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A SKOROHOD REPRESENTATION THEOREM
FOR UNIFORM DISTANCE

PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

ABSTRACT. Let pn be a probability measure on the Borel o-field on DJ0,1]
with respect to Skorohod distance, n > 0. Necessary and sufficient conditions
for the following statement are provided. On some probability space, there
are D|0, 1]-valued random variables X, such that X, ~ p, for all n > 0 and
[|Xn — Xo|| — 0 in probability, where [|-|| is the sup-norm. Such conditions
do not require po separable under ||-||. Applications to exchangeable empirical
processes and to pure jump processes are given as well.

1. INTRODUCTION
Let D be the set of real cadlag functions on [0, 1] and
lzll = suple(®)],  u(zy) =z —yl, 2 yeD.

Also, let d be Skorohod distance and By, B, the Borel o-fields on D with respect
to (w.r.t.) d and u, respectively.

In real problems, one usually starts with a sequence (u, : » > 0) of probabilities
on By. If p, — po weakly (under d), Skorohod representation theorem yields
d(Xn, Xo) 2% 0 for some D-valued random variables X,, such that X, ~ p, for
all n > 0. However, X, can fail to approximate X uniformly. A trivial example is
tn = 0y, where (z,) C D is any sequence such that x,, — ¢ according to d but
not according to wu.

Lack of uniform convergence is sometimes a trouble. Thus, given a sequence
(ttn, : m > 0) of laws on By, it is useful to have conditions for:

On some probability space (2,4, P), there are random variables

1
(1) X, : Q — D such that X, ~ p,, for all n > 0 and || X,, — Xo]| L.

Convergence in probability cannot be strengthened into a.s. convergence in condi-
tion (1). In fact, it may be that (1) holds, and yet there are not D-valued random
variables Y,, such that Y;, ~ u,, for all n and ||Y,, — Yp|| 22, 0; see Example 7.

This paper is concerned with (1). The main result is Theorem 4, which states
that (1) holds if and only if

(2) limsup |pn (f) — po(f)] =0,
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where L is the set of functions f : D — R satisfying
o(f)CBs, —1<f<1, |f(z)=f(y)l <lo—yl foralzyeD.

Theorem 4 can be commented as follows. Say that a probability u, defined on
By or By, is u-separable in case u(A) = 1 for some u-separable A € B;. Suppose
1o is u-separable and define pf(H) = po(A N H) for H € B, where A € By is
u-separable and pg(A) = 1. Since p, is defined only on By for n > 1, we adopt
Hoffmann-Jgrgensen’s definition of convergence in distribution for non measurable
random elements; see e.g. [7] and [9]. Let Iy be the identity map on (D, By, 1)
and I,, the identity map on (D, By, in), n > 1. Further, let D be regarded as a
metric space under w. Then, since p is u-separable, one obtains:

(i) Condition (1) holds (with || X, — X < 0) provided I,, — I in distribution;
(ii) I — Io in distribution if and only if lim, sup ey |pn(f) — po(f)[ = 0.

Both (i) and (ii) are known facts; see Theorems 1.7.2, 1.10.3 and 1.12.1 of [9].

The spirit of Theorem 4, thus, is that one can dispense with u-separability of
1o to get (1). This can look surprising, as separability of the limit law is crucial in
Skorohod representation theorem; see [5]. However, X, ~ pu, is asked only on By
and not on B,. Indeed, X,, can even fail to be measurable w.r.t. B,.

Non wu-separable laws on By are quite usual. A cadlag process Z, with jumps
at random time points, has typically a non wu-separable distribution on B;. One
example is Z(t) = Bys(;), where B is a standard Brownian bridge, M an indepen-
dent random distribution function and the jump-points of M have a non discrete
distribution. Such a Z is the limit in distribution, under d, of certain exchangeable
empirical processes; see [1] and [3].

In applications, unless (g is u-separable, checking condition (2) is usually diffi-
cult. In this sense, Theorem 4 can be viewed as a "negative” result, as it states
that condition (1) is quite hard to reach. This is partly true. However, there are
also meaningful situations where (2) can be proved with a reasonable effort. Two
examples are exchangeable empirical processes, which motivated Theorem 4, and a
certain class of jump processes. Both are discussed in Section 4.

