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Abstract

This paper deals with the Bayesian analysis of graphical models of marginal

independence for three way contingency tables. Each marginal independence model

corresponds to a particular factorization of the cell probabilities and a conjugate

analysis based on Dirichlet prior can be performed. We illustrate a comprehensive

Bayesian analysis of such models, involving suitable choices of prior parameters,

estimation, model determination, as well as the allied computational issues. The

posterior distributions of the marginal log-linear parameters is indirectly obtained

using simple Monte Carlo schemes. The methodology is illustrated using two real

data sets.
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1 Introduction

The use of graphical models to describe association between categorical variables dates

back to the work of Darroch et al. (1980), where graphical log-linear models were intro-

duced. Since this initial work, graphical models turns out to be an efficient methodology

for categorical data analysis. Different typology of graphs have been proposed and the

corresponding model selection methodology developed. In this paper we focus of on

graphical models of marginal independence, see Cox and Wermuth (1993).

Graphical models of marginal independence were originally introduced for the ana-

lysis of multivariate Gaussian distributions. They compose a family of multivariate

distributions incorporating the marginal independences represented by a bi-directed

graph. The nodes in the graph correspond to a set of random variables and the bi-

directed edges represent the pairwise associations between them. A missing edge from

a pair of nodes indicates that the corresponding variables are marginally independent.

The analysis of the Gaussian case can be easily performed both in classical and

Bayesian frameworks since marginal independences correspond to zero constraints in

the variance-covariance matrix. The situation is more complicated in the discrete case,

where marginal independences correspond to non linear constraints on the set of pa-

rameters. Only recently parameterizations for these models have been proposed by

Lupparelli (2006), Lupparelli et al. (2008) and Drton and Richardson (2008).

In this paper we focus on the analysis of three way contingency tables. In the three

way case, the joint probability of each model under consideration can be appropriately

factorized, hence we can work directly in terms of the vector of joint probabilities on

which we impose the constraints implied by the graph. We consider a minimal set of
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probability parameters expressing marginal/conditional independences and sufficiently

describe the graphical model of interest. We use a conjugate prior distribution based on

Dirichlet priors on the appropriate probability parameters. In order to make the prior

distributions ‘compatible’ across models we define all probability parameters (marginal

and conditional ones) of each model from the parameters of the joint distribution of

the full table. The prior parameters of the Dirichlet distribution for the saturated

model in the full table are specified using ideas based on the power prior approach of

Ibrahim and Chen (2000) and Chen et al. (2000). We discuss the effects of different

choices of the hyper-parameter values on the model selection results. Finally, the

posterior distributions of the corresponding marginal log-linear parameters are obtained

via Monte Carlo simulations.

The plan of the paper is as follows. In Section 2 we introduce graphical models of

marginal independence, we establish the notation and we present their global Markov

property. In Section 3 we present two possible parameterizations and illustrates a

suitable factorization of the likelihood function applicable if the probability parameter-

izations is used. In Section 4, we consider conjugate prior distributions, we present an

imaginary data approach for prior specification and we compare alternative prior set-

ups. Section 5 provides posterior model and parameter distributions. Two illustrative

examples are presented in Section 6. Finally, we end up with a discussion and some

final comments regarding our current research on the topic.
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2 Graphical Models of Marginal Independence

In this section we briefly introduce graphical models of marginal independence, for

more details see e.g. Drton and Richardson (2008).

A bi-directed graph G = (V, E) is characterized by a vertex set V and an edge

set E with the property that (vi, vj) ∈ E if and only if (vj , vi) ∈ E. We denote each

bi-directed edge by (←−→vi, vj) =
{
(vi, vj), (vj , vi)

}
and we represent it with a bi-directed

arrow. A path connecting two vertices, v0 and vm, is a finite sequence of distinct

vertices v0, . . . vm such that (vi−1, vi), i = 1, . . . ,m, is an edge of the graph. A vertex

set C ⊆ V is connected if every two vertexes vi and vj are joined by a path in which

every vertex is in C. Two sets S1, S2 ∈ V are separated by a third set S3 ∈ V if any

path from a vertex in S1 to a vertex in S2 contains a vertex in S3. It can be shown

that, if a subset of the nodes D is not connected then there exist a unique partition of

it into maximal (with respect to inclusion) connected set C1, . . . , Cr

D = C1 ∪ C2 ∪ . . . ∪ Cr. (1)

The graph is used to represent marginal independences between a set of discrete

random variables XV =
(
Xv, v ∈ V

)
, each one taking values iv ∈ Iv; where Iv is

the set of possible levels for variable v. The cross-tabulation of variables XV produces

a contingency table of dimension |V| with cell frequencies n =
(
n(i), i ∈ I

)
where

I = ×v∈VIv. Similarly for any marginal M ⊆ V, we denote with XM =
(
Xv, v ∈

M
)
the set of variables which produce the marginal table with frequencies nM =

(
nM (iM ), iM ∈ IM

)
where IM =×v∈MIv. The marginal cell counts are the sum of
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specific elements of the full table and are given by

nM (iM ) =
∑

j
M
∈I

M

n(iM , jM ) =
∑

j∈I:jM=iM

n(j)

where M = V \M . For the three way case, we use the simplified notation with n(i)

denoted by nabc for every i = (iA = a, iB = b, iC = c) where A, B and C denote the

three nodes of the graph. The corresponding counts nM (iM ) of the marginal M will be

denoted by putting the plus (+) sign on the index of every variable v ∈M . For example

the nB(iB) (i.e. M = {B}) will be denoted by n+b+ while the marginal nAC(iAC) (i.e.

M = {A,C}) will be denoted by na+c. Similar notation will be also used for the cell

probabilities.

The list of independences implied by a bi-directed graph can be obtained using the

global Markov property (Kauermann, 1996 and Richardson, 2003). The distribution of

a random vector XV = {Xv, v ∈ V } satisfies the global Markov property if

S1 is separated from S2 by V \ (S1 ∪ S2 ∪ S3) in G implies XS1
⊥⊥XS2

|XS3
, (2)

with S1, S2 and S3 disjoint subsets of V , and S3 may be empty.

From the global Markov property, we directly derive that if two nodes i and j are

disconnected then Xi⊥⊥Xj , that is the variables are marginal independent. This can

be easily generalized for any given disconnected set D satisfying (1). Then the global

Markov property for the bi-directed graph G implies that XC1
⊥⊥XC2

⊥⊥ . . .⊥⊥XCr
..

The previous property can de used to define a bi-directed discrete graphical model.

According to Drton and Richardson (2008), a discrete graphical model of marginal

independence associated to a bi-directed graph G is a family P (G) of joint distributions

for a categorical random vector XV satisfying the global Markov property. Following
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the above, for every not connected set D ⊆ V, it holds that

P (XD = iD) =

r∏

k=1

P (XCk
= iCk

) (3)

where C1, . . . , Cr are the inclusion maximal connected sets satisfying (1).

