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CENTRAL LIMIT THEOREMS FOR MULTICOLOR
URNS WITH DOMINATED COLORS

PATRIZIA BERTI, IRENE CRIMALDI, LUCA PRATELLI, AND PIETRO RIGO

ABSTRACT. An urn contains balls of d > 2 colors. At each time n > 1, a ball is
drawn and then replaced together with a random number of balls of the same
color. Let A, = diag(An,l, RN Amd) be the n-th reinforce matrix. Assuming
EA, ; = EAp for all n and j, a few CLT’s are available for such urns. In
real problems, however, it is more reasonable to assume

EA, j=FEAp,1 whenever n > 1and 1 < j <dp,

liminf Ay 1 > limsup EA, ; whenever j > do,
n n

for some integer 1 < dgp < d. Under this condition, the usual weak limit

theorems may fail, but it is still possible to prove CLT’s for some slightly
different random quantities. These random quantities are obtained neglecting
dominated colors, i.e., colors from dgp + 1 to d, and allow the same inference
on the urn structure. The sequence (Ay : n > 1) is independent but need not
be identically distributed. Some statistical applications are given as well.

1. THE PROBLEM

An urn contains a; > 0 balls of color j € {1,...,d} where d > 2. At each time
n > 1, a ball is drawn and then replaced together with a random number of balls
of the same color. Say that A, ; > 0 balls of color j are added to the urn in case
Xn,j =1, where X, ; is the indicator of {ball of color j at time n}. Let

n
Npj=a;+ ZXk,jAk,j
k=1

be the number of balls of color j in the urn at time n and

n
PR \LY 2= Xk
n,j — d ) n,j — n .

Zi:l N
. . . oy . a.s.
Fix j and let n — co. Then, under various conditions, 7, ; — Z(;) for some

random variable Z(;y. This typically implies M, ; X5 Zy- A CLT is available as
well. Define in fact

Cn,j = \/ﬁ (Mn,j - Zn,j) and Dn,j = \/ﬁ (Zn,j - Z(]))
As shown in [4], under reasonable conditions one obtains

(Cn’j, Dn’j) —>N(O, Uj) X N(O,V}) stably
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for certain random variables U; and V;. A nice consequence is
Vi (M = Z()) = Cnj + Dpj — N(0,U; +V;)  stably.

Stable convergence, in the sense of Aldous and Renyi, is a strong form of convergence
in distribution. The definition is recalled in Section 3.
For (C,, ;, D, ;) to converge, it is fundamental that EA,, ; = EA,, ; for all n and
j- In real problems, however, it is more sound to assume that
EA, ;=FEA,1 whenevern>1and1<j<dp,

liminf FA, 1 > limsup £A, ; whenever j > do,
n n

for some integer 1 < dy < d. Roughly speaking, when dy < d some colors (those
labelled from dy 4+ 1 to d) are dominated by the others. In this framework, for

j€{l,...,do}, meaningful quantities are
* EZ:l st.j Z* N J

n,g 1+ Z?il EZ:1 X ’ n,j Z Nn ;
If dy = d, then D}, ; = D, j and |C;, ; — Cy, | < f If dy < d, in a sense, dealing
with (C;, ;, D;, ;) amounts to neglecting dominated colors.
Our problem is to determine the limiting distribution of (C} ;, D}, ;), under

n _] I
reasonable conditions, when dy < d.

2. MOTIVATIONS

Possibly, when dy < d, Z, ; and M, ; have a more transparent meaning than
their counterparts Zj ; and M, ;. Accordingly7 a CLT for (Cy, ;, Dy, ) is more
intriguing than a CLT for (Cy, ;, Dy, ;). So, why dealing with (C}, ;, Dy, ;) ?

The main reason is that (Cy, j, Dn ;) merely fails to converge in case.

hm inf FA,, ; > hm inf A, 1 for some j > dp. (1)

Fix in fact 7 < dp. Under some conditions, Z, ; 23 Zy with Zy > 0 as;

see Lemma 3. Furthermore, condition (1) yields /n Z?:doﬂ Zni =% 0o, (This
follows from Corollary 2 of [9] for d = 2, but it can be shown in general). Hence,

d
D} ;= Dnj > Znjn > Zni =500
i=do+1
Since Dy, ; converges stably, as proved in Theorem 4, D,, ; fails to converge in
distribution under (1).

A CLT for D, ;, thus, is generally not available. A way out could be looking for
the right norming factors, that is, investigating whether O‘—\/% D, ; converges stably
for suitable constants «,,. This is a reasonable solution but we discarded it. In fact,
as proved in Corollary 5, (C, ;, D, j) converges stably whenever

1
limsup FA, ; < 3 liminf FA, ; for all j > dp. (1%)
n n

So, the choice of «,, depends on whether (1) or (1*) holds, and this is typi-
cally unknown in applications (think to clinical trials). In addition, dealing with
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(C.j» Dy, ;) looks natural (to us). Loosely speaking, as the problem occurs because
there are some dominated colors, the trivial solution is just to neglect dominated
colors.