Our proof of Theorem 4 is admittedly long and it is confined in a final appendix.
Some preliminary results, of possible independent interest, are needed. We mention
Proposition 2 and Lemma 13 in particular.

A last remark is that Theorem 4 is still valid if D is replaced by D([O, 1], X ),
the space of cadlag functions from [0, 1] into a separable Banach space X'.

2. A PRELIMINARY RESULT
Let (£2, A, P) be a probability space. The outer and inner measures are
P*(H)=inf{P(A): HC Ae A}, P.,(H)=1-P*(H"), HCqQ.

Given a metric space (5, p) and maps X,, : Q@ — S, n > 0, say that X,, converges

to Xo in (outer) probability, written X, £, X, in case

lim P*(p(X,, Xo) > €) =0 for all € > 0.
n

In the sequel, dry denotes total variation distance between two probabilities
defined on the same o-field.
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Proposition 1. Let (F,F) be a measurable space and p, a probability on (F,F),
n > 0. Then, on some probability space (2, A, P), there are measurable maps
Xy (Q,A) — (F,F) such that

P.(X,, # Xo) = P*(X,, # Xo) = drv (fin, o) and X, ~ piy, for all n > 0.

Proposition 1 is well known, even if in a slightly different form; see Theorem 2.1
of [8]. A proof of the present version is in Section 3 of [5].

Next proposition is fundamental for proving our main result. Among other
things, it can be viewed as an improvement of Proposition 1.

Proposition 2. Let A\, be a probability on (F x G, F®G), n > 0, where (F,F) is
a measurable space and (G,G) a Polish space equipped with its Borel o-field. The
following conditions are equivalent:

(a) There are a probability space (2, A, P) and measurable maps
(Yo, Zn) 1 (QA) — (F x G, F®G) such that

(Yo, Z) ~ A for alln >0, P*(Y, #Yy) — 0, Zn - Zo:

(b) For each bounded Lipschitz function f: G — R,

lim sup ’/IA n(dy,dz) — /IA(y) f(z) Xo(dy,dz)| = 0.

noAeF

To prove Proposition 2, we first recall a result of Blackwell and Dubins [6].

Theorem 3. Let G be a Polish space, M the collection of Borel probabilities on
G, and m the Lebesgue measure on (0,1). There is a Borel measurable map

o Mx(0,1) —G
such that, for every v € M,
(i) ©(v,-) ~ v under m;
(i) There is a Borel set A, C (0,1) such that m(A,) =1 and

D(vy,t) — P(v,t)  whenevert € Ay, v, € M and v, — v weakly.

We also need to recall disintegrations. Let A be a probability on (F x G, F ®G),
where (F,F) and (G, G) are arbitrary measurable spaces. In this paper, A is said
to be disintegrable if there is a collection o = {«(y) : y € F'} such that:

— a(y) is a probability on G for y € F;

—y—ay)(C)is f—measurable for C € G;

—MAXC)= [, of w(dy) for A€ F and C € G, where u(-) = \(- x G).
Such an « is called a dzsmtegmtwn for A. For A to admit a disintegration, it suffices
that G is a Borel subset of a Polish space and G the Borel o-field on G.

Proof of Proposition 2. ”(a) = (b)”. Under (a), for cach A € F and bounded
Lipschitz f : G — R, one obtains

[ 1alw) £ Ml d2) = [ Taw) ) Ml d2)] = [ B {1a(¥2) £(20) = La(¥0) £(Z0)})|
< EP‘f n) (IA(Yn) - IA(YO))‘ + EP‘IA(YO) (f(Zn) - f(ZO))

< suplf| P*(Ya # Yo) + Ep|f(2.) = (20)| — 0.
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?(b)=(a)”. Let pu,(A) = M(A X G), A € F. By (b), drv(tin, po) — 0.
Hence, by Proposition 1, on a probability space (0,&,Q) there are measurable
maps hy, : (0,&) — (F,F) satisfying h,, ~ p, for all n and Q*(h,, # ho) — 0. Let

N=0x(0,1), A=E®Bp, P=Qxm,

where B 1) is the Borel o-field on (0,1) and m the Lebesgue measure.
Since G is Polish, each )\, admits a disintegration a,, = {a,(y) : y € F}. By
Theorem 3, there is a map ® : M x (0,1) — G satisfying conditions (i)-(ii). Let

Yo (0,t) = ho(0) and  Z,(0,t) = ®{an(ha(0)), t}, (6,t) € © x (0,1).

