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EXCHANGEABLE SEQUENCES DRIVEN BY AN ABSOLUTELY

CONTINUOUS RANDOM MEASURE

PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

Abstract. Let S be a Polish space and (Xn : n ≥ 1) an exchangeable se-

quence of S-valued random variables. Let αn(·) = P
(

Xn+1 ∈ · | X1, . . . , Xn

)

be the predictive measure and α a random probability measure on S such

that αn

weak
−→ α a.s.. Two (related) problems are addressed. One is to give

conditions for α ≪ λ a.s., where λ is a (non random) σ-finite Borel mea-

sure on S. Such conditions should concern the finite dimensional distributions
L(X1, . . . , Xn), n ≥ 1, only. The other problem is to investigate whether

‖αn − α‖
a.s.
−→ 0, where ‖·‖ is total variation norm. Various results are ob-

tained. Some of them do not require exchangeability, but hold under the
weaker assumption that (Xn) is conditionally identically distributed, in the
sense of [2].

1. Two related problems

Throughout, S is a Polish space and

X = (X1, X2, . . .)

a sequence of S-valued random variables on the probability space (Ω,A, P ). We
let B denote the Borel σ-field on S and S the set of probability measures on B. A
random probability measure on S is a map α : Ω → S such that σ(α) ⊂ A, where
σ(α) is the σ-field on Ω generated by ω 7→ α(ω)(B) for all B ∈ B.

For each n ≥ 1, let αn be the n-th predictive measure. Thus, αn is a random
probability measure on S and αn(·)(B) is a version of P

(

Xn+1 ∈ B | X1, . . . , Xn

)

for all B ∈ B. Define also α0(·) = P (X1 ∈ ·).
If X is exchangeable, as assumed in this section, there is a random probability

measure α on S such that

αn(ω)
weak
−→ α(ω) for almost all ω ∈ Ω.

Such an α also grants the usual representation

P (X ∈ B) =

∫

α(ω)∞(B)P (dω) for every Borel set B ⊂ S∞

where α(ω)∞ = α(ω)× α(ω)× . . ..
Let λ be a σ-finite measure on B. Our first problem is to give conditions for

(1) α(ω)≪ λ for almost all ω ∈ Ω.

The conditions should concern the finite dimensional distributions L(X1, . . . , Xn),
n ≥ 1, only.

2000 Mathematics Subject Classification. 60G09, 60G42, 60G57, 62F15.
Key words and phrases. Conditional identity in distribution, Exchangeability, Predictive mea-

sure, Random probability measure.
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While investigating (1), one meets another problem, of possible independent
interest. Let ‖·‖ denote total variation norm on (S,B). Our second problem is to
give conditions for

‖αn − α‖
a.s.
−→ 0.

2. Motivations

Again, let X = (X1, X2, . . .) be exchangeable.
Reasonable conditions for (1) look of theoretical interest. They are of practical

interest as well, as regards Bayesian nonparametrics. In this framework, the starting
point is a prior π on S. Since π = P ◦ α−1, condition (1) means that the prior is
supported by those ν ∈ S such that ν ≪ λ. This is a basic information for the
subsequent statistical analysis. Roughly speaking, it means that the ”underlying
statistical model” consists of absolutely continuous laws.

From a foundational point of view, according to de Finetti, only assumptions on
observable facts make sense. This is why the conditions for (1) have been requested
to concern L(X1, . . . , Xn), n ≥ 1, only. See [3], [5], [6], [7], [8].

A condition of this type is

(2) L(X1, . . . , Xn)≪ λn for all n ≥ 1,

where λn = λ× . . .×λ. Clearly, (2) is necessary for (1). A (natural) question, thus,
is whether (2) suffices for (1) as well.

The answer is yes provided α can be approximated by the predictive measures
αn in some stronger sense. In fact, condition (2) can be written as

αn(ω)≪ λ for all n ≥ 0 and almost all ω ∈ Ω.

