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A CENTRAL LIMIT THEOREM AND ITS APPLICATIONS TO
MULTICOLOR RANDOMLY REINFORCED URNS

PAI'RIZIA BERLL IRENE CRIMALDI LUCA PRALITLLI, AND PIEITRO RIGO

ARSTRACT. Let (X, ) be a sequence of imtegrable real random variables, adapted
to a filtration (G, ). Define

[ . -
(-W'Vr—\/VT{_Z-Y!\_E(}‘n i |grr)} amd Du—'\/'f_‘-{Et\)\n i |gw}_z}
"
k=1
where Z is the as Ll of KX, | Gi) (asswwed 1o exist), Couditions
for (7. D)) — A(0.T7) x A0, V) stably are given, where U7, Voare certain
rawlom variables, In particular, noder sueh conditions, oue oblains

W { i Z X, —Z}—C.+D, —NOT+V) sably.
() ey

This CLLU has watural applications 1o Bavesian statigtics amnd urn problems.
The latter are investigated, by paying special attention to multicolor randomly
reinforecd gencralized Polya wns,

1. INTRODUCTION AND MOTIVATIONS

As regards asviptotics in wrn models, there is not a nuigue reference fraane-
work. Rather, there are many (ingenions) digjoint ideas, one for cach class of prob-
lems, Well known examnples are martingale methods, exchangeability, branching
processes, stochastic approximation, dynamical systems and so on: see [15].

Those limit theorems which nnify varions nrn problems, thus, look of sowe in-
terest.

I this paper. we foeus on the CLT, While thought for nrn problems, onr CLT
is statod for an arbitrary sequence (X)) of real random variables.  Accordingly.
it poteutially applies to every urn sitnation, but it has generally a broader scope.
Suppose E|X,| < co and define 2, = E(XN_H | Qﬂ) where G = (G,) is some

filtration which makes (X,) adapted. Under varions assmuptions, one obtains
W a8y , - ——
Zy =5 Z for some random variable Z, Define further X, = v—izﬂ X and

] |
C\n = ‘\/ﬁ (Yﬂ e Zﬂ.:}z Dﬂ - \/H(‘Zﬂ - Z)
Wy = Cln. + Dy = \/H (Yv: = )

The limit distribution of €. D, or W, is a main goal in various fields, inchid-
ing Bayesian statistics, discrete time filbering, gambling and urn problems.  Sce

Daule: April 23, 2010,
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— Poissou-Dirichlet process — Proedictive distribution — Random probability weasure — Stable con-
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[2]. [3]. [5]. [6], [7]. [8]. [9] and references therein. In fact, suppose the next ob-
servation X, .y is to be predicted basing on the available information G,,. If the
predictor 2, cannot be evaluated in closed form, one needs some estimate 2}, and
'y reduces to the scaled crror when 23 = X,. Aud X, is a sonnd cstimate of
Z,;, nnder some distributional assmuptions ou (X, ). for instance when (X)) i ex-
chiangeable, as it is wsnal in Bayesian statisties, Similarly, Dy, and W, are of mterest
providad Z is regarded as a random parameter. In this case. Z,, is the Bayesian
estimate (of Z) mder quadratic loss and X, can be often viewed as the maxinmm
likelihood estimate. Note also that, in the trivial ease where (X ) is 144, and
G =(Xiye0 0 Xn), one obtains Cy, = W, = /n (Xn =FEXy) and Dy, =0. As to
urn problems, X, could be the indicator of {black ball at time n} in a nmlticolor
nrn. Then, Z,, becomes the proportion of black balls in the nrn at time noand X,
the observed frequency of black balls at time n.
I Theorem 2, we give conditions for

(C. D) — N(O,U) x M(0.V)  stably (1)

where U/, V' are certain random variables and A0, L) denotes the Gaussian kernel
with mean 0 and variance L. A nice consequence is that

H“’n s C’n + UN. — N(n‘ f"“ + 1’!) St;ihl'y'

Stable convergence. in the sense of Aldous and Renvi, is a strong form of couvergence
in digtribution; the definition is recalled in Section 2.

To ehiek the conditions for (1), it is mndmnental to know something about the
couvergenee rate of

Zn-{—l — £y aud -E(Zﬂ.—p—l —Zn | g’n) .

Henee, such conditions beeome simpler when (Z;,) is a G-martingale. Since

ﬁ‘(zn—i—l | gi?) = E{b'(\xvn—kZ | gn—}—l) | gﬂ.} == E(4¥w1+2 | gn) 8.,
(Zy) s trivially & G-martingale in case
P(Xp€:|Gn) =L(Xpsp1 €| Cn) as forall0<n<h. (2)

Those (G-adapted) sequences (X)) satisfying (2) are investigated in 5] and are
called conditionally identically distributed with respect to G, Note that (2) holds if
(Xy) 8 exchangeable and G, = o( X, ... X»n).

Together with Theorem 2. the main coutribution of this paper is one of its appli-
cations, that is, randomly reinforced generalized Polya wins. Two other applications
are r-step predictions and Poisson-Dirichlet sequences. We refer to Subsoctions 4.1
and 4.2 for the latter and we next deseribe this type of wrns.

An urn contains black and red balls. At cach time n = 1. a ball is drawn and
then replaced together with a random muuber of balls of the same color. Say that
B, black balls or £2,, red balls are added to the nrn according to whether X, =1
or X, =0, where X, is the indicator of {black ball at time n}. Suppose

B,=0, H, >0, EB,=EIf; foralln,
rsupE{(Bﬂ +Hn}"} < oo for somoe w > 2,
"

mi=hER, >0, =i bBﬁ s :=lim EI!‘??.
n L ]
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Letting G, = o(X. B By X By I1y), suppose also that (B fhe0) i
independent of G, V (X,+1). Then, as shown in Corollary 7. the conditions for
(1) are satisfied with

(1=Z)q+Zs

(1=Z)g+Zs
m2 '

m2

U=2(1-2)( =1) and V=2(1-2)

Corollary 7 improves the existing result on this type of nrus, obtained in [2],
nnder two aspects,  First, Corollary 7 implics convergence of the pairs (G, D))
and not only of D,,. Hence, one also gets W,, —+ A(0.U + V) stably. Second,
nulike [2], neither the sequence (( By, 1)) is identically distribited nor the random
variables B, + 12, have compact support.