3 Parameterizations for discrete graphical models of mar-

ginal independence

A graphical model of marginal independence for a three way contingency table can be

parameterized both in terms of the cell-probabilities (which for simplicity we call the π-

parameterization), or in terms of the marginal log-linear parameterization of Lupparelli

et al. (2009) (named the λ-parameterization).

3.1 Probability parameterization and likelihood factorization

Under the π-parameterization we impose the constraints implied by the graphG directly

on the joint probabilities π. We work with a minimal set of probability parameters πG

expressing marginal/conditional independences and sufficiently describe the graphical

model G under investigation.

In the three way case the joint probability of each model can be appropriately fac-

torized for any graph G. For every three way contingency table eight possible graphical

models exist which can be represented by four different types of graphs: the indepen-

dence, the saturated, the edge (only one edge) and the gamma structure graph (a single

path of length two). The different types of graph are represented in Figure 1.

For the saturated model GS , we get all parameters from the full table, i.e. πGS =

π =
(
π(i), i ∈ I

)
=

(
πabc, a = 1, . . . , |IA|, b = 1, . . . , |IB|, c = 1, . . . , |IC |

)
. Thus, the
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A
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B C

(a) Independence Model (b) Saturated Model (c) Edge Model (d) Gamma Model

Figure 1: Type of Graphs in Three Way Tables

likelihood is

f(n|π, GS) = C(n)
∏

i∈I

π(i)n(i) = C(n)

|IA|∏

a=1

|IB |∏

b=1

|IC |∏

c=1

πnabc

abc

where

C(n) =
Γ(N + 1)∏

i∈I
Γ
(
n(i) + 1

) = Γ(N + 1)
|IA|∏
a=1

|IB |∏
b=1

|IC |∏
c=1

Γ
(
nabc + 1

)

with N =
∑

i∈I n(i) =
∑|IA|

a=1

∑|IB |
b=1

∑|IC |
c=1 nabc being the total sample size.

The joint distributions for the independence model {A,B,C} and the edge models

of type {e, e} can be factorized using (3) since their graphical structure implies that

A⊥⊥B⊥⊥C for the first and e⊥⊥e for the latter; where e ∈ V = {A,B,C} is the discon-

nected variable of the edge graph and e = V \ e. For example, the edge model {AB,C}

with e = C implies that AB⊥⊥C.

Hence for the independence model we have that πabc = πa++π+b+π++c resulting in

f(n|πG, G) = C(n)
∏

v∈{A,B,C)

∏

iv∈Iv

πv(iv)
n(iv)

= C(n)

|IA|∏

a=1

(πa++)
na++

|IB |∏

b=1

(π+b+)
n+b+

|IC |∏

c=1

(π++c)
n++c
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where π
G =

(
πA,πB,πC

)
, πA = (πa++, a = 1, . . . , |IA|), πB = (π+b+, b = 1, . . . , |IB|)

and πC = (π++c, c = 1, . . . , |IC |).

The edge graphs are characterized by the disconnected variable e. Three possible

graphs/models are included for each choice of e ∈ {A,B,C} which imply the inde-

pendences A⊥⊥(B,C), B⊥⊥(A,C) and C⊥⊥(A,B) respectively. From (3) we have that

π(i) = πe(ie)πe(ie) resulting in a likelihood of the following form

f(n|πG, G) = C(n)
∏

ie∈Ie

πe(ie)
n(ie)

∏

ie∈Ie

πe(ie)
n(ie)

with π
G =

(
πe,πe

)
. For example if e = C then the likelihood can be rewritten as

f(n|πG, G) = C(n)

|IB |∏

b=1

(π++c)
n++c

|IA|∏

a=1

|IB |∏

b=1

(πab+)
nab+

with π
G =

(
πAB,πC

)
and πAB =

(
πab+, a = 1, . . . , |IA|, b = 1, . . . , |IB|

)
.

Finally, a gamma structured model is characterized by its corner node vc which is

connected with both variables in vc = V \ vc. If we denote the two variables of vc by

v1 and v2, then a gamma structured model implies that

v1 is separated from v2 by vc.

Applying the global Markov property (see (2)) on the above relationship results in

v1⊥⊥v2 since vc = V \
(
{v1}∪{v2}∪∅

)
and V = vc∪vc = {v1, v2, vc}. To implement the

above marginal independence, we need to write π(i) = πvc|vc(ivc |ivc)πvc(ivc) and then

substitute πvc(ivc) by the πv1(iv1)πv2(iv2) resulting in

π(i) = πvc|vc(ivc |ivc)πv1(iv1)πv2(iv2).

In the above, πvc|vc(ivc |ivc) denotes the conditional probability P (vc = ivc |vc = ivc) for

8



any i =
(
ivc , ivc

)
. The above parameterization results in the following likelihood

f(n|πG, G) = C(n)
∏

ivc ∈Ivc




∏

ivc∈Ivc

πvc|vc(ivc |ivc)
n(ivc ,ivc )




∏

iv1∈Iv1

πv1(iv1)
n(iv1 )

∏

iv2∈Iv2

πv2(iv2)
n(iv2 )

where π
G =

(
πvc|vc , πv1 ,πv2

)
and πvc|vc =

(
πvc|vc(ivc |ivc), ivc ∈ Ivc , ivc ∈ Ivc

)
are

all the conditional probabilities of vc given vc. For example if vc = B then the likelihood

is written as

f(n|πG, G) = C(n)

|IA|∏

a=1

|IC |∏

c=1



|IB |∏

b=1

[
πB|AC(b|ac)

]nabc



|IA|∏

a=1

(πa++)
na++

|IC |∏

c=1

(π++c)
n++c

where πG =
(
πB|AC ,πA,πC

)
.

3.2 Marginal log-linear parameterization

Log-linear models are widely used to represent the conditional independence relations

depicted by an undirected graph but they cannot be used to describe properties of

the marginal distributions. These models have been adapted to allow the analysis of

marginal contingency tables; see, for example, McCullagh and Nelder (1989), Liang

et al. (1992), Lang and Agresti (1994), Glonek and McCullagh (1995), and Bergsma

and Rudas (2002). In particular Bergsma and Rudas (2002) introduced marginal log-

linear models as a generalization of ordinary log-linear and multivariate logistic models.

Marginal log-linear parameters are obtained in a similar fashion as ordinary log-linear

parameters but estimated using the frequencies of appropriate marginal contingency

tables rather than data of the entire contingency table. A marginal log-linear parameter

is described by two sets of the variables: one set that refers to the marginal table in

use and a second set (which is a subset of the first) that identifies which variables are

involved in this specific term/effect. This setup is important in cases where information
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is available for specific marginal associations via odds ratios (i.e. marginal log-linear

parameters) or when partial information (i.e. marginals) is available. Marginal log-

linear models measure average conditional association among the variables involved.

