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Abstract

Directed Acyclic Graphical (DAG) models are increasingly em-
ployed in the study of physical and biological systems, where directed
edges between vertices are used to model direct influences between
variables. Identifying the graph from data is a challenging endeavor,
which can be more reasonably tackled if the variables are assumed
to satisfy a given ordering; in this case, we simply have to estimate
the presence or absence of each possible edge, whose direction is es-
tablished by the ordering of the variables. We propose an objective
Bayesian methodology for model search over the space of Gaussian
DAG models, which only requires default non-local priors as inputs.
Priors of this kind are especially suited to learn sparse graphs, be-
cause they allow a faster learning rate, relative to ordinary local pri-
ors, when the true unknown sampling distribution belongs to a simple
model. We implement an efficient stochastic search algorithm, which
deals effectively with data sets having sample size smaller than the
number of variables. We apply our method to a variety of simulated
and real data sets.

Keywords Fractional Bayes factor; High-dimensional sparse graph; Mo-
ment prior; Non-local prior; Objective Bayes; Pathway based prior; Regula-
tory network; Stochastic search; Structural learning.
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1 Introduction

Graphical models represent a powerful statistical tool in multivariate anal-
ysis and probabilistic expert systems; see, for instance, the monographs by
Whittaker (1990); Cowell et al. (1999); Edwards (2000). Several classes of
graphs can be used to define graphical models. Among them, Undirected
graphs (UGs), Directed Acyclic Graphs (DAGs) and Chain Graphs (CGs)
are well-known. In this paper, we concentrate on models defined by means
of DAGs.

High-dimensional DAG models are becoming increasingly popular in the
study of biological systems, including cell signalling pathways and gene reg-
ulatory networks; see Markowetz and Spang (2007) for a review. In particu-
lar, as discussed by Shojaie and Michailidis (2010), sparse high-dimensional
DAGs appear especially suited for these applications. This is both because
they provide satisfactory explanations of biological processes and because
they can be learned from data (structural learning) even when the sample
size is smaller than the number of variables, which is often the case in this
application context.

In this paper, we deal with structural learning for (Gaussian) DAG mod-
els from an objective Bayesian perspective. This entails assigning a prior
distribution on the space of DAGs, together with a parameter prior within
each DAG. We discuss both issues, but focus primarily on parameter priors.
In particular, we suggest using non-local (Johnson and Rossell, 2010) param-
eter priors, which appear to be better suited for learning simple models than
ordinary local priors. We also implement a suitable search algorithm over
the space of DAG models, and compare our results to currently available
frequentist methods: the PC-algorithm (Kalisch and Buhlmann, 2007), the
Lasso (Meinshausen and Bulhmann, 2006), the Adaptive Lasso (Shojaie and
Michailidis, 2010), and SIN (Drton and Perlman, 2004, 2007).

We assume that there exists a priori a total ordering of the variables
involved (temporal, logical, or other) so that we do not have to infer edge
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directions. This is clearly a limitation in scope, but it greatly simplifies
search over model space, while still allowing to analyze a variety of interesting
examples. Geiger and Heckerman (2002) consider the general case from a
subjective Bayesian viewpoint (with local priors).

The rest of the paper is organized as follows. In section 2 we introduce
the needed background material on Gaussian DAG models, non-local priors,
fractional Bayes factors (upon which our objective approach relies) and model
priors. Section 3 presents our path-based stochastic search algorithm, which
is evaluated in section 4 on simulated and real data sets. Then, in section 5,
we deal with structural learning for sparse DAGs (both on simulated and real
data). Finally, section 6 contains a brief discussion. Some techincal material
has been moved to an Appendix.

2 Background

We assume the reader is familiar with basic graph definitions and terminology
as presented, e.g., by Cowell et al. (1999).

2.1 Gaussian directed acyclic graphical models

Let D = (V,E) be a DAG, where V = {1, . . . , q} is the set of its vertices and
E ⊆ V ×V is the set of its directed edges. We assume a total ordering of the
vertices, and that the vertices of D be well-numbered, so that, if a directed
path goes from vertex i to vertex j in D, then i < j. Each vertex corresponds
to a variable, and forW ⊆ V we denote by uW the set of all variables uj with
j ∈ W . The Gaussian graphical model corresponding to D is the family of all
q-variate normal distributions such that, if there is no edge i→ j in D, then
uj is conditionally independent of ui given the set of variables u{1,...,j}\{i,j}.
For the sake of simplicity, we denote both the DAG and the corresponding
Gaussian graphical model with the same symbol (D say). Although this can
be a source of confusion, in general, because two DAGs can give rise to the
same model, in our case this is perfectly safe, because the variable ordering
is given once and for all.

In the model D the joint density of (u1, . . . , uq) can be written as

f(u1, . . . , uq|β, γ) =

q
∏

j=1

f(uj|upa(j); βj, γj), (1)
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where pa(j) denotes the parents of j in D, i.e., the vertices of D preceding
j and joined to j by an edge. Since each conditional distribution in (1) is a
univariate normal, the vector parameter βj represents the regression coeffi-
cients in the conditional expectation of uj given upa(j), namely (1, u

′
pa(j))βj,

while γj is the corresponding conditional precision (inverse of variance). By
convention, the first element of βj is the intercept βj0, while the remaining
elements are written as βjk with k ∈ pa(j). If E(uj|β, γ) = 0, then βj0 = 0,
j = 1, . . . , q, and the intercept can be dropped, so that βj has dimension
|pa(j)|, the cardinality of the set pa(j).

2.2 Non-local priors

For data y, consider two modelsMk, k = 0, 1, with sampling density f(y|θk)
and prior p(θk). We assume thatM0 is nested inM1, so that each distribu-
tion inM0 coincides with some f(y|θ1) inM1. We also assume that model
comparison takes place through the Bayes Factor (BF) and write BF10(y) =
m1(y)/m0(y) for the BF ofM1 againstM0 (or simply in favor ofM1) where
mk(y) is the marginal likelihood of Mk, i.e., mk(y) =

∫

f(y|θk)p(θk)dθk.
Usually p(θ1), θ1 ∈ Θ1, is a local prior, i.e., assuming continuity, it is strictly
positive over the subspace Θ0 ⊂ Θ1 characterizing the smaller modelM0.