By just the same argument used for two color nrns, mmlticolor versions of Corol-
lary 7 ave easily manmfactured, To onr knowledge, results of this type were not
available so far. Briefly, for a d-color urn. let X, ; be the indicator of {ball of
color j at time n} where n > 1 and 1 < j < d. Suppose A,,; balls of color j are
addod in case X, ; = 1. The random variables A, ; are reguested exactly the same
conditions asked above to By, and 17, Then,

(Cn. Dn) — Au(0.U) x Ny(0.V)  stably.

where Cyy and Dy, are the vectorial versions of O and D, while U, V are cortain
random covariance matrices: see Corollary 10.
A last note is the following., In the previons wrn, the n-th reinforee matrix is

An = lﬁilg(:’in__l, .w e fln_.d)-

Since EA, 1 = ... = EA, 4. the leading cigenvalue of the mean matrix EA, has
multiplicity greater than 1. Even if significant for applications, this particular case
(the leading cigenvalue of EA,, is not simple) is typically negleeted; see [4], [11],
[12], awd page 20 of [15]

. Our result, and indeed the result in [2], contribute to
(partially) fill this gap.

2. STABLE CONVERCGENCE

Stable convergence has been introduced by Renyi i [17] and subsequently in-
vestigated by various anthors, In a sense. it is intermoediate between convergence in
distribution and convergence i probability. We recall here basic definitions. For
wore information, we refer to [1], [7]. [10] and references therein.

Let (Q.A. ) be a probability space and § a metrie space. A kernel on S, or a
random probability measure on 8. is a measurable collection N = {N(w) 1w € Q}
of probability measures on the Borel o-field on 8. Measurability means that

Nw)(f)= ff(f‘} N{w)(dx)

is A-measurable, as a function of w € £, for each bounded Borel map f: S — .
Let (Y5 ) be asequence of S-valued raudom wariables and N a kernel on S, Both
(Y,,) and N are defined on (€. A. I?). Say that Y, converges stably to N in case
I’(Yn €. | H) —= E(;’\"(-} | H) weakly
for all H € A such that 2(H) > 0.
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Clearly, if ¥, — N stably, then Y, converges in distribution to the probability law
E (.’\()) (just let H = 1), Moreover, when § is separable. it is not havd to sce that

B | T .
Yy, = Y if and ounly if ¥, converges stably to the keruel N =y,

We next wention a strong form of stable convergence, introduced in [7], to be
used later on. Let £, € A be a sub-o-field, n > 1. Say that Y,, couverges to N
stably in strong sense, with respeet to the sequence (Fy ), In case

4 23 1 b
E(f(Yn) | Fu) = N(f) for cach f € C(S)
where (3(8) denotes the set of real bovnded continmons functions on S,

Finally. we state a simple but useful fact as a lemmea.

Lemma 1. Suppose that S is a separable metric spoce and
Cy and Dy, are S-valued random variables on (3, A. ), n > 1;
M and N are kernels on S defined on (£, A.1);
G =1(G, :n =1) is an (increasing) filtration satisfying

a(Cn) € G, and a(D,) C G forall n, where Goo = a(U,G, ).
If €y, = M stably and D, — N stably in strong sense, with respect to G, then
(CavDp) —+ M < N stubly.
(Here, M x N is the kernel on § x 8§ such that (_-'11 * f\)(..u) = M(w) ¥ N(w) for
all w).

Proof. By standard argumnents, since S is separable and o(C. Dy, ) © Gog, it suffices
to prove that E{IH FilCy) F2 (D)} — E{JH M(f1)N(f2)} whenever H € UG,
aud fi, o€ Cp(S). Let Ly = E(fg(i),,) | Q,,_) — N(f2). Since H & UG, there is
ko sach that H € G, for n = k. Thus,
E{IH ,fi(cn)fQ(Dﬂ]} = E{IH fl(cn) E(fE(Un) | gn.)}
= E{IH FCON(fa)+ E{IH filCy) Ly} forall n = k.

Fmally, |E{JH FlCy) L} | < sup|fi] E|Ly| =+ 0, sinee D, = N stably in strong
sense, and E{IH FlC)N(f2) = E{IH M{f1)N(f2)} as € — M stably. O

3. A CENTRAL LIMIT THEQREM

In the sequel, (X, @ n = 1) is a sequence of real random variables on the
probability space (£2..4.1°) and G = (G, : » > 0) an (increasing) filtration. We
assmne E1X,| < oo and we let

}- n
i — g Xy &y =81Xn4 ) and
1 & E k n ( n4l | g-:) 111

Cn=n(Xn—2Zp).
In ease Z, =5 Z. for some real random variable Z , we also define
Dy, =+n(Z, - 2).
A sufficient condition for Z, "S5 Z is sup,, EX2 < co and
E{(E(Zns1 | Gn) = Zu)"} = o(n™). (3)

In this case, in fact, (Z,) is an wniformly integrable quasi-martingale,
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We recall that a sequence (Y5,) of real integrable random variables is a quasi-
martingale (with respect to the filtration §) if it is G-adapted and

3 E
rn

If (Y,) is a quasi-martingale aud sup,, E|Y,| < oo, then Y, converges as..
Let AMa.b) denote the one-dimensional Ganssian law with mean o and variance
b = 0 (where A(a,0) = §,). Note that A0, L) is a kernel on B for each real non

negative random variable L. We are now in a position to state our CLT.

