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Abstract

We propose a conjugate and conditional conjugate Bayesian analysis of models of marginal

independence with a bi-directed graph representation. We work with Markov equivalent di-

rected acyclic graphs (DAGs) obtained using the same vertex set with the addition of some

latent vertices when required. The DAG equivalent model is characterised by a minimal

set of marginal and conditional probability parameters. This allows us to use compatible

prior distributions based on products of Dirichlet distributions. For models with DAG rep-

resentation on the same vertex set, the posterior distribution and the marginal likelihood is

analytically available, while for the remaining ones a data augmentation scheme introducing

additional latent variables is required. For the latter, we estimate the marginal likelihood

using Chib’s (1995) estimator. Additional implementation details including identifiability of

such models is discussed. For all models, we also provide methodology for the computation

of the posterior distributions of the marginal log-linear parameters based on a simple trans-

formation of the simulated values of the probability parameters. We illustrate our method

using a popular 4-way dataset.

Keywords: Bi-directed graph, Chib’s marginal likelihood estimator, Contingency tables, Markov

equivalent DAG, Monte Carlo computation.
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1 Introduction

Graphical models of marginal independence were originally introduced by Cox and Wermuth

(1993) for the analysis of multivariate Gaussian distributions, and subsequently extended to the

discrete case by Drton and Richarson (2008a), Lupparelli (2006) and Lupparelli et al. (2009).

They compose a family of multivariate distributions incorporating the marginal independences

represented by a graph. The vertices in the graph correspond to a set of random variables,

and the edges represent the pairwise associations between them. A missing edge from a pair of

vertices indicates that the corresponding variables are marginally independent.

Despite the increasing interest in the literature for graphical models of marginal indepen-

dence, Bayesian analysis has not been developed as much as traditional methods. For decom-

posable covariance graphical models, the problem has been successfully treated by Khare and

Rajaratnam (2011). In the discrete case, some initial results regarding the analysis of three way

contingency tables were presented by Ntzoufras and Tarantola (2012).

In this paper, we extend the work of Ntzoufras and Tarantola (2012) and we present a

conjugate and conditional conjugate Bayesian analysis of discrete graphical models of marginal

independencies. We exploit the connection between bi-directed graphs and directed acyclic

graphs (DAGs). A bi-directed graph can be always represented in terms of a Markov equivalent

DAG with the same set of vertices, or with some additional ones representing hidden or latent

variables. The model is parameterised in terms of a set of marginal and conditional distributions,

on which we assign conjugate priors based on products of Dirichlet distributions; see Heckerman

et al. (1995). The marginal likelihood for models with DAG representation including latent

variables is computed using the estimator of Chib (1995). Monte Carlo simulations are used

to obtain the posterior distributions of the corresponding marginal log-linear parameters which

have log-odds interpretation referring to marginal dependencies.

The plan of the paper is as follows. In Section 2, we introduce discrete graphical models of

marginal independence, we establish the notation and we discuss their representation in terms

of Markov equivalent DAGs. In Section 3, we present the probability parameterisation, the

augmented likelihood factorisation, and the prior set-up. Section 4 is devoted to posterior infer-

ence, with particular emphasis on models with no direct DAG representation. The methodology

is illustrated in Section 5 which presents the analysis of Coppen’s (1966) dataset. Finally, in

Section 6, we conclude with a brief discussion.
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2 Discrete Graphical Models of Marginal Independence

2.1 Bi-directed Graphs and Markov Properties

In this section we briefly introduce graphical models of marginal independence, the related

notation and terminology; for more details see, for example, in Drton and Richardson (2008a).

A bi-directed graph G = (V , E), is a graph with vertex set V , and edge set E, such

that (vı, v) ∈ E if and only if (v, vı) ∈ E. We denote each bi-directed edge by (←−→vi, vj) =
{
(vi, vj), (vj , vi)

}
and, following Richardson (2003), we represent it with a bi-directed arrow.

An alternative representation, proposed by Cox and Wermuth (1993), is by undirected dashed

edges.

The skeleton G of a bi-directed graph G is the graph obtained by making all edges undirected;

every triplet of vertices (vı, v, vk) in G with edges (vı, v) and (v, vk) is named ∨ configurations.

A path connecting two vertices, v0 and vm, is a finite sequence of distinct vertices v0, . . . vm such

that (vi−1, vı), i = 1, . . . ,m, is an edge of the graph. A vertex set C ⊆ V is connected if every

two vertices vı and v are joined by a path in which every vertex is in C. The vertex set C ⊆ V

induces a subgraph GC obtained keeping only the edges having both end points in C.

The graph is used to represent marginal independencies between a set of discrete random

variables XV =
(
Xv, v ∈ V

)
, each one taking values iv ∈ Iv; where Iv is the set of possible

levels for variable v. The cross-tabulation of variables XV produces a |V|-way contingency table

with cell frequencies n =
(
n(i), i ∈ I

)
where I =×v∈VIv. Similarly for any marginal M ⊆ V ,

we denote with XM =
(
Xv, v ∈M

)
the set of variables which produce the marginal table with

frequencies nM =
(
nM (iM ), iM ∈ IM

)
where IM =×v∈MIv.

The list of independencies implied by a bi-directed graph can be obtained using the following

Markov properties: the pairwise Markov property (Cox and Wermuth, 1993) and the connected

set Markov property (Richardson, 2003). The distribution of a random vector XV satisfies

the pairwise Markov property, if a missing edge in the graph indicates marginal independence

between the corresponding variables. The distribution of a random vector XV satisfies the

connected set Markov property if for every disconnected set D the subvectors XC1 , XC2 , . . . , XCr ,

corresponding to its connected components C1, . . . , Cr, are mutually independent. For discrete

variables the connected set Markov property implies the pairwise Markov property, whereas the

converse is not generally true. Following Drton and Richardson (2008a), we define a discrete

graphical model of marginal independence as the family of probability distributions for XV that

satisfy the connected set Markov property.
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2.2 Representation in Terms of Markov Equivalent DAGs

A bi-directed graph can always be represented via a Markov equivalent DAG with the same

vertex set (D-decomposable graph) or with the introduction of some additional latent vertices;

see Pearl and Wermuth (1994) and Drton and Richardson (2008b).

