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Abstract

The implementation of the Bayesian paradigm to model comparison can be

problematic. In particular, prior distributions on the parameter space of each

candidate model require special care. While it is well known that improper pri-

ors cannot be used routinely for Bayesian model comparison, we claim that in

general the use of conventional priors (proper or improper) for model compari-

son should be regarded as suspicious, especially when comparing models having

different dimensions. The basic idea is that priors should not be assigned sepa-

rately under each model; rather they should be related across models, in order

to acquire some degree of compatibility, and thus allow fairer and more robust
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comparisons. In this connection, the Expected Posterior Prior (EPP) method-

ology represents a useful tool. In this paper we develop a procedure based on

EPP to perform Bayesian model comparison for discrete undirected decompos-

able graphical models, although our method could be adapted to deal also with

Directed Acyclic Graph models. We present two possible approaches. One,

based on imaginary data, requires to single-out a base-model, is conceptually

appealing and is also attractive for the communication of results in terms of

plausible ranges for posterior quantities of interest. The second approach makes

use of training samples from the actual data for constructing the EPP. It is

universally applicable, but has limited flexibility due to its inherent double-use

of the data. The methodology is illustrated through the analysis of a 2× 3 × 4

contingency table.

Some key words: Bayes factor; Clique; Conjugate family; Contingency ta-

ble; Decomposable model; Imaginary data; Importance sampling; Robustness;

Training sample.
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1 Introduction

Model comparison is an important area of Statistics. The Bayesian view is especially

suited for this purpose, see for instance the review articles by George (2005) and Berger

(2005). However, its implementation can be problematic, especially when comparing

models having different dimensions. In particular, prior distributions on the parameter

space of each model, which are required to compute Bayes factors and posterior model

probabilities, need special care, because sensitivity to prior specifications in Bayesian

testing and model comparison is more critical than in Bayesian inference within a

single model. Specifically, conventional priors can be employed for the latter, but

their use is suspicious for model comparison. The problem goes much deeper than

the simple realization that improper priors cannot be naively used for computing

Bayes factors, because arbitrary normalizing constants do not vanish. Indeed also

proper priors are not free form difficulties when comparing hypotheses of different

dimensions, as witnessed by the celebrated Jeffreys-Lindley paradox (see e.g. Robert,

2001, p. 234). The main difficulty stems from the high sensitivity of Bayes factors

to the specifications of hyperparameters controlling prior-diffuseness. We claim that,

when dealing simultaneously with several models, one cannot elicit priors in isolation

conditionally on each single model; rather, one should take a global view and relate

priors across models. This leads us straight into the area of compatible priors, see

e.g. Dawid & Lauritzen (2001) and Consonni & Veronese (2008). In this connection,

the Expected Posterior Prior (EPP) methodology of Pérez & Berger (2002) represents

a useful tool. Although motivated, like the intrinsic prior approach, by the need to

use objective, typically improper, priors for model choice, the EPP method has a
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wider scope, and can address issues such as compatibility of priors and robustness

of Bayes factors to prior elicitation. Additionally, the EPP-methodology embodies

a natural tuning coefficient, the training sample size, which represents a valuable

communication device to report a range of plausible values for the Bayes factor (or

posterior probability) in the light of the data; see Consonni & La Rocca (2008) for an

application.

This paper performs Bayesian model determination for discrete decomposable (undi-

rected) graphical models using the EPP methodology. Specifically, Section 2 contains

background material on graphical models and notation; Section 3 presents useful re-

sults originally developed by Consonni & Massam (2007): an efficient parameterization

of discrete decomposable graphical models, a class of conjugate priors, as well as a ref-

erence prior. Section 4 and 5, with their specific focus on discrete graphical models,

constitute the innovative part of the paper: the former develops a ‘base-model’, as

well as an ‘empirical distribution’, version of Expected Posterior Prior; while the lat-

ter presents an EPP-based Bayesian model comparison methodology. Section 6 applies

the methodology to a 2 x 3 x 4 contingency table representing the classification of 491

subjects according to three categorical variables, namely hypertension, obesity, and

alcohol intake, with the objective of identifying the most promising models for the

explanation of these data. Finally, Section 7 presents some concluding remarks.

2 Background and notation

We briefly recall some basic facts about undirected graphical models; for further details

see Lauritzen (1996). Let V be a finite set of vertices; and define E to be a subset of
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V × V containing unordered pairs {γ, δ}, γ ∈ V , δ ∈ V , γ 6= δ. An undirected graph

G is the pair (V, E). An undirected graph is complete if all vertices are joined by an

edge. Any subset of vertices C ⊆ V induces a subgraph GC with EC = (C×C)∩E. A

subset C ⊆ V is a clique if the induced subgraph GC is complete. We take cliques to be

maximal with respect to inclusion. In this work we focus on the class of decomposable

undirected graphs, i.e. graphs which do not contain a chordless four cycle.