E(Yn+l | gﬂ) — ¥ < e

Theorem 2. Suppose o(X,,) C Gy for cach n > 1. (X?,) is uniformly integruble
and condition (3) holds. Let us consider the following conditions

(a) % E{IIIEDC}SkEn k |Zj‘_-_JL — Zﬁ|} — ().

(b) 250 Xk —Zics + M Zier — Z0) ) 55 U,

(€) VA E{sups,|Zeoy — Z] } — 0.
(d) 1 Zkzn[z;‘-_l —- Zk}z —‘i} V,

where U and V' are real non negative mandom variables. Then, C, — N(0.U) stably
under (a)-(b), and D, — N(0, V) stably in strong sense, with respect to G, wnder
(¢)-(d). In particular,

(Copy Dyy) — N(OU) x N(0,V)  stably under (a)-(b)-(c)-(d).
Proof. Siuee o(Cy) < Gn and Z can be taken Goo-measurable, Lemma 1 applics.

Thus, it suffices to prove that (', — A(0.1/) stably and D,, = A(0, V) stably in
STIONE SCse.

"y = M(0.U) stably”. Suppose conditions (a)-(b) hold. First note that

L

T
Ch=0Xy—nZy=> X+ > ((k=1)Zeoy — kZy)
k—1 k—1
n

=D { X — Ly + K Zies — Z)}-
k—1
Letting
X — Zir + K(E(Zi | Giet) — Zi)
W

it follows that ', = :_L Yix + Qu. By (3).
EIQ.| < i*’ \/E{(Zk—k — E(Z | Ge)) } = o i““"_l’% =8
B T = yn k—1 |
Hence, it suffices to prove that S, Yy — A(0,U) stably. Letting 5, » = Gy,

k=1,....n onc obtains E(Y,Lk | F,,_k_l) = 0 as.. Thus, by Corollary 7 of [7],
oy Yo = N(0,U) stably whenever

Yn,k‘ —

1 T . .
and Q= " - ;k(‘{k—l_b‘(‘zk | Ge—1))-

T
i ; ; e ; AT
(i) b{@%iuﬂ__q} —0; (i) ;—1: Y2, —sU.
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As to (i), first note that

m
«/_;lnm.x |Yok| < ax |X;b Zi—1| —I—ZA |E(Zk | Ge1)—Z_y| + s k| L1 —Zl.
k—1
Since (X2) is unifnrml\ mtegrable, (X, — Zn—1)?) is nniformly integrable as well,
aned this implics = b{rudxlq <l Xe — Zk_l_]z} —+ (. By condition (3),

n
T
1

N P > 1 n g
_wkz_;f\ﬂ‘ﬁ(lk|gk_l}—.&k_4:ﬁ ;OU‘ 1.2]_}0.

Thus, (i) follows from condition (a).
As to (i), write

n
E}ﬂg——z (X — Zi—y +K(Zi—y — Z)) EK (E(Zg | Gr—1) Zk—1)2+
. ™
T

2 " ; ; - i
it~ Z(Xk — Ly +k(Ziey — Zi)) k (E(Zi | Gret) — Zi—1)
=R,+ 8, +1, sav.

Then, £, Ly by (b) and E|S,| = £S, — 0 by (3). Further T, e 0, since

l,, - | 5 -
7 <= Z ( Xk — Zi—r + K(Zi—1 — Zi)) ZA (E(Zk | Ge—t) = Ziat)” = By S

Henee, (ii) ht)ldr;._ and this concludes the proof [}f Cn — N0, 1) stably.

"D, = AM(0.V) stably in strong scnsc”. Suppose conditions (¢)-(d) hold.
We first recall a known result; see Example 6 of [7]. Let (L) be a G-martingale
such that L, G:EF " L for some real random variable L. Then,

\/F(L,, - L-) — N(0,V) stably in strong sense with respect to G,

provided
) ab{sp|ley — L) } =50 (@%) 0> (Lo — L2 S V.
kzn k>2n
Next, define Ly = Zj and
n—1
Ly=Zn— 3 (E(Zisr | Gr) — Z)-
k=00

Then, (Ly) is a G-martingale. Also. Ly, T2 1 for some L, as (Zy ) 1% an nniforinly
integrable (uasi-martingale. In partienlar. L, — L can be written as L, — L =
Y ks Le — Lggy) ase. Similarly, Z,, —Z =5 o (Ze — Zig41) aus. 1t follows that

E|D, = V(Lo - L) zx/ﬁﬁ‘{zﬂ.—'d}—{bn—m‘
—\/_b‘Z{{Zk (JHL—LHL]}‘

kEZn

< /1 E E‘zk — E(Zgsy | Qk]‘ = /n Z o(k=%2) —s 0.

kZzmn kZzn
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Thus, D, = A (0, V) stably in strong sense if and ouly if +/n(L, — L) =+ A(0. V)
stably In strong sense, and to conclude the proof it suffices to check conditions
(¢*)-(d*). In turn, (¢¥)-(d¥) are a straight forward cousequence of conditions (3),

(¢). (d) and
Ly = Ly = (Zi—y — Zs) + (E(Zk | Ok-1) = Za—1)-

Some remarks on Theorem 2 are in order.,
In real problems, one of the quantities of wain interest is

W, =+/n (Y.; = Z)
And, mder the assmmptions of Theorem 2. one obtains
W,=0Ch+ D, — MO.U+V) stably.

Condition (3) trivially holds when (X,,) is conditionally identically distributed
with respeet to G; see [5] and Seetion 1. In partienlar, (3) holds if (X,,) s exchange-
ableaad G, = #X 1, cos-Xn)s

Under (¢), condition (a) can be replaced by

(a*) sup, + Zb{(/!k L — Z)?} < o

Indeed, (2*) and (¢) fmply (a) (we omit calenlations). Note that, for proviug
Cy = N(0.U) stably nnder (a¥)-(b)-(¢). one can rely on more classical versions of
the martingale CLT, such as Theorem 3.2 of [10].