Thus they describe marginal associations in terms of log-odds ratios which can be

useful to summarize associations when some discrete covariates are not available.

The marginal log-linear parameters of Bergsma and Rudas (2002) can be obtained

by

λ = C log
(
Mvec(π)

)
(4)

where π =
(
π(i), i ∈ I

)
is the joint probability distribution of XV and vec(π) is

a vector of dimension |I| obtained by rearranging the elements π in a reverse lexico-

graphical ordering of the corresponding variable levels with the level of the first variable

changing first (or faster). In this paper we assume that the parameter vector λ satisfies

sum-to-zero constraints and we indicate with C the corresponding contrast matrix.

Finally M is the marginalization matrix which specifies from which marginal we cal-

culate each element of λ. Such models have been also used by Lupparelli (2006) and

Lupparelli et al. (2008) to parameterize marginal association graphs. Each log-linear

parameter is calculated within the appropriate marginal distribution and a graphical

model of marginal independence is defined by zero constraints on specific higher order

marginal log-linear parameters. Following this approach, we can obtain an algorithm

for constructing C and M matrices which is available in the Appendix (for additional

details see Appendix A in Lupparelli, 2006).

To obtain a λ-parameterization we need to follow the steps described by Luppar-

elli (2006) and Lupparelli et al. (2009): (i) construct any hierarchical ordering (see
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Bergsma and Rudas, 2002) of the marginals Mi corresponding to disconnected sets of

the graph denoted by D(G) , i.e. for Mi ∈ D(G); (ii) append the marginal M = V

(corresponding to the full table under consideration) at the end of the list if it is not

already included; (iii) for every marginal table Mi ∈ D(G)∪ V estimate all parameters

of effects in Mi that have not already estimated from the preceding marginals; (iv) for

every marginal table Mi ∈ D(G), set the highest order log-linear interaction parameter

equal to zero; see Proposition 4.3.1 in Lupparelli (2006). Following this procedure we

can obtain the log-linear parameters for the bi-directed graphs of Figure 1 as reported

in Table 1.

The problem with λ−parameterization is that we cannot use (4) to obtain a closed

form expression for π
G and π. Thus the likelihood is not analytically available and

iterative procedures must be used to obtain it. On the contrary, when we work with

the π-parameterization, we can easily obtain the estimates of λ using (4) in a simple

Monte Carlo scheme. In fact, for a given graph G we can always reconstruct the joint

distribution π via π
G and then simply calculate the marginal log-linear parameters

directly using (4).

4 Prior distributions on cell probabilities

In the following we work using conjugate priors on the probability parameters and then

calculate the corresponding log-linear parameters using Monte Carlo schemes. In the

section which follows we present prior set-ups based on Dirichlet distributions and ways

to specify the prior parameters.
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Table 1: Log-linear λ−parameterization for the graphs of Figure 1(a), (c), (d).

Independence model

{A,B,C}

Margins Parameters

AB λMAB

∅ , λMAB

A , λMAB

B , λMAB

AB = 0

BC λMBC

C , λMBC

BC = 0

AC λMAC

AC = 0

ABC λMABC

ABC = 0

Edge Model

{AB,C}

Margins Parameters

AC λMAC

∅ , λMAC

A , λMAC

C , λMAC

AC = 0

BC λMBC

B , λMBC

BC = 0

ABC λMABC

AB , λMABC

ABC = 0

Gamma Model

{AB,BC}

Margins Parameters

AC λMAC

∅ , λMAC

A , λMAC

C , λMAC

AC = 0

ABC λMABC

B , λMABC

AB , λMABC

BC , λMABC

ABC
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4.1 Conjugate Priors

For the specification of the prior distribution on the probability parameter vector we ini-

tially consider a Dirichlet distribution with parameters α =
(
α(i), i ∈ I

)
=

(
αabc, a =

1, . . . , |IA|, b = 1, . . . , |IB|, c = 1, . . . , |IC |
)
for the vector of the joint probabilities of

the full table π. Hence, for the full table π ∼ Di(α) with prior density given by

f(π) =
Γ (α)

∏
i∈I

Γ
(
α(i)

)
∏

i∈I

π(i)α(i)−1 (5)

=
Γ (α)

|IA|∏
a=1

|IB |∏
b=1

|IC |∏
c=1

Γ
(
αabc

)

|IA|∏

a=1

|IB |∏

b=1

|IC |∏

c=1

π

(
αabc −1

)

abc = fDi(π; α)

where fDi

(
π; α

)
is the density function of the Dirichlet distribution evaluated at π

with parameters α and α =
∑

i∈I α(i).

Under this set-up, the marginal prior of π(i) is a Beta distribution with parameters

α(i) and α − α(i), i.e. π(i) ∼ Beta
(
α(i), α − α(i)

)
. The prior mean and variance of

each cell is given by

E
[
π(i)

]
=
α(i)

α
and V

[
π(i)

]
=
α(i){α− α(i)}

α2(α+ 1)
.

When no prior information is available then we usually set all α(i) = α
|I| resulting to

E
[
π(i)

]
=

1

|I|
and V

[
π(i)

]
=

|I| − 1

|I|2(α+ 1)
.

Small values of α increase the variance of each cell probability parameter. Usual

choices for α are the values |I|/2 (Jeffrey’s prior), |I| and 1 (corresponding to α(i)

equal to 1/2, 1 and 1/|I| respectively); for details see Dellaportas and Forster (1999).

The choice of this prior parameter value is of prominent importance for the model

comparison due to the well known sensitivity of the posterior model odds and the
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Bartlett-Lindley paradox (Lindley, 1957, Bartlett, 1957). Here this effect is not so

adverse, as for example in usual variable selection for generalized linear models, for two

reasons. Firstly even if we consider the limiting case where α(i) = α
|I| with α → 0,

the variance is finite and equal to (|I| − 1)/|I|2. Secondly, the distributions of all

models are constructed from a common distribution of the full model/table making

the prior distributions ‘compatible’ across different models (Dawid and Lauritzen, 2000

and Roverato and Consonni, 2004).

The model specific prior distributions are defined by the constraints imposed by

the model’s graphical structure and the adopted factorization. The prior distribution

also factorizes in the same manner as the likelihood described in section 3.1. Thus, the

prior for the saturated model is the usual Dirichlet given by (5).

Both the independence and the edge models can be expressed as product of in-

dependent Dirichlet distributions on probability parameters of the disconnected sets.

