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LIMIT THEOREMS FOR EMPIRICAL PROCESSES

BASED ON DEPENDENT DATA

PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

Abstract. Empirical processes for non ergodic data are investigated under

uniform distance. Some CLTs, both uniform and non uniform, are proved.
In particular, conditions for Bn =

√

n (µn − bn) and Cn =
√

n (µn − an) to
converge in distribution are given, where µn is the empirical measure, an the

predictive measure, and bn = 1

n

∑
n−1

i=0
ai. Such conditions can be applied to

any adapted sequence of random variables. Various examples and a character-
ization of conditionally identically distributed sequences are given as well.

1. Introduction

Almost all work on empirical processes, so far, concerned ergodic sequences (Xn)
of random variables. Slightly abusing terminology, here, (Xn) is called ergodic if
the underlying probability measure P is 0-1 valued on the sub-σ-field

σ
(

lim sup
n

1

n

n
∑

i=1

IB(Xi) : B a measurable set
)

.

In real problems, however, (Xn) is often non ergodic in the previous sense. Most
stationary sequences, for instance, are non ergodic. Or else, an exchangeable se-
quence is ergodic if and only if it is i.i.d..

This paper deals with convergence in distribution of empirical processes, based
on non ergodic data, under uniform distance. Special attention is paid to condi-
tionally identically distributed (c.i.d.) sequences of random variables (see Section
4). This type of dependence, introduced in [4] and [15], includes exchangeability as
a particular case and plays a role in Bayesian inference.

The paper is organized as follows. Sections 2, 3 and 5 include preliminary ma-
terial (the only new result in these sections is Example 7). In particular, empirical
processes for non ergodic data are discussed in Section 2 while the case of c.i.d.
data is reviewed in Section 5. The core of the paper is in Sections 4 and 6. Section
4 includes a characterization of c.i.d. sequences and a couple of examples. Section
6 contains some uniform and non uniform CLTs. Suppose (Xn) is adapted to a
filtration (Gn) and let an(·) = P (Xn+1 ∈ · | Gn) denote the predictive measure. Our
main results (Theorems 9, 10, 11) provide conditions for the empirical processes

Bn =
√

n (µn − bn) and Cn =
√

n (µn − an)

to converge in distribution, where µn is the empirical measure and bn = 1
n

∑n−1
i=0 ai.

Such conditions can be applied to any adapted sequence of random variables.

2000 Mathematics Subject Classification. 60B10, 60F05, 60G09, 60G57.
Key words and phrases. Conditional identity in distribution, empirical process, exchangeabil-

ity, predictive measure, stable convergence.
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2 PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

2. Empirical processes

Throughout, (Ω,A, P ) is a probability space, X a Polish space and B the Borel
σ-field on X . The ”data” are meant as a sequence (Xn : n ≥ 1) of X -valued random
variables on (Ω,A, P ). Also, we fix F ⊂ B and we let l∞(F) denote the space of
real bounded functions on F equipped with the sup-norm

‖φ‖ = sup
B∈F

|φ(B)|, φ ∈ l∞(F).

A random probability measure on X is a map γ on Ω such that: (i) γ(ω) is a
probability measure on B for all ω ∈ Ω; (ii) ω 7→ γ(ω)(B) is A-measurable for all
B ∈ B. One example is the empirical measure

µn =
1

n

n
∑

i=1

δXi
.

In the particular case where (Xn) is i.i.d., the empirical process is

Gn =
√

n (µn − µ)

where µ = P ◦X−1
1 denotes the probability distribution common to the Xn. Any-

way, apart from (Xn) is i.i.d. or not, Gn is a map Gn : Ω→ l∞(F). If Gn converges
in distribution, as a random element of l∞(F), then

‖µn − µ‖ =
1√
n
‖Gn‖ P−→ 0.

If (Xn) is not i.i.d., Gn needs not be the ”right” empirical process to be dealt
with. A first reason is that, even if (Xn) is identically distributed, µ is only a
part of the probability distribution of the sequence (Xn) (and usually not the most
meaningful part). Thus, in the dependent case, Gn is often not much interesting
from the point of view of applications. A second and more stringent reason is that,
if (Xn) is non ergodic, ‖µn−µ‖ typically fails to converge to 0 in probability. In this
case, Gn is definitively ruled out as far as convergence in distribution is concerned.

Hence, when (Xn) is non ergodic, empirical processes should be defined in some
different way. One option is

∼

Gn = rn (µn − γn),

where the rn are constants such that rn → ∞ and the γn random probability

measures on X satisfying ‖µn − γn‖ P−→ 0.
As an example, suppose (Xn) is exchangeable and T is the tail σ-field of (Xn).

By de Finetti’s theorem,

P
(

(X1, X2, . . .) ∈ B
)

=

∫

γ(ω)∞(B) P (dω), B ∈ B∞,

where γ is a (regular) version of P
(

X1 ∈ · | T
)

and γ(ω)∞ = γ(ω)× γ(ω)× . . .. In

this case, it is tempting to let rn =
√

n and γn = γ. The corresponding empirical
process

Wn =
√

n (µn − γ)

is examined in [4] and [5].
For another example, suppose (Xn) is adapted to a filtration (Gn : n ≥ 0) and

define the predictive measure

an(·) = P
(

Xn+1 ∈ · | Gn

)

.
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In Bayesian inference and discrete time filtering, evaluating an is a major goal.
When an can not be calculated in closed form, one option is estimating it by
data and a possible estimate is the empirical measure µn. For instance, µn is a
sound estimate of an if (Xn) is exchangeable and Gn = σ(X1, . . . , Xn). Then, it is
important to evaluate the limiting distribution of the error, that is, to investigate
convergence in distribution of the process rn (µn − an) for suitable constants rn →
∞. Among other things, if such a process converges in distribution then µn is a

”consistent estimate” of an, for ‖µn − an‖ = 1
rn
‖rn(µn − an)‖ P−→ 0. Thus, in a

Bayesian framework, it is quite reasonable to let γn = an. Letting also rn =
√

n
leads to the empirical process

Cn =
√

n (µn − an).