A next point to be discussed is the practical utility (if any) of a CLT for
(Ch iy Dy ) or (Cpj, Dy j). To fix ideas, we refer to (C;, ;, Dy, ;) but the same
comments apply to (C, ;, Dy ;) provided a CLT for the latter is available. It is
convenient to distinguish two situations. With reference to a real problem, sup-
pose the subset of non dominated colors is some J C {1,...,d} and not necessarily
{1,...,do}.

If J is known, the main goal is to make inference on Z(;), j € J. To this
end, the limiting distribution of DJ ; is useful. Knowing such distribution, for
instance, asymptotic confidence intervals for Z;y are easily obtained. An example
(cf. Example 6) is given in Section 4.

But in various frameworks, .J is actually unknown (think to clinical trials again).
Then, the main focus is to identify J and the limiting distribution of C7, ; can help.

If such distribution is known, the hypothesis
HO cJ = J*

can be (asymptotically) tested for any J* C {1,...,d} with card(J*) > 2. Details
are in Examples 7 and 8.

A last remark is that our results become trivial for dy = 1. On one hand, this is
certainly a gap, as dyp = 1 is important in applications. On the other hand, dy =1
is itself a trivial case. Indeed, Z(1) =1 a.s., so that no inference on Z(; is required.

This paper is the natural continuation of [4]. While the latter deals with dy = d,
the present paper focus on dy < d. Indeed, our results hold for dy < d, but they
are contained in Corollary 9 of [4] in the particular case dy = d. In addition to
[4], a few papers which inspired and affected the present one are [1] and [9]. Other
related references are [2], [3], [5], [7], [8], [10], [12].

The paper is organized as follows. Section 3 recalls some basic facts on stable
convergence. Section 4 includes the main results (Theorem 4 and Corollary 5).
Precisely, conditions for

(Ch.js Dyj) — N(0,U;) x N(0,V}) stably and
Chjy Dyi) — N(0,U;) x N(0,V;) stably under (1*
J d j j

are given, U; and Vj being the same random variables mentioned in Section 1. As
a consequence,

Vv (M —Z)) =Cy i+ Djh s — N(0,U; +V;)  stably and
Vi (M — Zj)) = Cnj + Dnj — N(0,U; +V;) stably under (1%).

Also, it is worth noting that D}, ; and D, ; actually converge in a certain stronger
sense.

Finally, our proofs are admittedly long. To make the paper more readable, they
have been confined in Section 5 and in a final Appendix.

3. STABLE CONVERGENCE

Let (2, A, P) be a probability space and S a metric space. A kernel on S (or a
random probability measure on S) is a measurable collection N = {N(w) : w € Q}
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of probability measures on the Borel o-field on S. Measurability means that

N(w)(f) = / f(2) N(w)(dz)

is A-measurable, as a function of w € ), for each bounded Borel map f: S — R.
Let (Y,,) be a sequence of S-valued random variables and N a kernel on S. Both
(Y,,) and N are defined on (2, A, P). Say that Y,, converges stably to N in case

P(Y,€-|H)— E(N(-) | H) weakly
for all H € A such that P(H) > 0.

Clearly, if Y;, — N stably, then Y,, converges in distribution to the probability law
E(N(-)) (just let H = Q). We refer to [5] and references therein for more on stable
convergence. Here, we mention a strong form of stable convergence, introduced in
[5]. Let F = (F,) be any sequence of sub-o-fields of A. Say that Y,, converges
F-stably in strong sense to N in case

E(f(Ya) | Fn) N N(f) for all bounded continuous functions f : S — R.

Finally, we give two lemmas from [4]. In both, G = (G,,) is an increasing filtration.
Given kernels M and N on S, let M x N denote the kernel on S x S defined as

(M x N)(w) = M(w) x N(w) forall we Q.
Lemma 1. Let Y, and Z,, be S-valued random variables and M and N kernels on

S, where S is a separable metric space. Suppose o(Yy,) C G, and 0(Z,,) C Goo for
all n, where Goo = 0(UnGy). Then,

(Y., Z,) — M x N stably
provided Y, — M stably and Z,, — N G-stably in strong sense.

0 EY?
n=1 n2

Lemma 2. Let (Y,,) be a G-adapted sequence of real random variables. If <

oo and E(YnH | gn) 25 Y, for some random variable Y, then
n Z Vi %Y and 1 i Y, 5 Y.
k2 n ¥ '
k>n k=1
4. MAIN RESULTS

In the sequel, X, j and A, ;, n > 1,1 < j <d, are real random variables on the
probability space (2, A, P) and G = (G,, : n > 0), where

Go={0,Q}, Gn=0(Xp;, Apj:1<k<n, 1<j<d).

