of in�ation for di¤erent levels of trend

in�ation, holding indexation constant at 0. The �gure shows that the higher is the level

of in�ation, the slower in�ation returns to its long-run value when the economy is hit

by an exogenous shock.

To summarize, the calibration of indexation regulates the e¤ects of persistence in

the in�ation gap and persistence due to trend in�ation. When � = 0, the in�ation

gap is a purely forward-looking variable and persistence in in�ation is induced by the

e¤ects of trend in�ation, through price dispersion. On the other extreme, full indexation

cancels out the e¤ects of positive trend in�ation due to the price dispersion term and

in�ation persistence depends on the backward-looking component of the in�ation gap.

In what follows we assess the importance of these changes in shaping optimal operational

monetary policies.

4 Optimal Interest Rate Policies and the Sources of In�a-

tion Persistence

Our aim is to analyze policy rules à la Taylor, such that these policies can be actually

operational and implementable for policy makers. Simple rules, as the ones considered

here, are very easy to communicate and to be understood by the public, helping the

transparency of central bank behavior.

An operational rule should be implementable in the sense that should both deliver

a unique rational expectation equilibrium and satisfy the lower bound on the nominal

interest rate.13 As in SGU, we looked for the optimal monetary policy numerically dis-

cretizing the support [ 3; 3] in intervals of length 0.0625 for �� and �y in the particular

class of rules of the form (1). Moreover, in (1): (i) i can take three di¤erent values, i.e.,

i 2 f 1; 0; 1g corresponding to forward- looking, current-looking and backward-looking

policies respectively; (ii) �R 2 f0; 1; 2g, corresponding to no inertial, inertial and super

Taylor Rule with �� = 1:5, �y = �R = 0:
13Following SGU, we require the logarithm of the equilibrium nominal interest rate not to be lower

than two times the variance of the nominal interest rate, i.e., ln(R�) � 2�R̂t . If the equilibrium nominal

interest rate was normally distributed around its target value, then this constraint would ensure a positive

nominal interest rate 98 percent of the time.
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inertial rules respectively. On top of that, we study 8 levels of indexation. In addition

to the two extreme cases of 0 and 1, we study the welfare-maximizing value of the non-

stochastic steady state,14 0:8788; and 5 values close to 1, 0:75; 0:80; 0:85; 0:90 and 0:95.

The latters will be useful to analyze even small positive e¤ects of the price dispersion

channel on the monetary policy trade-o¤s.

We hence performed 677448 simulations, solving the model with the perturbation

method developed in Schmitt-Grohé and Uribe (2004b). We rank policies using a mea-

sure of welfare based on second order approximation of the model around the non-

stochastic steady state. We used both an unconditional and a conditional welfare mea-

sure, the latter to take into account of transitional dynamics. We use grid-search method

for the results in this section.15 The method allows us to �nd the global maximum in

our parameters� grid.

We organize the presentation of results in this Section as follows. First, we illustrate

how indexation changes the optimal rule and the dynamic response of the economy across

all the di¤erent types of rules considered. Second, we analyze in detail how indexation

changes the optimal rule and the dynamic response of the economy in the case of one

particular rule, i.e., forward-looking no inertia. Third, we will illustrate how the optimal

rule changes with indexation within each class of policy rules.

4.1 The Optimal Simple Rule

In this section we investigate the e¤ect of indexation on the overall optimal simple

monetary policy rule. Table 1 shows the type of policy rule, the optimal values of

the coe¢cients and the corresponding welfare levels, for di¤erent values of the degree

of indexation. Table 2 displays the corresponding unconditional moments for some

variables of interest: consumption, output, price dispersion and in�ation.

Policy Rule

Table 1 shows that the source of persistence a¤ects the type of optimal operational

policy. While the forward looking rule with no inertia is the optimal policy for the highest

level of indexation, it turns out that lowering the degree of indexation, thus increasing

14See Ascari and Branzoli (2010) for a discussion of this result.
15Each simulation took 90 seconds (on a standard Pentium IV (R) 3GHz), so it is about 16936.2

computer hours (almost 2 years). This was made possible by optimizing the functioning of MATLAB

symbolic toolbox, and clustering 30 computers.
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the role of persistence due to trend in�ation via price dispersion, leads the forward-

looking rule to be substituted by the current-looking one. The backward-looking policy

is never optimal. When there is no indexation then the forward looking inertial policy

is optimal.

Looking at the changes in the coe¢cients of the optimal policy rule, Table 1 shows

that when the persistence is entirely due to the in�ation gap (� = 1), the optimal simple

rule takes the form of a real interest rate targeting rule, with no degree of inertia. On

the contrary, when persistence is entirely due to trend in�ation (� = 0), there is a

substantial fall in the reaction to the in�ation gap, and policy rule become inertial. On

the one hand, the unit root in the policy a¤ects expectations of the long-run interest rate

and in�ation level. On the other hand, an inertial policy lacks �exibility and therefore

would also entails some welfare costs. This may explain why in this case inertial policy

is the best choice. Table 3 also provides some further evidence in this direction, showing

how the optimal value of �� in a forward-looking rule changes with the value of �R

and � : �� decreases with indexation, unless �R assumes values close to 1. In other

words, an increase in the inertia of the policy keeps in�ation under control through the

expectation channel.

For intermediate values, the increase in �� is only modest, due to the fact that a

lower indexation makes the in�ation gap less persistent and thus, easier to control by

a credible forward-looking rule. Moreover, despite the increase in ��, the ability of

the optimal policy to stabilize price dispersion worsen as indexation decreases. It may

surprise that this last inertial policy features a very low ��; but an inertial policy means

a permanent change in the nominal interest rate in response to in�ation. Indeed, it is

interesting to note that, for the inertial forward looking optimal policy when � = 0; the

sum of �� and �R is the same as the value of �� for the forward looking no inertial

optimal policy for the highest level of persistence in the in�ation gap.