In case of c.i.d. data (see Section 4), Cn is investigated in [1], [4], [6].

One more possible choice is γn = bn where bn = 1
n

∑n−1
i=0 ai. In fact, there are

problems where bn plays a role, mainly in stochastic approximation, calibration and
gambling; see [2], [9] and Subsection 6.1. The corresponding empirical process

Bn =
√

n (µn − bn)

is concerned in [4] for c.i.d. data.
In Section 6, we focus on Bn and Cn in case of any (adapted) sequence (Xn) of

random variables.
We finally note that Bn, Cn and Wn reduce to Gn in the particular case where

(Xn) is i.i.d., G0 = {∅,Ω} and Gn = σ(X1, . . . , Xn). Generally, however, the former
are technically harder than the latter to work with. In fact, Gn is centered around
the fixed measure µ, while Bn, Cn and Wn are centered around random measures
(bn, an and γ, respectively) possibly depending on n.

3. Modes of convergence

The empirical processes Bn, Cn, Gn and Wn, regarded as maps from Ω into
l∞(F), can fail to be measurable if l∞(F) is equipped with the Borel σ-field. To
investigate their convergence in distribution, thus, we need a definition which allows
for non measurable random elements. One such definition is due to Hoffmann-
Jørgensen. The resulting theory, developed in [11] and [16], is nice and usable in
real problems. We recall here basic definitions.

Let S be a metric space. A map X : Ω → S is measurable (or a random
variable) in case X−1(B) ∈ A for all Borel sets B ⊂ S, and it is tight provided it
is measurable and has a tight probability distribution. The outer expectation of a
bounded function Z : Ω→ R is

E∗Z = inf{EU : U : Ω→ R bounded and measurable, U ≥ Z}.
Let ν be a probability law on the Borel σ-field of S and (Ωα,Aα, Pα) a net of

probability spaces with associated maps Zα : Ωα → S. Denote ν(f) =
∫

fdν for all
bounded Borel functions f : S → R. Say that Zα converges in distribution to ν if

E∗f(Zα) −→ ν(f) for all f ∈ Cb(S).

In this case, we also write Zα
d−→ Z whenever Z is a measurable S-valued map,

defined on some probability space, with distribution ν.
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To make the previous definition more transparent, we recall that Zα converges
in distribution to ν if and only if

EQα
f(Zα) −→ ν(f) for all f ∈ Cb(S), whenever each Qα is a

finitely additive probability on the power set of Ωα extending Pα;

see [3]. Actually, convergence in distribution of Zα amounts to weak convergence of
the probability laws Qα ◦Z−1

α , in the usual sense, for all finitely additive extensions
Qα of Pα.

Finally, we turn to stable convergence. Let γ be a random probability measure
on S and suppose that (Ωα,Aα, Pα) = (Ω,A, P ) for all α. Say that Zα converges
stably to γ in case

E∗
(

f(Zα) | H
)

−→ E(γ(f) | H) for all f ∈ Cb(S) and H ∈ A with P (H) > 0.

Stable convergence clearly implies convergence in distribution. Indeed, Zα con-
verges in distribution to the probability measure E(γ(·) | H), under P (· | H), for
each H ∈ A with P (H) > 0. Stable convergence has been introduced by Renyi and
subsequently investigated by various authors (in case the Zα are measurable). We
refer to [8], [14] and references therein for details.

4. Conditionally identically distributed random variables

4.1. Basics. In the sequel, G = (Gn : n ≥ 0) is a filtration on (Ω,A, P ). The
sequence (Xn : n ≥ 1) is conditionally identically distributed with respect to G,
abbreviated G-c.i.d., in case (Xn) is G-adapted and

(1) P
(

Xk ∈ · | Gn

)

= P
(

Xn+1 ∈ · | Gn

)

a.s. for all k > n ≥ 0.

Roughly speaking, (1) means that, at each time n ≥ 0, the future observations (Xk :
k > n) are identically distributed given the past Gn. Condition (1) is equivalent to

XT+1 ∼ X1 for each finite G-stopping time T.

When G0 = {∅,Ω} and Gn = σ(X1, . . . , Xn), the filtration is not mentioned at
all and (Xn) is just called c.i.d.. Clearly, if (Xn) is G-c.i.d. then it is c.i.d. and
identically distributed. Moreover, (Xn) is c.i.d. if and only if

(2)
(

X1, . . . , Xn, Xn+2

)

∼
(

X1, . . . , Xn, Xn+1

)

for all n ≥ 0.