Let N, ; =a; + Y ._, Xk ;Ak; where aj > 0 is a constant. We assume that
d
X,,; €4{0,1}, ZX"J =1, 0<A,; <p for some constant 3, (2)
j=1

(Amj 1< < d) independent of G, _{V O'(Xn)j 1< < d),
N,,j

Zn,j = P<Xn+1,j =1 ‘ gn) = W
i=1""1n,?

a.S..

Given an integer 1 < dy < d, let us define
Ao =0 if dy =d and A\g = max limsup EA, ; if dy <d.

do<j<d  p
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t

We also assume that
EA,;=FEA,; forn>1and1<j<dy, (3)
m:=lmFEA, 1, m>X, ¢:= limEAij for 1 < j <dj.
n n ’

A few useful consequences are collected in the following lemma. Define

do d
Sp=> Npi and S,=> Ny,
i=1 i=1
Lemma 3. Under conditions (2)-(3), as n — oo,
S»:: a.s. Sn a.s.

—=m and — —m,
n n

d
a.s. )\
nt=A Z Zni — 0 whenever dy < d and X > —0,
m
i=do+1
Zn.j iy Zy for each 1 < j < do,
where each Zjy is a random variable such that Zy >0 a.s..

For d = 2, Lemma 3 follows from results in [9] and [10]. For arbitrary d, it
is possibly known but we do not know of any reference. Accordingly, a proof of
Lemma 3 is given in the Appendix. We also note that, apart from a few particular

cases, the probability distribution of Z; is not known (even if dy = d).
We aim to settle the asymptotic behavior of

Cog =vVn(Myj = Zn;), Dunj=Vn(Zn;— Zg),
Crj=vVn(My; =2 5), Dy;=Vn(Z;;~Zgy),
where j € {1,...,dp} and
_ ZZ:l Xk,j M* ZZ:l Xk,j 7 Nn,j

o ) J d ) J T —d :
n " 1+ 22:1 2;1 X " Zii1 N
Let N (a,b) denote the one-dimensional Gaussian law with mean a and variance
b > 0 (where N(a,0) = d,). Note that (0, L) is a kernel on R for each real non
negative random variable L. We are in a position to state our main result.

Theorem 4. If conditions (2)-(3) hold, then
Cy; — N(0,U;) stably and
Dy, ; — N(0,V;) G-stably in strong sense
for each j e {1,...,do}, where U; = Vj — Zj(1 — Z;))

Z .
and V; = % {6 0=2Zy) + Zyy Y, @}
i<do,i#j

M,

In particular (by Lemma 1),
(Ch.js Dy i) — N(0,U;) x N(0,V}) stably.

n,j’
As noted in Section 2, Theorem 4 has been thought for the case dy < d, and

it reduces to Corollary 9 of [4] in the particular case dy = d. We also remark
that some assumptions can be stated in a different form. In particular, under
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suitable extra conditions, Theorem 4 works even if (4,1, ..., A4, 4) independent of
Gn-1Vo(Xy1,...,Xnq) is weakened into

(Apa,..., A, q) conditionally independent of (X, 1,...,X,,4) given G,_1;
see Remark 8 of [4].

The proof of Theorem 4 is deferred to Section 5. Here, we stress a few of its
consequences.

We already know (from Section 2) that (C, ;, D, ;) may fail to converge when
do < d. There is a remarkable exception, however.

Corollary 5. Under conditions (2)-(3), if 2Xo < m (that is, (1*) holds) then
Cn,; — N(0,U;) stably and D, ; — N(0,V;) G-stably in strong sense
for each j € {1,...,do}. In particular (by Lemma 1),
(Chjy Dn.j) — N(0,U;) x N(0,V;) stably.
P

Proof. By Theorem 4, it is enough to prove D}, . —D, ; £, 0and Cri—Cnj—0.
It can be assumed dy < d. Note that

d
\/ﬁ Z Zn,i>
i=do+1
Z?:ngrl Mw‘ - %
% + Z?il M i .
By Lemma 3 and 2 A\g < m, there is o > % such that n® Z?:doﬂ D i 220. Thus,

it remains only to see that /n M, ; 2% 0 for each i > do. Fix i > dp and define

Lypi=Y1_, % Since (Ly; : n > 1) is a G-martingale and

Zni 1*Zn7. aZni
ZE{(Ln+1,i — L)% | Gnt = Z% < Z n —- <00 as,

nla

*
‘Dn,j - Dn,j

Sh Sh
=VnZn; (g —1) < o

Crni=Cnj=Dnj—D,; + M,;vn

then L, ; converges a.s.. By Kronecker lemma,

1 @ 1 & Xki—Zk-1,i as.
=S Ki = Zpri) = —= Y VEELTZECLL te g
vn ; ' NG ; vk

Since ﬁ Sor_ kT — 0 and Zy,; =o(k™*) a.s., it follows that

M=

3

n n—1
1 1 a.s.
VM, =—= zzj(X;m — Zy—14) + 7 kZ:OZk L2500,

Theorem 4 has some statistical implications as well.