Suppose the data y(n) = (y1, . . . , yn) arise under i.i.d. sampling from some
(unknown) distribution Q. We say that the smaller model holds if Q belongs
toM0, while we say that the larger model holds if Q belongs toM1 but not
toM0. Since p(θ1) is a local prior, we have the following learning behaviour
of the BF: if M0 holds, then BF10(y

(n)) = Op(n
−(d1−d0)/2), as n → ∞,

where dk is the dimension of Mk, k = 0, 1, and d1 > d0; if M1 holds, then
BF01(y

(n)) = e−Kn+Op(
√
n), as n → ∞, for some K > 0 (Kullback-Leibler

divergence ofM0 from Q); see Dawid (1999).
Johnson and Rossell (2010) defined non-local priors under M1 in order

to reduce the above described imbalance in the asymptotic learning rate of
the BF. We focus here on a specific family of non-local priors. Let g(θ1) be
a continuous function vanishing on Θ0. For a given local prior p(θ1), define
a new non-local prior as pM(θ1) ∝ g(θ1)p(θ1), which we name a generalized
moment prior. For instance, if θ1 is a scalar parameter in R and Θ0 = {θ0},
with θ0 a fixed value, we may take g(θ1) = (θ1 − θ0)

2h, where h is a positive
integer (h = 0 returns the starting local prior); this is precisely the moment
prior introduced by Johnson and Rossell (2010) for testing a sharp hypothesis
on a scalar parameter. In this case BF10(y

(n)) = Op(n
−h−1/2) when M0
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holds, while BF01(y
(n)) = e−Kn+Op(

√
n) when M1 holds. Thus, if h = 1,

the rate changes from sub-linear to super-linear. While the above argument
is asymptotic, its effect is already apparent for moderate sample sizes; see
Consonni et al. (2010).

2.3 Fractional Bayes factors

Objective priors are often improper and thus defined up to a multiplica-
tive constant. Hence, they cannot be used to compute BFs, even when
the marginal likelihoods are positive and finite for all data realizations. A
few solutions to this difficulty have been proposed: fractional Bayes factors
(O’Hagan, 1995), intrinsic Bayes factors (Berger and Pericchi, 1996), intrin-
sic priors (Moreno, 1997), and expected posterior priors (Perez and Berger,
2002). Pericchi (2005) provides a comprehensive review. In this paper we fo-
cus on the Fractional Bayes Factor (FBF), which we find especially attractive
in our context because its expression is available in closed-form.

Consider a modelMk with sampling density f(·|θk) and prior p(θk). Let
0 < g < 1 be a quantity depending on the sample size n, and define for data
y

wk(y; g) =

∫

f(y|θk)p(θk)dθk
∫

f g(y|θk)p(θk)dθk
,

where f g(y|θk) is the sampling density raised to the g-th power, and the
integrals are assumed to be finite and nonzero. We refer to wk(y; g) as the
fractional marginal likelihood of the k-th model. Consider now two mod-
els, M0 and M1. The FBF (in favor of M1) is defined as FBF10(y; g) =
w1(y; g)/w0(y; g). It is not difficult to see that the fractional marginal like-
lihood wk(y; g) can be computed as

∫

f (1−g)(y|θk)p
F (θk|y), where p

F (θk|b, y)
is an implied data-dependent fractional prior proportional to p(θk)f

g(y|θk),
that is, actually a posterior based on a fraction g of the likelihood; usually g
will be small, so that the dependence of the prior on the data will be weak.

Consistency of the FBF is achieved as long as g → 0 for n→∞. O’Hagan
(1995, sect. 6) suggests g = n0/n as a default choice of g, where n0 is the mini-
mal (integer) training sample size for which the fractional marginal likelihood
is well defined, together with two other choices for cases when robustness is
a major concern. Moreno (1997) has an argument in favour of the defalut
choice, and we stick to it in this paper.
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2.4 Moment fractional Bayes factors

The advantages of FBFs can be usefully combined with those of moment
priors to obtain an objective Bayesian testing methodology with enhanced
learning behavior (Consonni and La Rocca, 2011). We now present this
approach.

Because of the recursive structure of the likelihood (1), it is natural to as-
sume that p(β, γ) satisfies the assumption of global parameter independence:
p(β, γ) =

∏

j p(βj, γj); see Geiger and Heckerman (2002). A natural default

prior is then pD(βj, γj) ∝ γ−1j . Now consider two Gaussian DAG models D0

and D1 with the same vertex set, and vertex ordering, and with D0 nested in
D1. For each vertex j, let Lj be the subset of parents pointing to j in D1 but
not in D0, and define the corresponding default moment prior of order h as
pM1 (βj, γj) ∝ γ−1j

∏

l∈Lj
β2h
jl , where h is a positive integer; notice that h = 0

returns the initial default prior. The overall moment prior will be obtained
by multiplying together the priors pM1 (βj, γj):

pM1 (β, γ) ∝

q
∏

j=1







γ−1j

∏

l∈Lj

β2h
jl







. (2)

In order to compute the FBF based on the moment prior (2), which we call
a Moment FBF (MFBF) of order h, we need an expression for the fractional
marginal likelihood pertaining to vertex j both under D0 and under D1. The
former is standard, because it is based on the default prior, while the latter
is provided in Theorem 1 of Consonni and La Rocca (2011) and is reported
for completeness in the Appendix. Notice that letting h = 0 we obtain an
Ordinary FBF (OFBF).

2.5 Priors over graph families

A seemingly objective prior over the space of all graphs with given vertex set
is represented by the uniform prior. However, it is well known that this prior
is strongly biased in favor of “medium-size” graphs; see, e.g., Giudici and
Green (1999, sect. 1.3). A further issue is of some concern. Graphical model
search can be viewed as a multiple testing problem, because it amounts to
testing repeatedly for the presence of each potential edge. In this sense,
graphical model search is akin to variable selection, for which Scott and
Berger (2010) suggest a prior with an automatic adjustment for multiple
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testing as the number of possible predictors grows. In our graphical modelling
context this translates to

p(D) =
1

m+ 1

(

m

k

)−1
(3)

for a DAG D having k edges out of the m possible ones. This prior yields
very strong control over the number of false edges admitted into the model,
which typically remains bounded even as the number of spurious tests grows
without bound; see also Scott and Carvalho (2008).