Exchangeable sequences are c.i.d., for they meet (2), while the converse is not
true. In fact, by a result in [15], (Xn) is exchangeable if and only if it is station-
ary and c.i.d.. Forthcoming Examples 3, 4 and 7 exhibit non exchangeable c.i.d.
sequences. We refer to [4] for more on c.i.d. sequences. Here, we just mention the

SLLN. Suppose X = R, (Xn) is c.i.d. and E|X1| < ∞. Then, 1
n

∑n
i=1 Xi

a.s.−→ X
for a suitable random variable X.

4.2. Characterizations. Following [10], let us call strategy any collection

σ = {σ(q) : q = ∅ or q ∈ Xn for some n = 1, 2, . . .}
where each σ(q) is a probability on B and (x1, . . . , xn) 7→ σ(x1, . . . , xn)(B) is Borel
measurable for all n ≥ 1 and B ∈ B. Here, ∅ denotes ”the empty sequence”. Let
πn be the n-th coordinate projection on X∞, i.e.,

πn(x1, . . . , xn, . . .) = xn for all n ≥ 1 and (x1, . . . , xn, . . .) ∈ X∞.
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By Ionescu Tulcea theorem, each strategy σ induces a unique probability ν on
(X∞,B∞). By ”σ induces ν” we mean that, under ν,

π1 ∼ σ(∅) and {σ(q) : q ∈ Xn} is a version of the conditional(3)

distribution of πn+1 given (π1, . . . , πn) for all n ≥ 1.

Conversely, since X is Polish, each probability ν on (X∞,B∞) is induced by an
(essentially unique) strategy σ.

Let α0 and {α(x) : x ∈ X} be probabilities on B such that the map x 7→ α(x)(B)
is Borel measurable for B ∈ B. Say that {α(x) : x ∈ X} is a (Markov) kernel with
stationary distribution α0 in case α0(B) =

∫

α(x)(B) α0(dx) for B ∈ B.
In this notation, the following result is available.

Theorem 1. Let ν be the probability distribution of the sequence (Xn). Then, (Xn)
is c.i.d. if and only if ν is induced by a strategy σ satisfying

(a) the kernel {σ(q, x) : x ∈ X} has stationary distribution σ(q)

for q = ∅ and for almost all q ∈ Xn, n = 1, 2, . . ..

Proof. Fix a strategy σ which induces ν. By (2) and (3), (Xn) is c.i.d. if and only
if X2 ∼ X1 and, under ν,

{σ(q) : q ∈ Xn} is a version of the conditional(4)

distribution of πn+2 given (π1, . . . , πn) for all n ≥ 1.

In view of (3), the condition X2 ∼ X1 amounts to
∫

σ(x)(B)σ(∅)(dx) = P (X2 ∈ B) = P (X1 ∈ B) = σ(∅)(B), B ∈ B,

which just means that the kernel {σ(x) : x ∈ X} has stationary distribution σ(∅).
Likewise, condition (4) is equivalent to

for all n ≥ 1, there is Hn ∈ Bn such that P
(

(X1, . . . , Xn) ∈ Hn

)

= 1

and

∫

σ(q, x)(B)σ(q)(dx) = σ(q)(B) for all q ∈ Hn and B ∈ B.

Therefore, (Xn) is c.i.d. if and only if σ can be taken to meet condition (a). �

Practically, Theorem 1 suggests how to assess a c.i.d. sequence (Xn) stepwise.
First, select a law σ(∅) on B, the marginal distribution of X1. Then, choose a kernel
{σ(x) : x ∈ X} with stationary distribution σ(∅), where σ(x) should be viewed as
the conditional distribution of X2 given X1 = x. Next, for each x ∈ X , select a
kernel {σ(x, y) : y ∈ X} with stationary distribution σ(x), where σ(x, y) should be
viewed as the conditional distribution of X3 given X1 = x and X2 = y. And so on.
In other terms, for getting a c.i.d. sequence, it is enough to assign at each step a
kernel with a given stationary distribution. Indeed, a plenty of methods for doing
this are available: see the statistical literature concerning MCMC.

Finally, we recall that exchangeable sequences admit an analogous characteriza-
tion. Say that {α(x) : x ∈ X} is a reversible kernel with respect to α0 in case

∫

A

α(x)(B) α0(dx) =

∫

B

α(x)(A) α0(dx) for all A, B ∈ B.

If a kernel is reversible with respect to a probability law, it admits such a law
as a stationary distribution. The following result, firstly proved by de Finetti for
X = {0, 1}, is in [13].
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Theorem 2. The sequence (Xn) is exchangeable if and only if its probability dis-
tribution is induced by a strategy σ such that

(b) {σ(q, x) : x ∈ X} is a reversible kernel with respect to σ(q),

(c) σ(
∼
q) = σ(q) whenever

∼
q is a permutation of q,

for q = ∅ and for almost all q ∈ Xn, n = 1, 2, . . .. (with
∼
q = q if q = ∅).

4.3. Examples. It is not hard to see that condition (b) reduces to (a) whenever
X = {0, 1}. Thus, for a sequence (Xn) of indicators, (Xn) is exchangeable if
and only if it is c.i.d. and its conditional distributions σ(q) are invariant under
permutations of q. It is tempting to conjecture that (b) can be weakened into
(a) in general, even if the Xn are not indicators. As shown by the next example,
however, this is not true. It may be that (Xn) fails to be exchangeable, and yet it
is c.i.d. and its conditional distributions meet condition (c).