Example 6. (A statistical use of Dj ;). Suppose dy > 1, conditions (2)-(3)
hold, and fix j < dy. Let (V, ; : n > 1) be a sequence of consistent estimators of

Vj, that is, V;, ; £, V; and o(V,, ;) C D,, for each n where
Dn = O'(Xkﬂ‘Akﬂ‘, Xk,i 01 < k < n, 1 < ) < d)



CLT FOR MULTICOLOR URNS 7

is the o-field corresponding to the ”available data”. Since (V;, ;) is G-adapted,
Theorem 4 yields

(Dy, i Vng) — N(0,Vj) x dy,  G-stably in strong sense.

n,j’

Since do > 1, then 0 < Z(;) < 1 a.s., or equivalently V; > 0 a.s.. Hence,

— N(0,1) G-stably in strong sense.

Itv, ;>0 /L—

For large n, this fact allows to make inference on Z;). For instance,

71 j \/ n,j

provides an asymptotic confidence interval for Z(;y with (approximate) level 1 — «

where u, is such that N'(0,1)(uq, 00) = §.

An obvious consistent estimator of Vj is

Vnj = 2 {an - 7 + Z2 Z an} where
z<do,z757
P XA oy Xp A2
My, = Zk:l Zi:l kil and Qn,i e kr:l—k’zk’l
n n

In fact, E(Xny1,A42 1, | Gn) = ZniBAZ, ; =5 Zg)q; for all i <

dy, so that
Lemma 2 implies @, ; 22 Z(i) Gi- Slmllarly7 mp =25 m. Therefore, Vi x2 V.

Finally, Theorem 4 also implies \/n (M;:J —Zj) = Cy 4D} — N(0,U;+Vj)
stably. So, another asymptotic confidence interval for Z; is M ; + = \/TJ
where G, ; is a consistent estimator of U; 4 V. One merit of the latter 1nterval is
that it does not depend on the initial composition a;, i = 1,...,dy (provided this
is true for G, ; as well).

Example 7. (A statistical use of C;; ;). Suppose
FEA, ; =p; and var(4, ;) = U?— >0 foralln>1and 1< j <d.

Suppose also that conditions ( )-(3) hold with some J C {1,...,d} in the place of
{1,...,do}, where card(J) > 1, that is

r =m > pus whenever r € J and s ¢ J.

Both J and card(.J) are unknown, and we aim to test the hypothesis Hy : J = J*
where J* C {1,...,d} and card(J*) > 1. Note that U; can be written as

AT .
Uj = —TT(LJ; {(1 — Z(j))QO'? + Z(j) Z Z(i) O’?}, Jjed.
i€ i#]
Fix j € J*. Under Hy, a consistent estimator of Uj is

I,

Un,j = ) 1 { n,j 2A2 gt Zn; Z Zn,i/a\i’i} where
my, (ZzEJ* Z ) i€J*i#£]
n ~ N2
— N iy T = Yot Xnidri o Xk Xk (Aki — i) ‘

~ card(J*) 5 Y Xk i = Yohet X
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A couple of remarks are in order. First,

F, = Z Dnsi 2% 1 under H.
icJ
Indeed, the factor F,,;* has been inserted into the definition of U, ; in order that
K, ; fails to converge in distribution to N(0,1) when Hj is false, where K, ; is
defined a few lines below. Second, >";'_; X ; > 0, eventually a.s., so that 7, ; and

52 . are well defined. Similarly, 7, > 0 eventually a.s..

n,i

Next, defining C;; ; in the obvious way (i.e., with J* in the place of {1,...,do}),
Theorem 4 implies

Knj =L, >0 \7[7}73 — N(0,1) stably under Hy.
n,j

The converse is true as well, i.e., K, ; fails to converge in distribution to A/(0,1)
when Hj is false. (This can be proved arguing as in Remark 10; we omit a formal
proof). Thus, an asymptotic critical region for Hy, with approximate level «, is
{|Kn;| > ua} with u, satisfying N'(0,1)(uq, 00) = . In real problems, some-
times, it is known in advance that jo € J for some jo € J*. Then, j = jo is a
natural choice in the previous test. Otherwise, an alternative option is a critical
region of the type UieJ*{|Kn,i| > uz} for suitable w;. This results in a more pow-
erful test but requires the joint limit distribution of (Kn,l- e J *) under Hy. Such
a distribution is given in [4] when J* = {1,...,d}, and can be easily obtained for
arbitrary J* using the techniques of this paper.