Given the skeleton G of the examined graph, one should assign arrows vı −→ v ←− vk to

each ∨ configuration (vı, v, vk) in G, constructing in this way the sink orientation of G. If no

edge in the sink orientation is bi-directed the graph is D-decomposable. D-decomposable graphs

do not include bi-directed 4-chain or the chordless 4-cycle sub-graphs. If the sink orientation

contains bi-directed edges, a Markov equivalent DAG can be constructed substituting every

bi-directed edge v1 ←→ v2 with the directed configuration v1 ←− ℓ −→ v2, where vertex ℓ

represents a hidden or latent variable; see theorem 3 in Pearl and Wermuth (1994). We then

obtain a new graphical structure, with ℓ being the parent vertex of the children v1 and v2.

Finally, a Markov equivalent DAG is constructed via an acyclic orientation of the undirected

edges present in the sink orientation of the graph.

Any DAG which is Markov equivalent to G will be called augmented DAG of G. More

precisely, let L be the set of hidden or latent vertices introduced in the graph to obtain a

Markov equivalent DAG, and XL = (Xℓ, ℓ ∈ L) be the corresponding vector of variables. The

augmented DAG of G is the graph representing the relation between the variables of XA, with

A = V ∪ L. Naturally, if the bi-directed graph is D-decomposable A = V since L = ∅.

3 Model Set-up

In following, we work in terms of the augment DAG representation of the model, parameterising

it via a minimal set of marginal and conditional probability parameters sufficient to obtain the

joint distribution of interest.

3.1 Probability Parameterisation and Augmented Likelihood Factorisation

Given an augmented DAG representation D, the vector of joint probabilities pA(D) correspond-

ing to the augmented set of variables XA factorise as

pA(i;D) =
∏

v∈A

πv|pa(v;D)

(
iv|ipa(v;D)

)
, (1)

where pa(v;D) stands for the parents set of vertex v in graph D, and πv|U (iv|iU ) is the parameter

for the conditional probability P (Xv = iv|XU = iU ). The corresponding joint probabilities
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p(D) =
(
p(i;D), i ∈ IV

)
associated to the observable variables XV are a function of p

A(D), and

are given by

p(i;D) =
∑

iℓ∈IL

pA(i, iℓ ;D). (2)

Since we focus on a specific augmented DAG, we simplify the notation by eliminating D from

pa(v;D), πv|pa(v;D)

(
iv|ipa(v;D)

)
, pA(i ;D) and p(i ;D) appearing in (1) and (2). In the following,

we work with a minimal set of probability parameters

πD =
(
πv|ipa(v) ; v ∈ A, ipa(v) ∈ Ipa(v)

)
, with πv|ipa(v) =

(
πv|pa(v)(iv|ipa(v)); iv ∈ Iv

)
.

This set refers to conditional and marginal probability parameters which are sufficient to re-

construct the joint probabilities pA under dependencies and independences induced by D. The

augmented likelihood for a specific D, is given by

f(nA|πD) =
Γ(N + 1)∏

i∈IA

Γ
(
nA(i) + 1

)
∏

v∈A





∏

icl(v)∈Icl(v)

πv|pa(v)
(
iv|ipa(v)

)nA(icl(v))


 , (3)

where cl(v) = {v} ∪ pa(v) and nA =
(
nA(i), i ∈ IA

)
are the cell frequencies of the augmented

contingency table for variables A. If the bi-directed graph is D-decomposable, the DAG repre-

sentation of G does not includes any latent variables (i.e. L = ∅ and A = V), hence the model

likelihood is directly given by (3).

3.2 Prior Distributions

We use conjugate priors based on products of Dirichlet distributions; see Heckerman et al.

(1995). We assign a Dirichlet prior on the probability parameters of each vertex conditionally

on its parents resulting in the following prior set-up

f
(
πD

)
=

∏

v∈A

∏

ipa(v)∈Ipa(v)

fDi

(
πv|ipa(v) ; αv|ipa(v)

)
(4)

∝
∏

v∈A





∏

icl(v)∈Icl(v)

πv|pa(v)
(
iv|ipa(v)

)αcl(v)(icl(v))−1



 ,

where αv|ipa(v) =
(
αcl(v)

(
icl(v)

)
; iv ∈ Iv

)
and fDi(π; α) is the Dirichlet density function with

parameters α evaluated at π.

In order to make the prior distributions “compatible” across models, we assign a Dirichlet

distribution on the vector of joint probabilities p for the saturated model of the observed table

with parameters α =
(
α(i), i ∈ I

)
. If the model is not D-decomposable, we use a similar

Dirichlet distribution with parameters αA(i) (for all i ∈ IA) for the vector of joint probabilities
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pA of the saturated model on the augmented contingency table, such that the prior on p is

the same as the the one considered initially. Thus, we obtain compatibility by setting α(i) =
∑

iℓ∈IL
αA(i, iℓ). Under this approach, each component πv|ipa(v) of π

D will a-priori follow the

Dirichlet distribution appearing in (4) with each parameter calculated as

αcl(v)

(
icl(v)

)
=

∑

iA\cl(v)∈IA\cl(v)

αA
(
icl(v), iA\cl(v)

)
.

More details on compatible prior distributions can be found in Dawid and Lauritzen (2000),

Roverato and Consonni (2004), and Consonni and Veronese (2008) .

When no prior information is available, a usual choice is to consider equal α(i) for all cells

i ∈ I. Common choices for α(i) are 1/2 (Jeffreys prior), 1 (unit expected cell prior, UEC) and

1/|I| (Perks prior, 1947); see Dellaportas and Forster (1999) for additional details. The choice

of this prior parameter value is of prominent importance for the model comparison due to the

well known sensitivity of the posterior model odds and the Bartlett-Lindley paradox (Lindley,

1957, Bartlett, 1957). In this paper, we present results for the previous prior choices. A detailed

comparison of prior choices is presented in Table 2 of Ntzoufras and Tarantola (2012).

4 Posterior Inference

4.1 Conditional Conjugate Analysis for non D-decomposable Models

From (3) and (4), the posterior distribution of the parameters πD given a set of augmented data

nA is given by

f(πD|nA) =
∏

v∈A

∏

ipa(v)∈Ipa(v)

fDi

(
πv|ipa(v) ; α̃v|ipa(v)

)
(5)

where α̃v|ipa(v) =
(
α̃cl(v)(icl(v)) = nA

cl(v)(icl(v))+αcl(v)(icl(v)), iv ∈ Iv
)
, for any given configuration

ipa(v) ∈ Ipa(v).