Example 3. Let X = Y × (0,∞), where Y is a Polish space. Fix a constant r > 0
and Borel probabilities µ1 on Y and µ2 on (0,∞). Define σ(∅) = µ1 × µ2 and

σ(x1, . . . , xn)(A×B) = σ[(y1, z1), . . . , (yn, zn)](A×B)

=
r µ1(A) +

∑n
i=1 zi IA(yi)

r +
∑n

i=1 zi
µ2(B)

where n ≥ 1, xi = (yi, zi) ∈ Y × (0,∞) for all i and A ⊂ Y, B ⊂ (0,∞) are
Borel sets. By construction, σ satisfies condition (c). By Lemma 6 of [6], (πn) is
c.i.d. under ν, where ν is the probability on (X∞,B∞) induced by σ. However,
(π1, π2) is not distributed as (π2, π1) for various choices of µ1, µ2 (take for instance
Y = {0, 1}, µ1 = (δ0 + δ1)/2 and µ2 = (δ1 + δ2)/2). Hence, (πn) may fail to be
exchangeable under ν.

The strategy σ of Example 3 makes sense in some real problems. In general, the
zn should be viewed as weights while the yn describe the phenomenon of interest.
As an example, consider an urn containing white and black balls. At each time
n ≥ 1, a ball is drawn and then replaced together with zn more balls of the same
color. Let yn be the indicator of the event {white ball at time n} and suppose
zn is chosen according to a fixed distribution on the integers, independently of
(y1, z1, . . . , yn−1, zn−1, yn). This situation is modelled by σ in Example 3. Note
also that σ is of Ferguson-Dirichlet type in case zn = 1 for all n.

Finally, suppose (Xn) is 2-exchangeable, that is,

(Xi, Xj) ∼ (X1, X2) for all i 6= j.

Suggested by de Finetti’s representation theorem, another conjecture is that the
probability distribution of (Xn) is a mixture of 2-independent identically distributed
laws. More precisely, this means that

(5) P
(

(X1, X2, . . .) ∈ B
)

=

∫

ν(B) Q(dν), B ∈ B∞,

where Q is some mixing measure supported by those probability laws ν on (X∞,B∞)
such that (πn) is 2-independent and identically distributed under ν. Once again,
the conjecture turns out to be false. As shown by the following example, it may be
that (Xn) is c.i.d. and 2-exchangeable and yet its probability distribution does not
admit representation (5).
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Example 4. Let m be Lebesgue measure and f : [0, 1] → [0, 1] a Borel function
satisfying

(6)

∫ 1

0

f(u) du =
1

2
,

∫ 1

0

u f(u) du =
1

3
, m{u ∈ [0, 1] : f(u) 6= u} > 0.

Let (Un : n ≥ 0) be i.i.d. with U0 uniformly distributed on [0, 1]. Define X = {0, 1}
and Xn = IHn

, where

H1 = {U1 ≤ f(U0)}, Hn = {Un ≤ U0} for n > 1.

Conditionally on U0, the sequence (Xn) is independent with

P (X1 = 1 | U0) = f(U0) and P (Xn = 1 | U0) = U0 a.s. for all n > 1.

Basing on this fact and (6), it is straightforward to check that (Xn) is c.i.d. and

2-exchangeable. Moreover, 1
n

∑n
i=1 Xi

a.s.−→ U0. By Etemadi’s SLLN, if (πn) is
2-independent and identically distributed under ν, then

1

n

n
∑

i=1

πi
ν−a.s.−→ Eν(π1).

Letting π∗ = lim supn
1
n

∑n
i=1 πi, it follows that

ν
(

π∗ ∈ I, π1 = 1
)

= ν
(

π∗ ∈ I, π2 = 1
)

for all Borel sets I ⊂ [0, 1].

Hence, if representation (5) holds, one obtains
∫

I

f(u) du =

∫

{U0∈I}

P (X1 = 1 | U0) dP = P (U0 ∈ I, X1 = 1)

=

∫

ν
(

π∗ ∈ I, π1 = 1
)

Q(dν) =

∫

ν
(

π∗ ∈ I, π2 = 1
)

Q(dν)

= P (U0 ∈ I, X2 = 1) =

∫

I

u du for all Borel sets I ⊂ [0, 1].

This implies f(u) = u, for m-almost all u, contrary to (6). Thus, the probability
distribution of (Xn) can not be written as in (5).

5. Back to empirical processes

In this section, the empirical process theory for c.i.d. data is summarized. With
the only exception of Example 7, which is new, all other results are from [4].

In the sequel, we focus on

X = R and F = {(−∞, t] : t ∈ R}.
Accordingly, for each φ ∈ l∞(F), we write φ(t) instead of φ

(

(−∞, t]
)

and we
regard φ as a member of l∞(R). Moreover, Nk(0, Σ) denotes the Gaussian law on
the Borel sets of R

k with mean 0 and covariance matrix Σ (possibly singular). We
let Nk(0, 0) = δ0 and, for k = 1 and u ≥ 0, we write N(0, u) instead of N1(0, u).

Suppose (Xn) is G-c.i.d. and µn = 1
n

∑n
i=1 δXi

is the empirical measure. By the
SLLN, there is a random probability measure γ on R such that

µn(ω) −→ γ(ω) weakly, for almost all ω.