For a given ordering C1, . . . , Ck of the cliques of a decomposable undirected graph

G, we will use the following notation

Hl =
l⋃

j=1

Cj, l = 1, . . . , k, Sl = Hl−1 ∩ Cl, l = 2, . . . , k, Rl = Cl \ Sl, l = 2, . . . , k.

The set Hl is called the l-th history, Sl the l-th separator and Rl the l-th residual.

The ordered sequence of the cliques is said to be perfect if for any l > 1 there is an

i < l such that Sl ⊆ Ci.

Given a random vector A = (Aγ, γ ∈ V ), a graphical model, Markov with respect

to an undirected graph G, is a family of joint probability distributions on A such that

Aδ ⊥⊥ Aγ | AV \{δ,γ}, for any pair {δ, γ} /∈ E. We assume A to be a discrete random

vector, with each element Aγ taking values in the finite set Iγ. For a given undirected

decomposable graph G, we use for simplicity the same symbol G also to denote a

discrete graphical model, Markov with respect to the graph G.

The Cartesian product I = ×γ∈V Iγ defines a table whose generic element

i = (iγ, γ ∈ V )

is called a cell of the table. Consider N units, and assume that each one can be

classified into one and only one of the |I| cells. Let y(i) be the i-th cell-count; then
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the collection of cell counts

y = (y(i), i ∈ I),
∑

i∈I

y(i) = N,

defines a contingency table. Conditionally on the probability p(i) that a randomly

chosen unit belongs to cell i ∈ I, y is distributed according to a multinomial model

Mu(y|p,N), with

p = (p(i), i ∈ I), p(i) ≥ 0,
∑

i∈I

p(i) = 1.

Clearly p belongs to the |I| dimensional simplex.

For every non-empty set E ⊆ V , let

iE = (iγ, γ ∈ E), iE ∈ IE = ×γ∈EIγ

denote the cell in the E-marginal table; further denote with p(iE) and y(iE) the

corresponding marginal probability and observed cell-count

p(iE) =
∑

j∈I|jE=iE

p(j), y(iE) =
∑

j∈I|jE=iE

y(j).

For every Cl, let

pCl = (p(iCl
), iCl

∈ ICl
), yCl = (y(iCl

), iCl
∈ ICl

), l = 1, . . . , k

be the probabilities and observed cell-counts in the Cl marginal table with iCl
=

(iRl
, iSl

). Let

p(iRl
|iSl

) =
p(iCl

)

p(iSl
)
, l = 2, . . . , k

be the probability of cell iRl
conditional on cell iSl

. For fixed iSl
let

pRl|iSl = (p(iRl
|iSl

), iRl
∈ IRl

), l = 2, . . . , k
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denote the vector of conditional probabilities and let

yRl|iSl = (y(iRl
, iSl

), iRl
∈ IRl

), l = 2, . . . , k

be the cell-counts in the Cl marginal table with a fixed configuration of iSl
of Sl.

3 A parameterization and a family of prior dis-

tributions for discrete decomposable graphical

models

Consonni & Massam (2007) provide several parameterizations for a decomposable

undirected graphical model; additionally they derive the corresponding group-reference

priors where the parameter grouping arises naturally from the graphical structure.

Here we consider only one such parameterization and the allied reference prior. When-

ever easily understood, probability distributions will be written without explicitly in-

dicating their support.

3.1 Parameterization

Let G be an undirected decomposable graph, and denote with C1, . . . , Ck the collection

of its cliques arranged in a perfect ordering. Using the notation introduced in Section

2, we can write the joint multinomial distribution of counts y = y(i), i ∈ I, Markov

with respect to G, as

fG(y|pcond
G , N) =

N !∏
i∈I y(i)!

∏

iC1
∈IC1

(
p(iC1

)
)y(iC1

)
k∏

l=2

∏

iSl
∈ISl

∏

iRl∈IRl

(
p(iRl

|iSl
)
)y(icl

)
. (1)
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In the sequel, we will refer to (1) as the discrete decomposable graphical model G.

The parameterization

pcond
G = (pC1 , pRl|iSl , iSl

∈ ISl
, l = 2, . . . , k) (2)

includes the conditional probabilities pRl|iSl in the Cl marginal table, for l = 2, . . . , k, as

well as pC1 which can also be regarded as a conditional probability upon setting R1 =

C1 and S1 = ∅. The parameter pcond
G comprises (1 +

∑k

l=2 |ISl
|) groups of parameters,

each being defined on a suitable simplex. We remark that the parameterization pcond
G

depends on the specific perfect ordering C1, . . . , Ck.