Hence, if (2) holds and ‖αn − α‖
a.s.
−→ 0, the set

A = {‖αn − α‖ → 0} ∩ {αn ≪ λ for all n ≥ 0}

has probability 1. And, for each ω ∈ A, one obtains

α(ω)(B) = lim
n
αn(ω)(B) = 0 whenever B ∈ B and λ(B) = 0.

Therefore, (1) follows from (2) and ‖αn − α‖
a.s.
−→ 0. In addition, a martingale

argument implies the converse implication, that is

α≪ λ a.s. ⇐⇒ ‖αn − α‖
a.s.
−→ 0 and L(X1, . . . , Xn)≪ λn for all n;

see Theorem 1. Thus, our first problem turns into the second one.

The question of whether ‖αn − α‖
a.s.
−→ 0 is of independent interest. Among

other things, it is connected to Bayesian consistency. Surprisingly, however, this

question seems not answered so far. To the best of our knowledge, ‖αn − α‖
a.s.
−→ 0

in every example known so far. And in fact, for some time, we conjectured that

‖αn − α‖
a.s.
−→ 0 under condition (2). But this is not true. As shown in Example 5,

when S = R and λ = Lebesgue measure, it may be that L(X1, . . . , Xn) is absolutely
continuous for all n and yet α is singular continuous a.s.. Indeed, the (topological)
support of α(ω) has Hausdorff dimension 0 for almost all ω ∈ Ω.

Thus, (2) does not suffice for (1). To get (1), in addition to (2), one needs some
growth conditions on the conditional densities. We refer to forthcoming Theorem
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4 for such conditions. Here, we mention a result on the second problem. Actually,

for ‖αn − α‖
a.s.
−→ 0, it suffices that

P{ω : αc(ω)≪ λ} = 1

where αc(ω) denotes the continuous part of α(ω); see Theorem 2.
Finally, some results mentioned above do not need exchangeability of X, but the

weaker assumption

(X1, . . . , Xn, Xn+2) ∼ (X1, . . . , Xn, Xn+1) for all n ≥ 0.

Those sequences X satisfying the above condition, investigated in [2], are called
conditionally identically distributed (c.i.d.).

3. Mixtures of i.i.d. absolutely continuous sequences

In this section, G0 = {∅,Ω}, Gn = σ(X1, . . . , Xn) for n ≥ 1 and G∞ = σ
(

∪nGn
)

.
If µ is a random probability measure on S, we write µ(B) to denote the real random
variable µ(·)(B), B ∈ B. Similarly, if h : S → R is a Borel function, integrable with
respect to µ(ω) for almost all ω ∈ Ω, we write µ(h) to denote

∫

h(x)µ(·)(dx).

3.1. Preliminaries. Let X = (X1, X2, . . .) be c.i.d., as defined in Section 2. Since
X needs not be exchangeable, the representation P (X ∈ ·) =

∫

α(ω)∞(·)P (dω)
can fail for any α. However, there is a random probability measure α on S such
that

(3) σ(α) ⊂ G∞ and αn(B) = E
{

α(B) | Gn
}

a.s.

for all B ∈ B. In particular, αn
weak
−→ α a.s.. Also, letting

µn =
1

n

n
∑

i=1

δXi

be the empirical measure, one obtains µn
weak
−→ α a.s.. Such an α is of interest for

one more reason. There is an exchangeable sequence Y = (Y1, Y2, . . .) of S-valued
random variables on (Ω,A, P ) such that

(Xn, Xn+1, . . .)
d
−→ Y and P

(

Y ∈ ·
)

=

∫

α(ω)∞(·)P (dω).

See [2] for details.
We next recall some known facts about vector-valued martingales; see [9]. Let

(Z, ‖·‖∗) be a separable Banach space. Also, let F = (Fn) be a filtration and (Zn)
a sequence of Z-valued random variables on (Ω,A, P ) such that E‖Zn‖∗ < ∞ for
all n. Then, (Zn) is an F-martingale in case (φ(Zn)) is an F-martingale for each
linear continuous functional φ : Z → R. If (Zn) is an F-martingale, (‖Zn‖∗) is a
real-valued F-submartingale. So, Doob’s maximal inequality yields

E
{

sup
n
‖Zn‖

p
∗

}

≤
( p

p− 1

)p
sup
n
E
{

‖Zn‖
p
∗

}

for all p > 1.