To eliek conditions (b) and (d), the following simple lemma can help.

Lemmma 8. Let (Y,) be a G-adapted sequence of real random variables.  1If
. s - - n.5; i 3 ¥
E:;o_ § n2E Yﬂz < oo and b(}’,,+ 1 | Qn) —+ Y, for some random variable Y, then

Ye o 1 n
A; 2HY and = Z Y =% ¥,
k>n i1

Yi—E{ VG s ' :
fronf. Lot Ly = :_ s - ( ; [ . Then, L, is a G-martingale such that

Thus, L, converges a.s. amwd Abel smmmation formmla vields

Wy ) g

Kt
EZ>n

Since E(Y,HL | g,,) %Y and n - fg — 1. it follows that

w3 Yo B Ge) | 5 B Gi)

k>n k>n - kxn

Similarly, Kroncker lennma and E(Yﬂ+1 | Q,,_) s B vield

1y n_ —Z"h_ Y“|g" 1) sy

n
—1
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Finally, as regards Dy,, a natural question is whether
E(f(Dy) ] Gn) = N(0.V)(f) for cach f € Cy(R). (4)
This is a strengthening of Dy, — A0, V') stably in strong sense. as E(f(Dﬂ) | Q,,)

is requested to couverge as. and not only in probability. Conditions for (4) are
given by the next proposition.

Proposition 4. Let (X,;) be o (non necessarily G-adapted) sequence of integrable
random. variables, Condition (4) holds whencver (Z,,) is uniformly integrable and
3 «/TL‘ E(Zy | Ge—1) — Zk—l‘ < o,

k=1
E{r&ll[}‘\/}i_‘|zk_1—zk|} < oo, '.":.Z(Zk_l —Z;L-)Q 2} V.
k=1
= kzn

Proof. Just repeat (the second part of) the proof of Theorem 2. but nse Theorean

2.2 of [§] instend of Exawmple 6 of [7]. LJ

4, APPLICATIONS

4.1, r-step predictions. Suppose we are requested to make conditional foreeasts
on a sequence of events A, € G,,. To fix ideas, for each n, we aim to predict

A5 = (NjgsAngy) N (m-i@":AgH)

conditionally on G,,. where ./ is a given subset of {1, .. .. vianl 2=l 0b WL

Letting X, = 14, . the predictor can be written as
Zy =B [] Xnes [] (1 =Xns5) | G}
e JEd"

Iu the spirit of Seetion 1, when ZF cannot be evaluated o closed form, one needs
to estimate it, Under some assmuaptions, m particular when (X,,) is exchangeable

i i . ==h SR
ad G, = o(X;.....Xy), a reasonable estimate of 2 is X, (1 = X,,)" " where
h =card(./). Usnally, mnder such asssuanptions, one also has 2, 2% Z and Zy 25

ZM1 — Z)™" for some randowm variable Z. So, it makes sense to define
- — 5 " : R
Co=Vn{X1-X)"" -2} Dp=vm{Z—2"0-2)"}.
Next rosult is a straightforward consequence of Thoorem 2.

Corollary 5. Let (X,,) be a G-adapted sequence of indicators satisfying (3). If
conditions (a)-(b)-(¢)-(d) of Theoremn 2 hold, then

(CF DY) — N0, %) x N(0, V) stably, where
P =L (1 = Z)* — (r —=h) ZM(1 - Z) -1}
Proof. We just give a sketch of the proof. Let f(x) = 2"(1 — 2)"". Basing on
(¢), it can be shown that \/ﬁbl &y = f(.Zn)‘ —+ 0. Thns, CY can be replaced by
1 {f(f,, )= flZ, }} and D} by /n {f(Z,, ) — f(Z}}. By the mean valne theoren,
'\/ﬁ {f(‘Y'N) = f{.zn )} = ‘\//ﬁf’(iun) (Yn. = Zﬂ) == f;(i"-{o).) Cln.
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where M, is between X, and Z,,. By (3). Z, 28 Z and X,, 25 Z. Hence,
FIM,) 25 F1(2) as f is contimons. By Theorem 2, €, — A/(0, 1) stably, Thus,

Vi {f(Xn) = f(Za)} — PILNO,U) = N(0,67U)  stably.

By a similar argmment, it can be seen that /7 {f(Z,) — f(Z)} — N(0,02V)
stably in strong seuse. An application of Lemina 1 conchudes the proof. Ol

Rounghly speaking Corollary 5 states that, if 1-step predictions belive nicely,
then r-step predictions beliave nicely as well, Lu fact, (CF. D)) converges stably
nnder the same conditions which imply convergence of (C,,, Dy,), and the respective
limits are connected in a simple way, Fortheoming Subscetions 4.2 and 4.3 provide
examples of indicators satisfying the assmmptions of Corollary 5.

1.2, Poisson-Dirichlet sequences. Let Y be a finite set and (V) a sequence of
Y-valued random variables satistyving

z-yeA (Sn__-y —i¥) 1{_.',-“_”71_3]_ +* (5' ks “z-yey 1{_-‘!".-‘:,;?"{1}) IA‘(A)
8+n

as forall A Yand n > 1. Here, 0 < o < 1 and € > —a are constants, ¥ is the

probahility distribution of ¥i and 8, , = E:—lf{h-—y}-

Sequences (Y,) of this type play a role in various frameworks. wmainly in popnlation-
geneties, They can be regarded as a generalization of those exchangeable sequences
dirccted by a two parawcter Poisson-Dirichlet process; see [16]. For oo =0, (Y5,)
reduces to a elassical Dirichlet sequence (fe., an exchangeable sequence direeted by
a Dirichlet process). But, for & # 0, (¥5,) may even fail to be exchangeable.