Let Fγ(t) = γ(−∞, t], t ∈ R. As in Section 2, define also an(·) = P
(

Xn+1 ∈ · | Gn

)

,

bn = 1
n

∑n−1
i=0 ai and

Bn =
√

n (µn − bn), Cn =
√

n (µn − an).
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As usual, Bn and Cn are regarded as maps from Ω into l∞(R).
A possible limit in distribution for Bn or Cn is a tight random element

G : Ω0 → l∞(R), defined on some probability space (Ω0,A0, P0), such that

(7) P0

(

(G(t1), . . . , G(tk)) ∈ A
)

=

∫

Nk

(

0,Σ(t1, . . . , tk)
)

(A) dP

where t1, . . . , tk ∈ R, A ⊂ R
k is a Borel set and Σ(t1, . . . , tk) a random covariance

matrix on (Ω,A, P ). One significant case is

G
F (t) = B(F (t)), t ∈ R,

where B and F are defined on (Ω0,A0, P0), B is a Brownian bridge, F a random
distribution function independent of B, and F ∼ Fγ . Then, (7) holds with G = G

F

and

Σ(t1, . . . , tk) =
(

Fγ(ti ∧ tj)(1− Fγ(ti ∨ tj)) : 1 ≤ i, j ≤ k
)

.

Generally, G
F : Ω0 → l∞(R) can fail to be measurable if l∞(R) is equipped with

the Borel σ-field; see Example 11 of [3]. However, G
F is measurable and tight

whenever every F -path is continuous on Dc for some fixed countable set D ⊂ R.
As a trivial example, suppose (Xn) i.i.d., G0 = {∅,Ω} and Gn = σ(X1, . . . , Xn).

Then F = H a.s., where H is the distribution function common to the Xn, and D
can be taken as D = {t : H(t) > H(t−)}. Thus, G

F = G
H is measurable and tight

and Gn
d−→ G

H (recall that Bn = Cn = Wn = Gn in this particular case).
Let (Zn) be any sequence of real random processes indexed by R, with bounded

cadlag paths, defined on (Ω,A, P ). A necessary condition for Zn to converge in
distribution to a tight limit is: For all ǫ, η > 0, there is a finite partition I1, . . . , Im

of R by right-open intervals such that

(8) lim sup
n

P
(

max
j

sup
s,t∈Ij

|Zn(s)− Zn(t)| > ǫ
)

< η.

We are now able to state a couple of results.

Theorem 5. If (Xn) is G-c.i.d. and Bn meets (8) (i.e., (8) holds with Zn = Bn),

then Bn
d−→ G

F and G
F is tight.

Theorem 6. Suppose (Xn) is G-c.i.d., Cn meets (8), and supn E
{

Cn(t)2
}

< ∞
for all t ∈ R. If

1

n

n
∑

i=1

qi(s) qi(t)
a.s.−→ σ(s, t) for all s, t ∈ R

where qi(t) = I{Xi≤t} − i P
(

Xi+1 ≤ t | Gi

)

+ (i− 1) P
(

Xi ≤ t | Gi−1

)

,

then Cn
d−→ G, where G is a tight process with distribution (7) and

Σ(t1, . . . , tk) =
(

σ(ti, tj) : 1 ≤ i, j ≤ k
)

.

Both Theorems 5 and 6 require condition (8). Thus, it would be useful to have
a criterion for testing it. In the exchangeable case, one such criterion is tightness of
the process G

F . Suppose in fact (Xn) is exchangeable. Then, condition (8) holds

for Bn and Cn provided G
F is tight. In particular, Bn

d−→ G
F if G

F is tight and
Gn = σ(X1, . . . , Xn) for all n. Furthermore, G

F is tight whenever P (X1 = X2) = 0
or X1 has a discrete distribution. Unfortunately, this useful criterion can fail in the
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G-c.i.d. case. We close this section with an example where (Xn) is G-c.i.d., G
F is

tight, and yet condition (8) fails for Cn.

Example 7. Let (αn) and (βn) be independent sequences of independent real ran-
dom variables, with αn ∼ N(0, cn − cn−1) and βn ∼ N(0, 1 − cn) where

cn = 1− ( 1
n+1 )

1

5 . Define

Xn =
n

∑

i=1

αi + βn, G0 = {∅,Ω}, Gn = σ(α1, β1, . . . , αn, βn).

In Example 1.2 of [4], it is shown that (Xn) is G-c.i.d. and Xn
a.s.−→ X for some

random variable X. Since Xn
a.s.−→ X,

µn(ω) −→ δX(ω) weakly, for almost all ω.

Hence, γ = δX and G
F = 0, so that G

F is tight.
The finite dimensional distributions of Cn converge weakly to 0. In fact,

P
(

Xn+1 ≤ t | Gn

)

= Φ
( t− Sn√

1− cn

)

where Sn =
∑n

i=1 αi and Φ is the standard normal distribution function. Hence,

Cn(t) =
√

n
( 1

n

n
∑

i=1

I{Xi≤t} − I{Sn≤t}

)

+
√

n
(

I{Sn≤t} − Φ
( t− Sn√

1− cn

)

)

.

Since both Xn
a.s.−→ X and Sn

a.s.−→ X, it is not hard to see that Cn(t)
a.s.−→ 0 for

every fixed t.
Toward a contradiction, suppose now that Cn meets (8) and define

In =

∫ Sn+1

Sn−1

Cn(t) dt.

Then Cn
d−→ 0, so that |In| ≤ 2 ‖Cn‖ P−→ 0 (recall that ‖·‖ denotes the sup-norm).