The following martingale convergence theorem is available as well. Let Z : Ω→ Z
be F∞-measurable and such that E‖Z‖∗ < ∞, where F∞ = σ

(

∪nFn

)

. Then,

Zn
a.s.
−→ Z provided φ(Zn) = E

{

φ(Z) | Fn

}

a.s. for all n and all linear continuous
functionals φ : Z → R.
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3.2. Results. In the sequel, λ is a σ-finite measure on B and α a random probabil-

ity measure on S such that αn
weak
−→ α a.s.. Equivalently, if X is c.i.d. (in particular,

exchangeable), α is a random probability measure on S such that µn
weak
−→ α a.s..

It can (and will) be assumed σ(α) ⊂ G∞.

Theorem 1. Suppose X = (X1, X2, . . .) is c.i.d.. Then, α≪ λ a.s. if and only if

‖αn − α‖
a.s.
−→ 0 and L(X1, . . . , Xn)≪ λn for all n.

Proof. The ”if” part can be proved exactly as in Section 2. Conversely, suppose
α≪ λ a.s.. It can be assumed α(ω)≪ λ for all ω ∈ Ω. We let Lp = Lp(S,B, λ) for
each 1 ≤ p ≤ ∞.

Let f : Ω × S → [0,∞) be such that α(ω)(dx) = f(ω, x)λ(dx) for all ω ∈ Ω.
Since B is countably generated, f can be taken A⊗ B-measurable (see [4], V.5.58,
page 52) so that

1 =

∫

1 dP =

∫ ∫

f(ω, x)λ(dx)P (dω) =

∫

E
{

f(·, x)
}

λ(dx).

Thus, given n ≥ 0, E
{

f(·, x) | Gn
}

is well defined for λ-almost all x ∈ S. Since X
is c.i.d., condition (3) also implies

∫

B

E
{

f(·, x) | Gn
}

λ(dx) = E
{

∫

B

f(·, x)λ(dx) | Gn
}

= E
{

α(B) | Gn
}

= αn(B) a.s. for fixed B ∈ B.

Since B is countably generated, the previous equality yields

αn(ω)(dx) = E
{

f(·, x) | Gn
}

(ω)λ(dx) for almost all ω ∈ Ω.

This proves that L(X1, . . . , Xn)≪ λn for all n. In particular, up to modifying αn

on a P -null set, it can be assumed αn(ω)(dx) = fn(ω, x)λ(dx) for all n ≥ 0, all
ω ∈ Ω, and suitable functions fn : Ω× S → [0,∞).

Regard f, fn : Ω → L1 as L1-valued random variables. Then, f : Ω → L1 is
G∞-measurable for

∫

h(x) f(·, x)λ(dx) = α(h) is G∞-measurable for all h ∈ L∞.
Clearly, ‖f(ω, ·)‖L1

= ‖fn(ω, ·)‖L1
= 1 for all n and ω. Finally, X c.i.d. implies

E
{

∫

h(x)f(·, x)λ(dx) | Gn
}

= E
{

α(h) | Gn
}

= αn(h)

=

∫

h(x)fn(·, x)λ(dx) a.s. for all h ∈ L∞.

By the martingale convergence theorem (see Subsection 3.1) fn
a.s.
−→ f in the space

L1, that is

‖αn(ω)− α(ω)‖ =
1

2

∫

|fn(ω, x)− f(ω, x)|λ(dx) −→ 0 for almost all ω ∈ Ω.

�

In the exchangeable case, the argument of the previous proof yields a little bit
more. Indeed, if X is exchangeable and α≪ λ a.s., then

sup
B∈Bk

∣

∣

∣
P
{

(Xn+1, . . . , Xn+k) ∈ B | Gn
}

− αk(B)
∣

∣

∣

a.s.
−→ 0,

where k ≥ 1 is any integer and αk = α× . . .× α.
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Next result deals with the second problem of Section 1. For each ν ∈ S, let νc
and νd denote the continuous and discrete parts of ν, that is, νd(B) =

∑

x∈B ν{x}
for all B ∈ B and νc = ν − νd.