3 Graphical model determination

We are now ready to address the issue of objective Bayesian model deter-
mination over the space of all DAGs consistent with a fixed ordering of the
variables. Our method for assigning priors is based on a pairwise compar-
ison of two nested models, which in turn produces a BF determining the
posterior probability of the two models. Now suppose we entertain a finite
collection of DAGs {Dk}. The posterior proabability over the family {Dk}
can still be deduced from a collection of pairwise BFs as follows. We single
out a reference DAG D0 and obtain the collection of BFs of Dk against D0,
namely {BFk0(y)}. Because of the way we construct our priors, a natural
requirement is that D0 be nested into every other model Dk; this is called
encompassing from below. If all possible DAGs belong to the collection, this
means choosing D0 as the complete independence DAG (DAG with no edges).
We derive the posterior probability of model Dk as

p(Dk|y) =
BFk0(y)p(Dk)

∑

j BFj0(y)p(Dj)
, (4)

where index j in the denominator runs over all possible model-indexes. Notice
that formula (4) is valid because the parameter prior under D0 is the same
in all pairwise comparisons. In the following we describe our MFBF search
algorithm, where we let BF be an MFBF of order h ≥ 1. Since the description
also works for h = 0, we also have an OFBF search algorithm.

3.1 Stochastic search

Even under the assumption of a fixed ordering of the variables, the number of
DAGs grows exponentially in the number of variables, so that enumerating all
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of them is not feasible already for moderately sized vertex sets. Therefore, one
must resort to some form of search algorithm to identify the most valuable
models. With regard to this point, it is by now recognized that MCMC
methods are not efficient, because of the sheer cardinality of model space and
of its nature, which typically gives rise to irregularly multi-modal posteriors;
see Friedman and Koller (2003). Nevertheless, other forms of stochastic
search can help in this context. In particular, since we have the score (un-
normalized posterior probability) of each model available in closed-form, we
can look directly for a list of models with high score and re-normalize their
scores to obtain an assessment of their posterior probabilities. More on these
issues can be found in Scott and Carvalho (2008).

In order to describe our algorithm, we need the notion of inclusion proba-
bility of a potential edge e ∈ {e1, . . . , em}, defined as the posterior probability
of e being present in the unknown structure; this can be deduced from (4)
by summing the posterior probabilities of all DAGs including e:

p(e|y) ≡ qe =
∑

j: e∈Dj

p(Dj|y). (5)

The Median Probability (MP)-DAG is the graph containing those edges
whose inclusion probability is at least 0.5. The concept of MP model was
introduced by Barbieri and Berger (2004) in the context of regression mod-
els, where it was shown to perform better, in terms of prediction, than the
Highest Posterior Probability (HPP)-model.

In practice, expression (4) is not immediately helpful, because its denom-
inator cannot be evaluated due to the excessive number of terms. However,
if a collection of high scoring DAGs is available, we can estimate the pos-
terior probability of Dk by summing over the models in the collection to
compute the denominator of (4); we denote this estimate by p̂(Dk|y), and
the corresponding estimate of (5) by p̂(e|y).

Our search algorithm is similar to that proposed by Scott and Carvalho
(2008), which in turn draws on the general ideas presented in Berger and
Molina (2005) for the case of variable selection. It includes resampling moves,
local moves and global moves. The rationale is very simple and can be
summarized by saying that edge moves which have improved some models
are more likely (than a randomly chosen move) to improve other models as
well. A step-by-step description follows.

1. Start with a base DAG DB and obtain deterministically m ≡ q(q −
1)/2 distinct new DAGs each one differing from DB by exactly one
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edge. Based on this initial collection of DAGs, compute the (estimated)
graph posterior probabilities p̂(Dj|y), j = 1, . . . ,m, and edge inclusion
probabilities q̂e, e ∈ {e1, . . . , em}. Initialize a counter t = m.

2. At iteration t return to one of the previously visited graphs, say DR,
according to the posterior probabilities p̂(Dj|y), j = 1, . . . , t. This is
called a resampling move.

3. Identify the possible local moves from DR and choose one of them:
change (i.e., add if not present and delete if present) edge e with prob-
ability

∝

(

q̂e + C

1− q̂e + C

)2[1−DR(e)]−1
, e = z1, . . . , zw, (6)

where DR(e) = 1 if edge e belongs to DR while DR(e) = 0 otherwise,
and z1, . . . , zw are the edges that can be changed in such a way that
the movement chosen is directed towards a new model. The constant
C > 0 is introduced to keep the probability of all local moves bounded
away from 0 and 1, even when all or none of the models visited include
a certain edge. Update t to t + 1 and the posterior graph and edge
inclusion probabilities.

4. Usually return directly to step 2 (while t ≤ T ) but periodically make a
global move: define DR to be the current MP-DAG and return to step
3.

3.2 Path-based search

At each iteration t of our algorithm, the posterior probabilities of all visited
models must be updated using formula (4). This requires the MFBF of
each visited model relative to the reference model D0; see equation (12).
Computing the MFBF of Dt relative to D0 is slow when Dt is “far apart”
from D0. This has to do with the definition of function H appearing in
(10); see formula (see 11). On the other hand, the computation of MFBF is
extremely fast when the comparison is restricted to adjacent (i.e., differing
exactly by one edge) DAGs; see (13). Bearing in mind the great importance
of speed in computations, and the fact that our search strategy operates
locally on adjacent pairs of DAGs, it is natural to propose an alternative
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computation of MFBF through the following “chain rule”:

MFBFt0(y; g) =
t

∏

s=1

MFBFs,s−1(y; g). (7)

Each factorMFBFs,s−1(y; g) in (7) involves adjacent DAGs and is evaluated
using a fractional moment prior under the larger model and an ordinary
fractional prior under the smaller one. Formula (7) is used for comparing
non-adjacent DAGs by suitably defining a path of adjacent DAGs connecting
the two DAGs.

The use of (7) was suggested by Berger and Molina (2005) in the context
of variable selection for linear models and using a variant of the intrinsic
Bayes factor introduced by Berger and Pericchi (1996). Berger and Molina
(2005) recommended (7) not only for computational reasons, but also on
conceptual grounds: since dependence of the BF on parameter priors is huge
when comparing models of significantly varying dimension, this dependence
is potentially mitigated when comparing adjacent models. We concur with
Berger and Molina, although we are aware that t+1 priors play a role in (7).