*

Example 8. (Another statistical use of C}; ;). As in Example 7 (and under
the same assumptions), we aim to test Hy : J = J*. Contrary to Example 7,
however, we are given observations Ay ;, 1 < k < n, 1 < j < d, but no urn is
explicitly assigned. This is a main problem in statistical inference, usually faced
by the ANOVA techniques and their very many ramifications. A solution to this
problem is using C7, ;, as in Example 7, after simulating the X,, ;. The simulation
is not hard. Take in fact an i.i.d. sequence (Y;, : n > 0), independent of the Ay ;,
with Yy uniformly distributed on (0,1). Let a; =1, Zy; = % fori=1,...,d, and

J
Xl’j = I{Fo,_7—1<Y0§F0,j} Where Fo’j = ZZO’i and FO,O = 0
i=1

By induction, for each n > 1,

j
Xnt1,j =I{p, ; 1 <v,<F,,;} Wwhere Fy ;= E Znis
1=1

1+ >0 XeiAki
d+ Zf:l D he1 Xk Ak

Now, Hj can be asymptotically tested as in Example 7. In addition, since Ay ; is
actually observed (unlike Example 7, where only Xy ; Ay is observed), m,, ; and
&2 . can be taken as

Un,i
n
~ Zk:l Akﬂi
n

n,i

Fo,o=0and Z,; =

52 — ZZ:l (Ak,i - ﬁlm’)2

and L=
n,i n
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Clearly, this procedure needs to be much developed and investigated. By now,
however, it looks (to us) potentially fruitful.
5. PROOF OF THEOREM 4
Next result, of possible independent interest, is inspired by ideas in [4] and [5].

Proposition 9. Let F = (F,) be an increasing filtration and (Yy,) an F-adapted
sequence of real integrable random variables. Suppose Y,, =5'Y for some random
variable Y and H, € F, are events satisfying P(HS i.0.) = 0. Then,

Vn (Y, =Y)— N(0,V) F-stably in strong sense,

for some random variable V , whenever

E{IHn (E(Yn+1 | fn) - Yn)z} = O(nig)v (4)
Vn E{Ig, sup |E(Yit1 | Fr) = Yiqal} — 0, (5)
n Y (Vi — Yig1)? -5 V. (6)

k>n

Proof. We base on the following result, which is a consequence of Corollary 7 of [5].
Let (L) be an F-martingale such that L, => L. Then, v/n (L, — L) — N(0,V)
F-stably in strong sense whenever

(i) lim v E{Ty, ub Lk = L} =0, (i) nY(Lk— Lip)? = V.
=n k>n

Next, define the F-martingale
n—1

Lo=Yy, Lp=Y,—Y E(YVip1—Ys|F)
k=0

Define also T,, = E(YnH -Y., | Fn). By (4),

Vi Y Bl Tel <v/n Y \JE(Im, T3 =V Y o(k™*?) — 0. (7)

k>n k>n k>n

In particular, Y 7 o E|Ig, Tx| < oo so that ZZ;S Iy, Ty converges a.s.. Since Y,
converges a.s. and P(Iy, #11i0.)=0,
n—1
L,=Y,— Z T, 225 [ for some random variable L.
k=0
Next, write

(Lo = L) = (Yo =Y) = (Li = Lipr) = 3 (Yi = Yir) = Y Ti.

k>n k>n k>n

Recalling v/n >, [T, Tl L0 (thanks to (7)), one obtains
Vi (Ln = L) = v (Ya = V)| = Vi | T

k>n

k>n k>n
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Thus, it suffices to prove v/n (L, — L) — N(0,V) F-stably in strong sense, that
is, to prove conditions (i) and (ii). Condition (i) reduces to (5) after noting that
Ly — Lgy1 = E(Yig1 | Fr) — Yig1

As to (ii), since Ly — Lip41 = Yy — Yi1 + T, condition (6) yields

TLZ(Lk — Lk+1)2 = V +n Z{T]? + 2Tk(Yk — Yk+1)} + Op(l).
k>n k>n

By (4 E{nzk>nIHka} =N k>n0(k” 3) — 0. Since P(Ig, # 1i.0.) =0,

then n)",-, T¢ ., 0. Because of (6), this also implies

nsz(Yk *Yk+1)}2 < HZTI? : NZ(YI« — Yig1)? Lo

k>n k>n k>n

Therefore, condition (ii) holds and this concludes the proof. O

We next turn to Theorem 4. From now on, it is assumed dy < d (the case dy = d
has been settled in [4]). Recall the notations S} = Zfil N, ;and S, = Zle Ny i
Note also that, by a straightforward calculation,

do
o Xn+1,j An+1,j * Xn+1,i An+1,i

Zr i — 2= - ,
n+1, n, n, .
! TS+ Ang T St A

Proof of Theorem 4. The proof is split into two steps.