For fixed 6, condition (i) yields Z,(6,-) = ®{a,(hn(6)), -} ~ an(hy(0)) under m.
Since ay, is a disintegration for A, for all A € F and C' € G one has

P(Y, € A, Z, €C) = /@IA(hn(G))m{t L Z,(0,1) € C} Q(do)

- / an(hn(0))(C) Q(d9) = / 4 (4)(C) pin(dy) = Ay(A % C).
{hn,€A} A

Also, P*(Y,, # Yo) = Q*(hy, # ho) — 0 by Lemma 1.2.5 of [9].

Finally, we prove Z, L, Zy. Write an(y)(f) = [ f(2) an(y)(dz) for all y € F
and f € L¢g, where Lg is the set of Lipschitz functions f : G — [—1,1]. Since
Q*(hyn # hg) — 0, there are A,, € F such that Q(AS) — 0 and h,, = hg on A,.
Given [ € Lg,

a(ha)(f) = a0(ho) ()| = 2Q(A3) < Eo{La, |an(ho) (F) = ao(ho)(f)]}
an(ho)() = ao(to) ()] = [ o)1) = aal0) (1) ).

Using condition (b), it is not hard to see that [|ay, (y)(f) — ao(y)(f)| po(dy) — 0.
Therefore, oy, (hy,)(f) R ag(ho)(f) for each f € Lg, and this is equivalent to

Eq

< Eq

each subsequence (n') contains a further subsequence (n”)
such that ay,(hy(0)) — ag(ho(f)) weakly for @Q-almost all 6;

see Remark 2.3 and Corollary 2.4 of [2]. Thus, by property (ii) of ®, each subse-
quence (n') contains a further subsequence (n”’) such that Z,» %% Z,. That is,

Zn P, Zy and this concludes the proof.
O

3. EXISTENCE OF CADLAG PROCESSES, WITH GIVEN DISTRIBUTIONS ON THE
SKOROHOD BOREL 0-FIELD, CONVERGING UNIFORMLY IN PROBABILITY

As in Section 1, By and B,, are the Borel o-fields on D w.r.t. d and u. Also, L is
the class of functions f : D — [—1, 1] which are measurable w.r.t. B4 and Lipschitz
w.r.t. w with Lipschitz constant 1. We recall that, for x, y € D, the Skorohod
distance d(z,y) is the infimum of those € > 0 such that

(s) —(t)

[ —yov]] <e and sup|log i
s#t s—t

<e

for some strictly increasing homeomorphism « : [0,1] — [0,1]. The metric space
(D, d) is separable and complete.
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We write p(f) = [ fdp whenever p is a probability on a o-field and f a real
bounded function, measurable w.r.t. such a o-field.
Motivations for the next result have been given in Section 1.

Theorem 4. Let u, be a probability measure on By, n > 0. Then, conditions (1)
and (2) are equivalent, that is,

lim sup [, (f) — po(f)| =0
" felL

if and only if there are a probability space (0, A, P) and measurable maps
X, (Q,A) — (D, By) such that X,, ~ py, for each n >0 and || X,, — Xol| 0.

The proof of Theorem 4 is given in the Appendix. Here, we state a corollary and
an open problem and we make two examples.

In applications, the u, are often probability distributions of random variables,
all defined on some probability space (€, .4, Fo). In the spirit of [4], a (minor)
question is whether condition (1) holds with the X, defined on (g, Ay, Pp) as well.