Moreover, the posterior distribution of the frequencies of the augmented table, f(nA|n,πD),

is given by

f(nA|n,πD) ∝
∏

i∈IV

∏

iℓ∈IL

pA(i, iℓ)
nA(i,iℓ)I

(
n(i) = nAV (i)

)

=
∏

i∈IV

fm

(
nAV (i, •);̟(i), n(i)

)
(6)

with

̟(i) =


̟(i) =

pA(i, iℓ)∑
iL∈IL

pA(i, iL)
; iℓ ∈ IL


 , (7)
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nAV (i, •) being the |IL| dimensional vector of cell frequencies with elements {(n
A(i, iℓ) for all iℓ ∈

IL}, and nAV (i) =
∑

iℓ∈IL

nA(i, iℓ), for any given i ∈ I. Moreover, we denote by I(·) the indica-

tor function and by fm
(
n;π, N

)
the probability function of the multinomial distribution with

probability vector π and N independent trials evaluated at n.

In order to obtain a sample from the posterior distribution of πD we consider the following

Gibbs algorithm generating sequentially values from (5) and (6):

i) Generate the frequencies nA of an augmented table by randomly splitting every single cell

n(i) using nAV (i, •) ∼Multinomial
(
̟(i), n(i)

)
, for every i ∈ I.

ii) For every v ∈ A and ipa(v) ∈ Ipa(v) generate πv|ipa(v) ∼ Dirichlet
(
α̃v|ipa(v)

)
.

The second step of the algorithm should be applied only to parameters without any identifiability

constraints; see Section 4.2 for more details. If one or more parameters in vector πv|ipa(v)

are constrained, then the corresponding conditional Dirichlet distribution must be used in the

conditional posterior distribution; for the properties of the Dirichlet distribution see, for example,

in Table 2 of Frigyik et al. (2010).

Moreover, for both D-decomposable and non D-decomposable models, we can easily obtain

a sample from the posterior distribution of the joint probabilities p by simply transforming each

observation of the simulated sample of πD using (1) and then summing over all levels of the

latent variables as given by (2).

4.2 Some Important Implementation Details

The use of DAGs with latent variables to represent non D-decomposable models creates two

problems which are common in latent variable modelling: non-identifiability and label switching.

Let us consider the identifiability problem first. In order to remain in the class of the Markov

equivalent DAGs, the number of levels of the introduced latent variables should be such that the

augmented DAG model has at least as many parameters as the one represented by the original

bi-directed graph. Otherwise, the new model may impose additional undesirable dependencies

or other constraints that are not implied by the bi-directed graph. Having this in mind, we

suggest the following rules of thumb. First, we introduce latent variables with the least possible

number of levels satisfying the restriction described above. At the second stage, we impose a

number of constraints equal to the difference between the number of parameters of the models

represented by the two Markov equivalent graphs (bi-directed graph and augmented DAG).

We start imposing constraints from the probabilities of the latent variables and continuing, if

7



necessary, to the probability parameters of the first level of each child in D with at least one

latent parent conditioned on the first levels of its parents. We propose to set the constrained

parameters equal to the mean of the prior distribution we would like to impose on the parameters

of the unconstrained version of the model. Thus, starting from the probabilities of the latent

variables we set πℓ(iℓ) = αℓ(iℓ)
/∑

iℓ∈Iℓ
αℓ(iℓ) and

πv|pa(v)

(
iv = 1|ipa(v) = {1}

|pa(v)|
)
=

αcl(v)

(
iv = 1, ipa(v) = {1}

|pa(v)|
)

∑
iv∈Iv

αcl(v)

(
iv = 1, ipa(v) = {1}|pa(v)|

)

for specific v ∈ V and its parents. For prior distributions with equal α(i) (as the prior set-ups

we use here), these constraints simplify to πℓ(iℓ) = 1/|Iℓ| for ℓ ∈ L and πv|pa(v)

(
iv = 1|ipa(v) =

{1}|pa(v)|
)
= 1/|Iv| for specific v ∈ V and its parents. This is indeed the parameterisation we

have used in the illustration of Section 5. Note that if one or more parameters in a vector πv|ipa(v)

are constrained, then the prior distribution (4) should be modified using the corresponding

conditional Dirichlet distributions.

An alternative is to implement the MCMC algorithm described in Section 4.1 on the un-

constrained model. When informative priors are used, then constraints are indirectly imposed

by them and the MCMC will produce results from the posterior distribution without any prob-

lem (returning the prior as posterior for unidentifiable variables). If flat, non-informative prior

distributions are used, the MCMC output for the model parameters πD will present a non-

convergence picture. Nevertheless, both joint probabilities p and marginal log-linear parameters

λ will converge to the appropriate target posterior distributions since they are both well defined.

Therefore, a possible solution is to leave the MCMC run on the unconstrained model and focus

on the interpretation of p and λ.

Concerning the label switching problem, many approaches have been proposed in the liter-

ature such as imposing inequality constraints (see, e.g., Diebolt and Robert, 1994), re-labelling

algorithms (see, e.g., Stephens, 2000), the random permutation sampler of Frühwirth-Schnatter

(2001), and many others (see, e.g., Papastamoulis and Iliopoulos, 2010); see in Jasra et al.

(2005) and Yao (2012) for a nice overview of the subject. Nevertheless, for the bi-directed 4-

chain graphs we have implemented, the MCMC was exploring only one of the alternative modes

and therefore not causing any problems in the posterior inference. Even for bi-directed chord-

less 4-cycle graphs, where label switching is more intense due to the multiple permutations of

the latent configurations, the joint probabilities and the log-linear parameters are not affected

by this behaviour since they are identifiable with unimodal posterior distributions. Therefore,

we have not pursued this issue further except for the computation of the marginal likelihood
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estimate where a correction for the label switching problem was implemented as we describe in

Section 4.4.

4.3 Marginal Log-Linear Parameters Estimation

The marginal log-linear parameterisation for bi-directed graphs was proposed by Lupparelli

(2006) and Lupparelli et. al. (2009) based on the class of marginal log-linear models of Bergsma

and Rudas (2002). The marginal log-linear parameters can be obtained by

λ = C log
(
Mvec(p)

)
, (8)

where vec(p) is a vector of dimension |I| obtained by rearranging the elements p in a reverse

lexicographical ordering of the corresponding variable levels with the level of the first variable

changing first (or faster). The parameter vector λ satisfies sum-to-zero constraints, and C

indicates the corresponding contrast matrix. Finally M is the marginalization matrix which

specifies from which marginal we calculate each element of λ. Details for the construction of C

and M are available at the Appendix of Ntzoufras and Tarantola (2012).