On the other hand,

In =
1√
n

n
∑

i=1

(

Sn + 1−Xi ∨ (Sn − 1)
)+

−√n

∫ Sn+1

Sn−1

Φ
( t− Sn√

1− cn

)

dt

=
1√
n

n
∑

i=1

(

Sn + 1−Xi ∨ (Sn − 1)
)+

−√n.

Let

Jn =
1√
n

n
∑

i=1

(

Sn + 1−Xi

)

−√n =
1√
n

n
∑

i=1

(

Sn −Xi

)

.

Then In − Jn
a.s.−→ 0, due to Sn − Xn

a.s.−→ 0, and thus Jn
P−→ 0. But this is a

contradiction, since Jn ∼ N(0, σ2
n) with σ2

n →∞. Precisely,

σ2
n = − n

(n + 1)
1

5

+
2

n

n
∑

i=1

i

(i + 1)
1

5

so that
σ2

n

n
4

5

−→ 1

9
.

Therefore, condition (8) fails for Cn.
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Incidentally, neither Wn =
√

n
(

µn − γ
)

satisfies condition (8). In fact,

Wn(t) =
√

n
( 1

n

n
∑

i=1

I{Xi≤t} − I{X≤t}

)

a.s.−→ 0 for fixed t.

If Wn meets (8), thus, Wn
d−→ 0 so that supt |Wn(t) −Wn(t−)| ≤ 2 ‖Wn‖ P−→ 0.

But this is again a contradiction, for P (Xi 6= X for all i) = 1 and

sup
t

∣

∣

∣
Wn(t)−Wn(t−)

∣

∣

∣
≥

∣

∣

∣
Wn(X)−Wn(X−)

∣

∣

∣
=
√

n on the set {Xi 6= X for all i}.

6. Uniform CLTs for the empirical processes Bn and Cn

If (Xn) is G-c.i.d., conditions for Bn and Cn to converge in distribution are
given by Theorems 5 and 6. In this section, the latter results are extended to any
G-adapted sequence (Xn). We again let X = R.

6.1. Heuristics. Motivations for dealing with Cn have been given in Section 2;
see also [6] and [7]. Following [9], we now give analogous motivations for Bn. We
assume that (Xn) is G-adapted and E|Xn| < ∞ for all n.

Suppose that, at each time n ≥ 0, you are requested to predict the next observa-
tion Xn+1 basing on the available information Gn. Your predictor is E

(

Xn+1 | Gn

)

and prediction performances are assessed through

Vn =
1

n

n
∑

i=1

Xi −
1

n

n
∑

i=1

E(Xi | Gi−1) =

∑n
i=1

{

Xi − E(Xi | Gi−1)
}

n
.

Loosely speaking, you are well calibrated when Vn is small.

By standard martingale arguments, Vn
a.s.−→ 0 under quite general conditions,

for instance when supn EX2
n < ∞. In this case, it is useful to know the rate of

convergence, and this leads to investigate the asymptotic behavior of
√

n Vn.
Suppose next you are interested in the events {Xn ≤ t} and you aim to be well

calibrated at a random value T of t. Define

Fn(t) = µn(−∞, t] =
1

n

n
∑

i=1

I{Xi≤t} and

F ∗n(t) = bn(−∞, t] =
1

n

n
∑

i=1

P
(

Xi ≤ t | Gi−1

)

, t ∈ R.

Then, you want Fn(T ) − F ∗n(T ) small for some random variable T . On the other
hand, |Fn(T )− F ∗n(T )| ≤ ‖Fn − F ∗n‖ and

‖Fn − F ∗n‖
a.s.−→ 0

whenever the empirical distribution function Fn converges uniformly on a set of
probability 1; see [2]. Again, the rate of convergence of ‖Fn − F ∗n‖ should be
investigated, and this leads to the process

Bn(t) =
√

n
{

Fn(t)− F ∗n(t)
}

, t ∈ R.

One reason for dealing with Bn, thus, is calibration. Other reasons can be found
in gambling and stochastic approximation; see [2] and references therein.
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6.2. Results. Our main tools are the following two (non uniform) CLTs. The first
is already known (see Theorem 2 of [7]) while the second is new.

Theorem 8. Suppose (Xn) is G-adapted and (X2
n) uniformly integrable. Define

Xn = 1
n

∑n
i=1 Xi and Zn = E(Xn+1 | Gn). Then,

√
n
{

Xn − Zn

}

−→ N(0, L) stably

provided

n3 E
{(

E(Zn+1 | Gn)− Zn

)2} −→ 0,

1√
n

E
{

max
1≤i≤n

i |Zi−1 − Zi|
}

−→ 0,

1

n

n
∑

i=1

{

Xi − Zi−1 + i (Zi−1 − Zi)
}2 P−→ L.

Theorem 9. Suppose (Xn) is G-adapted and (X2
n) uniformly integrable. Then,

√
n Vn =

∑n
i=1

{

Xi − E(Xi | Gi−1)
}

√
n

−→ N(0, L) stably

whenever

(9)
1

n

n
∑

i=1

{

Xi − E(Xi | Gi−1)
}2 P−→ L.

Moreover, condition (9) applies if

1

n

n
∑

i=1

X2
i

P−→ Y and
1

n

n
∑

i=1

E(Xi | Gi−1)
2 P−→ Y − L

for some random variable Y , or if

E(X2
n | Gn−1)− E(Xn | Gn−1)

2 P−→ L.

Proof. For n ≥ 1 and i = 1, . . . , n, define Fn,0 = G0, Fn,i = Gi and

Yn,i = n−1/2
{

Xi − E(Xi | Gi−1)
}

.