It is expedient to rewrite the density fG(y|pcond
G , N) in (1) in terms of products of

multinomial densities. Let v = (v(i), i ∈ I,
∑

i∈I v(i) = L), and define

h(v|L) =
L!∏

∈I v(i)!
.

Then

fG(y|pcond
G , N) = h(y|N)

×
(
h(yC1|N)

)−1
Mu(yC1 |pC1 , N)

×
k∏

l=2

∏

iSl
∈ISl

(
h(yRl|iSl |N(iSl

))
)−1

Mu(yRl|iSl |pRl|iSl , N(iSl
)), (3)

with N(iSl
) =

∑
iRl

∈IRl

y(iRl
, iSl

). The expression Mu(v|q, L) indicates the multino-

mial density with cell probabilities q and L trials evaluated in v.

We denote with G0 the model of complete independence, under which ⊥⊥γ∈V Aγ. In

this case: Cγ = γ ( for all γ ∈ V ), Sγ = ∅ and Rγ = Cγ (γ ∈ V ). The corresponding

parameterization is based on marginal probabilities, but for notational coherence we

still write pcond
G0

= (pγ, γ ∈ V ).
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When the sampling distribution of v = (v(i), i ∈ I,
∑

i∈I v(i) = L) is standard

multinomial, and the prior on the cell-probabilities p is a conjugate Dirichlet distribu-

tion, Di(p|α), with hyperparameter α, it is well known that the marginal distribution

of v is multinomial-Dirichlet, written MuDi(v|α, L), (see e.g. Bernardo & Smith, 1994,

p.135). For later use we report its expression in the Appendix. We now extend this

classic result to a discrete decomposable graphical model G.

Lemma 3.1. Let the sampling distribution of y be a discrete decomposable graphical

model G, so that the joint density of y, conditionally on pcond
G , is given by (3). Let the

prior distribution on pcond
G be conjugate, namely

πC
G(pcond

G |αG) = Di(pC1|αC1) ×
k∏

l=2

∏

iSl
∈ISl

Di(pRl|iSl |αRl|iSl ), (4)

where αG = (αC1 , αRl|iSl , iSl
∈ ISl

, l = 2, . . . , k). Then, the marginal distribution of y

is

mC
G(y|αG) = h(y|N)

×
(
h(yC1 |N)

)−1
MuDi(yC1|αC1 , N)

×
k∏

l=2

∏

iSl
∈ISl

(
h(yRl|iSl |N(iSl

)
)−1

MuDi(yRl|iSl |αRl|iSl , N(iSl
)). (5)

The proof is trivial, since the computation reduces to a collection of independent

standard multinomial-Dirichlet problems. Because of conjugacy, the posterior distri-

bution of pcond
G also belongs to the family (4) with updated parameters

αC1 → αC1 + yC1 , αRl|iSl → αRl|iSl + yRl|iSl .

As a consequence, result (5) immediately provides also the expression of the predictive

distribution.

9



3.2 Reference prior

Reference analysis provides one of the most successful general methods to derive de-

fault prior distributions on multidimensional parameters. For a recent and informative

review, see Bernardo (2005). For an application to a multinomial setting, see Berger

& Bernardo (1992). The definition of a reference prior applies to a specific parameter-

ization; moreover it requires the user to specify groups of parameters and an ordering

of inferential importance of the groups.

The (1+
∑k

l=2 |ISl
|) group-reference prior for pcond

G , with parameter groupings iden-

tified in (2), is

πR
G(pcond

G ) ∝

( ∏

ic1∈IC1

p(iC1
)
)− 1

2

k∏

l=2

∏

iSl
∈ISl

( ∏

iRl
∈IRl

p(iRl
|iSl

)
)− 1

2 . (6)

For the derivation of (6) and further properties, see Consonni & Massam (2007). In

particular they show that the order of the groupings is irrelevant. Notice that the

reference prior is proper, being a product of Jeffreys’ priors, one for each of the groups

of pcond
G , which are thus a priori independent. This structural property corresponds

to the notion of global and local independence, introduced by Geiger & Heckerman

(1997) for the analysis of Directed Acyclic Graphs. It is reassuring that in the pcond
G

parameterization this useful property does not arise out of convenience but actually

stems from applying the reference prior algorithm. The reference prior (6) is clearly

conjugate since it belongs to the family (4) with αC1 and αRl|iSl each being 1
2
1
¯
, where

1
¯

denotes a vector of 1’s of suitable dimension. Accordingly, the posterior also belongs

to (4), and the marginal, and predictive data distribution can be obtained as a special

case of (5). For clarity we will later use the superscript ‘R’ to remind the reader that

we are using the reference prior (6) instead of a subjectively specified conjugate prior.
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4 Expected posterior priors for decomposable dis-

crete graphical models

4.1 General

Bayesian model comparison typically requires the computation of marginal data dis-

tribution in order to derive Bayes Factors (BF’s) and ultimately posterior model prob-

abilities. As recalled in the Introduction, improper priors cannot be routinely used,

and this has led to an active research in the area of objective model comparison, see

Berger & Pericchi (2001), and Pericchi (2005). We have also stressed that in general

conventional priors on the parameter space of each model are problematic, and that

sensitivity is a pervasive issue.