From the point of view of Theoran 2, however. the only iimportant thing is that
1 ’(Y,H_ 1 €+ | Yi... ..Y,,) can be written down explicitly, Indeed, the following
result is available,

jl‘,(Yn+l g 44| Ylyn) __

Corollary 6. Let G = o(Yi...., Yo) and Xy, = 1a4(Yy), where A Y. Then,

condition (3) holds (so that Z, =5 Z) and
(Cp.Dy) — So x N(0.Z(1—2))  stably.

Proof. Let Qp, = —e» E?;GA Igs, #00+ (9 + az?;ey f{AQ,A..f%ll}) ¥(A). Since

n Yﬂ +* Qn

Zn=P(Yni €Al Ny,..., Yo) = e

and  |Qul <

for some constant ¢, then €, 2% 0. By Lemma 1 and Theorem 2, thus, it suffices
to chede conditions (3). (¢) and (d) with V = Z(1 — Z). Ou noting that

)(n—i—l T Zn Q'n.+1 == Qn
g+n+1 8+n+1"
condition (¢) trivially holds. Since Sy, = Sny + 1{};

Zn—i—L — Ly =

bt — Y One [)l]f?l.ll]..‘-i

Qus1 — Qn = —av(A°) Z Iis, ~oH (.~ + o¥(4) Z ks, .~ diy o=y
yEA yEA” '
It follows that

E{|Q'n+l s Qw7| | g’n} =2 Z 1{.‘-}'“_.,;—[)} I)(Yn.+JL - 'f/| g’n) £
yey

i
8+n
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for some constant o, and this iaplies

‘E(Qﬂ-{-j 0 | gﬂ) i
= & 8.

g+n+1 ~(8+n)?

Henee, condition (3) holds. To chedk (d), note that 37, f"i‘QE{(Zk_l — Z-k}“i} & o
Since Zx =% Z (by (3)) one also obtains

’E(zn+l | gi!) — Zy

E{(Xy =ZuaV | GorY=4 1= 2} _, =2 2(1=2),
E{(Qr —Qp-1)? | o1} + 2E{(Xg — Zi—1) (Q — Qp—1) | Gr—r } =3 0.

Thus, PE{(Zie1 — Z)? | Gimr} =5 Z(1— Z). Letting Yi = k2(Zi—y — Zi)? and
Y = Z(1— Z), Leunma 3 implics

nY (L1 —Ze)=n>y k—; . &7 Y
kZn k>n

Ll

As it i clear from the previons proof. all assmaptions of Proposition 4 are
satisfied. Therefore, 1, meets condition (4) with V = Z(1 — Z).

A result analogons to Corollary 6 is Theorem 4.2 of [3]. The main tool for proving
the latter, indeed, is Theorem 2.

1.3, Two color randomly reinforced generalized Polya urns. Au wrn con-
tains b > 0 black balls and r = 0 rod balls. At each time n > 1, a ball is drawn and
then replaced together with a random muuber of balls of the same color. Say that
B, black balls or 2, red balls are added to the nrn according to whether X, =1
or X, =0, where X, is the ndicator of {black ball at time n}.

Urns of this type have some history: see 2], [3], [5]. [8]. [14], [15] and references
therein

To model such wrns, we assume X, By, 17 random variables on the probability
space (£2..4. 1°) such that

(¥) X, e{0.1}, B, =0, I, =0,
(By. L2;) independent of (XL. B Nl R Hn_L,_‘(n) -

b+ 22—1 By X,
b+ v+ (BeXp + (1 — Xy))

Ly = 1)(‘¥n+l =] | gn) =

8.,

for cach n > 1, where

g(] - {g Q} gﬂ - U(d’(leﬁl-!‘)l- v -‘Kn-Bn--”n) .

In the particular case B, = 12, in Example 3.5 of [5], it is shown that ),
converges stably to a Ganssian kernel whenever EB? < oo and B, ~ By for all n.
Iurther, in Corollary 4.1 of [B], Dy, is shown to satisfy condition (4). The latter
result ou Dy, is extended to By, # 1, in [2], under the assumptions that By + 17
Lins compact support, EB; = ERy, and (B, I1,) ~ (B, ;) for all n,

Basing on Theorem 2. condition (4) can be shown to hold more generally. Indeed,
it is fundamental that EB,, = ER, for all n and the three sequences (E By, ). (EB?, )
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(ER2) approach a lmit. But identity in distribution of (B,. 1?,) can be dropped
and compact support of By, + K, can be replaced by a moment condition sach as

:-;111).:‘_‘,'{(3,, 4 Il’.ﬂ)“} < oo for some u > 2. (5)
n

Under these conditions, not ouly D, meets (4), but the pairs (Ch, D) converge
stably as well, In particular, one obtains stable convergence of W,, = C,, + D,
which is of potential interest in urn problems,

Corollary 7. In addition to () and (5), suppose EB,, = ER,, for all n and

mi=HlmEB, >0, q:=hmEB>, s:=lmER,
n " n

Then, condition (3) holds (so that Z,, %% Z) and

(Cu. Dy) — M(OU) x N0, V) stably, wher
(1—Zg+Zs 2 (1—Z)jg+Zs

m2 m2

U=z2(1-2)( —1) and V=2Z(1-
In particular, Wy, = Cy+ Dy, — N0, U+V) stably. Morcover, Dy, meets condition
(4), that is, E(f(Dy) ] Gn) =5 N(0.V)(F) for cach f € Cp(RR).