The Importance of Price Dispersion

Table 2 has one clear message: the higher is the persistence due to trend in�ation,

the lower is the variance of in�ation under the optimal policy. First, the column E(s)

reports the expected deviation of s from steady state. This is very low, meaning that

the mean value of price dispersion is its steady state value. Second, the unconditional

variance, �s, do not change very much across di¤erent degrees of indexation and it is very
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small. This means that the main task of the optimal operational rule is to stabilize the

degree of price dispersion around the steady state value. As shown also by SGU, price

dispersion is the main ine¢ciency associated with in�ation in New Keynesian models,

because it acts like a negative productivity shift in this economy, and thus the optimal

policy response calls for its stabilization. A temporary surge in in�ation generates an

increase in price dispersion, that needs to be stabilized by monetary policy. Moving away

from full indexation increases signi�cantly the inertia in price dispersion. Furthermore

the lower the degree of indexation, the more current in�ation is going to a¤ect current

price dispersion. It follows that the lower the degree of indexation, the more important

is to stabilize in�ation. As a matter of fact under optimal rules the variance of in�ation

reduces as the degree of indexation decreases.16

Table 2 also shows that full indexation is a very special case. Indeed, under full

indexation the cost of price dispersion is of second order magnitude.17 Indeed, despite

the rather high volatility in in�ation, the volatility of price dispersion is in�nitesimal,

that is price dispersion is almost always zero. It is interesting to note that, even moving

away only slightly from full indexation, i.e. � = 0:95; considerably worsens the trade-

o¤s monetary policy is facing. Indeed, the volatility of in�ation drops by roughly a half,

while the one of output increases by one third. Despite the lower volatility of in�ation

induced by a higher ��, the volatility of price dispersion is higher by a factor 1010! For

the other values of indexation we analyze, instead, the volatility of price dispersion are of

similar order of magnitude.18 This indeed signals that full indexation is a quite special

case. Assuming full indexation, however, undoes the role of trend in�ation and price

dispersion, an important mechanism in New Keynesian models. The full indexation

assumption, hence, strongly a¤ects the functioning of the economy, making the task of

monetary policy easier.

The case of full indexation, i.e. ignoring the e¤ect of trend in�ation on the persistence

16See section 4.2.2 for a further discussion of this point.
17 If � = 1; there is no �rst order e¤ect of current in�ation on price dispersion, see (3). In this case,

the dynamic equation of price dispersion is autonomous from the model and does not in�uence it.
18Note that the volatility of price dispersion in the no indexation case is roughly one hundred times

bigger than when � = 0:95: In this sense also � = 0 is an extreme case. But while the no indexation case

is changing the dynamics of the model quantitatively (i.e., strengthening the e¤ects of price dispersion),

the full indexation case is changing the dynamics of the model also qualitatively (i.e., cancelling the

price dispersion mechanism).
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of in�ation, does not imply price stability. The variance of in�ation is about 2 per cent

per annum, that is, half of its steady state value. However, as said above, the e¤ect

of trend in�ation on the persistence of the model turns out to be very important in

a¤ecting the optimal operational policy. In particular, partial indexation calls for a

tighter control of in�ation, as a way to stabilize price dispersion and the e¤ects of trend

in�ation.

Moreover, in the no indexation case, in�ation is basically kept �x at the steady state

level. Note that this would be the case also if the optimal policy when � = 0 (i.e., forward

looking, �� = 0:1875; �y = 0 and �R = 1) is implemented in the full indexation case. ��

would then be very small and equal to 0:2416:19 This is exactly the task accomplished

by the inertial policy: stabilize in�ation. However, such a policy is not chosen in the full

indexation case, because there is no need to stabilize price dispersion: full indexation

o¤sets the the e¤ects of tend in�ation and keeps price dispersion constant. In other

words, when there are no e¤ects of trend in�ation on in�ation persistence, indexation

take care of the problem of stabilizing price dispersion and stabilizing in�ation is no

more a fundamental issue for monetary policy.20

Welfare

Table 1 shows two di¤erent welfare measures: steady state welfare and conditional

welfare.

The welfare level of the deterministic steady state does not depend on the persistence

in the in�ation gap, since the latter is constant by construction. Therefore the di¤erent

levels of steady state welfare can be thought as a measure of the magnitude of the e¤ects

of trend in�ation, through price dispersion.

The conditional welfare instead take into account the stochastic steady state of the

economy, and therefore the e¤ects of the persistence due to the in�ation gap.21

19 In this case the conditional welfare is equal to -156.7254 and �s = 4.8039e-016.
20Schmitt-Grohé and Uribe (2007a) already noted that when price indexation is zero, the variance of

in�ation is also virtually zero. More generally, without indexation, price dispersion is so costly that a

minimum amount of price stickiness su¢ces to make price stability the central goal of optimal policy.

This turns out to be true also in presence of other public �nance e¤ects calling for an increase in in�ation

volatility (see Schmitt-Grohé and Uribe, 2006, 2007b, 2008).
21The conditional measure of welfare assumes a initial state of the economy and takes into consider-

ation the transitional dynamics from that initial condition to the stochastic steady state implied by the

policy rule. We will assume that the initial condition is always the deterministic steady state (recall
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Table 1 shows that the conditional welfare is always lower than the correspondent

steady state welfare since the transitional dynamics (from the deterministic to the sto-

chastic steady state) are taken into account. The di¤erence between the two, however, is

tiny and basically invariant across indexation levels. The losses across optimal policies

are therefore determined by the steady state one, that is by the e¤ects of trend in�ation.

The optimal simple rules maintain the conditional welfare very close to the steady state

one. For example, given our calibration, the best indexation degree is 0:8788. If instead,

the economy features full indexation the steady state welfare loss amounts to 0.0023%,

while the loss in terms of conditional welfare amounts to 0.0020%: If instead, the econ-

omy features no indexation the steady state welfare loss amounts to 0.14%, and the loss

measured in terms of conditional welfare is basically the same. Hence, the e¤ects due to

trend in�ation are much more important than the those induced by the in�ation gap.