In order to obtain a marginal log-linear parameterisation for a bi-directed graph G, the

disconnected sets of the graph should be considered as marginals, with eventually the addition of

the full set of variables (if the graph is connected). The marginal should be arranged according

to a hierarchical ordering (see Bergsma and Rudas, 2002). Then zero constraints on specific

marginal log-linear parameters are imposed; see Lupparelli et. al. (2009) for more details.

The marginal log-linear modelling set-up is expressed in terms of log-odds ratios referring

to specific marginal tables. When an edge is absent from the bi-directed graph G, then the

corresponding λ parameters (i.e. the corresponding log-odds ratio) are constrained to zero. This

parameterisation is useful in cases when information is available for specific marginal associations

via odds ratios (i.e. marginal log-linear parameters) or when partial information (i.e. marginals)

is available. Unfortunately equation (8) cannot be used to obtain a closed form expression for

p, hence iterative procedures are needed to obtain the likelihood of the model for each set of λ

values; see Rudas and Bergsma (2004) and Lupparelli (2006).

Working directly on graphs with marginal log-linear parameterisation is complicated. First of

all, no conjugate or conditional conjugate analysis is feasible. Moreover, the likelihood cannot be

written directly in a closed form. Nevertheless, with the approach presented in this work, we can

estimate the posterior distribution of λ in a straightforward manner using Monte Carlo samples

from the posterior distribution of πD. Specifically, a sample from the posterior distribution of

λ can be generated by the following iterative procedure. At each iteration t (for t = 1, . . . , T ):

9



i) Generate a random value πD(t) from the posterior distribution of πD.

ii) Calculate the full table of probabilities p(t) from πD(t).

iii) Obtain the vector of marginal log-linear parameters, λ(t) from p(t) via equation (8).

The generated values
(
λ(t); t = 1, 2, . . . , T

)
can be used to estimate summaries of the posterior

distribution f(λ|G) or obtain plots fully describing this distribution. A major advantage of this

approach is that all zero constraints on λ are automatically imposed by construction.

4.4 Chib’s Marginal Likelihood Estimator of Marginal Likelihood

In this Section, we illustrate how Chib’s (1995) estimator can be used to evaluate the marginal

likelihood for non D-decomposable models. An estimate of the marginal likelihood is given by

f̂(n|D) =
f(n|π∗D)f(π∗D)

f(π∗D|n)
(9)

where π∗D should be a point of high posterior density in order to get reliable estimates. The

posterior mode, the posterior median or the posterior mean can be appropriate points that can

be used in (9).

The likelihood is given by the probability function of a multinomial distribution with joint

probabilities p∗ evaluated at the observed data n

log f(n|p∗, D) = log Γ

(
∑

i∈I

n(i) + 1

)
−

∑

i∈I

log Γ
(
n(i) + 1

)
+

∑

i∈I

n(i) log p∗(i)

where p∗ is given by (2) after calculating (1) with πD = π∗D.

The posterior ordinate f(π∗D|n) is given by

f(π∗D|n) = EnA|n


∏

v∈A

∏

ipa(v)∈Ipa(v)

fDi

(
π∗v|ipa(v)

; α̃v|ipa(v)

)

 ,

where the expectations are taken with respect to the posterior distribution of the latent data

nA. The above equation results directly from the procedure described in Section 2.1.2 of Chib

(1995) by further assuming independence between πv|ipa(v) given the augmented table n
A for all

v ∈ A and ipa(v) ∈ Ipa(v) when nA is available. So f̂(π∗D|n) is finally estimated via

f̂(π∗D|n) =
1

T

T∑

t=1





∏

v∈A

∏

ipa(v)∈Ipa(v)

[
fDi

(
π∗v|ipa(v)

; α̃
(t)
v|ipa(v)

)]




where α̃
(t)
v|ipa(v)

=
(
α̃
(t)
cl(v)(icl(v)) = n

A(t)
cl(v)(icl(v)) + αcl(v)(icl(v)), iv ∈ Iv

)
, for any given configu-

ration ipa(v) ∈ Ipa(v). In the above expression, the Dirichlet densities must be replaced by the
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corresponding conditional Dirichlet when one or more components of πv|ipa(v) are constrained.

Additional details for the 4-chain and chordless 4-cycle bi-directed graphs are provided in Section

5 and at the Appendix.

Due to the label switching problem, we adjust the original estimator by the correction origi-

nally proposed by Neal (1998) and further developed in more detail by Marin and Robert (2008).

Moreover, the mode (or values close to it) is most suitable choice for π∗D that can be used in

the Chib’s estimator since the mean and the median will be away from points of high posterior

density if the MCMC explores all local modes. In cases that the MCMC visits only one of the

permutations of the labels of the latent variables, then using the posterior mean and median in

Chib’s estimator also results in good estimates of the marginal likelihood.

5 Illustrative Example: Coppen’s Dataset

We consider a dataset presented by Coppen (1966) regarding the interrelation between symptoms

manifested by 362 psychiatric patients; see Table 1. The symptoms are: A ≡ stability (1=ex-

troverted, 2=introverted); B ≡ validity (1=energetic, 2=psychasthenic); C ≡ acute depression

(1=yes, 2=no); D ≡ solidity (1=hysteric, 2=rigid).

Table 1: Coppen’s (1966) dataset on symptoms of psychiatric patients

C = 1 C = 2

B D A = 1 A = 2 A = 1 A = 2

1 1 15 23 25 14

2 9 14 46 47

2 1 30 22 22 8

2 32 16 27 14

A: stability; B: validity; C: acute depression; D: solidity.

This dataset has been already analysed with different type of graphical models by Wermuth

(1976), Lupparelli et al. (2009) and Roverato et al. (2012). In particular Lupparelli et al. (2009)

applied discrete graphical models of marginal independence the graph in Figure 1 (a).

We present posterior results for the bi-directed 4-chain graph of Figure 1(a) implemented

by Lupparelli et al. (2009) and the closest bi-directed chordless 4-cycle graph depicted in 1(b).

Moreover, we present marginal likelihoods and posterior probabilities for all 4-vertex graphs.

Posterior analysis for D-decomposable models can be implemented following the procedures

described in Ntzoufras and Tarantola (2012). All the analysis was performed using three prior

11



Figure 1: Bi-directed 4-chain and chordless 4-cycle graphs fitted in Coppen’s data.