The “chain-rule” (7) can be criticized because it is not “coherent”, in the
sense that the fractional marginal likelihood based on a moment prior for
DAG Dt−1, say, may depend on the specific pairwise comparison under con-
sideration. To see why, suppose that Dt and Dt−2 are distinct but both nested
within Dt−1. Then, the fractional moment prior under Dt−1 will be different
in the two comparisons, and similarly for the fractional marginal likelihood
of Dt−1. As a consequence, the product of MFBFt,t−1 and MFBFt−1,t−2
will not provide MFBFt,t−2, as it ought to, because the two marginal like-
lihoods for Dt−1 do not cancel out. However, since Dt−1 is compared with
adjacent models, we can expect that the difference between the two frac-
tional marginal likelihoods be modest, so that the “chain rule” will provide
a reasonable approximation to the actual MFBF. Moreover, this seems to be
a minor problem, when compared to the more general problem of stochastic
search algorithms, which determine their inferences solely on the basis of vis-
its to a (very) modest number of models. Finally, it must be emphasized that
the “chain rule” would be perfectly coherent if one were to use the OFBF,
whose definition does not involve a pairwise comparison.
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Figure 1: True DAG for the six-variable simulation example (left panel);
MP-DAGs found by UFBF (center panel) and MFBF (right panel) for the
publishing productivity example.

4 Search method evaluation

In this section we evaluate our method on a couple of small data sets (first
on simulated data and then on real data).

4.1 Simulated data from a six-variable DAG

We considered the DAG in Figure 1 (left panel) whose Gaussian graphical
model corresponds to the structural equations

u1 = ε1, u2 = β21u1 + ε2, u3 = ε3, u4 = β41u1 + ε4,
u5 = ε5, u6 = β62u2 + β64u4 + β65u5 + ε6,

(8)

where εj ∼ N (βj0, σ
2
j ) independently over j = 1, . . . , 6. Then, we let β21 =

β41 = β65 = β64 = β62 = 1, βj0 = 0 and σ2
j = 1, for all j = 1, . . . , 6,
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and simulated 100 six-dimensional data sets from (8), each with sample size
n = 50. Notice that, for the six variables in the given order, there are
m = 6(6− 1)/2 = 15 potential edges, and thus 215 = 32768 possible DAGs.

We ran a first order (h = 1) MFBF search on each simulated data set.
Concerning the choice of g, recall the result in Theorem A.1 in the Appendix
requiring gn > p + 2h|L| for each vertex, where p is the number of parents
and |L| is the cardinality of the set of “extra” parents in the larger model.
We actually took ng = n0, with n0 = p + 2h|L| + 1. For adjacent models
|L| = 1, and substituting h = 1 gives n0 = p + 3. Notice that the value
of g is specific to each vertex. Each search was stopped when a total of
k = 100 distinct models had been visited. We started the algorithm with a
random base DAG. We also experienced with a fixed base DAG (complete
DAG or complete independence DAG) finding similar results, with possibly
smaller variability due to using the same starting point across simulations.
For comparison purposes, we also ran an OFBF search, setting g = n0/n
with n0 = p+ 1.

For all 15 potential edges, both for the OFBF and the MFBF search,
we computed the average edge inclusion probabilities over the 100 data sets.
Additionally, for each estimated edge inclusion probability, we computed the
95% coverage interval whose end points are the 2.5% and 97.5% quantiles
relative to the 100 simulations. Table 1 reports our results. It also contains,
for comparison purposes, the average (over the 100 simulated data sets) of
the p-values given by the frequentist procedure SIN (Drton and Perlman,
2004, 2007).

It is apparent that both the OFBF and the MFBF search are able to
capture the absence/presence of an edge extremely well. Notwithstanding
this remark, the MFBF search scores much better when the edges are ab-
sent, because the average posterior inclusion probabilities are almost always
below 2%, while never exceeding 3%. On the other hand, the corresponding
average values for the OFBF search fall in the range 7–12%. The comparison
between OFBF and MFBF is clearly in favor of the latter when comparing
the distributions of edge inclusion probabilities, as expressed by the 95% cov-
erage intervals for the edges absent in the true DAG: it is not uncommon for
OFBF to have upper endpoints in the range 30%–40%, and in three cases
they even exceed the 50% value, while for MFBF these values are always
below 25%.

We also found that the MFBF search picks up more decisevely a single
model, while the OFBF search dilutes the posterior mass on the model space.
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Table 1: Six-variable simulation results. Estimated edge inclusion proba-
bilities, searching 100 distinct models (starting from a random base DAG)
with OFBF and first order MFBF search, compared to p-values given by
SIN. Averages (A) and 95% coverage intervals (I) are reported, based on 100
independent simulated data sets. Starred edges are those present in the true
DAG.

Edge OFBF A OFBF I MFBF A MFBF I SIN A SIN I

(5, 6) ⋆ 0.9992 (0.9893, 1.0000) 0.9965 (0.9380, 1.0000) 0.0002 (0.0000, 0.0031)
(4, 6) ⋆ 1.0000 (0.9997, 1.0000) 1.0000 (0.9993, 1.0000) 0.0001 (0.0000, 0.0006)
(3, 6) 0.1167 (0.0299, 0.5900) 0.0328 (0.0031, 0.2372) 0.8335 (0.1978, 1.0000)
(2, 6) ⋆ 0.9998 (0.9980, 1.0000) 0.9992 (0.9955, 1.0000) 0.0004 (0.0000, 0.0017)
(1, 6) 0.0911 (0.0300, 0.5462) 0.0205 (0.0031, 0.2088) 0.8710 (0.1511, 1.0000)
(4, 5) 0.0942 (0.0261, 0.4384) 0.0231 (0.0028, 0.1606) 0.8571 (0.3032, 1.0000)
(3, 5) 0.0765 (0.0309, 0.3003) 0.0177 (0.0028, 0.0714) 0.8958 (0.3264, 1.0000)
(2, 5) 0.0878 (0.0285, 0.3945) 0.0259 (0.0028, 0.2121) 0.8623 (0.2861, 1.0000)
(1, 5) 0.0816 (0.0343, 0.3344) 0.0208 (0.0029, 0.1513) 0.8307 (0.1393, 1.0000)
(3, 4) 0.0703 (0.0253, 0.3449) 0.0122 (0.0029, 0.0806) 0.9052 (0.4210, 1.0000)
(2, 4) 0.1040 (0.0343, 0.5283) 0.0272 (0.0029, 0.1811) 0.8787 (0.2082, 1.0000)
(1, 4) ⋆ 0.9876 (0.8129, 1.0000) 0.9828 (0.7647, 1.0000) 0.0145 (0.0000, 0.1693)
(2, 3) 0.0756 (0.0307, 0.2366) 0.0183 (0.0028, 0.0597) 0.8980 (0.2007, 1.0000)
(1, 3) 0.0781 (0.0296, 0.3756) 0.0201 (0.0029, 0.1165) 0.8845 (0.1099, 1.0000)
(1, 2) ⋆ 0.9996 (0.9914, 1.0000) 0.9984 (0.9661, 1.0000) 0.0009 (0.0000, 0.0015)
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More in detail, we found an average posterior probability of the HPP-DAG
(coinciding with the true DAG) equal to 0.8167 for MFBF and to 0.3545 for
OFBF, while the corresponding 95% coverage intervals were (0.5357, 0.9568)
and (0.1667, 0.5047), respectively.