This suggests that an optimal simple monetary policy does a good job in stabilizing

the cycle around the deterministic steady state, but cannot do much in compensating

the �rst order e¤ects deriving from trend in�ation. Figure 3 displays the percentage

welfare gain of the di¤erent indexation levels with respect to zero indexation. Each bar

displays the steady state welfare gain and the overall conditional welfare gain net of

the former.22 The graph shows that an increase in the level of indexation reduces both

the steady state losses and the losses associated with the stochastic steady state under

the optimal rule, since indexation acts as a partial correcting mechanism for those �rms

that can not optimize their price. However, the e¤ects of persistence in the in�ation

gap on losses due to movements in the exogenous variables are very small. This result

holds also for any given level of � considered.23 Therefore, conditional on choosing the

optimal policy, persistence in trend in�ation matters much more that persistence in the

in�ation gap.

that the deterministic steady state varies with the degree of indexation).
22That is, de�ne ssw� and cw� the steady state welfare and the conditional welfare, respectively,

associated with a given value of �: Then, for all levels of � analyzed, the percentage conditional welfare

gain is de�ned as: cw� cw0

cw0
; and the percentage steady state gain (normalized over the conditional one)

as: ssw� ssw0

cw0
. Then the black area in the graph is cw� cw0

cw0
 

ssw� ssw0

cw0
:

23For a given level of �; conditional on choosing the optimal rule for each one of the di¤erent class of

policies, the di¤erences in conditional welfare levels are low. Results are available upon requests.
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4.2 The Forward-looking Rule

In this section we concentrate on a particular rule: the forward-looking rule with no

inertia (FLNI), i.e., i =  1 and �R = 0: We look at this particular rule because it

turns out to be representative of all the other cases analyzed. This way we can focus

on the e¤ects of di¤erent sources of persistence within a single policy rule, leaving the

comparison across rules to the next sections. These results let use describe more in

details the mechanisms a¤ecting monetary policy.

4.2.1 Implementability

Figure 4 shows how changes in the sources of in�ation persistence can a¤ect the deter-

minacy and implementability regions. The graphs visibly display an increase in both

the determinacy and implementability areas with a reduction in the e¤ect of persistence

due to trend in�ation. Indeed low levels of indexation tend to reduce the parameter

space available for policy options. In particular, if trend in�ation a¤ects the persistence

of the model, i.e. indexation is not full, the Taylor principle (�� > 1) does not de�ne a

condition for determinacy. Indeed the e¤ect of varying the degree of indexation on the

implementability region are qualitatively similar to the e¤ect of changing the trend in�a-

tion level, as in Ascari and Ropele (2007). Persistence in trend in�ation, thus, increases

the likely of sunspots �uctuations. Ceteris paribus, in fact, an increase in in�ation leads

to an increase in price dispersion, which in turn rises the marginal costs, and hence

in�ation. This mechanism gets stronger the lower is the indexation, and therefore the

policy response needs to be tougher to induce determinacy of the rational expectation

equilibrium.

4.2.2 Indexation, Optimal Policy and Unconditional Moments

Table 4 and 5 are equivalent to Table 1 and 2 for the FLNI policy rule. They show the

optimal values of the coe¢cients of the FLNI policy, the corresponding welfare levels

and unconditional moments for some variables of interest.

An increase in the e¤ects of persistence due to trend in�ation calls for a policy that

further reduce the variance of in�ation. The optimal policy does it in a straightforward

way: by increasing the response to in�ation, i.e., ��; from 1.125 to 2.6875: If the policy

�� = 2:6875 and �y = 0:1875 is implemented in the full indexation case, then �� = 1:03.

15



Again in the full indexation case monetary policy could stabilizes in�ation through a

higher ��, but it chooses not to do so, because price dispersion is zero. Note, however,

that, when � = 0; the variance of in�ation is even higher than the one in � = 0:85;despite

the value of �� that is twofold. This signals that price dispersion inertia induced by

trend in�ation makes in�ation more di¢cult to control. As said above, this may explain

why for su¢ciently low levels of indexation, the inertial policy rule may be preferred.

Under full indexation, the optimal policy rule resembles a real interest rate targeting

rule, while, as indexation decreases, the optimal policy rule shift to a pure in�ation

targeting rule with a stronger reaction to in�ation deviation from target.

Finally, two results already noted above are still present. Firts, optimal policies are

not responding to the output gap. Second, as Table 2, Table 5 again shows that full

indexation is a rather special case. While the partial indexation cases are all similar in

terms of order of magnitude of the second moments of the variables, the full indexation

tends to cancel the e¤ects of price dispersion, as evident from the variances of s; � and

y:

4.3 Optimal rule across classes of policy rules

In this section we present how indexation a¤ects the optimal operational rule also for

each of the other policy class: current looking, backward looking and inertial policies.

Tables 6 to 8 display the results for the optimal operational simple policy rules within

each di¤erent class of policies. Given the large number of policies we analyzed, Tables

6 to 8 show the optimal policy rules for just 3 levels of indexation: full indexation (i.e.,

� = 1); no indexation (i.e., � = 0) and the optimal steady state indexation level (i.e.,

� = 0:8788)24.

The no inertial policy rules exhibit the same features explained above. The main

message is that the degree of indexation modi�es the trade-o¤ monetary policy is facing,

due to the interaction between trend in�ation and in�ation persistence. The higher is

the e¤ect of trend in�ation: (i) the higher is price dispersion and its costs; (ii) the higher

price dispersion inertia and its variance; (ii) the less persistent is in�ation. Therefore

Table 6 con�rm the following facts (i) the variance of price dispersion decreases with

indexation, while the one of in�ation increases; (ii) the di¤erence in conditional welfare

24For the other level of indexation analyzed results are available upon requests.
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across the various cases is mainly driven by the �rst order steady state e¤ects; (iii) the

case � = 1 eradicate the e¤ects of price dispersion from the model (iv) the optimal rule

is not responding to output; (v) the lower the degree of indexation, the larger ��.