(sol) (dep)

(sta) (val)
A B

CD
(sol) (dep)

(sta) (val)
A B

CD

(a) 4-chain graph (b) 4-cycle graph
Notes. sta: stability; val: validity; dep: acute depression; sol: solidity.

choices for the saturated model of the observed table: the Perks prior (with α(i) = 1/24), the

Jeffreys prior (with α(i) = 1/2) and the unit expected cells prior (with α(i) = 1). The priors of

all other models have been designed to be compatible with these three baseline priors following

the procedure described in Section 3.2. All results were obtained using R version 2.12.

Illustration on 4-chain AB+BC+CD and chordless 4-cycle AB+BC+CD+DA

bi-directed graphs.

Here we present results for the bi-directed 4-chain graph AB + BC + CD and the bi-directed

chordless 4-cycle graph AB +BC +CD +DA . Both graphs have vertex set V = (A,B,C,D),

the edge set of the first one is E =
{
(
←−→
A,B), (

←−→
B,C), (

←−→
C,D)

}
, while for the second we consider

the additional edge (
←−→
A,D). To obtain posterior summaries, we follow the general approach

described in Sections 4.1–4.3, while the marginal likelihood estimator is obtained using the

methodology described in Section 4.4. We introduce an additional latent variable ℓ between

vertices B and C for the aforementioned bi-directed 4-chain graph and four latent variables,

denoted by L = {ℓ1, ℓ2, ℓ3, ℓ4}, for the bi-directed chordless 4-cycle graph. By this way, we

obtain DAGs which are Markov equivalent to the original bi-directed graphs. Additional details

are presented at the Appendix.

Figures 2, 3 and 4 present box-plots of the posterior distributions for the parameters πD, the

joint probabilities p of the observed four-way table, and the marginal log-linear parameters λ

for the fitted model corresponding to the bi-directed 4-chain graph. In these box-plots, although
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we observe some variability in the posterior distributions of the augmented parameters πD, the

differences of p and λ are minor. The corresponding boxplots for the bi-directed chordless 4-

cycle are provided in Figures 5, 6 and 7. Differences in model parameters πD between the three

prior set-ups are more obvious now but still the joint probabilities and the marginal log-linear

parameters are close.

Tables 2 and 3 present the batch mean estimators of the marginal log-likelihood along with

the standard deviation of the marginal log-likelihood across 30 batches (i.e. MCMC sub-samples)

of 1 000 and 10 000 iterations. The latter provides an estimate of the Monte Carlo error for the

marginal log-likelihood estimate of equivalent size. All results are presented using three point

estimates π∗D for the model parameters πD: the mode, the median and the mean.

Table 2: Marginal log-likelihood estimates for bi-directed 4-chain graph AB+BC+CD fitted on

Coppen data under Perks, Jeffreys and unit expected cell priors using different point estimates

(averages and standard deviations over 30 samples are reported).

Point Prior Set-up

estimate Perks Jeffreys UEC

π∗D Iterations α(i) = 1/24 α(i) = 1/2 α(i) = 1

Mode 1 000 -64.63 (0.598) -56.75 (0.225) -56.68 (0.131)

10 000 -64.94 (0.535) -56.68 (0.074) -56.68 (0.040)

Median 1 000 -64.88 (0.361) -56.66 (0.156) -56.69 (0.125)

10 000 -64.67 (0.098) -56.7 (0.044) -56.68 (0.038)

Mean 1 000 -64.94 (0.624) -56.64 (0.175) -56.68 (0.119)

10 000 -64.64 (0.169) -56.7 (0.046) -56.68 (0.039)

For the bi-directed 4-chain graph, we observe that for 1 000 iteration the Monte-Carlo error

is of acceptable size (between 0.12 and 0.63) while for 10 000 iterations the error becomes really

low for almost all cases presented in Table 2 (less than 0.1 for all point estimates and prior

choices except for the Perks prior using the mode and mean as point estimates with standard

deviations 0.53 and 0.17, respectively).

For the bi-directed chordless 4-cycle graph, the Monte Carlo errors are much higher than

the corresponding ones in the bi-directed 4-chain graph. This is due to the inclusion of four

latent variables, which makes the MCMC slower in terms of convergence. Using the mode as

point estimate in the Chib’s estimator provides more reliable estimates with Monte Carlo errors

(1.97− 2.63) for 1 000 iterations and (1.39− 2.22) for 10 000 iterations.

Model Comparison and Evaluation

Table 4 presents results for models with average posterior probability (over 30 MCMC samples)

higher than 0.001 under the selected prior distributions. For all models we report the batch
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Figure 2: Boxplots of the posterior distribution of the model parameters πD for the bi-directed

4-chain graph AB +BC + CD fitted on the Coppen’s data
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Figure 3: Boxplots of the posterior distribution of the joint probabilities p for the bi-directed

4-chain graph AB +BC + CD fitted on the Coppen’s data
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Figure 4: Boxplots of the posterior distribution of the marginal log-linear parameters λ for the

bi-directed 4-chain graph AB +BC + CD fitted on the Coppen’s data
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Figure 5: Boxplots of the posterior distribution of the model parameters πD for the bi-directed

chordless 4-cycle graph AB +BC + CD +DA fitted on the Coppen’s data
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Figure 6: Boxplots of the posterior distribution of the joint probabilities p for the bi-directed

chordless 4-cycle graph AB +BC + CD +DA fitted on the Coppen’s data
0
.0
5

0
.1
0

0
.1
5

0
.0
5

0
.1
0

0
.1
5

0
.0
5

0
.1
0

0
.1
5

PPPPPPPPPPPPPPPP JJJJJJJJJJJJJJJJ UUUUUUUUUUUUUUUU

p(1111) p(2111) p(1211) p(2211) p(1121) p(2121) p(1221) p(2221) p(1112) p(2112) p(1212) p(2212) p(1122) p(2122) p(1222) p(2222)

Prior distributions: P=Perks, J=Jeffreys, U=Unit expected cell prior.

Figure 7: Boxplots of the posterior distribution of the marginal log-linear parameters λ for the

bi-directed chordless 4-cycle graph AB +BC + CD +DA fitted on the Coppen’s data
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Table 3: Marginal log-likelihood estimates for bi-directed chordless 4-cycle graph AB + BC +

CD + DA fitted on Coppen data under Perks, Jeffreys and unit expected cell priors using

different point estimates (averages and standard deviations over 30 samples are reported).