We conclude this section by comparing the collections of models identified
by our search algorithms using an average divergence measure:

DVG =
1

mk

k
∑

h=1

m
∑

i=1

|qi − q̂ih|, (9)

where qi is 1 if edge i belongs to the true graph and 0 otherwise, and q̂ih is the
estimated inclusion probability of edge i using data set h. We also compare
to SIN, by replacing q̂ih in (9) with 1 minus the p-value for edge i based on
data set h. While the rationale behind (9) is clear, both for our search algo-
rithms and for SIN, a naive comparison of of our algorithms to SIN in terms
of DVG should be regarded as purely indicative, because edge inclusion prob-
abilities play a different role than p-values. We found an average divergence
of 0.0403, with standard deviation 0.0432, for the MFBF search, an average
divergence of 0.1483, with standard deviation 0.0501 for the OFBF search,
and an average divergence of 0.2164, with standard deviation 0.1658 for SIN.
It is apparent that MFBF outperforms OFBF. The divergence associated to
SIN is quite high, but is presumably of dubious value because of the high
level of the corresponding standard deviation.

4.2 Seven-variable data on publishing productivity

We considered a real data set discussed in Spirtes et al. (2000, Example 5.8.1)
and analyzed by Drton and Perlman (2008) using the frequentist procedure
SIN. These data are part of a larger study aimed at investigating the inter-
relationship among variables potentially related to publishing productivity
of academics. The sample comprises n = 162 subjects and seven variables,
which we write in the order considered by Drton and Perlman (2008): 1. sub-
ject’s sex (Sex); 2. score of the subject’s ability (Ability); 3. measure of the
quality of the graduate program attended (GPQ); 4. preliminary measure of
productivity (PreProd); 5. quality of the first job (QFJ); 6. publication rate
(Pubs); 7. citation rate (Cites).

We ran both first order (h = 1) MFBF searches and OFBF searches.
More exactly, we ran 100 times both algorithms, each time starting with a
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random base DAG, in order to better evaluate the stability of our results.
We stopped all searches when k = 1000 distinct models had been visited.
Table 2 reports our findings (for the 21 potential edges) in a format similar
to that of subsection 4.1. Estimated quantities were computed from the 1000
visited DAGs within a single run of the the algorithm, while averages and
95% coverage intervals refer to the 100 replications of the algorithm.

The MFBF search shows somewhat shorter intervals relative to the OFBF
search, signalling that its estimates of edge inclusion probabilities are more
stable over the different 100 paths. Furthermore, a feature that was already
observed in subsection 4.1 is also apparent here: edges with low inclusion
probability are more clearly emphasized by the MFBF search; conversely,
edges with a high estimated inclusion probability score a higher value us-
ing the OFBF search. Edge 2 → 4 is an interesting case, because it gets
a 90% inclusion probability with OFBF and only 38% using MFBF. This
is the reason why the MFBF and OFBF find different MP-DAGs; see Fig-
ure 1 (right panel for MFBF and center panel for OFBF). The MFBF search
identifies a more parsimonious model, which states an additional conditional
independence relationship: variable 4 (PreProd) is independent of variable 2
(Ability) given variables 1 (Sex) and 3 (GPQ). This result is consistent with
our expectation that MFBFs tend to favor simpler models.

The last column of Table 2 shows the p-values given by SIN; there is
no column for intervals in this case, because it makes no sense to replicate
a deterministic algorithm. Interestingly, if we select edges whose p-value is
below 5%, the graph found by SIN coincides with the MP-DAG identified by
OFBF.

Finally, we report the estimated posterior probability of the HPP-DAG
both for the OFBF and the MFBF search (in the latter case this coincides
with the MP-DAG). We found an average value of 0.2596 for MFBF, with
95% coverage interval (0.2592, 0.2606), and an average value of 0.0431 for
OFBF, with 95% coverage interval (0.0423, 0.0442). Similarly to what hap-
pened in section 4, the MFBF search piles much more probability on the
HPP-DAG than the OFBF search does.

5 Application to sparse high-dimensional DAGs

We now evaluate our method in the contex of sparse high-dimensional DAGs,
both on simulated and real data sets.
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Table 2: Publishing productivity results. Estimated edge inclusion proba-
bilities, searching 1000 distinct models (starting from a random base DAG)
with OFBF and first order MFBF search, compared to the p-values given by
SIN. Averages (A) and 95% coverage intervals (I) are reported, based on 100
replications.

Edge OFBF M OFBF I MFBF M MFBF I SIN

(6, 7) 1.0000 (1.0000, 1.0000) 1.0000 (1.0000, 1.0000) 0.0000
(5, 7) 0.4257 (0.4079, 0.4386) 0.0561 (0.0558, 0.0564) 0.4613
(4, 7) 0.9658 (0.9629, 0.9685) 0.7641 (0.7632, 0.7670) 0.0142
(3, 7) 0.2742 (0.2558, 0.2842) 0.0464 (0.0462, 0.0466) 0.9308
(2, 7) 0.2481 (0.2333, 0.2590) 0.0625 (0.0585, 0.0634) 0.9308
(1, 7) 0.0778 (0.0720, 0.0839) 0.0052 (0.0051, 0.0052) 0.9239
(5, 6) 1.0000 (1.0000, 1.0000) 0.9999 (0.9999, 0.9999) 0.0000
(4, 6) 0.2924 (0.2729, 0.3094) 0.0341 (0.0339, 0.0342) 0.6627
(3, 6) 0.0351 (0.0325, 0.0372) 0.0008 (0.0008, 0.0008) 0.9308
(2, 6) 0.4352 (0.4232, 0.4463) 0.0566 (0.0565, 0.0568) 0.4007
(1, 6) 1.0000 (1.0000, 1.0000) 1.0000 (1.0000, 1.0000) 0.0000
(4, 5) 0.0291 (0.0260, 0.0315) 0.0007 (0.0007, 0.0007) 0.9308
(3, 5) 0.9736 (0.9719, 0.9754) 0.7294 (0.7287, 0.7302) 0.0512
(2, 5) 0.0261 (0.0239, 0.0281) 0.0035 (0.0034, 0.0036) 1.0000
(1, 5) 0.0605 (0.0562, 0.0646) 0.0023 (0.0022, 0.0023) 0.9207
(3, 4) 0.0443 (0.0413, 0.0479) 0.0015 (0.0015, 0.0015) 0.9239
(2, 4) 0.9030 (0.8989, 0.9069) 0.3846 (0.3831, 0.3858) 0.0176
(1, 4) 0.0313 (0.0289, 0.0335) 0.0006 (0.0006, 0.0006) 0.9308
(2, 3) 1.0000 (1.0000, 1.0000) 1.0000 (1.0000, 1.0000) 0.0000
(1, 3) 0.0408 (0.0384, 0.0411) 0.0012 (0.0012, 0.0012) 0.9308
(1, 2) 0.0563 (0.0524, 0.0603) 0.0021 (0.0021, 0.0021) 0.9207
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5.1 Simulated data