Then,
√

n Vn =
∑n

i=1 Yn,i. Further, Yn,i is Fn,i-measurable, Fn+1,i = Fn,i, and

E(Yn,i | Fn,i−1) = 0 a.s..

So, by the martingale CLT (see Theorem 3.2, p. 58, of [14]), it suffices proving that
n

∑

i=1

Y 2
n,i

P−→ L, max
1≤i≤n

|Yn,i| P−→ 0, sup
n

E
(

max
1≤i≤n

Y 2
n,i

)

< ∞.

Let Di = Xi −E(Xi | Gi−1). By (9),
∑n

i=1 Y 2
n,i = 1

n

∑n
i=1 D2

i
P−→ L. Since (X2

n) is

uniformly integrable, (D2
n) is uniformly integrable as well. Given ǫ > 0, take a > 0

such that E
(

D2
i I{|Di|>a}

)

< ǫ for all i. Then,

E
(

max
1≤i≤n

Y 2
n,i

)

≤ a2

n
+

1

n

n
∑

i=1

E
(

D2
i I{|Di|>a}

)

<
a2

n
+ ǫ.

Therefore, limn E
(

max1≤i≤n Y 2
n,i

)

= 0, and this implies that max1≤i≤n|Yn,i| P−→ 0

and supn E
(

max1≤i≤n Y 2
n,i

)

<∞.



12 PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

This concludes the proof of the first part. We next prove the sufficient conditions
for (9). Define ∆i = E(X2

i | Gi−1)− E(Xi | Gi−1)
2 and note that

E
∣

∣

∣

n
∑

i=1

(D2
i −∆i)

∣

∣

∣
≤ E

∣

∣

∣

n
∑

i=1

(

X2
i − E(X2

i | Gi−1)
)

∣

∣

∣
+ 2E

∣

∣

∣

n
∑

i=1

Di E(Xi | Gi−1)
∣

∣

∣
.

Since (X2
n) is uniformly integrable, given ǫ > 0, there is a > 0 such that

sup
i

E
{

X2
i (1− IAi

)
}

< ǫ where Ai = {|Xi| ≤ a}.

Further,

{

E
∣

∣

∣

n
∑

i=1

(

X2
i IAi

− E(X2
i IAi

| Gi−1)
)

∣

∣

∣

}2

≤ E
{(

n
∑

i=1

(

X2
i IAi

− E(X2
i IAi

| Gi−1)
)

)2}

=
n

∑

i=1

E
{(

X2
i IAi

− E(X2
i IAi

| Gi−1)
)2} ≤ n a4.

Thus,

1

n
E
∣

∣

∣

n
∑

i=1

(

X2
i − E(X2

i | Gi−1)
)

∣

∣

∣
≤ a2

√
n

+ 2 sup
i

E
{

X2
i (1− IAi

)
}

<
a2

√
n

+ 2 ǫ.

Similarly, letting d =
√

supi ED2
i , one obtains

2

n
E
∣

∣

∣

n
∑

i=1

Di E(Xi | Gi−1)
∣

∣

∣
≤ 2 a d√

n
+ 2 sup

i
E
{

|Di|E
(

|Xi| (1− IAi
) | Gi−1

)}

≤ 2 a d√
n

+ 2 sup
i

√

ED2
i E

{

X2
i (1− IAi

)
}

<
2 a d√

n
+ 2 d

√
ǫ.

It follows that

E
∣

∣

∣

1

n

n
∑

i=1

X2
i −

1

n

n
∑

i=1

E(X2
i | Gi−1)

∣

∣

∣
−→ 0,(10)

E
∣

∣

∣

1

n

n
∑

i=1

D2
i −

1

n

n
∑

i=1

∆i

∣

∣

∣
−→ 0.(11)

Suppose that 1
n

∑n
i=1 X2

i
P−→ Y and 1

n

∑n
i=1 E(Xi | Gi−1)

2 P−→ Y − L. Then,
1
n

∑n
i=1 E(X2

i | Gi−1)
P−→ Y by (10), so that 1

n

∑n
i=1 ∆i

P−→ L. Thus, (11) implies
1
n

∑n
i=1 D2

i
P−→ L, i.e., condition (9) holds.

Finally, suppose ∆n
P−→ L. Then E|∆n − L| −→ 0, due to (∆n) is uniformly

integrable, so that E| 1n
∑n

i=1 ∆i − L| −→ 0. Again, (9) follows from (11). �

In order to apply Theorem 9, note that 1
n

∑n
i=1 X2

i converges a.s. under various

assumptions. This happens, for instance, if EX2
1 < ∞ and (Xn) is G-c.i.d. or

stationary or 2-exchangeable. (In the 2-exchangeable case, just apply the SLLN

in [12]). In turn, 1
n

∑n
i=1 E

(

Xi | Gi−1

)2
converges a.s. provided E

(

Xn | Gn−1

)

converges a.s., which is true at least in the G-c.i.d. case. We do not know of any

example where (Xn) is stationary, EX2
1 < ∞, and yet 1

n

∑n
i=1 E

(

Xi | Gi−1

)2
fails

to converge in probability. But such an example possibly exists.
We finally turn to uniform CLTs.
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Theorem 10. Suppose (Xn) is G-adapted, Bn meets condition (8), and

1

n

n
∑

i=1

I{Xi≤t}
P−→ a(t),

1

n

n
∑

i=1

P (Xi ≤ s | Gi−1) P (Xi ≤ t | Gi−1)
P−→ b(s, t),

for s, t ∈ R. Then Bn
d−→ G, where G is a tight process with distribution (7) and

Σ(t1, . . . , tk) =
(

a(ti ∧ tj)− b(ti, tj) : 1 ≤ i, j ≤ k
)

.