Point Prior Set-up

estimate Perks Jeffreys UEC

π∗D Iterations α(i) = 1/24 α(i) = 1/2 α(i) = 1

Mode 1 000 -69.93 (2.628) -67.65 (2.460) -68.08 (1.972)

10 000 -66.76 (2.056) -65.79 (2.211) -66.78 (1.393)

Median 1 000 -61.86 (7.109) -62.40 (1.999) -65.77 (2.145)

10 000 -62.36 (3.244) -62.85 (1.386) -66.54 (1.240)

Mean 1 000 -52.59 (8.895) -61.37 (3.373) -65.14 (3.723)

10 000 -55.17 (6.572) -62.25 (2.220) -66.66 (1.359)

mean estimate, its standard error and the standard deviation of the marginal log-likelihood and

the corresponding posterior model probabilities over 30 MCMC samples. In all simulations we

have used 3 000 iterations for the bi-directed 4-chain graphs and 10 000 iterations for chordless

4-cycle graphs. Similar results are presented in Table 5 for the posterior inclusion probabilities

of each edge of the graph.

Under all prior set-ups, the maximum a posteriori model (MAP) is the chain AB+BC+CD

with probabilities 0.67, 0.91 and 0.42 for Perks, Jeffreys and UEC prior, respectively. For the

Perks prior, the relative difference between the MAP model and the second best (bi-directed

chordless 4-cycle AB+BC+CD+DA) is smaller. The two models cannot be clearly distinguished

(in terms of marginal likelihoods or posterior probabilities) when using 3 000 or 10 000 iterations

for the estimation of the marginal likelihood. This is due to the large Monte Carlo error of

the latter model (±2.03 for the log-marginal and ±0.26 for the posterior model probabilities).

As a result we cannot safely identify differences between them even if the number of iterations

for model AB+BC+CD+DA is increased to 100 000 iterations (marginal log-likelihood Monte

Carlo error ≈ 1.24).

For the rest of the prior distributions, all posterior model probabilities of the best models are

accurately estimated. Higher levels of model uncertainty are observed for the UEC prior than

the other two set-ups since 15 models have posterior model probability higher than 0.1% for the

first in contrast to 5 and 7 models for the other two prior set-ups. For UEC prior, ABC+CD

is supported as the second best model with estimated posterior probability 0.17. This model

ranked 5th in the Jeffreys prior and 23rd in Perks prior (with probabilities 0.007 and less than

0.001, respectively). Model A+BC+CD is ranked high in all prior set-ups: 3rd, 2nd and 3rd for

Perks, Jeffreys and UEC priors, respectively with posterior probabilities 0.010, 0.044 and 0.138.

Finally, Table 5 presents the summary statistics of the inclusion probabilities of each edge

giving a clearer picture of the edges representing important dependencies. According to this
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table, edges AB, BC and CD should be included in the finally selected graph with posterior

inclusion probabilities at least 0.73, 1.00 and 0.99, respectively. Edge AD is mildly supported

only under the Perks prior (inclusion probability 0.31± 0.05) while edges AC and BD are only

weakly supported with inclusion probabilities around 0.23 for the UEC prior. Hence, the bi-

directed 4-chain graph AB+BC+CD is indicated as the median probability model (Barbieri and

Berger, 2004) in all three prior set-ups.

6 Discussion and Final Comments

In this article, we have presented a novel Bayesian approach for the analysis of discrete graphical

models of marginal independence. We have exploited the connection between bi-directed graphs

and Markov equivalent DAGs by expressing them as models of conditional association. In this

way, it was feasible to apply the recursive factorisation of the joint probability distribution of

DAGs, and use suitable conjugate prior distributions. Posterior distributions were either readily

available for parameters of bi-directed graphs with direct DAG representation, or estimated

using a Gibbs sampler obtained by a data augmentation scheme. Chib’s estimator was used

to calculate the marginal likelihood of models without a direct DAG representation. Moreover,

specific details were provided for the 4-way case along with an illustration in a well known

dataset.

It worth noting that, the Markov equivalent DAG representation is not unique for all graphs.

In this work, we have considered only one of the possible Markov equivalent DAGs. Nevertheless,

since the prior distributions are compatible across models, the posterior distributions and the

marginal likelihoods will not depend on this choice; see Buntine (1991) and Heckerman et al.

(1995).

Even though the methodology presented here is general and can be applied for models of

any dimension, its applicability to high dimensional contingency tables may be problematic in

practice. This is due to the elevated number of latent variables that should be included in the

Markov equivalent DAG. Therefore, for high dimensional problems, a more efficient methodology

may be required. An alternative approach to estimate posterior model probabilities, on which

we are working on, is to consider an appropriate trans-dimensional MCMC algorithm, see Sisson

(2005) with emphasis given in reversible jump MCMC; Green (1995).

Finally, another interesting direction that we are currently considering, is to work directly

with the marginal log-linear parameterisation λ defined by (8). In this case, a conjugate analysis

is not feasible, and a more complicated approach is necessary. In this direction, two alternative

approaches are under investigation: (a) an MCMC based directly on simulating the parameters

of each marginal association log-linear parameters following the approach proposed by Knuiman

and Speed (1988) and Dellaportas and Forster (1999), and (b) a Metropolis-Hastings algorithm

with proposals based on the probability parameterisation we have considered in this article. A

possible disadvantage of the first approach is that in each iteration of the MCMC sampler we
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Table 4: Marginal log-likelihood and posterior probabilities (% values) for best models (with

estimated posterior probability > 0.001) for the Coppen’s data (the batch mean estimates, stan-

dard errors, and standard deviations over 30 samples are reported); 3 000 and 10 000 iterations

were used for the 4-chain and the chordless 4-cycle bi-directed graphs respectively.

Perks Prior α(i) = 1/24

Marginal Posterior

log-likelihood Probability (%)

Rank Model Mean (S.E.) S.D. Mean (S.E.) S.D.

1 AB+BC+CD (chain) -64.75 (0.095) 0.523 67.31 (4.791) 26.24

2 AB+BC+CD+DA (cycle) -66.21 (0.370) 2.029 30.85 (4.893) 26.80

3 A+BC+CD -68.97 (0.000) 0.000 1.04 (0.113) 0.62

4 AD+BC+CD (chain) -69.89 (0.083) 0.457 0.49 (0.095) 0.52

5 A+BCD -71.10 (0.000) 0.000 0.12 (0.013) 0.07

Jeffreys Prior α(i) = 1/2

Marginal Posterior

log-likelihood Probability (%)

Rank Model Mean (S.E.) S.D. Mean (S.E.) S.D.