Corollary 5. Let (Qq,. Ao, Py) be a probability space and Z, : (20, Ao) — (D, Bg)
a measurable map, n > 1. Suppose limy, sup e, |Ep,{f(Zn)} — po(f)] = 0 for
some probability measure pg on By. If Py is nonatomic, there are measurable maps

Xn : (Qo,Ag) — (D, Bg), n >0, such that

Xo ~ po, X, ~ Z, for eachn > 1, ||Xn_X0||ﬂ>0_

Also, Py is nonatomic if puo{x} =0 for all x € D, or if Py(Z, = x) =0 for some
n>1andallz € D.

Proof. Since (D, d) is separable, P, is nonatomic if Py(Z,, = ) = 0 for some n > 1
and all # € D. By Corollary 5.4 of [4], (Q, Ao, Py) supports a D-valued random
variable Zy with Zy ~ po. Hence, Py is nonatomic even if puo{x} = 0 for all z € D.
Next, by Theorem 4, on a probability space (€2, A, P) there are D-valued random

variables Y;, such that Yy ~ uo, ¥, ~ Z,, for n > 1 and ||Y,, — Y| L0, Let
(D*°,B3°) be the countable product of (D, By) and

I/(A):P((Y(),Yl,) EA), AEB;O

Then, v is a Borel probability on a Polish space. Thus, if Py is nonatomic,
(Q0, Ao, Py) supports a D*°-valued random variable X = (Xo, X1,...) with X ~ v;
see e.g. Theorem 3.1 of [4]. Since (X, X1,...) ~ (Yo,Y1,...), this concludes the
proof. O

Let (S, p) be a metric space such that (z,y) — p(z,y) is measurable w.r.t. EQE,
where £ is the ball o-field on S. This is actually true in case (S, p) = (D, u) and
it is very useful to prove Theorem 4. Thus, a question is whether (D, u) can be
replaced by (S, p) in Theorem 4. Precisely, let (u, : n > 0) be a sequence of
laws on € and Lg the class of functions f : S — [—1, 1] such that o(f) C £ and
|f(z) = f(y)] < p(z,y) for all x, y € S. Then,

Congecture: limy, sup ey |pn(f) — po(f)] = 0 if and only if p(X,, Xo) — 0 in
probability for some S-valued random variables X,, such that X, ~ u, for all n.

We finally give two examples. The first shows that condition (2) cannot be
weakened into p, (f) — po(f) for each fized f € L.
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Example 6. For each n > 0, let h,, : (0,1) — [0,00) be a Borel function such that

fol hy,(t) dt = 1. Suppose that h,, — hy in 0(L1, Lo) but not in L; under Lebesgue

measure m on (0, 1), that is,

hmsupn fo |Fun () — ho(t)| dt > 0,

3
®) lim,, fol hn(t) g fo ho(t) g(t )dt for all bounded Borel functions g.

Take a sequence (T}, : n > 0) of (0,1)-valued random variables, on a probability
space (0, &, Q), such that each T,, has density h,, w.r.t. m. Define

Zy=1Iip, 1 and p,(A) =Q(Z, € A) for A € By.
Then Z, = ¢(T), with ¢ : (0,1) — D given by ¢(t) = I} 15, t € (0,1). Hence, for

fixed f € L, one obtains

— Bo{fod(T)} = / a0 t—>/h0 0 (1) dt = po(f).

Suppose now that X,, ~ u, for all n > 0, where the X,, are D-valued random
variables on some probability space (£2,.4, P). Since

Plw: X,(w)(t) € {0,1} for all t} = Q{6 : Z,(0)(t) € {0,1} for all t} =1,

it follows that

1
P X0 = Xoll > 3) = P(Xo # Xo) > drv (s o) /\h o(8)] dt.

Therefore, X, fails to converge to X in probability.

A slight change in Example 6 shows that convergence in probability cannot be
strengthened into a.s. convergence in condition (1). Precisely, it may be that (1)
holds, and yet there are not D-valued random variables Y,, satistying Y,, ~ u,, for
all n and [|Y,, — Yp|| =% 0.