It is worth noting that, argning as in [2] and [14], one obtains (2 = z) =0 for
all z, Thns, A0, V) is 2 non degenerate kernel. In turn, A0, /) is non degenerate
nnless ¢ = & = m?2, and this happens if and only if both B,, and 1, conwerse in
probability (necessarily to m). In the latter case (¢ = s = m?), ¢, L5 0 and
coudition (4) holds with V = Z(1 - Z). Thus, i a seuse, randomly reinforced nrus
behave as classical Polya nrns (Le., those nms with B, = [, = m) whenever the
reinforcements converge in probability,

The proof of Corollary 7 is deferred to the Appendix as it needs some work. Here,
to poiut out the nuderlying argument, we sketel such a proof under the superfluous
but simplifying assmmption that B, V 17, < ¢ for all n and some constant ¢, Let

n
Sn=b+r+ 3 (Be Xy + Re(l - X))
k=1

After some algebra, 2,0 — Z,, can be written as

(1 e Z’n)«‘(ﬂ—t-l Bﬂ—}-l = Zn (1 _-Xﬂ.-p—l_) h‘-n—}-l

Zﬂ—H_ = Zﬂ o

Sn—i—l
= (1 _Zn)-xﬂ-f—lBﬂ—i—i p Zn (1 _—Kﬂ—f—i)j‘fﬂ.-fl
Ss+ B-;:+L Sp + g
By (%) md EB, 1y = ERpyy,
¥ Bn-}—l_ -Hn-}—l_
ElZuyy— & = Ll —ily ) & —
( n+l n | gvr) 'n( n} { SN + Bn+l Sn + an+l | g‘n}
Bﬂ+L Bn+L I‘)-n.—;—l Jrf'n+l
=&l =) E = =
ﬂ( ”) { Sn s i JBn+1 Sn. Sﬁ + Jr‘)-sn.—}-]_ Sn. | gn}
Bii -

= Zﬂ(l _Zﬂ) E{ =

G LS.
Sﬂ(sﬂ + Bn+i) Sﬂ(sﬂ 4= If‘:H—j) | ﬂ}
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Thus, ‘E(Zﬂ_+1 | Qﬂ_) = I ... Since 5111)??(}513%_ + EH%) < oo
aud E(S;7) =0(n=") for all p > 0 (as shown in Lemma 11) then

< ‘E"BE+!+E‘{"’E+I
‘t’u

E{|E(Zns1 | Gn) = Zal’} = O(n™) for all p > 0.

In particular, condition (3) holds and 37, \/I}:‘ E(Z | Geey) — Zk_l‘ < oo
To conchide the proof. in view of Lemnma 1. Theoran 2 and Proposition 4, it
suffices to check conditions (a), (b) and

() E{sapVk|Ze_y— Zl} <oor (i) n ) (Zimr — Z)> =3 V.
k>l
= kZzmn

Conditions (a) and (i) are straightforward consequences of | 2,0 — Z,| < {— anued
E(S5;7) =0(n™?) for all p > 0. Coudition (b) follows from the same argumnent
as (ii). And to prove (ii), it suffices to show that E(Y,s; | Gn) &3 V where
Yy =n2(Zy_1— Zy)% see Lemma 3, Write (n+ 1)72E(Y, | Gn) as
Z,(1-Z FE{LW }+ Z201-2 }E{LW }
. = {S‘Iﬂ =+ Bﬂ—i—l )2 " - w {Sﬂ. = fi’w:+l]2 "
Since % 2% m (by Lemma 11) and B+ < ¢, then
. o ) B2 EB? ‘
Dy 41 B n+l 2 ntl as,
Wl e e Sl i —ae aeaed
" {(\Sﬂ +Bﬂ+l)2 | gﬂ} e { S?? | g?} g szr ”"‘2 i

Bﬁ+l 2 ‘HWQT+L
e o 875 'y ... 2,
(Sn + Bﬂ.—i—l)z | gﬂ} = {{Sw i (:]2

|G} ? st sy 4

-
E [ P
" { ; (5 + )2 m2

Similarly, -n.zb{m G} =3 3. Sinee Z, 2% Z. it follows that

’ ” [ f rpd L3 & F
E(Yos1 | Gn) =% Z(1- 2725+ 22(1- 2)— = V.

This conchides the (sketeh of the) proof.

Remark 8. In order to (C, Dy,) — A0, U)x (D, V) stably, sowe of the assmnp-
tions of Corollary 7 can be stated in a different form. We mention two (independent)
facts.
First, condition (5) can be weakened iuto nniform integrability of (B, + 19,
Sceond, (By. 12;) independent of G, V (X)) ean be replaced by the following
four conditions:

.

(1) (By. ) conditionally independent of X, given G,y
(ii) Coondition (5) holds for some u > 4;
(iii) There are an integer ng and a constant [ > 0 such that

E(B,, Ant/d | Qw_l) = [ and E(Rn At | g.n__l) =1 as. whenever n > ng:
(iv) There are random variables m. g, s such that
1)

f"‘(Bﬂ | g-n—l) = b.(jf'n | g\n—l) i} ., L‘(Bﬁ | gﬂ—l) i}-q- b(h)i | g\n—l) ——r &

Even if in a different framework, conditions similar to (i)-(iv) are in [4].
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4.4, The multicolor case. To avoid technicalities, we firstly investigated two color
urns, but Theorem 2 applies to the nmlticolor ease as well.

An urn contains a; > 0 balls of color j € {1..... d} where d 2 2. Let X, ;
denote the indicator of {ball of color j at time n}. ln case X, ; = 1. the ball which
Lias been drawn is replaced together with A, ; more balls of color j. Formally, we
ASSIILC {X,,__ do AAmg tE L1y <l } random varinbles on the probability space
(€. A. P) satisfying

d
(**) ‘Yﬂ._j & {01} z_;—l‘rﬂ-:,} =1, A""-‘J. 2 0.
(A A,.a) independent of 1:‘4;;__3'._ X Xagslsktmlejs “‘-‘)*
T
¢ a; + —y A g Xk,
é'”.w‘ = I)(-Kn—}—l_.,j =1 | gﬂ) - d - E’; : ke;.‘J — el
E\"_J. i+ Zk‘_l Z?‘_l 44k.f‘¥k_.'f
where Gy ={0.0}. &, = U(Ak_-,;- Xigilghsm 1)< d)'