1 AB+BC+CD (chain) -56.74 (0.030) 0.165 91.06 (0.269) 1.47

2 A+BC+CD -59.79 (0.000) 0.000 4.37 (0.126) 0.69

3 A+BCD -60.44 (0.000) 0.000 2.27 (0.065) 0.36

4 AD+BC+CD (chain) -61.55 (0.040) 0.219 0.77 (0.044) 0.24

5 ABC+CD -61.61 (0.000) 0.000 0.70 (0.020) 0.11

6 AB+BCD -62.64 (0.000) 0.000 0.25 (0.007) 0.04

7 AB+BC+D -62.89 (0.000) 0.000 0.20 (0.006) 0.03

Unit Expected Cell Prior α(i) = 1

Marginal Posterior

log-likelihood Probability (%)

Rank Model Mean (S.E.) S.D. Mean (S.E.) S.D.

1 AB+BC+CD (chain) -56.68 (0.012) 0.068 42.57 (0.303) 1.66

2 ABC+CD -57.59 (0.000) 0.000 17.14 (0.089) 0.48

3 A+BC+CD -57.81 (0.000) 0.000 13.76 (0.071) 0.39

4 A+BCD -58.11 (0.000) 0.000 10.2 (0.053) 0.29

5 AB+BCD -58.56 (0.000) 0.000 6.55 (0.034) 0.19

6 ABC+BCD -59.24 (0.000) 0.000 3.31 (0.017) 0.09

7 ABD+BDC -59.89 (0.000) 0.000 1.72 (0.009) 0.05

8 ACB+ACD -60.5 (0.000) 0.000 0.94 (0.005) 0.03

9 AC+BC+CD -60.77 (0.000) 0.000 0.71 (0.004) 0.02

10 ABCD -60.8 (0.000) 0.000 0.69 (0.004) 0.02

11 AD+BC+CD (chain) -60.91 (0.018) 0.099 0.63 (0.013) 0.07

12 AB+BC+D -60.95 (0.000) 0.000 0.60 (0.003) 0.02

13 AC+BCD -61.07 (0.000) 0.000 0.53 (0.003) 0.01

14 ABC+D -61.86 (0.000) 0.000 0.24 (0.001) 0.01

15 ACD+BC -62.34 (0.000) 0.000 0.15 (0.001) 0.00
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Table 5: Posterior inclusion probabilities (% values) for each edge of the bi-directed 4-way graph

for the Coppen’s data (the batch mean estimates (standard errors) over 30 samples are reported;

3 000 and 10 000 iterations were used for the 4-chain and the chordless 4-cycle bi-directed graphs

respectively).

Prior Set-up

Perks Jeffreys UEC

Edge α(i) = 1/16 α(i) = 1/2 α(i) = 1

AB 98.2 (0.22) 92.5 (0.22) 73.8 (0.14)

AC 0.0 (0.00) 0.9 (0.03) 23.8 (0.12)

AD 31.4 (4.85) 0.9 (0.06) 4.3 (0.03)

BC 100.0 (0.00) 100.0 (0.00) 100.0 (0.00)

BD 0.1 (0.01) 2.7 (0.08) 23.1 (0.12)

CD 99.8 (0.02) 99.7 (0.01) 99.0 (0.01)

need to implement iterative methods to calculate the cell probabilities and thus the calculation of

the model likelihood will reduce the efficiency of the algorithm. Finally, implementing RJMCMC

algorithm for the selection of the graphical structure seems a natural conclusion of this approach.
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Appendix

A Posterior Inference for a Bi-directed 4-chain Graph

Here we provide specific details for the implementation of Bayesian inference for a bi-directed

4-chain graph. We consider the graph with vertex set V =
{
e1, c1, c2, e2

}
and edge set

E =
{
(←−→e1, c1), (

←−→c1, c2), (
←−→c2, e2)

}
represented in Figure 8(a). This graph is Markov equivalent

to a DAG with an additional latent variable ℓ added between c1 and c2, see Figure 8(b). The

joint probabilities (needed in the likelihood) for the original 4-way table are given by

p(i) =
∑

iℓ∈IL

pA(i, iℓ) =
∑

iℓ∈IL

{
πℓ(iℓ)

2∏

k=1

πek(iek)πck|ek,ℓ(ick |iek , iℓ)

}
(10)

where A = V ∪ L = {e1, c1, c2, e2, ℓ} and L = {ℓ}.

Figure 8: Bi-directed and the Markov equivalent DAG representations for the bi-directed 4-chain

graph
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The number of parameters in the above augmented model is equal to

p
d =

2∑

k=1

(
|Iek | − 1

)
+

2∑

k=1

(
|Ick | − 1

)
|Iek | |Iℓ|+

(
|Iℓ| − 1

)

while the original model has

p
g =

2∏

k=1

(
|Iek | |Ick |+ 1

)
−

(
2∏

k=1

|Iek |

)(
2∑

k=1

|Ick | − 1

)
− 3
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parameters. The constraints are set using the approach described in Section 4.2. For the 24

example implemented in Section 5, we have pg = 10 and p
d = 11 parameters when |Iℓ| = 2.

Thus, only one constraint is needed. Here we have considered πℓ(iℓ = 1) = 1/2.

A.1 Gibbs Sampling for a Bi-directed 4-chain Graph

The Gibbs sampling described in Section 4.1 is implemented as follows:

1. Generate nA(i, iℓ) ∼ Multinomial(p̃(i), n) with p̃(i) being a vector of length |Iℓ| and

elements

p̃(i, iℓ) =
pA(i, iℓ)∑

i′
ℓ
∈IL

pA(i, i′ℓ)

for iℓ ∈ Iℓ and any i ∈ I.

2. Generate πek ∼ Dirichlet
(
nek +αek

)
for k = 1, 2.

3. Generate πℓ ∼ Dirichlet
(
nAℓ +αℓ

)
.

4. For k = 1, 2, iek ∈ Iek and iℓ ∈ Iℓ, generate πck|iek ,iℓ
∼ Dirichlet

(
nA
ck|iek ,iℓ

+αck|iek ,iℓ

)
.

The above MCMC implements the model with no constraints on πD. The constrained version

of the model can be estimated in a similar way but in steps 3 and 4 the corresponding

conditional Dirichlet distributions must be used instead. For the binary case presented in

Section 5, step 3 should be skipped since πℓ(iℓ) = 1/2.

A.2 Marginal Likelihood Computation for a Bi-directed 4-chain Graph

For the estimation of the marginal likelihood, we use the Chib (1995) estimator as described

in Section 4.4 using the output of the MCMC described in Appendix A.1 for the constrained

version of the model. As π∗D we use three different points: the posterior mode, the posterior

median and the posterior mean. The posterior mode is approximated via the MCMC output.