Theorem 2. Suppose X = (X1, X2, . . .) is c.i.d. and P{ω : αc(ω) ≪ λ} = 1.

Then, ‖αn − α‖
a.s.
−→ 0 if and only if

there is a set A0 ∈ A such that P (A0) = 1 and(4)

αn(ω){x} −→ α(ω){x} for all x ∈ S and ω ∈ A0.

In particular, ‖αn − α‖
a.s.
−→ 0 if X is exchangeable and αc ≪ λ a.s. (in fact,

condition (4) is automatically true if X is exchangeable).

Proof. The ”only if” part is trivial. Suppose condition (4) holds. For each n ≥ 0,
take functions βn and γn on Ω such that βn(ω) and γn(ω) are measures on B for
all ω ∈ Ω and

βn(B) = E
{

αc(B) | Gn
}

, γn(B) = E
{

αd(B) | Gn
}

, a.s.,

for all B ∈ B. Since X is c.i.d., condition (3) yields αn = βn + γn a.s..

We first prove ‖βn − αc‖
a.s.
−→ 0. It can be assumed αc(ω)≪ λ for all ω ∈ Ω, so

that αc(ω)(dx) = f(ω, x)λ(dx) for all ω ∈ Ω and some function f : Ω×S → [0,∞).
For fixed B ∈ B, arguing as in the proof of Theorem 1, one has

βn(B) = E
{

∫

B

f(·, x)λ(dx) | Gn
}

=

∫

B

E
(

f(·, x) | Gn
)

λ(dx) a.s..

By standard arguments, it follows that βn ≪ λ a.s.. Again, it can be assumed
βn(ω)(dx) = fn(ω, x)λ(dx) for all ω ∈ Ω and some function fn : Ω × S → [0,∞).
Define L1 = L1(S,B, λ) and regard fn, f : Ω→ L1 as L1-valued random variables.

By the same martingale argument used for Theorem 1, one obtains fn
a.s.
−→ f in the

space L1. That is, ‖βn − αc‖
a.s.
−→ 0.

We next prove ‖γn − αd‖
a.s.
−→ 0. Take A0 as in condition (4) and define

A1 = { lim
n
‖fn − f‖L1

= 0 and αn = βn + γn for all n ≥ 0}.

Then, P (A0 ∩A1) = 1 and

αd(ω){x} = α(ω){x} − αc(ω){x} = α(ω){x} − f(ω, x)λ{x}

= lim
n

(

αn(ω){x} − fn(ω, x)λ{x}
)

= lim
n

(

αn(ω){x} − βn(ω){x}
)

= lim
n
γn(ω){x}

for all ω ∈ A0 ∩A1 and x ∈ S. Define also

A = A0 ∩A1 ∩ {γn(S) −→ αd(S)}.

Since γn(S) = 1 − βn(S)
a.s.
−→ 1 − αc(S) = αd(S), then P (A) = 1. Fix ω ∈ A and

let Dω = {x ∈ S : α(ω){x} > 0}. Then,

αd(ω)(Dω) ≤ lim inf
n

γn(ω)(Dω)

since Dω is countable and αd(ω){x} = limn γn(ω){x} for all x ∈ Dω. Further,

lim sup
n

γn(ω)(Dω) ≤ lim sup
n

γn(ω)(S) = αd(ω)(S) = αd(ω)(Dω).
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Therefore, limn‖γn(ω)− αd(ω)‖ = 0 is an immediate consequence of

γn(ω){x} −→ αd(ω){x} for each x ∈ Dω,

αd(ω)(Dω) = lim
n
γn(ω)(Dω), αd(ω)(D

c
ω) = lim

n
γn(ω)(D

c
ω) = 0.