Hence, for the independence model the prior is given by

f
(
π
G
∣∣G

)
=

∏

v∈{A,B,C)




Γ (αv)
∏

iv∈Iv

Γ
(
αv(iv)

)
∏

iv∈Iv

πv(iv)
αv(iv)−1


 =

∏

v∈{A,B,C)

fDi(πv; αv)

while for the edge model of type {e, e} is given by

f
(
π
G
∣∣G

)
=

Γ (αe)
∏

ie∈Ie

Γ
(
αe(ie)

)
∏

ie∈Ie

πe(ie)
αe(ie)−1 ×

Γ (αe)
∏

ie∈Ie

Γ
(
αe(ie)

)
∏

ie∈Ie

πe(ie)
αe(ie)−1

= fDi(πe; αe)× fDi(πe; αe)

with αM =
∑

iM∈IM

αM (iM ) and αM =
(
αM (iM );M ∈ IM

)
for any M ⊆ V . For

example, for the edge model {AB,C} with e = C the prior will be a product of a

Dirichlet distributions for πAB and πC with parameters αAB and αC respectively.
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The prior can be written as

f
(
π
G
∣∣G

)
=

Γ

(
|IC |∑
c=1

αC(c)

)

|IC |∏
c=1

Γ
(
αC(c)

)

|IC |∏

c=1

π

(
αC(c) −1

)
++c ×

Γ

(
|IA|∑
a=1

|IB |∑
b=1

αAB(ab)

)

|IA|∏
a=1

|IB |∏
b=1

Γ
(
αAB(ab)

)

|IA|∏

a=1

|IB |∏

b=1

π

(
αAB(ab) −1

)

ab+ .

Since the above prior densities are a product of Dirichlet distributions (over the

parameters of all disconnected sets) we denote them by

f
(
π
G
)
= fPD

(
πd; αd, d ∈ D(G)

)
. (6)

For the gamma structure the prior is given by

p
(
π
G
)
=





∏

ivc ∈Ivc

fDi

(
πvc|vc(·|ivc); αvc|vc(·|ivc)

)


 fDi

(
πv1 ; αv1

)
fDi

(
πv2 ; αv2

)
.

(7)

with πvc|vc(·|ivc) =
(
πvc|vc(ivc |ivc), ivc ∈ Ivc

)
and αvc|vc(·|ivc) =

(
αvc|vc(ivc |ivc), ivc ∈

Ivc

)
. The fist part of equation (7), that is the product for all level of vc of Dirich-

let distributions of the conditional probabilities, can be denoted by fCPD
(
πvc|vc ; α

)
.

Then, the prior density (7) can be written as

f
(
π
G
)

= fCPD
(
πvc|vc ; αvc|vc

)
fPD

(
πv; αv, v ∈ vc

)
, (8)

where αvc|vc =
(
αvc|vc(ivc |ivc), ivc ∈ Ivc , ivc ∈ Ivc

)
. For example if vc = B then the

prior can be written as

p
(
π
G
)

=

|IA|∏

a=1

|IC |∏

c=1





Γ
(
αB|AC=ac

)

|IB |∏
b=1

Γ
(
αB|AC(b|ac)

)



|IB |∏

b=1

[
πB|AC(b|ac)

]αB|AC(b|ac)−1








×
Γ (αA)

|IA|∏
a=1

Γ
(
αA(a)

)

|IA|∏

a=1

π

(
αA(a) −1

)
a++ ×

Γ (αC)
|IC |∏
c=1

Γ
(
αC(c)

)

|IC |∏

c=1

π

(
αC(c) −1

)
++c

where αB|AC=ac =
|IB |∑
b=1

αB|AC(b|ac).
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4.2 Compatible Prior Distributions

In order to make the prior distributions ‘compatible’ across models, we define the

prior parameters of πG from the corresponding parameters of the prior distribution

(5) imposed on the probabilities π of the full table; see Dawid and Lauritzen (2000),

Roverato and Consonni (2004).

Let us consider a marginalM ∈M(G) for which we wish to estimate the probability

parameters πM = (πM (iM ), iM ∈ IM ). The resulting prior is πM ∼ Di
(
αM

)
, that is a

Dirichlet distribution with parameters αM = (αM (iM ), iM ∈ IM ) given by

αM (iM ) =
∑

j∈I
M

α(iM , jM ) =
∑

{j∈I:jM=iM}

α(j),

see (i) of Lemma 7.2 in Dawid and Lauritzen (1993, p.1304).

For example, consider a three way table with V = {A,B,C} and the marginal

M = C. Then the prior imposed on the parameters πC of the marginal C is given by

πC ∼ Di
(
αC

)
with αc = α++c =

|IA|∑

a=1

|IB |∑

b=1

αabc for c = 1, 2, . . . , |IC |,

where αC =
(
α++c, c = 1, . . . , |IC |

)
. Also note that under this prior set-up

αM =
∑

iM∈IM

αM (iM ) =
∑

iM∈IM

∑

jM∈IM

α(iM , jM )

For the conditional distribution of M1|M2 with M1 6= M2 ∈ M(G) we work in a

similar way. The vector πM1|M2
(·|iM2

) =
(
πM1|M2

(iM1
|iM2

), iM1
∈ IM1

)
a priori follows

a Dirichlet distribution

πM1|M2
(·|iM2

) ∼ Di
(
αM1∪M2

(iM1
, iM2

), iM1
∈ IM1

)
.

The above structure derives from the decomposition of a Dirichlet as a ratio of Gamma

distributions; see also Lemma 7.2 (ii) in Dawid and Lauritzen (1993, p.1304).
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For example, consider marginals M1 = A and M2 = B in a three way contingency

table with V = {A,B,C}. Then, for a specific level of variable B, say iB = 2,

πA|B(·|iB = 2) ∼ Di
(
αAB(·, 2)

)

where αAB(·, 2) =
(
αa2+, a = 1, . . . , |IA|

)
and αa2+ =

∑|IC |
c=1 αa2c.

4.3 Specification of Prior Parameters Using Imaginary Data.

In graphical model literature there is a debate about the use of conjugate priors based

on Dirichlet distributions; see for example in Steck and Jaakkola (2002), Steck (2008)

and Ueno (2008). As pointed out in Section 4.1, the parameters of the Dirichlet prior

should be carefully specified. In order to do this we adopt ideas based on the power prior

approach of Ibrahim and Chen (2000) and Chen et al. (2000). We use their approach

to advocate sensible values for the Dirichlet prior parameters on the full table and the

corresponding induced values for the rest of the graphs as described in the previous

sub-section. Although here we restrict our attention to marginal independence graphs,

the procedure can be applied also for prior elicitation for undirected graphs and DAGs.

Let us consider imaginary set of data represented by the frequency table n
∗ =

(n∗(i), i ∈ I) of total sample size N∗ =
∑

i∈I n
∗(i) and a Dirichlet ‘pre-prior’ with all

parameters equal to α0. Then the unnormalized prior distribution can be obtained by

the product of the likelihood of n∗ raised to a power w multiplied by the ‘pre-prior’

distribution. Hence

f(π) ∝ f(n∗|π)w × fDi

(
π; α(i) = α0, i ∈ I

)

∝
∏

i∈I

π(i)wn∗(i)+α0−1

= fDi

(
π; α(i) = wn∗(i) + α0, i ∈ I

)
. (9)
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Using the above prior set up, we expect a priori to observe a total number of

wN∗ + |I|α0 observations. The parameter w is used to specify the steepness of the

prior distribution and the weight of belief on each prior observation. For w = 1 then

each imaginary observation has the same weight as the actual observations. Values of

w < 1 will give less weight to each imaginary observation while w > 1 will increase

the weight of believe on the prior/imaginary data. Overall the prior will account for

the (wN∗ + |I|α0)/(wN
∗ +N + |I|α0) of the total information used in the posterior

distribution. Hence for w = 1, N∗ = N and α0 → 0 then both the prior and data will

account for 50% of the information used in the posterior.