Points (i)-(iv) hold true also for the inertial and super inertial policies.25 The iner-

tial and super inertial policies, instead, exhibit quite a di¤erent pattern regarding the

parameter ��: In particular, �� is surprisingly decreasing with the degree of indexation.

In the case of super inertial policy rules and no indexation it even becomes substantially

negative. Since the value of �R is di¤erent for inertial and super inertial policy rules, it

may not surprise to �nd di¤erent values for �� and �y, but we do not have an intuition

of the e¤ects of indexation on �� in these cases.26 The no inertial policy rules always

perform the best when there are small e¤ects of trend in�ation on the persistence of the

model, while the inertial ones generally perform the best when indexation is zero. This

con�rms our arguments presented in the previous section.

5 Interpreting US monetary policy

In this Section we compare the above results with the US monetary policy in the postwar

era. Our task is to determine whether one of the models better describes the FED�s

behavior over the last �fty years. To do so, our optimal policies are compared with

empirical estimates of the same monetary rule. We use our results for the two benchmark

cases of � = 0 and � = 1 to focus on sources of in�ation persistence. Recall that when

� = 0, the Central Bank has optimizes the movement in the nominal interest rate under

the model in which in�ation persistence is completely determined by the e¤ects of trend

in�ation. When � = 1, the Central Bank sets the policy using the model in which

in�ation is persistent because the inertia in the in�ation gap (see Section 3).

Table 9 shows our optimal Taylor rules in the two reference models with the estimates

in Benati (2008), Smets andWouters (2007) and Boivin and Giannoni (2006).27 All these

25There are two exceptions among the superinertial policy rules with full indexation: the current

looking and forward looking policy rules, where �y is equal to 0.3125 and 0.625, respectively.
26Moreover, while the policy rules in the Tables satisfy the requirements for an operational policy,

they are quite close to the boundaries of the determinacy frontiers. In particular, it is clear that a

combinations of value for {��; �y; �R} as {0,0,1} or {0,0,2} would immediately lead to an explosive

path for the nominal interest rate.
27The values for Boivin and Giannoni are taken from Table 2. The values for Smets and Wouters and
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papers estimate a current-looking version of the policy rule, thus we report the models�

best policies for current-looking rules with the globally optima.

Benati reports empirical estimates for the structural parameter for the whole sample

and for the post-Volker period. Smets and Wouters (2005) and Boivin and Giannoni

(2006) report the estimates for the pre- and post-Volker period. There is a remarkable

similarity with our optimal policy under no persistence in the in�ation gap. In particular,

a level of inertia in the interest rate close to unity and a moderate response to in�ation

makes the model under � = 0 the likely environment that in�uenced the interest rate

policy. The level of inertia in the policy rule estimated by Benati and Smets and Wouters

is in�uenced by the AR(1) structure of the monetary policy shock assumed in their

empirical models. In general, the empirical version of Eq.(1) contains an additional shock

"t to better �t the data. Benati and Smets and Wouters assume an AR(1) process while

Boivin and Giannoni assume i.i.d shocks. As a result, Benati and Smets and Wouters

estimate �R close to 0.8 and the autoregressive coe¢cient of the shock around 0.2,

Boiving and Giannoni �nd instead an estimate of �R equal to 1. Hence, independently

of the particular empirical speci�cation of the policy, the persistence in the Taylor rule

is reasonably close to unity. The lack of inertia and the response to the in�ation gap

greater than one of the optimal policy in the model with no e¤ect of trend in�ation

makes this model an unlikely candidate to explain the FED behavior. Note that we are

considering the two benchmark models, while the true policy environment is probably

somewhere in the middle. For example, Smets and Wouters (2005) estimate a level of

indexation in prices between 0.21 and 0.45 depending on the sample period.

Boivin and Giannoni (2006) report a slight increase in the policy response to in�ation

between the two sub-samples.28 This result is their key evidence to argue that monetary

policy has become more e¤ective in the in the post-1980 period. Although we agree with

their general message, their result should be interpreted cautiously for two main reasons.

First, their model is very stilized lacking the typical frictions used in medium-scale

models to empirically �t the persistence in the macrodata. Indeed, Boivin and Giannoni

Benati are taken from Table 5 and 12 respectively. Results are reported considering that our parameters

�� and �y are given by (1 �)�� and (1 �)�y: The di¤erence is in how our version of the Taylor rule

is written.
28A similar increase in the policy parameters, from 0.266 to 0.452, can be found also in Clarida et al.

(2000).
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�nd a value of indexation equal to 1 in both samples, a result that is in sharp contrast

with all the other papers discussed in this section. Second, as stressed by Mavroeidis

(2004), the identi�cation of forward-looking Taylor rules depends on the stability of

in�ation forecasts. The more in�ation forecasts converge to the actual in�ation target,

as in the post-1980 period, the less the policy parameters are identi�ed.29

6 Robustness

We here check the robustness of our results along four main dimensions: (i) the interre-

lation between the Calvo parameter and the degree of indexation; (ii) the level of trend

in�ation; (iii) the type of indexation; (iv) the welfare measure.

In order to do this exercise, we need to perform another large number of new simu-

lations. We therefore employ an optimization algorithm, as in Schmitt-Grohé and Uribe

(2006, 2007a,b). Both methods have advantages and disadvantages. The grid-search will

always �nd the global maximum, but it discretizes the parameter space. The optimiza-

tion algorithm, instead, will always �nd a local maximum, but it does not guarantees

global convergence. Therefore, this section will provide an analysis of the di¤erent per-

formance of the two algorithms and hence an indirect check of the robustness of our

results over the employed methodology.