Finally, suppose X exchangeable. We have to prove condition (4). If S is count-

able, condition (4) is trivial for αn(B)
a.s.
−→ α(B) for fixed B ∈ B. If S = R,

Glivenko-Cantelli theorem yields supx|µn(Ix) − α(Ix)|
a.s.
−→ 0, where Ix = (−∞, x]

and µn = 1
n

∑n
i=1 δXi

is the empirical measure. Hence, (4) follows from

sup
x
|αn(Ix)− µn(Ix)|

a.s.
−→ 0;

see Corollary 3.2 of [1]. If S is any uncountable Polish space, take a Borel isomor-
phism ψ : S → R. (Thus, ψ is bijective with ψ and ψ−1 Borel measurable). Then,
(ψ(Xn)) is an exchangeable sequence of real random variables and condition (4) is
a straightforward consequence of

P
{

ψ(Xn+1) ∈ B | ψ(X1), . . . , ψ(Xn)
}

= P
{

ψ(Xn+1) ∈ B | Gn
}

= αn

(

ψ−1B
)

a.s.

for each Borel set B ⊂ R. This concludes the proof. �

When X is c.i.d. (but not exchangeable) ‖αn−α‖
a.s.
−→ 0 needs not be true even

if αc ≪ λ a.s..

Example 3. Let (Zn) and (Un) be independent sequences of independent real
random variables such that Zn ∼ N (0, bn − bn−1) and Un ∼ N (0, 1 − bn), where
0 = b0 < b1 < b2 < . . . < 1 and

∑

n(1− bn) <∞. As shown in Example 1.2 of [2],

Xn =
n

∑

i=1

Zi + Un

is c.i.d. and Xn
a.s.
−→ V for some real random variable V . Since µn

weak
−→ δV a.s.,

then α = δV and αc ≪ λ a.s. (in fact, αc = 0 a.s.). However, condition (4)
fails. In fact, L(X1, . . . , Xn)≪ λn for all n, where λ is Lebesgue measure. Hence,
αn(ω){V (ω)} = 0 while α(ω){V (ω)} = 1 for all n and almost all ω ∈ Ω.

We now turn to the first problem of Section 1. Recall that condition (2) amounts
to αn ≪ λ a.s. for all n ≥ 0. Therefore, up to modifying αn on a P -null set, under
condition (2) one can write

αn(ω)(dx) = fn(ω, x)λ(dx)

for each ω ∈ Ω, each n ≥ 0, and some function fn : Ω× S → [0,∞).

Theorem 4. Suppose X = (X1, X2, . . .) is c.i.d. and L(X1, . . . , Xn)≪ λn for all
n. Fix a constant p > 1 and define

IBn (ω) =

∫

B

fn(ω, x)
p λ(dx), B ∈ B.

Then, α≪ λ a.s. provided, for every compact K ⊂ S,

(5) sup
n
IKn (ω) <∞ for almost all ω ∈ Ω.

In particular, α≪ λ a.s. whenever supnE
{

IKn
}

<∞ for each compact K ⊂ S.
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Proof. Fix a nondecreasing sequence B1 ⊂ B2 ⊂ . . . such that Bn ∈ B, λ(Bn) <∞,
and ∪nBn = S. Since λ(B1) <∞ and S is Polish, there is a compact set K1 ⊂ B1

satisfying λ(B1 ∩K
c
1) < 1. By induction, for each n ≥ 2, there is a compact set Kn

such that Kn−1 ⊂ Kn ⊂ Bn and λ(Bn ∩K
c
n) < 1/n. Since X is c.i.d., condition

(3) implies

α(Km) = lim
n
E
{

α(Km) | Gn
}

= lim
n
αn(Km) a.s. for all m ≥ 1.

Define H = ∪mKm and AH = {α(H) = 1}. If ω ∈ AH , then

α(ω)(B) = α(ω)(B ∩H) = sup
m
α(ω)(B ∩Km) for all B ∈ B.

Moreover, P (AH) = 1. In fact, λ(Hc) = 0 and αn ≪ λ a.s. for all n, so that

α(H) = lim
n
E
{

α(H) | Gn
}

= lim
n
αn(H) = 1 a.s..