For w = 1/N∗ then α(i) = p∗(i) + α0 with p
∗(i) = n∗(i)/N∗, the prior data n

∗ will

account for information of one data point while the total weight of the prior will be

equal to (1+ |I|α0)/(1+N+ |I|α0). If we further set α0 = 0, then the prior distribution

(9) will account for information equivalent to a single observation. This prior set-up will

be referred in this paper as the unit information prior (UIP). When no information is

available, then we may further consider the choice of equal cell frequencies n∗(i) = n∗ for

the imaginary data in order to support the simplest possible model under consideration.

Under this approach N∗ = n∗ × |I| and w = 1/N∗ = 1
n∗×|I| resulting to

π ∼ Di
(
α(i) = 1/|I|, i ∈ I

)
.

The latter prior is equivalent to the one advocated by Perks (1947). It has the nice

property that the prior on the marginal parameters does not depend on the size of

the table; for example, for a binary variable, this prior will assign a Beta(1/2, 1/2)

prior on the corresponding marginal regardless the size of the table we work with (for

example if we work with 23 or 2 × 4 × 5 × 4 table). This property is retained for any
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prior distribution of type (9) with w∗ = 1/N∗, p∗(i) = 1/|I| and α0 ∝ 1/|I|.

4.4 Comparison of Prior Set-ups

Since Perks’ prior (with α(i) = 1/|I|) has a unit information interpretation, it can

be used as a yardstick in order to identify and interpret the effect of any other prior

distribution used. Prior distributions with α(i) < 1/|I|, or equivalently α < 1, result

in larger variance than the one imposed by our proposed unit information prior and

hence they a posteriori supports more parsimonious models. On the contrary, prior

distributions with α(i) > 1/|I|, or α > 1, result in lower prior variance and hence they

a posteriori support models with more complicated graph structure. So the variance

ratio between a Dirichlet prior with α(i) = α/|I| and Perks prior is equal to

V R =
V
(
π(i)

∣∣ α(i) = α
|I|

)

V
(
π(i)

∣∣ α(i) = |I|−1
) = 2

α+ 1
.

Table 2 presents the comparison of the information from the following prior choices:

(i) the Jeffrey’s prior with α(i) = 1/2;

(ii) the Unit Expected Cells prior (UEC) with α(i) = 1;

(iii) the Unit Information Prior (UIP) which is derived by a power prior with α(i) =

p∗(i), w = 1/N∗ and a0 = 0; where p∗(i) is the sample proportion of cell i

estimated from a set of imaginary data n∗(i);

(a) Perks’ prior (UIP-Perks’) with α(i) = 1/|I| which is equivalent to UIP com-

ing from a table of imaginary data with all cell frequencies equal to one;

(b) the Unit Information Empirical Bayes Prior (UI-EBP), which is derived by

UIP with p∗(i) set equal to the sample proportions p(i) = n(i)/N .
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From this table, we observe that Jeffreys’ prior variance is lower than the corresponding

Perks’ prior reaching a reduction of about 60% and 85% for a 23 and a 2× 3× 4 table

respectively. The reduction is even greater for the Unit Expected Cell prior reaching

78% and 92% respectively.

Finally, for the Empirical Bayes prior, based on the UIP approach, the prior variance

for each π(i) is equal to V [π(i)] = 1
2p(i)

(
1 − p(i)

)
. Hence it depends on the observed

proportion and can vary from zero (if p(i) = 0 or 1) to 1/8 if p(i) = 1/2. For values in the

interval (0.058, 0.942) the variance of the UI-EBP is higher than the corresponding UIP

variance reaching its maximum when p(i) = 1/2 where it is 4.6 times the corresponding

UIP prior variance. For p(i) = 0.058 or 0.942 the variances of the UIP and UI-EBP are

equal while for the remaining values, UIP variance is higher.

5 Posterior Distributions

5.1 Posterior Distributions of Model Parameters

Since the prior is conjugate to the likelihood, the posterior can be derived easily as fol-

lows. For the saturated model the posterior distribution is also a Dirichlet distribution

f(π
∣∣n, GS) = fDi

(
π; α̃

)

with parameters

α̃ =
(
α̃(i) = α(i) + n(i), i ∈ I

)
=

(
α̃abc = αabc + nabc, a ∈ IA, b ∈ IB, c ∈ IC

)
.

For the independence and the edge structure the density of the posterior distribution

is is equivalent to (6),

f(πG
∣∣n, G) = fPD

(
π
G; α̃G)
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with

α̃
G =

(
α̃d, d ∈ D(G)

)
and α̃d =

(
α̃d(id) = αd(id) + nd(id), id ∈ Id

)
.

Hence for the independence model the parameter vector of the posterior distribution

is given by α̃
G =

(
α̃A, α̃B, α̃C

)
with α̃A =

(
α̃a++ = αa++ + na++, a = 1, . . . , |IA|

)
,

α̃B =
(
α̃+b+ = α+b+ + n+b+, b = 1, . . . , |IB|

)
and α̃C =

(
α̃++c = α++c + n++c, c =

1, . . . , |IC |
)
while for the edge model {AB,C} with e = C the parameters vector is

given by α̃
G =

(
α̃AB, α̃C

)
with α̃AB =

(
α̃ab+ = αab+ + nab+, a = 1, . . . , |IA|, b =

1, . . . , |IB|
)
and α̃C as above.

Finally, for the gamma structure

f(πG|n, G) = fCPD
(
πvc|vc ; α̃

)
× fPD

(
πv; α̃v, v ∈ vc

)

i.e. a distribution with density equivalent to the corresponding prior (7) with parame-

ters α̃G =
(
α̃, α̃v, v ∈ vc

)
.

Finally, from the properties of the Dirichlet distribution we can derive the marginal

posterior distribution of each element of π
G which is a Beta distribution with the

appropriate parameters (see Section 4.1).

5.2 Marginal Likelihood of Each Graph

For model choice we need to estimate the posterior model probabilities f(G|n) ∝

f(n|G)f(G), with f(n|G) marginal likelihood of the model and f(G) prior distribution

on G. Here we restrict to the simple case where f(G) is uniform, hence the posterior

will depend only on the marginal likelihood f(n|G) of the model under consideration.