Proof. By (8), it suffices to prove convergence of finite dimensional distributions;
see e.g. Theorem 1.5.4 of [16]. Fix t1, . . . , tk, u1, . . . , uk ∈ R and define

L =

k
∑

r=1

k
∑

j=1

ur uj

(

a(tr ∧ tj)− b(tr, tj)
)

.

Define also f =
∑k

r=1 ur I(−∞,tr]. Then,

1

n

n
∑

i=1

f(Xi)
2 =

k
∑

r=1

k
∑

j=1

ur uj
1

n

n
∑

i=1

I{Xi≤tr∧tj}
P−→

k
∑

r=1

k
∑

j=1

ur uj a(tr ∧ tj).

Moreover,

1

n

n
∑

i=1

E
(

f(Xi) | Gi−1

)2
=

1

n

n
∑

i=1

{

k
∑

r=1

ur P
(

Xi ≤ tr | Gi−1

)

}2

=

k
∑

r=1

k
∑

j=1

ur uj
1

n

n
∑

i=1

P
(

Xi ≤ tr | Gi−1

)

P
(

Xi ≤ tj | Gi−1

) P−→
k

∑

r=1

k
∑

j=1

ur uj b(tr, tj).

Thus, Theorem 9 applies to (f(Xn)), so that

k
∑

r=1

urBn(tr) =
√

n
{ 1

n

n
∑

i=1

f(Xi)−
1

n

n
∑

i=1

E
(

f(Xi) | Gi−1

)

}

−→ N(0, L) stably.

In particular,
∑k

r=1 urBn(tr) converges in distribution to the probability measure

ν(B) =

∫

N(0, L)(B) dP for all Borel sets B ⊂ R.

On noting that
∑k

r=1 ur G(tr) ∼ ν, one obtains
∑k

r=1 ur Bn(tr)
d−→∑k

r=1 ur G(tr).
By letting u1, . . . , uk vary, it follows that

(

Bn(t1), . . . , Bn(tk)
) d−→

(

G(t1), . . . , G(tk)
)

.

�

For the last result, as in Theorem 6, we let

qi(t) = I{Xi≤t} − i P
(

Xi+1 ≤ t | Gi

)

+ (i− 1) P
(

Xi ≤ t | Gi−1

)

.

Theorem 11. Suppose (Xn) is G-adapted, Cn meets condition (8), and

n3 E
{(

P (Xn+2 ≤ t | Gn)− P (Xn+1 ≤ t | Gn)
)2} −→ 0,

1√
n

E
{

max
1≤i≤n

|qi(t)|
}

−→ 0,
1

n

n
∑

i=1

qi(s) qi(t)
P−→ σ(s, t),
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for s, t ∈ R. Then Cn
d−→ G, where G is a tight process with distribution (7) and

Σ(t1, . . . , tk) =
(

σ(ti, tj) : 1 ≤ i, j ≤ k
)

.

Proof. We just give a sketch of the proof, for it is quite analogous to that of
Theorem 10. By (8), it is enough to prove finite dimensional convergence. Fix

t1, . . . , tk, u1, . . . , uk ∈ R and define L =
∑k

r=1

∑k
j=1 ur uj σ(tr, tj) and

ν(·) =
∫

N(0, L)(·) dP . Since
∑k

r=1 ur G(tr) ∼ ν, it suffices to show that

k
∑

r=1

ur Cn(tr) −→ N(0, L) stably.

To this end, we let f =
∑k

r=1 ur I(−∞,tr] and we apply Theorem 8 to (f(Xn)).

Define Un = E
(

f(Xn+1) | Gn

)

=
∑k

r=1 ur P
(

Xn+1 ≤ tr | Gn

)

. On noting that

E
(

Un+1 | Gn

)

= E
(

f(Xn+2) | Gn

)

=

k
∑

r=1

ur P
(

Xn+2 ≤ tr | Gn

)

,

one obtains

n3 E
{(

E(Un+1 | Gn)− Un

)2} ≤ n3 k2 max
1≤r≤k

u2
r E

{(

P (Xn+2 ≤ tr | Gn)− P (Xn+1 ≤ tr | Gn)
)2} −→ 0,

1√
n

E
{

max
1≤i≤n

i |Ui−1 − Ui|
}

≤
k

∑

r=1

|ur|
E
{

max1≤i≤n |qi(tr)|
}

+ 1√
n

−→ 0,

1

n

n
∑

i=1

{

f(Xi)− Ui−1 + i (Ui−1 − Ui)
}2

=

k
∑

r=1

k
∑

j=1

ur uj
1

n

n
∑

i=1

qi(tr) qi(tj)
P−→ L.

Hence,
∑k

r=1 ur Cn(tr) =
√

n
{

1
n

∑n
i=1 f(Xi)− Un

}

−→ N(0, L) stably. �
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