Example 7. In the notation of Example 6, instead of (3) assume

hm/ |Fu ( o(t)]dt =0 and m(hmlnfh < hg) >

where m is Lebesgue measure on (0,1). Since

drv (tn, o) / [P (t o(t)|dt — 0,

condition (1) trivially holds by Proposition 1. Suppose now that Y,, ~ pu, for all
n > 0, where the Y,, are D-valued random variables on a probability space ({2, A, P).
As m(liminf, h, < hg) > 0, Theorem 3.1 of [8] yields P(Y,, = Y; ultimately) < 1.
On the other hand, since P(Y,,(t) € {0,1} for all t) =1, one obtains

P(||Y, — Yol — 0) = P(Y,, = Y, ultimately) < 1



SKOROHOD REPRESENTATION FOR UNIFORM DISTANCE 7

4. APPLICATIONS

Condition (2) is not always hard to be checked, even if pg is not u-separable.
We illustrate this fact by two examples. To this end, we first note that conditions
(1)-(2) are preserved under certain mixtures.

Corollary 8. Let G be the set of distribution functions on [0,1] and G the o-field
on G generated by the maps g — ¢(t), 0 <t < 1. Let 7 be a probability on G and
iy, and N\, probabilities on By. Then, condition (1) holds provided

sup [An(f) = Ao(f)| — 0 and
feL

1 (A) :/)\n{x:xogEA}ﬂ'(dg) for alln >0 and A € By.

Proof. By Theorem 4, there are a probability space (0, &, @) and measurable maps
Zy : (©,8) — (D, By) such that Z, ~ A, for all n and ||Z, — Zo|| -2+ 0. Define
D=0xG A=ExG, P=Qxm and X,(0,9) = Z,(0) og for all (6,9) € © x G.
It is routine to check that X,, ~ p, for all n and || X,, — X £ o. O

Example 9. (Exchangeable empirical processes). Let (£, : n > 1) be a
sequence of [0, 1]-valued random variables on the probability space (0,40, Pp).
Suppose (§,,) exchangeable and define

F(t) = Ep,(Ite, <ty | 7)

where 7 is the tail o-field of (§,). Take F to be regular, i.e., each F-path is a
distribution function. Then, the n-th empirical process can be defined as

Z?:l{j{&ﬁt} — F(t)}

vn ’
Since Z,, : (0, A0) — (D, Bg) is measurable, one can define u,(-) = Po(Z, € -).
Also, let pp be the probability distribution of

Zy(t) = B

where B is a standard Brownian bridge on [0, 1] and M an independent copy of F'
(with B and M defined on some probability space). Then, u, — uo weakly (under
d) but o can fail to admit any extension to B,,; see [3] and Example 11 of [1]. Thus,
Z,, can fail to converge in distribution, under u, according to Hoffmann-Jgrgensen’s
definition. However, Corollaries 5 and 8 grant that:

On (Qo, Ao, Py), there are measurable maps X,, : (20, Ao) — (D, Bg) such that

X, ~ Z, for eachn >0 and || X,, — Xo|| 0.

Define in fact B, (t) =n~1/? Z?:1{I{ui§t} — t}7 where u1,us, ... are i.i.d. ran-
dom variables (on some probability space) with uniform distribution on [0, 1]. Then,
B,, — B in distribution, under u, according to Hoffmann-Jgrgensen’s definition. Let
A and Ag be the probability distributions of B,, and B, respectively. Since \q is
u-separable, sup ¢y, [An(f) — Ao(f)| — 0 (see Section 1). Thus, the first condition
of Corollary 8 holds. The second condition follows from de Finetti’s representation
theorem, by letting m(A) = Py(F € A) for A € G. Hence, condition (1) holds.

It remains to see that the X,, can be defined on (g, Ao, Py). To this end, it can
be assumed Ay = o(&1, &2, ...). If Py is nonatomic, it suffices to apply Corollary 5.
Suppose Py has an atom A. Since Ag = o(&1,&2,...), up to Po-null sets, A is of the

Z(t) = 0<t<1l,n>L
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form A = {¢, = t,, for all n > 1} for some constants t,,. Let 0 = (01,02,...) be a
permutation of 1,2,... and 4, = {{, = t,, for all n > 1}. By exchangeability,

Py(As) = Po(A) >0 for all permutations o,

and this implies t,, = t; for all n > 1. Let H be the union of all Py-atoms. Up to
Py-null sets, one obtains

Hc{{ =& foralln>1} Cc{Z,=0foralln >1}.