The marginal likelihood can be calculated analytically since the above prior set-up is

conjugate.
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For the saturated model the marginal likelihood is given by

f(n|G) = C(n)×
B
(
α̃
)

B
(
α
)

where C(n) is the usual multinomial constant and B(α) is the normalizing constant of

the multinomial beta function given by

B
(
α
)
=

∏
i∈I

Γ
(
α(i)

)

Γ

(∑
i∈I

α(i)

) .

respectively.

For the independence model the marginal likelihood is given by

f(n|G) = C(n)
B
(
α̃A

)

B
(
αA

) B
(
α̃B

)

B
(
αB

) B
(
α̃C

)

B
(
αC

) ,

while for the edge model {e, e} the marginal likelihood is calculated by

f(n|G) = C(n)
B
(
α̃e

)

B
(
αe

) B
(
α̃e

)

B
(
αe

) .

For example, for e = C the marginal likelihood is given by

f(n|G) = C(n)
B
(
α̃C

)

B
(
αC

) B
(
α̃AB

)

B
(
αAB

) .

Finally, for the gamma structure the marginal likelihood f(n|G) is given by

f(n|G) = C(n)
∏

ivc ∈Ivc

B
(
α̃(·, ivc)

)

B
(
α(·, ivc)

)
∏

v∈vc

B
(
α̃v

)

B
(
αv

) . (10)

5.3 Estimation of the Posterior Distribution of Marginal Association

Log-Linear Parameters

The posterior distribution of the marginal log-linear parameters λG can be estimated

in a straightforward manner using Monte Carlo samples from the posterior distribution

of πG. Specifically, a sample from the posterior distribution of λG can be generated by

the following steps.
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i) Generate a random sample πG, (t)(t = 1, . . . , T ) from the posterior distribution of

π
G.

ii) At each iteration t, calculate the full table of probabilities π(t) from π
G, (t).

iii) The vector of marginal log-linear parameters, λG, (t), can be easily obtained from

π
(t) via equation (4) which becomes

λ
G, (t) = C

G log
(
M

Gvec
(
π
(t)

))

where C
G and M

G are the contrast and marginalization matrices under graph

G. Note that some elements of λG will automatically be constrained to zero for

all generated values due to the graphical structure of the model G and the way

we calculate log-linear parameters using the previous equation.

Finally, we can use the generated values
(
λ
G, (t); t = 1, 2, . . . , T

)
to estimate summaries

of the posterior distribution f(λG|G) or obtain plots fully describing this distribution.

6 Illustrative examples

The methodology described in the previous sections is now illustrated on two real data

sets, a 2×2×2 and a 3×2×4 tables. In both example we compare the results obtained

with our yardstick prior, the UIP-Perks’ prior (α(i) = 1/|I|), with those obtained using

Jeffrey’s (α(i) = 1/2), Unit Expected Cell (α(i) = 1), and unit information Empirical

Bayes (α(i) = p(i)) priors.
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6.1 A 2× 2× 2 Table: Antitoxin Medication Data

We consider a data set presented by Healy (1988) regarding a study on the relationship

between patient condition (more or less severe), assumption of antitoxin (yes or not)

and survival status (survived or not); see Table 3. In Table 4 we compare posterior

model probabilities under the four different prior set-ups.

Table 3: Antitoxin data

Survival (S)

Condition (C) Antitoxin (A) No Yes

More Severe Yes 15 6

No 22 4

Less Severe Yes 5 15

No 7 5

Under all prior assumptions the maximum a posteriori model (MAP) is SC+A (we

omit the conventional crossing (*) operator between variables for simplicity), assuming

the marginal independence of Antitoxin from the remaining two variables.

Under Empirical Bayes and UIP-Perks’ priors the posterior distribution is concen-

trate on the MAP model (it takes into account 93.4% and 91.7% respectively of the

posterior model probabilities). The posterior distributions under the Jeffreys’ and the

unit expected prior set-ups are more disperse, supporting the three models (SC+A,

AS+SC and ASC) with posterior weights higher than 10% and accounting around the

94% of the posterior model probabilities. Model AS+SC is also the model with the se-

cond highest posterior probability under UIP-Perks’ prior but its weight is considerably
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lower than the corresponding probability of the MAP model.

Table 4: Posterior model probabilities (%) for the Antitoxin data.

Model

A+S+C AS+C AC+S SC+A AS+AC AS+SC AC+SC ASC

Prior Distribution αabc (1) (2) (3) (4) (5) (6) (7) (8)

Jeffreys’ 1/2 0.3 1.5 0.2 59.7 0.1 21.7 3.0 13.4

Unit Expected Cell 1 0.2 1.1 0.2 37.2 0.1 30.2 4.7 26.2

Empirical Bayes p(i) 1.6 2.4 0.3 93.4 0.0 1.7 0.2 0.4

UIP-Perks’ 1/|I| 1.2 2.1 0.3 91.7 0.0 3.5 0.4 0.8

Figure 2 presents boxplots summarizing 2.5%, 97.5% posterior percentiles and quan-

tiles of the joint probabilities for the MAP model (SC+A) for the four prior set-ups.

Since direct calculation from the posterior distribution is not feasible, we estimated the

posterior summaries via Monte Carlo simulation (1000 values). From this figure, we

observe minor differences between the posterior distributions obtained under the UIP-

Perks’ and the empirical Bayes prior. More differences are observed between Perks’

UIP and the posterior distributions under the two other prior set-ups. Differences are

higher for the first two cell probabilities, i.e. for π(1, 1, 1) and π(2, 1, 1).

Similarly in Figure 3 we present boxplots providing posterior summaries for models

SC + A, AS + SC and ASC under the UIP-Perks’ prior set-up. The first two models

are the ones with highest posterior probabilities and all of their summaries have been

calculated using Monte Carlo simulation (1000 values). The saturated was used mainly

as reference model since it is the only one for which the posterior distributions are

available analytically. From the figure we observe that the posterior distributions on

the joint probabilities π of the full table are quite different highly depending on the

assumed model structure.
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Figure 2: Antitoxin data: Boxplots summarizing 2.5%, 97.5% posterior percentiles and

quantiles of the joint probabilities πABC(i, j, k) for the MAP model (SC+A) for all

prior set-ups (J=Jeffreys’, U=Unit Expected Cell, E=Empirical Bayes, P=Perks’) .
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

J U E P J U E P J U E P J U E P J U E P J U E P J U E P J U E P Prior

111 211 121 221 112 212 122 222 Cell

C
e
ll 

P
ro

b
a
b
ili

ti
e
s

Figure 3: Antitoxin data: Boxplots summarizing 2.5%, 97.5% posterior percentiles and

quantiles of the joint probabilities πABC(i, j, k) for models SC+A, AS+SC and ASC

(4, 6 and 8 respectively) under the UIP-Perks’ prior set-up.
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Finally, posterior summaries for the probability parameters π
G and the marginal

log-linear parameters λG for models SC +A, AS + SC and ASC (as described above)

under the UIP-Perks’ prior are provided in Tables 5 and 6 respectively. All summaries

of each element of πG are obtained analytically based on the Beta distribution induced

by the corresponding Dirichlet posterior distributions of πG. Posterior summaries of

λ
G are estimated using the Monte Carlo strategy (1000 values) discussed in section 5.