Although using the MCMC is not the most efficient way to estimate the posterior mode, here

the loss of the precision is not essential since the Chib’s marginal likelihood estimator works

well for any point of high posterior density.

The prior is simply the product of independent Dirichlet probability densities for each uncon-

strained component of πD evaluated at π∗D . The posterior ordinate f(π∗D|y) is estimated

from the Gibbs sampling output using the estimator
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f̂
(
π∗D|y

)
=

2∏

k=1

fDi

(
π∗ek ;nek +αek

)

×
1

T

T∑

t=1

{
fDi

(
π∗ℓ ;n

A(t)
ℓ +αℓ

) 2∏

k=1

∏

iek∈Iek

∏

iℓ∈Ivℓ

fDi

(
π∗ck|ek, ℓ ; n

A(t)
ck| ek, ℓ

+αck| ek, ℓ

)}
,

where n
A(t)
ck|iek ,iℓ

is a vector of frequency data with elements n
A(t)
ck,ek,ℓ

(ick , iek , iℓ) for ick ∈ Ick

and given iek , iℓ. The superscript (t) refers to the t-th iteration and nA(t)(i) for i ∈ IA

refers to the augmented 5-way table after the introduction of the latent factor ℓ generated

at the t-th iteration. Note that, in the equation above the densities must be replaced by

the corresponding conditional Dirichlet densities if some parameters are constrained. For

the binary case considered in Section 5 with p(iℓ = 1) = 1/2, fDi

(
π∗ℓ ;n

A(t)
ℓ + αℓ

)
must be

eliminated from this expression. Finally, following Neal (1998) and Marin and Robert (2008),

the marginal log-likelihood must be corrected by adding a factor equal to log(|Iℓ|!) which

results to log 2 = 0.693 for the case of a binary latent variable.

B Posterior Inference for a Bi-directed Chordless 4-cycle

Graph

Here we provide the details for the implementation of the Bayesian inference for bi-

directed chordless 4-cycle graphs with vertex set V =
{
c1, c2, c3, c4

}
and edge set E =

{
(←−→c1, c2), (

←−→c2, c3), (
←−→c3, c4), (

←−→c4, c1)
}
represented in Figure 9(a). This graph is Markov equiva-

lent to a DAG with four additional latent variables L = {ℓ1, ℓ2, ℓ3, ℓ4} (see Figure 9(b)) with

parameters πℓk and πck|ℓk−1,ℓk for k = 1, 2, 3, 4 and ℓ0 = ℓ4. The joint probabilities for the

original 4-way table are given by

p(i) =
∑

iL∈IL

pA(i, iL) =
∑

iL∈IL

4∏

k=1

πℓk(iℓk)πck|ℓk−1,ℓk
(ick |iℓk−1

, iℓk) (11)

where A = V ∪ L = {c1, c2, c3, e4, ℓ1, ℓ2, ℓ3, ℓ4} and iL = {iℓ1 , iℓ2 , iℓ3 , iℓ4}.

B.1 Gibbs Sampling for a Bi-directed Chordless 4-cycle Graph

The MCMC scheme is similar to the one presented for the bi-directed 4-chain model and it

can be summarized by the following steps:

1. Generate nA(i, iℓ) ∼Multinomial
(
p̃(i), n

)
with p̃(i) given by (7).
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Figure 9: Bi-directed and the Markov equivalent DAG representations for the bi-directed chord-

less 4-cycle graph
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(a) Bi-directed graph (b) DAG representation

2. For ck ∈ V , iek ∈ Iek , iℓ ∈ Iℓ, generate

πck|iℓk−1
,iℓk
∼ Dirichlet

(
nAck|iℓk−1

,iℓk
+αck|iℓk−1

,iℓk

)

with ℓ0 = ℓ4.

3. For ℓk ∈ L, generate πℓk ∼ Dirichlet
(
nAℓk +αℓk

)
.

Similarly to Appendix A.1, the above sampler is for the unconstrained model. If the con-

strained version of the model is considered then steps 2 and 3 must be changed accordingly

to accommodate these constraints.

The number of parameters in the bi-directed chordless 4-cycle graph presented in Figure 9(a)

is given by

p
g =

4∏

k=1

|Ick | −
2∑

k=1





1∏

j=0

|Ick+2j
|



− 1

while for the corresponding DAG, the number of parameters is given by

p
d =

4∑

k=1

(
|Iℓk | − 1

)
+

4∑

k=1

(
|Ick | − 1

)
|Iℓk−1

| |Iℓk |.

For bi-directed chordless 4-cycle graphs with binary variables, we need to impose seven

constraints since p
g = 2 and p

d = 20 for binary latent variables. In the illustration of
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Section 5, we use πℓk(iℓk) = 1/2 for all iℓk ∈ Iℓk and k = 1, 2, 3, 4. Moreover, we set

πck|ℓk−1,ℓk
(ick |iℓk−1

, iℓk) = 1/2 for k = 1, 2, 3.

B.2 Marginal Likelihood Computation for Chordless Bi-directed 4-cycle

Graphs

The prior and the posterior ordinate involved in the estimation of the marginal likelihood

using the estimator of Chib (1995) are now given by

log f
(
π∗D

)
=

4∑

k=1



log fDi

(
π∗ℓk ;αℓk

)
+

∑

iℓk−1
∈Iℓk−1

∑

iℓk∈Iℓk

log fDi

(
π∗ck|iℓk−1

,iℓk
;αck|iℓk−1

,iℓk

)




and

f̂
(
π∗D|y

)
=

1

T

T∑

t=1

{
4∏

k=1

fDi

(
π∗ℓk ;αℓk

)

×
4∏

k=1

∏

iℓk−1
∈Iℓk−1

∏

iℓk∈Ivℓk

fDi

(
π∗ck|iℓk−1

,iℓk
; n

A(t)
ck|iℓk−1

,iℓk
+αck|iℓk−1

,iℓk

)}
,

respectively. Similarly to the implementation of the method for the 4-chain graph, in the

expression above the densities must be substituted by the corresponding induced conditional

Dirichlet densities if some parameters are constrained. Finally, to account for the label switch-

ing problem, the correction term that must be added in the marginal likelihood is equal to
∑4

k=1 log(|Iℓk |!) which results to 4 log 2 = 2.77 for the case of binary latent variables.
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