The Calvo parameter: Table 10a,b shows the optimal forward looking no inertia

policies for di¤erent values of the degree of both price stickiness and indexation. We

take six values of � between 0:55 and 0:8,30 and two values of � = 0; 1: The results

con�rm that the shape of the parameters in the optimal policy are mainly driven by the

persistence in trend in�ation. Looking at Table 11a, when there is no persistence in the

in�ation gap, it is evident that the higher is �, that is the higher is the e¤ect of trend

in�ation on the forward-looking decisions of price-resetting �rms, the more the optimal

29See also Benati (2008) for a discussion of the identi�cation of the parameters of the model.
30This interval is suggestd by Schmitt-Grohè and Uribe (2008). The most recent evidence on the

micro data suggests that prices change on average approximately between 7 (see Klenow and Kryvstov,

2008) and 8 to 11 months (see Nakamura and Steinsson, 2008), implying a value of � around 0:5: The

estimates of macroeconomic models, instead, are usually higher: CEE estimates � to be 0.6, Altig et

al. (2005) to be 0.8. The 90-percent posterior probability interval for � estimated in Del Negro et al.

(2005) is (0.51, 0.83).
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policy need to be aggressive on in�ation.

On the contrary, Table 10b shows that when the e¤ects of trend in�ation are o¤set

by indexation and only the in�ation gap induces persistence in in�ation, the e¤ects

of varying � roughly disappear. Indeed, under full indexation, varying the value of �

has only marginal e¤ects on the optimal policy parameters and on conditional welfare.

As argued above, full indexation is a very special case: it eradicates the e¤ects of

the persistence due to trend in�ation, and hence it makes the value of price stickiness

basically unimportant for optimal policy and welfare.

Trend in�ation: Table 13 shows the optimal policies across the 9 types of policies

considered here, when steady state in�ation is reduced to 2%, instead of 4.2% as in

the main Section of the paper. Results are qualitatively very similar (also in terms

of moments, not shown) to the benchmark case. Clearly, the welfare costs associated

to trend in�ation are smaller, because smaller are the e¤ects of trend in�ation on the

persistence in the in�ation process.

Type of Indexation: It is also often assumed in the literature an hybrid indexation

scheme, where �xed prices are indexed both to past in�ation and to trend in�ation. Such

assumption implies full indexation in the long-run, and, hence, no e¤ect of trend in�ation

on the persistence of in�ation. For us, this case corresponds to the analysis of di¤erent

degree of persistence in the in�ation gap under no e¤ect of trend in�ation. Table 12c

shows the optimal policies in this case. Two main points are worth stressing. First, the

welfare e¤ects are obviously very small, since there are no long-run e¤ects irrespective of

the value of indexation. Second, Table 12c shows once again how assuming persistence

only in the in�ation gap is a very special case: in�ation volatility is roughly 6 times

higher with respect to all the other cases considered . The intuition is clear: while

full indexation to trend in�ation cancels the e¤ects of trend in�ation on the persistence

of the model, lack of persistence in the in�ation gap induces the optimal policy to be

inertial and not respond to the in�ation gap.

Another common assumption is to assume that the prices that can not be changed

are automatically indexed to trend in�ation. Table 12a and b show the optimal policies,

across all type of policies considered, for �ve di¤erent levels of the degree of indexation

from 0 to 1, under the two di¤erent indexation schemes. When there is full indexation to
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trend in�ation the dynamics of the model is similar to the one of a model approximated

around a zero in�ation steady state, and the result of the optimality of price stability

is restored, as already stressed by SGU. Thus in this case, even if there are no long-run

e¤ects, the optimal in�ation volatility is very low. The latter then decreases even further

when the steady state level of price dispersion increases because of partial indexation.

Contrary to the case of backward-looking indexation, the optimal policy changes very

little with the degree of indexation. The forward-looking superinertial policy is always

optimal, simply because inertial policies are the most e¤ective in stabilizing in�ation.

Unconditional Welfare: Table 6 to 8 also display the unconditional welfare lev-

els implied by the policies. The unconditional welfare measure is the most commonly

employed in the literature and is the expected value of welfare given the unconditional

distribution of the variables, i.e. it is independent of the initial conditions of the state

vector. Therefore one can see it as the weighted average of the conditional welfare levels

associated with all possible values of the initial state vector, with weights given by their

unconditional probabilities. Hence unconditional welfare may imply di¤erent optimal

policies from the ones obtained using conditional welfare as the ranking measure. As

stressed in SGU, the di¤erent ranking implied by the two measures demonstrates the

importance of considering the transitional dynamics and the initial condition and it

indicates the fact that the optimal operational rule lacks time consistency.

Therefore, Table 14 presents the optimal policy for each level of indexation using

unconditional welfare.31 The optimal policies are di¤erent from the ones presented in

Table 1, not only quantitatively, but also qualitatively. The current looking no inertial

policy is optimal for high level of indexation, while the backward looking no inertia

is optimal for low ones. Recall that the backward looking policy was never optimal

according to conditional welfare. Besides, all the optimal policies are very close to the

upper bound for �� in our set of values for the grid search (i.e., �� 2 [ 3; 3]). It is very

likely that the optimal policy would have implied an higher level of ��. Furthermore,

the value of �y is actually sizably di¤erent zero. As a result, the volatility of in�ation

implied by these optimal policies is higher than the one implied by the optimal policies

under conditional welfare (the same is true for the other variables, not shown).