As commented in this section, some elements of λG for graphs SC+A and AS+SC are

constrained to zero due the way we have constructed our model. Hence for SC+A, the

maximal interaction terms for the disconnected sets AS, AC and ASC, i.e. parameters

λAS(2, 2), λAC(2, 2) and λASC(2, 2, 2), are constrained to be zero for all generated

observations. Similar is the picture for model AS + SC, but now only marginals AC

and ABC correspond to disconnected sets implying that λAC(2, 2) = λASC(2, 2, 2) = 0.

6.2 A 3× 2× 4 table: Alcohol Data

Here we analyze a well known data set presented by Knuiman and Speed (1988) re-

garding a small study held in Western Australia on the relationship between Alcohol

intake (A), Obesity (O) and High blood pressure (H); see Table 7.

In Table 8 we report posterior model probabilities and corresponding log-marginal

likelihoods for each models. Under all prior set-ups the posterior model probability is

concentrated on models H+A+O, HA+O and HO+A. Empirical Bayes and UIP-Perks’

support the independence model (with posterior model probability of 0.878 and 0.807

respectively) whereas Jeffreys’ and Unit Expected support a more complex structure,

HO+A (with posterior model probability of 0.837 and 0.859 respectively).
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Table 5: Antitoxin data: Posterior summaries of model parameters for models SC+A,

AS + SC and ASC under the UIP-Perks’ prior set-up; ã and b̃ are the parameters of

the resulted Beta marginal posterior distribution.

Model 4: SC +A Beta Posterior

Parameters

Parameter Mean St.dev. Q0.025 Q0.975 ã b̃

πSC(1, 1) 0.47 0.055 0.36 0.57 37.25 42.75

πSC(2, 1) 0.13 0.037 0.06 0.21 10.25 69.75

πSC(1, 2) 0.15 0.040 0.08 0.24 12.25 67.75

πA(1) 0.52 0.056 0.41 0.63 41.50 38.50

Model 6: AS + SC

Parameter Mean St.dev. Q0.025 Q0.975 ã b̃

πS|AC(1|1, 1) 0.71 0.096 0.51 0.88 15.12 6.12

πS|AC(1|2, 1) 0.84 0.070 0.68 0.95 22.12 4.12

πS|AC(1|1, 2) 0.25 0.094 0.09 0.46 5.12 15.12

πS|AC(1|2, 2) 0.58 0.136 0.31 0.83 7.12 5.12

πA(1) 0.52 0.056 0.41 0.63 41.50 38.50

πC(1) 0.59 0.055 0.48 0.70 47.50 32.50

Model 8: ASC (Saturated)

Parameter Mean St.dev. Q0.025 Q0.975 ã b̃

π(1, 1, 1) 0.19 0.044 0.11 0.28 15.12 64.88

π(2, 1, 1) 0.28 0.050 0.18 0.38 22.12 57.88

π(1, 2, 1) 0.08 0.030 0.03 0.14 6.12 73.88

π(2, 2, 1) 0.05 0.025 0.01 0.11 4.12 75.88

π(1, 1, 2) 0.06 0.027 0.02 0.13 5.12 74.88

π(2, 1, 2) 0.09 0.032 0.04 0.16 7.12 72.88

π(1, 2, 2) 0.19 0.044 0.11 0.28 15.12 64.88

π(2, 2, 2) 0.06 0.027 0.02 0.13 5.12 74.88
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Table 6: Antitoxin data: Posterior summaries for lambda for models SC+A, AS+SC

and ASC under the UIP-Perks’ prior set-up

Model 4: SC +A

Parameter Marginal table Mean St.dev. Q0.025 Q0.975

λ∅ MAS -1.429 0.032 -1.513 -1.388

λA(2) MAS -0.040 0.113 -0.258 0.181

λS(2) MAS -0.245 0.118 -0.480 -0.021

λAS(2, 2) MAS 0.000 0.000 0.000 0.000

λC(2) MAC -0.194 0.116 -0.426 0.027

λAC(2, 2) MAC 0.000 0.000 0.000 0.000

λSC(2, 2) MASC 0.460 0.134 0.199 0.735

λASC(2, 2, 2) MASC 0.000 0.000 0.000 0.000

Model 6: AS + SC

Parameter Marginal table Mean St.dev. Q0.025 Q0.975

λ∅ MAC -1.418 0.025 -1.483 -1.388

λA(2) MAC -0.042 0.114 -0.261 0.173

λC(2) MAC -0.195 0.110 -0.414 0.020

λAC(2, 2) MAC 0.000 0.000 0.000 0.000

λS(2) MASC -0.238 0.137 -0.493 0.044

λAS(2, 2) MASC -0.291 0.137 -0.554 -0.019

λSC(2, 2) MASC 0.437 0.137 0.178 0.712

λASC(2, 2, 2) MASC -0.086 0.143 -0.370 0.207

Model 8: ASC (Saturated)

Parameter Marginal table Mean St.dev. Q0.025 Q0.975

λ∅ MASC -2.325 0.079 -2.504 -2.191

λA(2) MASC -0.106 0.134 -0.379 0.152

λS(2) MASC -0.246 0.131 -0.510 0.004

λAS(2, 2) MASC -0.292 0.139 -0.576 -0.033

λC(2) MASC -0.136 0.143 -0.402 0.151

λAC(2, 2) MASC -0.084 0.139 -0.355 0.202

λSC(2, 2) MASC 0.450 0.135 0.207 0.705

λASC(2, 2, 2) MASC -0.074 0.143 -0.368 0.209
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Table 7: Alcohol Data

Alcohol intake

(drinks/days)

Obesity High BP 0 1-2 3-5 6+

Low Yes 5 9 8 10

No 40 36 33 24

Average Yes 6 9 11 14

No 33 23 35 30

High Yes 9 12 19 19

No 24 25 28 29

To save space we do not report here posterior summaries for model parameters,

they can be found in a separate appendix on the web page:

http://stat-athens.aueb.gr/~jbn/papers/paper21.htm.