If Po(H) = 1, thus, it suffices to let X,, =0 for all n > 0. If 0 < Py(H) < 1, since
Py(- | H¢) is nonatomic and () is still exchangeable under Py(- | H€), it is not
hard to define the X,, on (0,49, o) in such a way that X,, ~ Z,, for all n > 0

and || X, — Xo| 2% 0.

Example 10. (Pure jump processes). For each n > 0, let
Cn = (Cn,j _] 2 1) and Yn = (anj j 2 ].)

be sequences of real random variables, defined on the probability space (2o, Ao, Po),
such that

0<Y,; <1 and Z|C”vj| < 0.
j=1

Define

Zn(t)zzcn’].[{ynjgf}, OStS ].,TLZO
j=1
Since Z,, : (o, Ag) — (D, By) is measurable, one can define u,(-) = Po(Z, € -).
Then, condition (1) holds provided

C,, is independent of Y,, for every n > 0,
Ch.i—Coy; Fo.0 and drv (Vng, Vo) — 0 for all k£ > 1,
J J ' .
j=1

where v, j, denotes the probability distribution of (Y, 1,..., Y, x)-

For instance, v, = vy for all n and k in case Y,, ; = V,,4; with Vi,V5,... a
stationary sequence. Also, independence between C,, and Y;, can be replaced by

o(Cnj) Co(Yni,...,Yn;) foralln>0andj>1.
To prove (1), define Z,, (1) = Y.5_; Cuj Iy, <1y For each f € L,
[ (f) = o (Pl S NEf(Zn) = Ef(Zngo)l +|Ef(Zng) = Ef(Zos)| + | Ef(Zok) — Ef(Zo)]
S E{L2N|Zn — Zugll} + |Ef(Zng) — Ef(Zox)| + B{2 A1 Zo — Zoxl}
< E{2A Y |Cusl} + [Ef(Znk) — Ef(Zog)l + E{2 1Y [Col}

ji>k i>k
where E(-) = Ep,(-). Given e > 0, take k > 1 such that E{2 A Zj>k‘00,j|} < e
Then,

lim sup sup [, (f) — po(f)| < 2+ limsupsup |Ef(Zn k) — Ef(Zok)|
n ferL n ferL
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It remains to show that sup,c;|Ef(Zn 1) — Ef(Zo k)| — 0. Since C,, is indepen-
dent of Y,,, up to changing (£29,.40, Py) with some other probability space, it can
be assumed

Py (Yn,j # Yy j for some j < k) =dry (Vn)k, Z/Q’k);

see Proposition 1. The same is true if o(C, ;) C 0(Yy1,...,Y, ;) for all n and j.
Then, letting A, , = {Y,, ; = Yo, for all j < k}, one obtains

sup \Ef(Znx) — Ef(Zox)| < E{Ia,, 2 N Zn g — Zox|l} +2 Po(A5 1)
S

< E{2A Z|Cn,j — Co |} + 2drv (v ks vok) — 0.
=1

Thus, condition (2) holds, and an application of Theorem 4 concludes the proof.

APPENDIX

Three preliminary lemmas are needed to prove Theorem 4. The first is part
of the folklore about Skorohod distance, and we state it without a proof. Let
Ax(t) = x(t) — 2(t—) denote the jump of z € D at ¢ € (0,1].

Lemma 11. Fize >0 and z, € D, n > 0. Then, limsup,, ||z, — xo|| < € whenever
d(xp,x0) — 0 and
|Az, (t)| > ¢ for all large n and t € (0,1) such that |Axz(t)] > €.

The second lemma is a consequence of Remark 6 of [5], but we give a sketch of

its proof as it is basic for Theorem 4. Let p, v be laws on By and F(u, v) the class

of probabilities A on By ® By such that A(- x D) = u(-) and A(D x -) = v(+). Since
the map (z,y) — ||z — y|| is measurable w.r.t. By ® By, one can define

= .f 1 — .
Walur) = _int [ 1A o =yl da, dy)

Lemma 12. For a sequence (u, : n > 0) of probabilities on By, condition (1) holds
if and only if Wo(jio, fin) — 0.