Note that

7 7 - (1 7 .] ‘4n+l.j -KH—H.._}' 4-ﬂ+l :-Yn—!—l i
n+lg = Lng — = I T e & - ST 'n o Z
Sﬂ + A-11+1._j s Aw+.l i

d i1 d
where S, = Z @i+ 29: Z A i X

i—1 k—1i—1
I addition to (#%). as in Subsection 4.3, we ask the moment condition

d

:-supE{(ZAn__j)“} < oo for some u = 2, (6)
n =i

It her, it is fundamental that
EA,;=FA,, foreachn>1and 1< j<d, and (7)
mi=lmEA,; >0, g¢;:=lm EA%_J- for cach 1 <€ j < d.
L L -

Fix 1< j <d. Simee EA,; = EA, 1 for all n and i, the same calenlation as in
Subsection 4.3 yields

Ef Lb r+l; _—
T T e L4 e
S

Also, E(S5;7) =0(n~?) for all p > 0: sce Remark 12, Tlns,
E(Zns1 | Gn) = ZnsP } = O(n=)  for all p > 0. (®)

‘E(Zn.+l,_) | gﬂ) _Z??_.J" —

In particular. Z, ; meets condition (3) so that Z,, ; =% Z for some random
ariable Z ;). Define

1

Ca «/n( ZX“-J — Z,,__J) and D, ;= /n (Zn__j —ZU--)).

R i

Next result is guite expeeted at this point,
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Corollary 9. Suppose conditions (x%), (6), (7) hold and fir 1 < j < d. Then,
((..-'n____}-. U‘.,__J-) — N(0.U;) x N(0.V;)  stably. where
o
U=V = Z5(1=Zy) and V= —,,i";) a5 (1 = Z;))* + Zj) ) 4i Zo }-
' i

Moreover, E ( f(D,;) ] Qﬂ) 25 N0, Vi)F) for cach f € Cy(R), that is, D,, ; meets
condition (4).
Proof. Just repeat the proof of Corollary 7 with X, ; in the place of X,,. O

A vectorial version of Corollary 9 can be obtained with slight effort. Let A,(0.Z)

denote the d-dimensional Ganssian law with mean vector 0 and covariance matrix
% and
Cn - (Cl-n_.l EE C"ﬂ,d) . Dy= (Dn.l ----- D-n.d)-
Corollary 10. Suppose conditions (¥%), (6). (T) hold. Then,
(Cn. Dp) — Nyl0.U) x Ng(0, V) stably,
where U, V oare the o x d matrices with entrics Uy ; = U Vi =V, and

_ ZiZy

d
Uig=Vij+ZwZy). Vij= {Z%Z{m ST ‘1,3} fori # j.
h—1

m2

Moreover, E(f(Dn_} | Q.,,_) =5 N0, VI £) for cach f € Cy(RY).
Proof. Given a lincar functional ¢ : RY — &, it suffices to see that
H(Cn) —+ Ny(0, U)o ¢™!  stably, and
E(_q o @(Dy) | Qﬂ) L% Ny 0. V) (go@) for cach g € Cy(R).

To this purpose, note that

... _
$(Cn) = /0 { ;Z B Xirsooos Xioid) — E(S(Xnptisee s Xnsia) | On) 3,
=y
$(Dn) = Vi { E($( Xnsrts- o Xnsra) | Gn) — $(Zi1ye- - Ziay) )
and repeat again the proof of Corollary 7 with &(X,q... .. Xpa) I the phee of
X O

A nice consequence of Corollary 10 is that
Wua=Ch+D,, — AN;)(0.U+V) stably
provided conditions (%%)-(6)-(7) hold, where W,, = (H",?__l. ik ll},_d) and
Wi =0 (5 Xy Xey — Ziy)-

APPENDIX

In the notation of Subscction 4.3, let S, =b+r + ZE_l(Bka + {1~ X;‘_.}).

Lemma 11, Under the assumptions of Corollary 7,

i 1
e i kel Ly o el i W
Sa m
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Proof. Lat Yy = By X+ 0a(1 — X)), By (&) and EBy o = ERy g,
E(}:ﬂ—f—l | Qﬂ) - ﬁY‘Bﬂ-}—LE(-Yﬂ—}-l | g’n) g i Eh’-n-}—i b(l _“(n—}-l | gn.)
=ZyEBns1 + (1= Zy) EBpsy = EBpyy =5 m.

Sinee m = (), Lemia 3 implies q”— = ﬁ e Tt To conclude the proof, it suffices
to see that E(S;7) =0(nP) for all p = 0. Given ¢ > 0, define
n

Si =3 "{Xe(Br Av— E(BeAc)) + (1= Xe) (B Ae—E(ltx Ac)) }.
k=1

By a classieal martingale inequality (see ¢.g. Lemma 1.5 of [13])
| 5 > r) <2 exp (—,‘:.‘2 /2 2 n) for all x>0,

Since EB; = ER, —+ m and both (By). (£2,) are nniformly integrable (as
1P, (b‘b‘ﬁ + EIZ) < co), there are ¢ >0 and an integer ng such that

n
iy = Z Iujn{E(Bk Ac), E(Re A r.'.)} o n% for all n = ng.
b=l

Fix one such ¢ = 0 and let [ =m/4 > 0. For every p > 0, one can write

B{SF) = p/ LS, < t)dt
b+

» bhtr+nl {oo] .
< — ] IS, < t)dt + pf R
(h i 3 )p+l T " bt d

Clearly. p fbcfr_m! Yt = (b+r+nl)™? =0(nP). Further. for cach n = ng
and < b+ v +nl. since my > 02l one obtains

PSp<t) < P(S) <t—b=r—m,) < P8 <t—b—r—n2l)
= 1’(|S}f}| >hdr4n2l— f) < 2exp (—(fﬁ +r4+n2l—-19)2/2 n).