Thus, it suffices to prove α(· ∩Km)≪ λ a.s. for all m.
Suppose (5) holds. Fix m ≥ 1 and define K = Km and λK(·) = λ(· ∩K). By

(5) and p > 1, the sequence (fn(ω, ·) : n ≥ 1) is uniformly integrable in (S,B, λK)
for almost all ω ∈ Ω. Take a set A ∈ A such that P (A) = 1 and, for each ω ∈ A,

α(ω)(K) = lim
n
αn(ω)(K), αn(ω)

weak
−→ α(ω),

(fn(ω, ·) : n ≥ 1) is uniformly integrable in (S,B, λK).

Fix ω ∈ A. Since λK(S) = λ(K) ≤ λ(Bm) <∞ and (fn(ω, ·) : n ≥ 1) is uniformly
integrable, there is a subsequence (nj) and a function ψω ∈ L1(S,B, λK) such that
fnj

(ω, ·) −→ ψω in the weak-topology of L1(S,B, λK). This means that

∫

B∩K

ψω(x)λ(dx) = lim
j

∫

B∩K

fnj
(ω, x)λ(dx) = lim

j
αnj

(ω)(B ∩K) for all B ∈ B.

Therefore,

∫

K

ψω(x)λ(dx) = lim
j
αnj

(ω)(K) = α(ω)(K) and

∫

F∩K

ψω(x)λ(dx) = lim
j
αnj

(ω)(F ∩K) ≤ α(ω)(F ∩K) for each closed F ⊂ S.

By standard arguments, the previous two relations yield α(ω)(B∩K) =
∫

B∩K
ψω(x)λ(dx)

for all B ∈ B. Thus, α(ω)(· ∩K)≪ λ. This concludes the proof of the first part.
It remains to see that condition (5) follows from supnE

{

IKn
}

< ∞ for each

compact K. Fix B ∈ B and suppose supnE
{

IBn
}

< ∞. Let λB(·) = λ(· ∩ B) and

Lr = Lr(S,B, λB) for all r. It can be assumed IBn (ω) <∞ for all ω ∈ Ω and n ≥ 0.
Thus, each fn : Ω→ Lp can be seen as an Lp-valued random variable such that

E‖fn‖Lp
= E

{

(IBn )1/p
}

≤
(

E
{

IBn
})1/p

<∞.



8 PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

Further,
∫

fn(·, x)h(x)λB(dx) = αn(IB h) is Gn-measurable for all h ∈ Lq, where
q = p/(p− 1). Since X is c.i.d., condition (3) also implies

E
{

∫

fn+1(·, x)h(x)λB(dx) | Gn
}

= E
{

αn+1(IB h) | Gn
}

= E
{

E
(

α(IB h) | Gn+1

)

| Gn
}

= E
{

α(IB h) | Gn
}

= αn(IB h)

=

∫

fn(·, x)h(x)λB(dx) a.s. for all h ∈ Lq.

Hence, (fn) is a (Gn)-martingale. By Doob’s maximal inequality,

E
{

sup
n
IBn

}

= E
{

sup
n
‖fn‖

p
Lp

}

≤ qp sup
n
E
{

‖fn‖
p
Lp

}

= qp sup
n
E
{

IBn
}

<∞.

In particular, supn I
B
n <∞ a.s., and this concludes the proof.

�

Some remarks on Theorem 4 are in order. First,

fn(ω, ·) =
gn+1

(

X1(ω), . . . , Xn(ω), ·
)

gn
(

X1(ω), . . . , Xn(ω)
) for almost all ω ∈ Ω,

where each gn : Sn → [0,∞) is a density of L(X1, . . . , Xn) with respect to λn.
Thus, more concretely, IBn can be written as

IBn =

∫

B
gn+1

(

X1, . . . , Xn, x)
p λ(dx)

gn(X1, . . . , Xn)p
a.s..

Second, as apparent from the proof, condition (5) can be slightly weakened as
follows. For each compactK, the sequence (fn(ω, ·) : n ≥ 1) is uniformly integrable,
in the space (S,B, λK), for almost all ω ∈ Ω.