Proof. The 7only if” part is trivial. Suppose W, (1o, pin) — 0. Let Q@ = D>, A =
BS° and X, : D> — D the n-th canonical projection, n > 0. Take \,, € F (o, ftn)
such that [ 1A |lz — y|| An(dz, dy) < + + Wy(po, pin). Since (D, d) is Polish, A,
admits a disintegration a,, = {a,(z) : x € D} (see Section 2). By Ionescu-Tulcea
theorem, there is a unique probability P on B3® such that Xy ~ 19 and

Bn(xo, 1, .. 2n-1)(A) = an(x0)(A), (x0,21,...,2n—1) € D", A € By,

is a regular version of the conditional distribution of X, given (X, X1,...,X,—1)
for all n > 1. Under such P, one obtains (Xo, X,,) ~ A, (so that X, ~ p,,) and

1
eP(|| Xo — Xu|l > €) S Ep{1A|Xo—X,||} < ~+ W (o, ptn) — 0 for all € € (0, 1).
O

The third lemma needs some more effort. Let ¢o(x,€) =0 and

Ont1(x,€) =inf{t : ¢p(x,€) <t <1, |Az(t)| > €}
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where n > 0, ¢ > 0, x € D and inf() := 1. The map z — ¢, (x,€) is universally
measurable w.r.t. By for all n and e.

Lemma 13. Let Fy be the Borel o-field on R* and I C (0,1) a dense subset. For
a sequence (uy :m > 0) of probabilities on By, condition (1) holds provided

sup

Sup /f(a:)[A(qﬁl(x,e),...,gbk(x,e))un(dz)7/f(:z:)IA(gbl(x,e),...,gzbk(:z,e)) uo(dx)’ —0

for each k > 1, € € I and function f : D — [—1,1] such that | f(z) — f(y)] < d(x,y)
forall x, y € D.

Proof. Fix e € I and write ¢, (z) instead of ¢, (z,€). As each ¢, is universally
measurable w.r.t. By, there is a set T" € B, such that

un(T)=1 and Ir ¢, is Bg-measurable for all n > 0.
Thus, ¢, can be assumed Bgz-measurable for all n. Let k be such that
po{x : ¢r(x) # 1 for some r > k} < e.
For such a k, define ¢(x) = (¢1(x),...,¢r(x)), 2 € D, and
M(A) = po{z : (¢(2),2) € A}, A€ Fp,® Ba.

Since (D, d) is Polish, Proposition 2 applies to such A, with (F,F) = (RF, F)
and (G,G) = (D,Bg). Condition (b) holds by the assumption of the Lemma.
Thus, by Proposition 2, on a probability space (2,4, P) there are measurable
maps (Y, Z,) : (2, A) — (R* x D, F, @ By) satisfying

(Yo, Zn) ~ Ap for alln >0, P(Y, #Yy) — 0, d(Zn, Zo) — 0.
Since P(Y,, = ¢(Z,)) = A{(é(x),z) : & € D} =1, one also obtains
() lim P(6(Z,) = 6(Z)) = L.

Next, by (4) and d(Z,,, Zo) .0, there is a subsequence (n;) such that
limsup P (|| Zn, — Zo|| > €) = lim P(|| Z,,, — Zo|| > €),
n J

Ad(Zn,;, Zo) 250,  P($(Zy,) = ¢(Zp) for all j) > 1 —e.
Define U = limsup; || Z,; — Zol| and
H = {¢,(Zy) = 1 for all r > k} N {¢(Z,,) = ¢(Zo) for all j} N{d(Z,,, Zy) — 0}.
For each w € H, Lemma 11 applies to Zy(w) and Z,, (w), so that U(w) < e. Further,
P(H®) < P(¢r(Zo) # 1 for some 7 > k) + P(¢(Zy,) # ¢(Zo) for some j)
< pof{x: ¢r(x) #1 for some r >k} +e < 2e.
Since U < e on H,
limnsupP(HZn — Zo|| > €) = hjmp(nznj ~Zo|l >€) <P(U>¢)
< P({U=¢)+P(H) <PU=¢€)+2e