7 Discussion and Final Comments

In this paper we have dealt with the Bayesian analysis of graphical models of marginal

independence for three way contingency tables. We have worked using the proba-

bility parameters of marginal tables required to fully specify each model. We have

used a parameterization which directly originate from the constraints imposed by the

marginal association structure of the graph. The resulting parameterization and the

corresponding decomposition of the likelihood simplifies the problem and automatically

imposes the marginal independences represented by the considered graph. By this way,
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Table 8: Alcohol data: Posterior model probabilities and the corresponding log-

marginal likelihoods; empty cell in posterior probabilities means that it is lower than

0.0001

Posterior model probabilities (%)

Model

H+A+O HA+O HO+A AO+H HA+HO HA+AO HO+AO HAO

Prior Distribution (1) (2) (3) (4) (5) (6) (7) (8)

Jeffreys’ 11.56 4.76 83.68

Unit Expected Cell 6.91 7.21 85.88

Empirical Bayes 87.81 0.07 12.12

Perks’ 80.67 0.15 19.18

Log-marginal likelihood for each model

Model

H+A+O HA+O HO+A AO+H HA+HO HA+AO HO+AO HAO

Prior Distribution (1) (2) (3) (4) (5) (6) (7) (8)

Jeffreys (α(i) = 1/2) -79.22 -80.11 -77.24 -87.73 -90.44 -100.93 -98.06 -98.95

UEC (α(i) = 1) -78.51 -78.47 -75.99 -84.70 -85.27 -93.99 -91.51 -91.46

Empirical Bayes (α(i) = p(i)) -86.96 -94.10 -88.94 -107.26 -124.75 -143.06 -137.91 -145.04

Perks (a(i) = 1/|I|) -86.90 -93.19 -88.33 -107.10 -121.13 -139.89 -135.03 -141.33
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the posterior model probabilities and the posterior distributions for the used parameters

can be calculated analytically. Moreover, the posterior distributions of the marginal

log-linear parameters λG and the probabilities π of the full table can be easily obtained

using simple Monte Carlo schemes. This approach avoids the problem of the inverse

calculation of π when the marginal association log-linear parameters λ are available

which can be only achieved via an iterative procedure; see Rudas and Bergsma (2004)

and Lupparelli (2006) for more details.

In the three way case all the considered models are Markov equivalent to a DAG; see

Pearl and Wermuth (1994) and Drton and Richardson (2008). An immediate question

which arises is whether the the graphical structures implied using the parameterization

illustrated in this paper are the same with the ones that we would derive using the

parameterization implied by the corresponding DAG representation. For example, in

our approach the parameters for the edge model {AB,C} with e = C are given by πG =

(
πAB,πC

)
while the parameterization implied by the corresponding DAG structure

is either π
G =

(
πA|B,πB,πC

)
or π

G =
(
πB|A,πA,πC

)
. The answer is given by

Heckerman et al. (1995) where they prove that the posterior distributions and the

marginal likelihoods will be the same if the priors are compatible across models since

some normalizing constants cancel out. This result can be easily confirmed in the above

simple example with model {AB,C}. Naturally, with our methodology we obtain also

information regarding the marginal association between the variables.

An obvious extension of this work is to implement the same approach in tables of

higher dimension starting from four way tables. Although most of the models in a four

way contingency table can be factorized and analyzed in a similar manner, two type
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of graphs (the 4-chain and the cordless four-cycle graphs) cannot be decomposed in

the above way. These models are not Markov equivalent to any directed acyclic graph

(DAG). In fact each bi-directed graph (which corresponds to a marginal association

model) is equivalent to a DAG, i.e. a conditional association model, with the same

set of variables if and only if it does not contain any 4-chain, see Pearl and Wermuth

(1994). We believe that also in higher dimensional problems our approach can be

applied to bi-directed graphs that admit a DAG representation. For the graph that do

not factorize, more sophisticated techniques must be adopted in order to obtain the

posterior distribution of interest and the corresponding marginal likelihood needed for

the model comparison (work in progress by the authors).

Another interesting subject is how to obtain the posterior distributions in the case

that someone prefers to work directly with marginal log-linear parameters λG defined by

(4). Using our approach, we impose a prior distribution on the probability parameters

π
G. The prior of λG cannot be calculated analytically since we cannot have the inverse

expression of (4) in closed form. Nevertheless, we can obtain a sample from the imposed

prior on λ
G using a simple Monte Carlo scheme. More specifically, we can generate

random values of πG from the Dirichlet based prior set-ups described in this paper. We

calculate the joint probability vector π according to the factorization of the graph under

consideration and finally use (4) to obtain a sample from the imposed prior f(λG|G).

This will give us an idea of the prior imposed on the log-linear parameters.
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Appendix

1. Construction of Matrix M

Let M = {M1,M2, . . . ,M|M|} be the set of considered marginals. Let B be

a binary matrix of dimension |M| × |V| with elements Biv indicating whether

a variable v belongs to a specific marginal Mi. The rows of B correspond to

the marginals in M whereas the columns to the variables. The variables follow

a reverse ordering, that is column 1 corresponds to variable X|V|, column 2 to

variable X|V|−1 and so on. Matrix B has elements

Biv =





1 if v ∈Mi

0 otherwise.

,

for every v ∈ V.

The marginalization matrix M can be constructed using the following rules.

(a) For each marginal Mi, the probability vector of the corresponding marginal

table is given by Miπ; where Mi is calculated as a Kronecker product of

matrices Aiv

Mi =
⊗

v∈V

Aiv

with

Aiv =





Iℓv if Biv = 1

1Tℓv if Biv = 0

where ℓv is the number of levels for v variable, Iℓv is the identity matrix of

dimension ℓv × ℓv and 1ℓv is a vector of dimension ℓv × 1 with all elements

equal to one.
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(b) Matrix M is constructed by stacking all the Mi matrices

M =




M1

...

Mi

...

M|M|




2. Construction of Matrix C

Firstly we need to construct the design matrix X for the saturated model corre-

sponding to sum to zero constraints. It has has dimension

(∏
v
ℓv

)
×

(∏
v
ℓv

)

and can be obtained as

X =
⊗

v∈VR

Jℓv

with

Jℓv(r, c) =





1 if c = 1 or r = c

−1 if r = 1 and c > 1

0 otherwise.

In matrix notation

Jℓv =




1 −1T(ℓv−1)

1(ℓv−1) I(ℓv−1)×(ℓv−1)




where 1(ℓv−1) is (ℓv − 1)×1 vector of ones while I(ℓv−1)×(ℓv−1) is an identity matrix

of dimension (ℓv − 1)× (ℓv − 1).

The contrast matrix C can be constructed by using the following rules.
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(a) For each margin Mi construct the design matrix Xi corresponding to the

saturated model (using sum to zero constraints) and invert it to get the

contrast matrix for the saturated model Ci = X−1 . Let C∗i be a submatrix

of Ci obtained by deleting rows not corresponding to elements of EMi
(the

effects that we wish to estimate from margin Mi) .

(b) The contrast matrix C is obtained by direct sum of the C∗i matrices as follow

C =
⊕

i: Mi∈M

C∗i

that is it is a block diagonal matrix with (C∗1;Mi ∈ M) as the blocks. For

example C∗i
⊗

C2 =
⊕2

i=1C
∗
i is the block diagonal matrix with C1 and C2

as blocks.
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