We generated three random DAGs of size q = 50, 100, 200, using the random
DAG generator in the R-package pcalg; see Kalisch and Buhlmann (2007).
We obtained, in the three cases, |E| = 110, 97, 108 actual edges, respectively,
out of m = q(q−1)/2 = 1225, 4950, 19900 possible edges. Clearly, sparseness
increases with q: the ratio of actual to possible edges is 9% in the first DAG,
2% in the second DAG and 0.5% in the third DAG. Then, for each of the three
DAGs, we generated n = 100 observations according to the linear structural
equation model

ui =
∑

j∈pai

ρijuj + εi i = 1, . . . , q,

with ρij = ρ = 0.8. Furthermore, we replicated each simulated data set 10
times in order to assess variability.

To evaluate the performance of a particular method at reconstructing the
generating DAG, different measures of structural difference between graphs
can be used. Baldi et al. (2000) provide an overview of techniques for assess-
ing the accuracy of prediction algorithms for classification; we refer the reader
to this paper for further details. In our case, it is enough to consider binary
classifiers, because each edge is either present or absent in the true graph.
A first index is the Structural Hamming Distance (SHD), which counts the
number of edges not in common between the estimated and the true graph.
The main drawback of this measure is its dependence on the number of ver-
tices; in addition, it does not appear to be suitable for sparse graphs. An
alternative measure of performance for binary classifiers is Matthew’s Corre-
lation Coefficient (Matthews, 1975):

MCC =
(TP · TN)− (FP · FN)

√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
,

where TP is the number of true positives, TN the number of true negatives,
FP the number of false positives, and FN the number of false negatives;
here TP(TN) means that an edge which is present(absent) in the true DAG
is also present(absent) in the selected DAG, while FP(FN) means that an
edge which is absent(present) in the true DAG is instead present(absent)
in the selected DAG. The index MCC varies between −1 and +1. A value
of −1(+1) indicates total disagreement(agreement) between the true DAG
and the selected DAG. The value zero corresponds to a random prediction.
Finally, one can use the divergence measure DVG defined in section 4.
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Table 3: Sparse DAG simulation results. False positives (FP) and false neg-
atives (FN), Matthew’s correlation coefficient (MCC), and divergence index
(DVG) for the MFBF search with h = 1, 2, 4, the OFBF search, and SIN
with significance level α = 0.01, 0.02, 0.05. Sample size n = 100. All indexes
are averaged over 10 simulated data sets.

q FP FN MCC DVG

50 SIN(α = 0.01) 0.000 (0.000) 42.90 (4.977) 0.774 (0.030) 0.065 (0.004)
50 SIN(α = 0.02) 0.000 (0.000) 39.80 (5.138) 0.791 (0.030) 0.065 (0.004)
50 SIN(α = 0.05) 0.000 (0.000) 33.80 (6.015) 0.826 (0.034) 0.065 (0.004)

50 OFBF 2.200 (1.400) 0.000 (0.000) 0.990 (0.007) 0.214 (0.181)
50 MFBF(h = 1) 0.500 (0.707) 0.100 (0.316) 0.997 (0.004) 0.090 (0.126)
50 MFBF(h = 2) 0.500 (1.269) 0.400 (1.265) 0.996 (0.012) 0.054 (0.031)
50 MFBF(h = 4) 0.000 (0.000) 0.900 (0.994) 0.996 (0.004) 0.044 (0.001)

100 OFBF 4.300 (1.767) 0.000 (0.000) 0.978 (0.009) 0.103 (0.041)
100 MFBF(h = 1) 1.000 (0.471) 0.100 (0.316) 0.994 (0.003) 0.014 (0.005)
100 MFBF(h = 2) 0.100 (0.352) 0.200 (0.422) 0.998 (0.003) 0.010 (0.000)
100 MFBF(h = 4) 0.100 (0.316) 0.400 (0.966) 0.997 (0.007) 0.009 (0.000)

200 OFBF 6.800 (2.700) 0.000 (0.000) 0.970 (0.011) 0.316 (0.353)
200 MFBF(h = 1) 1.200 (0.471) 0.000 (0.000) 0.995 (0.006) 0.140 (0.222)
200 MFBF(h = 2) 0.500 (0.707) 0.100 (0.316) 0.997 (0.004) 0.039 (0.063)
200 MFBF(h = 4) 0.000 (0.000) 1.300 (1.567) 0.994 (0.007) 0.004 (0.003)

Table 3 compares the performance of OFBF and MFBF (with h = 1, 2, 4)
on the simulated data, when the MP-DAG is selected. For q = 50 the perfor-
mance of SIN is also shown, when the DAG containg edges significant at a
given level (α = 0.01, 0.02, 0.05) is selected. This is admittedly a rather crude
implementation of SIN: a refined version would require to look at graphs rep-
resenting each edge “significance” and then choose α accordingly (based on
subjective judgment); see Drton and Perlman (2008). There are no SIN
results for q = 100 and q = 200, because SIN cannot be applied if q ≤ n.

In Table 3 we notice a very high number of false negatives for SIN, which
is outperformed by MFBF, whatever its order, with very few false positives
and false negatives. Matthew’s correlation coefficient for MFBF is also close
to perfect agreement. Within the MFBF approach, a good compromise seems
to be achieved when h = 1, especially if our aim is to control FN rather than
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FP. This is sensible if we do not want to miss the (few) edges which in fact
are present, because they might indicate an interesting signal, while we are
somewhat more tolerant of adding an edge which in fact is missing.