Finally, since the optimal policies are close to the upper bound of our grid-search

31These results are based on the grid-search method used in the main Section of the paper.
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interval, we calculate the optimal unconstrained parameter values for �� and �y using

the same optimization algorithm of the previous subsections and for the usual �ve values

of � between 0 and 1. Table 15 shows that the results are indeed quite di¤erent with

respect to the previous Table: (i) the values of �� and �y are extremely high; (ii) the

unconditional welfare is the lowest welfare measure across the Tables of the paper; (iii)

the forward-looking super inertia policy is always optimal. The implied optimal in�ation

volatility is, however, very similar across methods.

Figure 5 replicates Figure 1 for the unconditional welfare ranking. It shows that the

unconditional welfare gains, net of the steady state ones, are quite sizeable although still

lower than their long-run counterpart.

The results in this subsection show, once again, that the type of optimal policies

depends very much on the sources of in�ation persistence in the model. However, max-

imizing conditional rather than unconditional welfare deliver very di¤erent insights, in

terms both of optimal simple rules and of implied volatilities of the variables.

7 Conclusions

In this paper we linked the level of indexation to the sources of in�ation persistence and

we have analyzed how the optimal interest rate rule changes with it.

We used a standard medium-scale New Keynesian model to show that trend in�ation

and the in�ation gap are the main sources of in�ation persistence and that their e¤ects

are regulated by the level of price indexation. Similarly to Sbordone (2007), we distin-

guished among two polar cases. In the �rst scenario, in�ation persistence is induced by

the e¤ects of trend in�ation, while the in�ation gap is purely forward-looking. In the

second scenario, persistence is entirely due to the e¤ects of the in�ation gap. Using nu-

merical simulations, we characterized the e¤ects on optimal monetary policy rules. An

increase in the persistence due to trend in�ation worsen the in�ation-output trade-o¤

and makes the task of stabilizing in�ation harder. Moreover, in�ation stabilization is

not the main objective of monetary policy when the only source of persistence in the

in�ation gap.

We chose a model that replicates a variety of evidences about business cycles to

compare our results with empirical estimates of US monetary policy. The optimal policy
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from the model in which the in�ation persistence is due to trend in�ation is remarkably

similar to the FED�s Taylor rules estimated by di¤erent papers. Given the empirical

evidence of the relationship between trend in�ation and in�ation persistence, our results

suggest that models based that take into account trend in�ation are more likely to

capture the main trade-o¤s used by the FED�s to set the nominal interest rate in the

past 50 years.
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8 Tables

Table 1. Optimal Operational Monetary Policies Rules

� Policy Class �R �� �y SS Welf. Conditional Welf.

1 Forward looking 0 1.1250 -0.0625 -156.7143 -156.7220

:95 Forward looking 0 1.1875 0 -156.7119 -156.7199

:90 Forward looking 0 1.1875 0 -156.7107 -156.7189

:8788 Forward looking 0 1.1875 0 -156.7106 -156.7188

:85 Current looking 0 1.0625 0 -156.7108 -156.7191

:80 Current looking 0 1.0625 0 -156.7122 -156.7205

:75 Current looking 0 1.0625 0 -156.7149 -156.7232

0 Forward looking 1 0.1875 0 -156.9351 -156.9428

Table 2. Unconditional Moments under Optimal Operational Rules (x10 2)

� E(c) E(y) E(s) E(�) �c �y �s ��

1 0.13 -0.19 3.9926(x10 6) 4.06 1.6722 3.7602 0 2.0483

:95 0.17 -0.38 5.9022(x10 6) 4.20 1.9147 5.1102 6.9(x10 4) 1.2012

:90 0.17 -0.38 1.2596(x10 5) 4.19 1.9127 5.0978 1.7(x10 3) 1.2808

:8788 0.17 -0.38 7.9551(x10 6) 4.20 1.9080 5.0661 2.0(x10 3) 1.2635

:85 0.16 -0.36 3.5347(x10 6) 4.19 1.9016 4.9235 1.6(x10 3) 0.7360

:80 0.16 -0.36 4.1604(x10 6) 4.19 1.8989 4.9050 2.4(x10 3) 0.7371

:75 0.16 -0.37 4.9830(x10 6) 4.19 1.8964 4.8863 3.3(x10 3) 0.7371

0 0.15 -0.34 2.9616(x10 6) 4.20 1.8065 4.7709 9.6(x10 3) 0.1716

Note: variables are expressed in deviation from steady state, except � that is in levels and annualized.

Table 3. Optimal Monetary Policies for di¤erent values of �R

Forward Looking No Inertia

�R= 0:1 �R= 0:5 �R= 0:9

� �� �y �� �y �� �y

1 1 0.0625 0.5 0.0625 0.6875 0.1875

:8788 1.0625 0.0625 0.5625 0.0625 0.5625 0.125

0 2.1875 0.1875 1 0.0625 0.3125 0.0625
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Table 4. Optimal Monetary Policies - Forward Looking No Inertia

� �� �y SS Welf. Conditional Welf.

1 1.1250 -0.0625 -156.7143 -156.7220

:95 1.1875 0 -156.7119 -156.7199

:90 1.1875 0 -156.7107 -156.7189

:8788 1.1875 0 -156.7106 -156.7188

:85 1.2500 0 -156.7108 -156.7193

:80 1.4375 0 -156.7122 -156.7216

:75 1.6250 0 -156.7149 -156.7267

0 2.6875 0.1875 -156.9351 -156.9767

Note: variables are expressed in deviation from steady state, except � that is in levels and annualized.