Henee, ;:_F:“Lml’(b"ﬂ < t)dt < n2l exp (—'rr %5) for every 0 > ng. =0 that
E(5,;7)=0(n"?). &

Remark 12, Asin Subscetion 4.4, let 8§, = Ef_l m—l—Z:_l Ef_L ApiXei. Under
conditions (#%)-(6)-(7), the previous proof still applics to such 5y, Thus, &~ — L
as, awd in Ly, for all p = .
Proof of Corollary 7. By Leunna 1, it is enongh to prove ), = A(0,U) stably
and D, meets coudition (4). Reeall from Subscetion 4.3 that
(1 2 Zﬂ)x‘(n—f—l Bn+l = Zﬂ (1 _AK?3.+L] wa—kl

Sﬂ+l
annd E{|E(Z,,+i | ) — Z"|3’} - 0(';'.!._23’) for all p = 0.

Zn—}—l_ Sl Zn -

In particular. condition (3) holds and 37, \/Zb‘ E{Z | Gp_1)— Zk_l‘ < oo.

"Dy, meets condition (4)”. By (5) and Lemma 11,

(By + )"
58 .

B|%~ %"} & B b= E{(Bi + )"} E(S) = O(™).
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Thins. E{rsupk «/E|zk_l — Zy] }“ =Yk k2 E{|Zk_l—Z;‘_\|“} < coas u > 2. In view
of Proposition 4. it remains only to prove that

) _ (1 —=Zp_1) X B Zyp—1(1 = Xy )R 2

e 2 =i - -

n E (Zhcy —Z3)" =n E :( S, Sk )
k>n kZn

1 =2y X882 (=X
:”Z { k1) .&.2 5 . ”Z k—1\ k 2,;_
b (SA:—J. + By ¢ (S;Q_L—Fffk‘]
>n kZn

It is cnongh to show that

s (J. Zlg+Zs
converges as. to V=2Z(1-2Z) ———.

ZE—}_{\l B )(k)i?_g a.5;
(Sk—1 + 122

1—Zp_1)2 X882 as q
'nz { — DX 0, e 1 B2 Z)Q sl -nE
: k>n
These two it relations can be proved by exactly the same argument, and thos we
just prove the first one. Let [/, = Bolig, < /my Since P(B,, > /n) < n T EBY,
coudition (5) vields (B, # U/,,.1.0.) = 0. Hence, it suffices to show that

(1 _Zk— J JYKI k0.8 a2
— Ll —&fy—: 9
HZ (Sk—1+ Ug)? )’ m? )

g V= n?%{%yf— Since (B7) is wniforly integrable, EU2 — g -

thermore. ‘T 2% moand Z, 25 Z. Thus,

S ” . i X - 1(;"_2
E(Yos1|Gn) = (1= Z,) (0 + 11%('*T_”“ | Gn)
n
5(n+1)2

= Zﬂ{l = ‘Zﬂ] Sﬁ

ol i s i U
b{"ﬂ+l = Z(l =) m and

F . X LUE 1
E(Y Ga) 21 = ZuPow+ D El——2— |
( n+l | ﬂ) _( w?) ( ) ((S.n +m]2 | ?)

¢ 12 g
(1 2 ooy gz L

(8, ++/n—+1)2 bl m2

By Lemma 3, for getting relation (9), it suffices that E

= Zn{_l = Z'n }2

n 5 <oo. Simce

b‘f,""l }—"{an{b’ <4/T} } b{BﬂI{B >\/_]-} LB-E + £B;,

) w2
n? n? n nT TR B

condition (5) implics E — < co. By Lema 11, L{G';fl) =Q(n™*). Then,

n ns

Ty rd
Zﬁr“ {Zn?}:{ "-1 } Z.’Fﬁ(qﬁ41 EUM<e ZL’:Q" < o

" '”— "

for some constant ¢. Henee, condition (9) holds.

" = N0, 1) stably”™., By Theorem 2, it suffices to check conditions (a) and
(b) with U = Z(1—-Z) (“_‘{th{f’ —1). Asto (a), since E{|Z,_1—Z|"} =0(k™"),

m=

mn
(n* gy k| Zis = Z})" < 07% 3R E{ 2 = 2"} — 0
Sl k—1

=% 251~ Al—
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We next prove condition (b). After some algebra, oue obtains

; ; § B,
b{(-Yﬂ ﬂ 1 (d'n 1 ﬂ) | gﬂ—i} = _éﬂ—l(l = Zﬂ—l)ﬁt{m | gﬂ 1}+
B, [
Zr_(1- ) E
¥ n—l( ﬂ l { q?? 1% Bﬂ q?? 1% ‘h’ﬂ | gﬂ l}
Arguing as in the first part of this proof (" D,, meets condition (4)”)
B, 1,
By — b 21 and Ey——— 2% 1.
" {S'7 : + B, |gn l} am w {qﬂ ey A | G l}

Thus, n E{(Xp — Zy—1)(Zyt — Z0) | Gt} =5 —Z(1 = Z). Further,

J':'{(X,,— w=1)” | G 1} Lyy— Z?,__L%Z(l—,‘f)_

Thus, Lemma 3 implies

1 n ) 2 L3 T
;Z(Xk — Zp1)? + ;Zk (Xp = Zi—t) Lyt — Zi) =5 —Z(1— 2).
1 k—1

noog2 (1=Zny P Xl L O \kjfi’l}

11. 3 F 14 -3 bl i 2
Finally. write = }. (Zp_y—Zg)y = ki s 1507 - T
By Lemma 3 and the same truncation techn_lque used in the first part of this proof.

l kQ(Jk 1 —Z )P 22 V. Squaring,
1
—Z{Xk —Zper +k(Zer — Zi)Y 2%V =201 =2) =V,
o=t
that is, condition (b) holds. This concludes the proof. O
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