For larger DAGs, that is, when q = 100 or q = 200, it would appear
that a value of h = 2 is preferable relative to h = 1, because it strikes a
good compromise on all four indicators; in particular, it controls FN better
than h = 4. The behavior of FP and FN, as functions of h, is consistent
with our expectations: as h increases, the prior privileges the smaller model
(the model with fewer edges) in each pairwise comparison; this reduces FP,
because declaring an edge present is less likely, while symmetrically raising
FN, because declaring and edge absent is more likely.

5.2 Data on human cell signalling pathways

Sachs et al. (2003) carried out a set of flow cytometry experiments on sig-
nalling networks of human immune system cells. The ordering of the connec-
tions between pathway components was established based on perturbations
in cells using molecular interventions, and we consider it to be known a pri-
ori. The data set includes q = 11 proteins and n = 7466 observations. Figure
2 (left panel) shows the (assumed) known regulatory network, while Table 4
shows the performance measures described in the previous subsection for the
PC-algorithm (Kalisch and Buhlmann, 2007), the Lasso (Meinshausen and
Bulhmann, 2006), the Adaptive Lasso (Shojaie and Michailidis, 2010), SIN,
UFBF and MFBF. It appears from Table 4 that the Adaptive Lasso, which
yields the best performance among the three frequentist methods presented,
has a false positive rate (rFP) of 12% and a false negative rate (rFN) of 26%.

Moving to the MFBF search, we produce results corresponding to the
HPP-DAG, having probability around 90% and coinciding in this application
with the MP-DAG. Small values of h, say up to 10, are not able to reproduce
the performance of Adaptive Lasso. However, letting h grow to higher values,
such as 15–25, we can considerably lower rFP down to 12% or even 8%, while
rFN remains at an approximate level of 32%. We can thus obtain, relative
to Adaptive Lasso, a reduction in FP of about one third (from 12% to 8%)
while suffering an increase in FN of the order of less than a quarter (from
26% to 32%). If we now focus on the actual structure of the selected DAG
and consider, for comparison purposes, the results of MFBF with h = 15, it
appears that the HPP-graph has 20 edges differing from those in the graph
selected by Adaptive Lasso: the two structures are thus appreciably different.
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Table 4: Sparse real data results. False positives (FP) and false negatives
(FN), false positive rate (rFP) and false negative rate (rFN), Matthew’s
correlation coefficient (MCC), structural Hamming distance (SHD), and di-
vergence from true model (DVG).

Human cell signalling pathways

FP FN rFP rFN MCC SHD DVG

PC-ALG 14 8 0.137 0.421 0.397 22
LASSO 13 6 0.128 0.316 0.493 19

ADA LASSO 13 5 0.128 0.263 0.532 18

UFBF 28 4 0.275 0.211 0.391 32 0.258
MFBF (h = 1) 23 4 0.226 0.211 0.442 27 0.218
MFBF (h = 2) 19 5 0.186 0.263 0.450 24 0.172
MFBF (h = 3) 18 6 0.177 0.316 0.423 24 0.194
MFBF (h = 4) 16 6 0.157 0.316 0.450 22 0.182
MFBF (h = 5) 16 6 0.157 0.316 0.450 22 0.180

MFBF (h = 10) 14 6 0.137 0.316 0.478 20 0.165
MFBF (h = 15) 12 6 0.118 0.316 0.509 18 0.149
MFBF (h = 20) 9 6 0.088 0.316 0.562 15 0.124
MFBF (h = 25) 8 6 0.078 0.316 0.582 14 0.112
MFBF (h = 30) 8 8 0.078 0.421 0.500 16 0.129
MFBF (h = 50) 7 9 0.069 0.474 0.479 16 0.132

Transcription regulatory network of E. coli

FP FN rFP rFN MCC SHD DVG

PC-ALG 1 42 0.004 0.977 0.082 43
LASSO 10 30 0.042 0.698 0.342 40

ADA LASSO 16 27 0.068 0.628 0.345 43

UFBF 72 20 0.304 0.465 0.176 92 0.395
FBF (h = 1) 38 24 0.160 0.558 0.252 62 0.255
FBF (h = 2) 28 27 0.118 0.628 0.252 55 0.218
FBF (h = 3) 24 28 0.101 0.651 0.258 52 0.197
FBF (h = 4) 19 28 0.080 0.651 0.297 47 0.182
FBF (h = 5) 16 28 0.068 0.651 0.323 44 0.172
FBF (h = 6) 11 30 0.046 0.698 0.330 41 0.164
FBF (h = 7) 4 33 0.017 0.767 0.357 37 0.160
FBF (h = 8) 2 35 0.008 0.814 0.345 37 0.160
FBF (h = 9) 1 37 0.004 0.861 0.313 38 0.173

FBF (h = 10) 1 41 0.004 0.953 0.150 42 0.186
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Figure 2: Known regulatory network of human cell signalling pathway data
(left panel) and transcription regulatory network of E. coli data (right panel).

5.3 Data on E. coli transcription regulatory network

Transcriptional regulatory networks play an important role in controlling the
gene expression in cells, and incorporating the underlying regulatory network
results in more efficient estimation and inference (Shojaie and Michailidis,
2009). Shojaie and Michailidis (2004) proposed the network component anal-
ysis method to infer the transcriptional regulatory network of Escherichia coli
(E. coli). They provided information about the known regulatory network
(Figure 2, right panel) together with gene expression data for 7 transcrip-
tion factors and 40 regulated genes, so that the total number of variables is
q = 47. By contrast, the sample size is n = 24. We tried to reconstruct the
network structure using our MFBF search and summarize its performance
in Table 4, along with that of the PC-algorithm, Lasso, Adaptive Lasso, and
UFBF search.

We experimented with MFBFs of several orders (h = 0, . . . , 10) and report
results corresponding to the HPP-DAG. As previously remarked, when h
increases rFP decreases while rFN increases. In essence, the MFBF search
is able to reproduce the values of rFP and rFN achieved by any of the three
frequentist methods listed at the top of Table 4. In particular, to reach
approximately the values yielded by Adaptive Lasso we need h = 5, whereas
h = 6 produces values close to those of Lasso, and those of the PC-algorithm
can be obtained by letting h = 10. This does not mean that the resulting
graphs are identical; indeed the number of edges differing between the DAG
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selected by MFBF and the DAG chosen by the PC-algorithm, Lasso, or
Adaptive Lasso lies between 5 and 12.