Table 5. Unconditional Means under Optimal Forward Looking No Inertia Rule (x10 2)

� E(c) E(y) E(s) E(�) �c �y �s ��

1 0.13 -0.19 3.99(x10 6) 4.06 1.67 3.76 0 2.05

:95 0.17 -0.38 5.90(x10 6) 4.20 1.91 5.11 6.8987(x10 4) 1.20

:90 0.17 -0.38 1.26(x10 6) 4.19 1.91 5.10 1.7(x10 3) 1.28

:8788 0.17 -0.38 7.96(x10 6) 4.20 1.91 5.07 2.0(x10 3) 1.26

:85 0.16 -0.37 6.40(x10 6) 4.20 1.89 5.01 2.2(x10 3) 1.04

:80 0.16 -0.37 4.29(x10 6) 4.20 1.87 4.96 2.4(x10 3) 0.75

:75 0.17 -0.45 1.18(x10 5) 4.26 1.93 5.4 4.8(x10 3) 1.16

0 0.13 -0.56 2.05(x10 4) 4.28 1.95 5.73 7.78(x10 2) 1.16

Note: variables are expressed in deviation from steady state, except � that is in levels and annualized.
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Table 6. Optimal Operational Monetary Policies - No Inertia

� �� �y �s �� Conditional Welf. Unconditional Welf.

Forward Looking

1 1.1250 -0.0625 0 2.0483 -156.7220 -156.5252

0.8788 1.1875 0 0.0020 1.2635 -156.7188 -156.4169

0 2.6875 0.1875 0.0778 1.1574 -156.9767 -156.6381

Current Looking

1 1.0625 0 0 0.7278 -156.7227 -156.4289

0.8788 1.0625 0 0.0014 0.7645 -156.7189 -156.4299

0 1.625 0 0.0212 0.3353 -156.9456 -156.6679

Backward Looking

1 1.3125 0.0625 0 1.5648 -156.7233 -156.3729

0.8788 1.375 0.0625 0.0015 1.3164 -156.7203 -156.3810

0 1.3125 0 0.0180 0.2919 -156.9451 -156.4442
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Table 7. Optimal Operational Monetary Policies - Inertia, �R = 1

� �� �y �s �� Conditional Welf Unconditional Welf.

Forward Looking

1 0.8125 0.1875 0 1.9911 -156.7232 -156.3456

0.8788 0.5 0.0625 0.0012 1.0058 -156.7199 -156.3975

0 0.1875 0 0.0096 0.1716 -156.9428 -156.6751

Current Looking

1 0.4375 0.0625 0 1.6442 -156.7237 -156.3639

0.8788 0.4375 0.0625 0.0013 1.1334 -156.7203 -156.3911

0 0.0625 0 0.0076 0.1390 -156.9431 -156.6733

Backward Looking

1 0.75 0.1250 0 1.3195 -156.7243 -156.3790

0.8788 0.5 0.0625 0.0011 0.9584 -156.7209 -156.3975

0 0.0625 0 0.0074 0.1355 -156.9432 -156.6730

Note: variables are expressed in deviation from steady state, except � that is in levels and annualized.
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Table 8. Optimal Operational Monetary Policies - Super Inertia, �R = 2

� �� �y �s �� Conditional Welf Unconditional Welf.

Forward Looking

1 1.6875 0.625 0 1.9939 -156.7237 -156.3435

0.8788 0.5625 0.125 8.40(x10 4) 0.6401 -156.7203 -156.4155

0 -0.9375 0 0.0207 0.3095 -156.9426 -156.6931

Current Looking

1 0.8125 0.3125 0 1.3833 -156.7248 -156.3753

0.8788 0.25 0.0625 6.48(x10 4) 0.4206 -156.7210 -156.4254

0 -0.8750 0 0.0214 0.3206 -156.9450 -156.6871

Backward Looking

1 -0.75 -0.0625 0 1.5262 -156.7250 -156.5191

0.8788 -0.75 -0.0625 0.0018 1.5077 -156.7203 -156.5230

0 -0.6875 0 0.0182 0.2738 -156.9453 -156.6809

Note: variables are expressed in deviation from steady state, except � that is in levels and annualized.
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Table 9. Empirical Estimates over Di¤erent Policy Regimes and Optimal Model-based Policies

�R �� �y

Benati Sample Period 1951-2005

0.827

[0.774 ; 0.857]

0.208

[0.187 ; 0.377]

0.122

[0.076 ; 0.253]

Sample Period 1951-2005

0.808

[0.760 ; 0.861]

0.348

[0.2 ; 0.566]

0.132

[0.061 ; 1.127]

Smets-Wouters Sample Period 1966-1979

0.81

[0.78 ; 0.84]

0.31

[0.23 ; 0.40]

0.03

[0.02 ; 0.04]

Sample Period 1984-2004

0.84

[0.82 ; 0.86]

0.28

[0.21 ; 0.37]

0.01

[0 ; 0.02]

Boivin-Giannoni Sample Period 1959-1979

1.011

[0.994 ; 1.028]

0.276

[0.269 ; 0.283]

0

[-0.004 ; 0.004]

1979-2002

0.602

[0.587 ; 0.617]

0.508

[0.458 ; 0.558]

0

[-0.038 ; 0.038]

Model � = 0

Current-looking rules 1 0.062 0

Globally Optimal: fw-looking 1 0.188 0

� = 1

Current-looking rules 0 1.062 0

Globally Optimal: fw-looking 0 1.125 -0.0625
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Table 11a. Optimal Forward Looking Policies No Inertia - � = 0

Calvo Parameter (�) �� �y Conditional Welfare

0:55 2:3015 0:2094 -156.9321

0:60 2:5157 0:1629 -156.9749

0:65 2:7819 0:1211 -157.0614

0:70 3:1083 0:0845 -157.2192

0:75 3:5048 0:0538 -157.5175

0:80 3:9931 0:0302 -158.1520

Table 11b. Optimal Forward Looking Policies No Inertia - � = 1

Calvo Parameter (�) �� �y Conditional Welfare

0:55 1:1442  0:0239 -156.7227

0:60 1:0888  0:0336 -156.7213

0:65 1:0542  0:0329 -156.7206

0:70 1:0538  0:0225 -156.7202

0:75 1:0628  0:0132 -156.7197

0:80 1:0920  0:0034 -156.7192
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Table 12a. Optimal Monetary Policies, Backward-looking indexation