(i) D;, ; — N(0,V;) G-stably in strong sense.

By Lemma 3, 7} ; = ﬁ &% Z(j). Further, P(2S; < nm io0.) = 0 since
2y Zni
S* a.s

Z» —% m. Hence, by Proposition 9, it suffices to prove conditions (4)-(5)-(6) with

n

Conditions (4) and (5) trivially hold. As to (4), note that

do dO
Z; Z Zni = Zn,j Z Zyi=2
i=1 i=1

Therefore,

E{Z}\;— 2} |Gn} = Zny E{ﬁ |Gn} = Z; ZZME{ Sz +nzlz+l z |G}

AEH—Lj n+11

( n+An+1J
do <4doﬂ2i
GRS T W

so that Ip, ’E{Z:H_Lj — 75| gn} <Ig
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As to (5),
* . 2p 1
‘E(Zk-&-l,j | Gr) — Zk+1,j’ S gt Ve ’ (S* | k) — 5 ’
k k+1 k+1
23 1 1 33
N, — <
—S*Jr kJ(SZ SZ“Fﬁ)_S*’
. 30 _ 661
so that Iy, 21212|E(Zk+1’j | Gk) — Zkﬂj\ < Iy, — S < H e
Finally, let us turn to (6). For every i € {1,...,dp},
AZ . EA% .. ,
2 n+1,2 2 n+1l,i a.s. (i

(Sr+ A1)
an{ A72L+1,i |g } EA%L-’,—l’L a.s, 4
Sy + Anq1, 2)2 = (S* +5) m?’
Since Xy, 41,» Xpt1,5s = 0 for r # s, it follows that
A2,
W E{(Zyr;— 23 ) | Gn} =02y (1~ Zn,j)2E{(n$2 | G} +

Sk 4+ Ant,j)
n+1 7
z<d07175]
= Zp(1 Z(J)) + 78, Z Z() =V

i<dp,i#j
Let Ry1 = (n+ 1)1y, (Z%,, ; — Z} ;)*. Since H, € G, and P(Ig, # 1i.0.) =0,

then E(Rp41 | Gn) “ Vj. On noting that |25, ; — Z; ;| < %2,
ER2 I 2d06 4 ’/l2

n < (dy B)*n’E < )

S B () < (S0

By Lemma 2 (applied with Y,, = R,,),

* * n Rk .S.
”ZIHk(ZkHJ ~Zp)? = T (n+1) Z 2 =5V
k>n k>n+1

Since P(Ig, # 11i0.)=0thenn} - (Z;; — Z,;“J)2 L% V3, that is, condition
(6) holds.

(ii) C; ; — N(0,U;) stably.
Define T,,; = > p_; Xk,i, To; = 0, and note that

* « d
C* o \/ﬁZn’J + n Tnd — Z’I’L,] Zill Tn,i and
™ do do
1+Zr Ty 14350 Thi NG
do do
]ZTnZ = Z{Xkaﬂ _ZZ,] ZTk’i—’_ZZ*l,jZTk*l,i}
k=1 i i—1
do do

= > AXg = Zisag D X = D TealZiiy = Zima g}

k=1 i=1 i=1
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Define also H,, = {25} > nm} and

1 .
O;Tj:%ZIHk_l{ij Z“]ZX;“ ZT;@U (Ziej | Ge1) = Z125) }-
k=1

d,
Recalling (from point (i)) that P(Iy, # 1 i0.) = 0, lim, 22% =1 as., and
Ikal‘ E{Z;;’j — lefl,j | gk_l}’ < ﬁ a.s. for some constant ¢, it is not hard to

see that C} ; — N stably if and only if C}"; — N stably for any kernel N.
We next prove C*; — N(0,U;) stably. For k =1,...,n, let F,, , = Gi and

* d d * *
I, _, {Xk,j - Zkfl,j Ziil X,i + Ziil Th1,i (E(Zk,j | Gk—1) — Zk,j) }
vn .
Since E(Ynk | Fnk—1) = 0 as., the martingale CLT (see Theorem 3.2 of [6])
applies. As a consequence, C*; = > oreq Yo — N(0,U;) stably provided

Yn,k =

supE( nax Y, 1) < 00 max |Ynk| —>0 Z kLUj.

k=1
As shown in point (i), IHk_l‘E(Z,’:J | Gr—1) — Z;,j‘ < 74 as. for a suitable
constant d. Hence, the first two conditions follow from
2 . L2201+ a2
Y72, ~+ IHk k= 1D2(E(Z | Gr1) — 21 5)" < 2(1+dY) a.s..

n

To conclude the proof, it remains to see that Y p_; V2, L, U;. After some
(long) algebra, the latter condition is shown equivalent to