6 Discussion

We presented a novel objective Bayesian method for searching the space of
Gaussian DAG models under the assumption of a fixed ordering of the vari-
ables. Our approach only requires default parameter priors, thus drastically
simplifying the daunting task of prior elicitations in moderate to complex
problems. In order to enhance the learning performance of our method,
we transform these default priors into corresponding non-local (specifically
moment) priors. Finally, we use an FBF approach to make our procedure
operational.

Relative to alternative frequentist approaches, our method produces a
posterior distribution on the space of DAG models, thus providing a better
appreciation, and quantification, of the uncertainty inherent in model search;
additionally, it allows inference on specific features such as edge inclusion
probabilities and prediction based on model averaging. Within the Bayesian
paradigm, we show that our method outperforms FBF searches based on
conventional default local priors.

Our proposal is sufficiently flexible to accommodate varying degrees of
model separation, through the regulation of a tuning parameter (the order
exponent h of the moment prior). We found that, as sparseness of the network
increases, so should h in order to favor, in each pairwise comparison, the
smaller model. Indeed, by suitably modifying the value of h, we were able to
reproduce typical performance summaries (such as false positive and negative
rates) of some state-of-the-art frequentist methods recently proposed in the
literature.

Our procedure can also be run when the sample size n is smaller than
the number of variables q. The only requirement is that, in each pairwise
comparison between adjacent DAGs, n be bigger than the size of the maximal
parent set augmented by twice the value of h. In this sense, our method can
deal with data sets characterized by a number of variables possibly much
larger than the sample size, provided the underlying family of DAGs can be
assumed to be sufficiently sparse.
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A

A.1 Formula for the moment fractional Bayes factor

In this Appendix we reproduce the expression of the MFBF for the compar-
ison of two nested Gaussian DAG models, originally presented in Consonni
and La Rocca (2011). We also present the corresponding expression for the
comparison of two adjacent DAGs, which is of special interest for the algo-
rithm developed in this paper.

Let D0 and D1 be two DAGs with D0 nested in D1. We will consider
the default moment prior (2) under model D1, and an ordinary default prior
under D0. Because of the recursive structure of the likelihood (1), and of
the property of global independence satisfied by the priors, it is enough to
concentrate on a single vertex. To simplify notation, we omit in the statement
of the theorem the subscript j for the vertex; thus we use y instead of yj for
the data, while β and γ stand for βj and γj.

Theorem A.1 For a DAG model D1, consider a vertex and the associated
conditional density f(y | ypa; β, γ), which is an n-variate normal distribution
with expectation Xβ and variance matrix γ−1In, where X is an n× p matrix
whose columns contain the observations on the parent variables (adding as
first column the vector 1n whenever appropriate). For the comparison of
D1 with respect to a nested DAG model D0, assume a vertex moment prior
pM1 (β, γ) ∝ γ−1

∏

l∈L β
2h
l , where L ⊆ pa is the subset of the parents pointing

to the vertex in D1 but not in D0. Then, the fractional marginal likelihood
based on the moment prior associated to the vertex is

w1(y |X, g)=
(

πbS2
)−n(1−g)

2 · (10)

·

∑h|L|
i=0 4

−iH
(h)
i (β̂, (X ′X)−1)Γ(n−p−2i

2
)(S2)i

∑h|L|
i=0 4

−iH
(h)
i (β̂, (X ′X)−1)Γ(ng−p−2i

2
)(S2)i

,

where 0 < g < 1 is the fraction satisfying ng > p+ 2h|L|, β̂ = (X ′X)−1X ′y,
S2 = (y − ŷ)′(y − ŷ), with ŷ = Xβ̂ and

H
(h)
i (µ,Σ) =

∑

j∈Jh(i)

d
∏

l=1

(2h)!
d
∏

m=1

σjlm
lm

jlm!

d
∏

l=1

µ
j⋆
l

l

j⋆l !
, (11)

having defined j⋆l = 2h−
∑d

m=1 jlm−
∑d

m=1 jml and Jh(i) = {j :
∑d

l=1

∑d
m=1 jlm =

i & ∀l : j⋆l ≥ 0}.
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The fractional marginal likelihood of D1 is thus given by w1(y; g) =
∏q

j=1 w1(yj |Xj, g), where each individual factor w1(yj |Xj, g) is as in (10).
It is important to realize that the quantity w1(y; b) is contingent upon the
choice of the specific nested DAG model D0 used for the comparison: this
determines the nature of the sets Lj ⊆ paj used in constructing the moment
prior. The MFBF of D1 against D0 is now given by the ratio of the two
fractional marginal likelihoods:

MFBF10(y; g) =

q
∏

j=1

w1(yj |X1j, g)

w0(yj |X0j, g)
(12)

where each individual w1(yj |X1j, b) is computed using formula (10), while
each individual w0(yj |X0j, b) is directly available using standard calcula-
tions for the FBF in the normal linear model (O’Hagan and Forster, 2004,
sect. 11.40); the latter can also be deduced from (10) upon setting h = 0
throughout. Of course, in order to compute the quantity MFBFM

10 (y; g)
one requires only those fractional marginal likelihoods referring to vertices
with different parent structures under the two DAGs D1 and D0; otherwise
w1(yj |X1j, g)/w0(yj |X0j, g) is identically one.

If D0 and D1 differ exactly by edge i→ j, then

MFBF10(y; g)=

(

S2

S2
0

)−n(1−g)
2 Γ

(

n−p
2

)

Γ
(

ng−p
2

) · (13)

·

∑h
z=0 4

−z viiβ̂
(2h−2z)
ji

z! (2h−2z)!Γ(
n−p−2z

2
)(S2)z

∑h
z=0 4

−z viiβ̂
(2h−2z)
ji

z! (2h−2z)!Γ(
ng−p−2z

2
)(S2)z

,

where: p is the number of parents of j in D1 and ng > p + 2h; β̂ji is the

i-th component of β̂j, the least squares estimate of the coefficients in the
regression model of uj against upa(j), with pa(j) the set of parents of node j
in D1, and S2 is the associated residual sum of squares; vii ≡ [X ′

pa(j)Xpa(v)]
−1
ii ;

S2
0 is the residual sum of squares in the regression of uj against upa0(j), where
pa0(j) is the set of parents of node j in D0.
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