� Policy Class �R �� �y Conditional Welf. ��

1 Forward Looking 0 1.0888 -0.0336 -156.7214 1.83

:75 Forward Looking 2 0.1286 0.0199 -156.7240 0.32

:50 Forward Looking 2 0.0478 0.0063 -156.7576 0.28

:25 Forward Looking 2 0.4965 0.0054 -156.8289 0.25

0 Forward Looking 2 -0.0712 -0.0049 -156.9425 0.23

Table 12b. Optimal Monetary Policies, Trend in�ation indexation

� Policy Class �R �� �y Conditional Welf. ��

1 Forward Looking 2 0.0522 0.0051 -156.7223 0.27

:75 Forward Looking 2 0.0531 0.0052 -156.7227 0.26

:50 Forward Looking 2 0.0546 0.0049 -156.7569 0.24

:25 Forward Looking 2 0.0547 0.0049 -156.8287 0.24

0 Forward Looking 2 0.0712 0.0049 -156.9425 0.23

Table 12c. Optimal Monetary Policies, Hybrid indexation

� = degree of backward-looking indexation

� Policy Class �R �� �y Conditional Welf. ��

1 Forward Looking 0 1.0888 -0.0336 -156.7214 1.83

:75 Forward Looking 1 0.2450 0.0109 -156.7235 0.46

:50 Forward Looking 1 0.1394 0.0021 -156.7230 0.33

:25 Forward Looking 2 0.0478 0.0060 -156.7226 0.30

0 Forward Looking 2 0.0521 0.0051 -156.7224 0.27
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Table 13. Optimal Monetary Policies, Trend In�ation = 2%

� Policy Class �R �� �y Conditional Welfare

1 Forward Looking 0 1.0927 -0.0340 -156.5008878

:75 Forward Looking 0 1.4070 0.0241 -156.4974982

:50 Forward Looking 0 1.4921 0.1136 -156.5049626

:25 Forward Looking 2 0.0473 -0.0074 -156.5196983

0 Forward Looking 2 0.0437 0.0047 -156.5390798

Table 14. Optimal Monetary Policies ranked by unconditional welfare

� Policy Class �R �� �y Unconditional Welf. Conditional Welf. ��

1 Current Looking 0 2.8750 0.6250 -156.2653 -156.7267 3.26

:95 Current Looking 0 2.8750 0.6250 -156.2654 -156.7256 3.27

:90 Current Looking 0 2.8750 0.6250 -156.2669 -156.7276 3.27

:8788 Current Looking 0 2.8750 0.6250 -156.2681 -156.7277 3.28

:85 Current Looking 0 2.8750 0.6250 -156.2703 -156.7298 3.28

:80 Backward Looking 0 3 0.6875 -156.2778 -156.7319 3.35

:75 Backward Looking 0 3 0.6875 -156.2857 -156.7398 3.36

0 Backward Looking 0 3 0.2500 -156.6265 -156.9858 1.13

Table 15. Optimal Monetary Policies ranked by unconditional welfare

� Policy Class �R �� �y Unconditional Welf. Conditional Welf. ��

1 Forward Looking 2 8.0957 4.1546 -155.9998 -156.8276 3.33

:75 Forward Looking 2 8.7518 3.8128 -156.0332 -156.7935 3.30

:50 Forward Looking 2 10.8519 3.7786 -156.1456 -156.8252 3.16

:25 Forward Looking 2 11.9724 2.5497 -156.2991 -156.8945 1.76

0 Forward Looking 2 13.0999 1.7394 -156.4398 -156.9948 1.06
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Table 16. Calibration

� 1:03 0:25 Time discount rate

� 0:36 Share of capital

 0:5827 Fixed cost (guarantee zero pro�ts in steady state)

� 0:025 Depreciation of capital

� 1 Fraction of wage bill subject to CIA constraint

� 6 Elasticity of substitution of di¤erent varieties of goods

~� 21 Elasticity of substitution of labour services

� 0:6 Probability of not setting a new price each period

~� 0:64 Probability of not setting a new wage each period

b 0:65 Degree of habit persistence

�0 1:1196 Preference parameter

�1 0:5393 Preference parameter

�m 10:62 Intertemporal elasticity of money

� 2:48 Investment adjustment cost parameter

~� 1 Wage indexation


1 0:0324 Capital utilization cost function parameter


2 0:000324 Capital utilization cost function parameter

z 1 Steady state value of technology shock

�z 0:979 Serial correlation of technology shock (in log-levels)

�z 0:0072 Standard deviation of technology shock

�g 0:96 Serial correlation of demand shock (in log-levels)

�g 0:02 Standard deviation of demand shock

� 0:18 Parameter scaling all exogenous shocks

36



9 Figures

Figure 1. Impulse Response Functions of Price Dispersion after a 1% increase in the TFP for

di¤erent levels of Indexation; �� = 1:5, �y = 0 and �R = 0 in the Taylor Rule (1)

Figure 2. Impulse Response Functions of In�ation after a 1% increase in the TFP for di¤erent

levels of In�ation; �� = 1:5, �y = 0 and �R = 0 in the Taylor Rule (1)
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Percentage Welfare Gain From Zero Indexation
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Figure 3. steady state and conditional percentage gain with respect to the 0 indexation case for

the best policies ranked according to conditional welfare.

Figure 4. Indeterminacy regions

Note: Each panel shows three regions: the white one displays the values of �y and �� that deliver determinate

rational expectation equilibria, the grey one signals that the equilibrium is not implementable in the sense

described in footnote 13, and the black region represents indeterminate rational expectation equilibria. All the

values of both �y <  1 and �� < 1 yield indeterminacy and are not shown in the �gure.
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Percentage Welfare Gain From Zero Indexation
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Figure 5. steady state and unconditional percentage gain with respect to the 0 indexation case

for the best policies ranked according to unconditional welfare.

39