1 - * * *
" ZIHk—l{kaj —Zi 1+ k(Zioa, — Zk,j)}2 - Uj. (8)

Let Ryy1 = (n+1)*In, (Z} 1 — Z5 ;)?. Since E(Rny1 | Gn) 225V, as shown in
point (i), Lemma 2 implies

1 - * * 2 a.s,
~ D In K2 = Z) SV
k=1
A direct calculation shows that

1 & . as,
E ZIkal(Xkﬂj - Zlcfl,‘j)2 Z(])( Z(]))

Finally, observe the following facts

* * * * Xn-i—l,'An-',-l,’ * * *
(Zn Zn+1 ]) (Xn+1,j - Zn,j) = ( -Z ,]) e Zn,j(Zn -7

S:; + An+1,j ntl
* * <n+ 1) a.s.
(n + 1) Z ‘IHn (Zn,j n+1 \J | gn) = T - 07

A n + 1
n+1 n—+1,
(n+1) B{ Sz +JAn+1 g] [Gn} <~ Znj BAniry == Z(j),

A n+1
n-Q—l7 n+1, a.s.
SARE v ”}_S* s Btheens 72 20

))
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Therefore,
(n+ 1) I, B{(Zy ; = Zy 1) X1y = Z ) | Gu} == =Z5)(1 = Zyy)

and Lemma 2 again implies

S

n
D Tu K(Zi1 = Zg) (Xn — Zio ) 25 =220 (1 = Z(5)).
k=1

Thus condition (8) holds, and this concludes the proof.
|

Remark 10. Point (ii) admits a simpler proof in case F Ay ; = m for all k > 1 and
1 < j < dy. This happens, in particular, if the sequence (A, 1,..., A4, q) is i.i.d..
Given the real numbers by, ..., bg,, define

1
Vn
By Lemma 2, >, Y,2, =5 Z] 1 b3 (qj —m?) Zj) = L. Thus, the martingale

CLT implies Y ;_, Y, x — N(0,L) stably. Since by,..., by, are arbitrary con-
stants,

do
ij Xk,j (Ak,j —EAk7j), ‘7:717k ng, k= 1,...,n.
j=1

}/n,k -

( Dohet Xnj (Agj — EAy )
NG .

where ¥ is the diagonal matrix with o} ; = (¢; — m?)Z(;). Let Ty, ; = > _; Xk .

Since EAy ; =m and % 23 Z(;y > 0 for all j < dp, one also obtains

j= 1,...,d0) Ny, (0,%)  stably

X A
(f {M—m} :j:17...,d0) — Ny (0,T)  stably
T,
where I is diagonal with v; ; = % Next, write
J
~ T "X A
C, o= \/>( n,j _ d%:k—ln k,j4ik,j )
S T 221 2opm1 Xi Ak
_ Tnj Zigdo,isﬁj Tn,i i (m— D Xk Ak, )+
Zf01 jet Xy Ak,i E?LTM In;
T, 1 o1 XniAki
n s S 1 (e
Z 1 2t Xk,iAki Zl 1 Do i<y i mt

Clearly, Cy, ; — ényj 2% 0. To conclude the proof, it suffices noting that 5,“]-
converges stably to the Gaussian kernel with mean 0 and variance

Z<j>(1—Z<j>))2%—m 5 Gi—m
( Z —U,.
m Z) Nl;# W Z !

APPENDIX
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Proof of Lemma 3. We first note that IV, ; 2% o for each j < dy. Arguing
as in the proof of Proposition 2.3 of [9], in fact, > - X, ; = oo a.s.. Hence,
vy Xij EAg; =5 00, and N, j == oo follows from

n n
Ly, =N, ;— {aj + Zkaj EAkJ} = ZXk’j (Ak,j — EA;CJ)
k=1 k=1

is a G-martingale such that |L,41 — L,| < 3 for all n.
We also need the following fact.

CLAIM: 1, ; = (];[L)& converges a.s. for all j > do and A € (22, 1).

On noting that (1 —2)* <1 — Az for 0 <z <1 and Zfil Ini =
estimate as follows

S one can
Sp ?

Tril, Nuj+ Xng1Ansry , St
E{ YL+1'7J -1 | gn} - E{ n,J ]\T;H.J n+1,j ( > 3 )A | gn} _1
Tn,j n,j n+1
Zn.i EA Sy
< n,J n+1,j -1 'n,
B Nn] - { Sr*zﬂ |g }
EAn+1 HAan+1,5

< )\ZE{ n+1z n+1z|gn}

<% ZLA”W

=S,  Sr+p
EAny1; S
. ek ¥ A )\EAn _n
Sn S, (SE + B)
1 S
= Sin (EAn+1’] )\EAn+1 15* 6) a.s..