Third, suppose X exchangeable and fix any random probability measure γ on S
such that P (X ∈ ·) =

∫

γ(ω)∞(·)P (dω). Then, γ ≪ λ a.s. under the assumptions
of Theorem 4. In fact, α and γ have the same probability distribution, when
regarded as S-valued random variables.

A last (and important) remark deals with condition (2). Indeed, even if X is
exchangeable, condition (2) is not enough for α ≪ λ a.s.. When S = R and λ =
Lebesgue measure, it may be that X is exchangeable, L(X1, . . . , Xn) is absolutely
continuous for all n, and yet the support of α(ω) has Hausdorff dimension 0 for
almost all ω ∈ Ω. We close the paper showing this fact.

Example 5. Let Um and Ym,n be independent real random variables, on the prob-
ability space (Ω,A, P ), such that:

• Um is uniformly distributed on ( 1
m+1

, 1
m ) for each m ≥ 1;

• P (Ym,n = 0) = P (Ym,n = 1) = 1
2
for all m, n ≥ 1.

Define Vm = Um
m and

Xn =

∞
∑

m=1

Um
m Ym,n =

∞
∑

m=1

Vm Ym,n.
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Then, X = (X1, X2, . . .) is conditionally i.i.d. given V = σ(V1, V2, . . .). Precisely,
for ω ∈ Ω and B ∈ B, define

α(ω)(B) = P
{

u ∈ Ω :
∑

m

Vm(ω)Ym,1(u) ∈ B
}

.

Then, α(B) is a version of P (X1 ∈ B | V) and P (X ∈ ·) =
∫

α(ω)∞(·)P (dω). In

particular, X is exchangeable. Moreover, µn
weak
−→ α a.s. for

P
(

µn
weak
−→ α | V

)

= 1 a.s..

Next, the (topological) support of α(ω) has Hausdorff dimension 0 for almost all
ω ∈ Ω. Suppose in fact b1 > b2 > . . . > 0 are real numbers such that

∑

m bm <∞
and Z1, Z2, . . . i.i.d. random variables with P (Z1 = 0) = P (Z1 = 1) = 1/2. Then,
by Theorem 8 of [10], the support of L

(
∑

m bm Zm

)

has Hausdorff dimension 0

whenever limm

(
∑

j>m bj
)−1

bm = ∞. Thus, letting bm = Vm(ω) and Zm = Ym,1,
it suffices to verify that

(6) lim
m

Vm(ω)
∑

j>m Vj(ω)
=∞ for almost all ω ∈ Ω.

And condition (6) follows immediately from

(j+1)−j < Vj < j−j and
∑

j>m

Vj ≤
∑

j>m

j−j ≤
∑

j>m

(m+1)−j =
(m+ 1)−m

m
a.s..

We finally prove that L(X1, . . . , Xn) is absolutely continuous, with respect to
Lebesgue measure on R

n, for all n. Given the array y = (ym,n : m, n ≥ 1), with
ym,n ∈ {0, 1} for all m, n, define

Xn,y =
∑

m

Vm ym,n.

Fix n ≥ 1 and denote In the n× n identity matrix. If y satisfies





ym+1,1 . . . ym+1,n

. . . . . . . . .
ym+n,1 . . . ym+n,n



 = In for some m ≥ 0,(7)

then

(X1,y, . . . , Xn,y) = (Vm+1, . . . , Vm+n) + (R1, . . . , Rn)

with (R1, . . . , Rn) independent of (Vm+1, . . . , Vm+n).

In this case, since (Vm+1, . . . , Vm+n) has an absolutely continuous distribution,
(X1,y, . . . , Xn,y) has an absolutely continuous distribution as well. Hence, letting
Y = (Ym,n : m, n ≥ 1), the conditional distribution of (X1, . . . , Xn) given Y = y
is absolutely continuous as far as y satisfies (7). To conclude the proof, it suffices
noting that

P
(

Y = y for some y satisfying (7)
)

= 1.
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