On noting that Ep{1 A [|Zo — Z,||} < €+ P(||Z, — Zo|| > €), one obtains

lim sup W, (po, pn) < limsupEp{l A Zo — Zn||} < P(U =¢€)+3e.
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Since I is dense in (0,1), then P(U = €) 4+ 3 € can be made arbitrarily small for
a suitable € € I. Thus, limsup,, W, (¢o, pn) = 0. An application of Lemma 12
concludes the proof. O

We are now ready for the last attack to Theorem 4.
Proof of Theorem 4. ”(1)=-(2)”. Just note that
[ () = mo(H)l = Ep{ f(Xn)} — Ep{f(X0)}| < Ep| f(Xn) — f(Xo)|
< Ep{2 A | X, — Xo||} — 0, for each f € L, under (1).

”(2)=(1)”. Let B. = {x : |Az(t)] = € for some t € (0,1]}. Then, B, is
universally measurable w.r.t. By and po(Be) > 0 for at most countably many
e > 0. Hence, I = {e € (0,1) : uo(B:) = 0} is dense in (0,1).

Fixe € I, k > 1, and a function f : D — [—1, 1] such that |f(z) — f(y)| < d(z,y)
for all z, y € D. By Lemma 13, for condition (1) to be true, it is enough that

(5) lim sup \,un{fIA(qb)}*Mo{ffA(@b)H:0
" AeFy

where ¢(z) = (qbl(x), .. .,qﬁk(x)), z € D, and ¢;(z) = ¢j(z,€) for all j.
In order to prove (5), given b € (0, 5), define

Fp={z:|Az(t)| ¢ (e — 2b, e+ 2b) for all t € (0,1]}, Gp={z:d(x,Fp) >
Then,

| o

1.

(i) G C Fyjo; (i) ¢(x) = ¢(y) whenever z, y € Fy, and ||z — y|| < b.
Statement (ii) is straightforward. To check (i), fix ¢ G, and take y € F, with
d(xz,y) < b/2. Let v : [0,1] — [0,1] be a strictly increasing homeomorphism such
that || —y o] < b/2. For all t € (0,1],

[Az(t)] < |Ayory(t)] + 2z —yorl < |Ay(v({®))] +b.

Similarly, [Axz(t)| > [Ay(y(t))| — b. Since y € Fy, it follows that x € Fy/o.
Next, define
d}b(x) — d d(.’L‘7 Gb) ,
(‘Ta Fb) + d(‘ra Gb)
Then, ¥, = 0 on G}, and v, is Lipschitz w.r.t. d with Lipschitz constant 2/b. Hence,
1y, is Lipschitz w.r.t. w with Lipschitz constant 2/b (since d < w). Basing on (i)-(ii)
and such properties of 1y, it is not hard to check that v, [4(¢) is Lipschitz w.r.t.
u, with Lipschitz constant 2/b, for every A € Fj. In turn, since d < u and f is
Lipschitz w.r.t. d with Lipschitz constant 1,

fa=foplalg), A€ F,
is Lipschitz w.r.t. v with Lipschitz constant (1 4 2/b). Moreover,

|,Un{fIA(¢)} — i (fa)| < pnlfLa(@) (1 —9p)| < prn (1 — thp).
On noting that (1 +2/b)~! f4 € L for every A € Fy, condition (2) yields

limsup sup | pn{f Ta(9)} = no{f Ta(¢)} |
< limsup {p, (1 — ) + Asélfg b (fa) = po(fa)l 4+ po(1 — p) }

=2p0(1 —1hp) < 2po(Fy).

z€eD.
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Since € € I and [, Fy = {z : |Ax(t)| = € for some t} = B, one obtains
limsup sup | {f 1a(6)} — po{ S La(@)}] < 2 lim puo(Fy) = 2po(Be) = 0.
n S -

Therefore, condition (5) holds and this concludes the proof.
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