Since lim sup,, (EAnHJ- — )\EAn+1,1) < AXg— Am <0, there are ¢ > 0 and ng > 1
such that EA, 11 — AEA,41,1 < —e whenever n > ng. Thus,

E{Tn41,j=Tnj | Gn} = Tn,; E{y—l | Gn} <0 as. whenever n > ng and Sj; > ¢

’

for a suitable constant c. Since S¥ > N, 1 <> oo, thus, (7, ;) is eventually a non
negative G-super-martingale. Hence, 7, ; converges a.s..
Let \ € (%07 1). A first consequence of the Claim is that Z,, ; < ST'{L_’& 250 for

each j > dy. Letting Y,, = Efil Xn,i Ap,i, this implies

do

E(Yot1|6Gn) = ZZn,i EApi1,=FEAn11(1— Z Znyi) =
i—1 i=do+1

Thus, Lemma 2 yields n" 2% m. Similarly, == Sn 2% 4. Applying the Claim again,

S*
nl_)‘an = (£)1_>‘ (J)ATnj converges a.s. for each j > d.
) Sn Sn s
Since j > dg and A€ (ﬁ% 1) are arbitrary, it follows that n'=* Z] dot1 Zn, ;250

for each \ > E
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Next, fix j < dy. For Z, ; to converge a.s., it suffices that
ZE{ZnH,j ~ Znj | Gn} and ZE{(Zn—H,j —Znj)* | Gn} converge a.s.;
n n
see Lemma 3.2 of [11]. Since

Xn+1,j An+1,j n+1 7 n+1 7
Z = ~a . a1 - n] g

Zn ) T Ln,g — 9
+1,7 »J Sn+An+1,j S +An+1z

then |Z,41,; — Zy | < é—f. Hence,

1
ZE{(Zn-‘rl,j —Zn)? | Gn} < PP Z = (Si)2 <00 as.

n

Moreover,
EL{Z, . - Z, i E LLJ‘ . Zni E Ant1i .
{ +1,7 — a]|g} n,j {S —|—A ‘g JZ {S +An+1z|g}
A2 A2
= _Zn i B UaRsY) gn + Zn anE _ndli gn +
7 {Sn(Sn + A7l+1,j) | } J ; { Sﬂ + An+1 ) | }
FA, 1 FA,1
+Zn,; Siﬂd — Zn,j Z Dni 75,“’ a.s., and
d d d
EAni1; — ZZn,i FEApi=FEA, 11 Z Dni — Z Zni Ay
i=1 i=do+1 i=do+1
Therefore, Zn E{Znﬂ)j — Znj | gn} converges a.s. since
d
d j— an )\
‘E{Zn_HJ — Znj |G} < ﬁ + 26% = o(n*™?%) as. for each \ € (Eo’ 1).

Thus, Z, ; 23 Z ;) for some random variable Z(;). To conclude the proof, we

i

let Y;, ; = log g"’l and prove that

Z E{Ynt1i—Yn:|Gn} and ZE{(YnH,i —Y0.i)? | Gn} converge a.s. whenever i < do.

In this case, in fact, log 7o converges a.s. for each i < dop and this implies Z;) > 0
a.s. for each i < d.
Since Yn-‘rl,i — Yn,i = Xn-‘rl,i log(l + Aﬁizl;) n+1 1 10g(1 + W_H 1) then

E{Yni1i~Yni| Gn} = ZW-E{log(l—kM) |gn}—Zn’1E{log(l+An+1’l) |G} as.
Nn,i N’r 1

)

Since EA,+1, = FAp+1,1, asecond order Taylor expansion of x +— log(1+z) yields

3,1 1

A quite similar estimate holds for E{(Yn+1,¢ —Y,:)? | gn} Thus, it suffices to see

‘E{Yn—&-l,i — Yn,i | gn} a.S..

1 .
ZS N - <00 as. for each 7 < dp.
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Define R,,; = (S ) where u € (0,1) and ¢ < dy. Since (1+2)* < 1+wuz for z > 0,
one can estimate as

E{ R£+1 Ja -1 | gn} E{ n+1 1 | gn} E{ n+1 Xn+1,i An+1,i | gn}

i Nn,i + An—i—l,i
St — -A :
<uE n+1 n 1 B n+1,z n+1,¢ .
u Zn iEAn+li EAn+1 1 an
= = Zn EAn — : = 2
S’Z ;; " e Nn,z""ﬁ Sn {u an +B}

As in the proof of the Claim, thus,

R .
E{Rm_u — Ry gn} =Ry, E{ £+%’Z —1] Qn} <0 a.s. whenever N, ; > ¢
n,i
for a suitable constant c. Since NV, ; 2% 50, then (Ry,;) is eventually a non negative
G-super-martingale, so that R, ; converges a.s.. Hence,

1
ZSN _ZS ZR,”— S n1+u<oo a.s..

This concludes the proof.
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