The Expected Posterior Prior (EPP) approach developed by Pérez & Berger (2002),

represents a useful tool to address the above difficulties. This method is similar to that

of ‘information transfer’ between models, originally proposed by Neal (2001). It also

bears strong connection to the intrinsic prior methodology, see e.g. Berger & Pericchi

(1996), and indeed the EPP for the pairwise comparison of two nested models actually

coincides with the intrinsic prior for that problem.

A basic idea in the EPP approach is to make use of imaginary data, which has been

for a long time a useful ingredient in Bayesian thinking. Consider model Mk, with

parameter θk, and let πN
k (θk) be a default, noninformative, possibly improper prior

for θk. Suppose that x represent imaginary observations, and let m∗(x) be a suitable

marginal, distribution for x. The smallest x inducing a proper ‘posterior’ πN
k (θk|x)

constitutes a minimal training sample. (Notice that we use the term ‘training’ also
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when referring to imaginary data). We are now ready to define the EPP for θk, relative

to m∗, as

π∗
k(θk) =

∫
πN

k (θk|x)m∗(x)dx.

Notice that the EPP is an average of fictitious posteriors with respect to the chosen

marginal m∗. Provided m∗ satisfies some weak requirements, the EPP enjoys several

advantages. We mention here four of them. Firstly indeterminate constants possibly

present in the πN
k ’s disappear when computing the BF’s (this is trivial because πN

k (θk|x)

is assumed to be proper). Secondly, if m∗ is proper, then π∗
k is also proper; conversely,

if m∗ is not proper, indeterminacy of the resulting BF will not arise, because the same

m∗ is used for all models, and thus again arbitrary normalizing constants cancel out.

Thirdly, notice that this method only requires one distribution to be elicited, namely

m∗, since all the remaining priors πN
k are, by assumption, automatically assigned

according to some default technique. Finally, all priors π∗
k(θk), θk ∈ Θk, achieve some

sort of compatibility among themselves, since each is ‘shrunk’ on a subregion of Θk

which is consistent with the mixing distribution m∗(x).

As for the choice of m∗, a few proposals have been put forward, which we briefly

recollect here. Suppose one can identify a base-model M0 for a given problem; this

is usually the simplest possible model (e.g. in variable selection that having only

the intercept). Then the marginal data distribution under this model is a natural

candidate, i.e. m∗(x) = m0(x), where m0(x) =
∫
Θ0

f0(x|θ0)π
N
0 (θ0). We call this

method the base-model EPP.

When the above strategy is not feasible, a natural alternative is to set m∗(x)

equal to the empirical distribution which, for given data y1, . . . , yN , is defined by
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memp(x) = 1
L

∑
l I{y(l)}(x), where IS denotes the indicator function of the set S, and

y(l) = (yl1 , . . . , ylM ) is a subsample of given size M , 0 ≤ M ≤ N , such that πN
k (θk|y(l))

exists for all models, and L is the number of all such samples of size M . The cor-

responding method is called the empirical EPP. Notice that this approach implies a

double use of the data: to construct priors and to derive BF’s. As a consequence, y(l)

is required to be a minimal training sample; for further details see Berger & Pericchi

(2004).

We now detail the EPP methodology in the context of discrete graphical models.

Consider a given set of discrete decomposable graphical models G0, . . . , GU with

Gu parameterized according to pcond
Gu

, as defined in (2). We let x denote an imaginary

contingency table of size M having the same structure as the actual data y, so that

x = x(i), with i ∈ I. Let
∑

i∈I x(i) = M be the training sample size. We assume that

the default prior on pcond
Gu

is given by the reference prior πR
Gu

(pcond
Gu

), see (6). We are

now ready to define the EPP for pcond
Gu

with respect to the marginal data distribution

m∗(x).

Proposition 4.1. Given a discrete decomposable graphical model Gu, with prior πR
Gu

(pcond
Gu

),

the corresponding EPP for pcond
Gu

is

π∗
Gu

(pcond
Gu

) =
∑

x:
P

i x(i)=M

πR
Gu

(pcond
Gu

|x)m∗(x).

Notice that, while the groups of the pcond
Gu

parameterization are independent under

the reference prior πR
Gu

(pcond
Gu

), this is no longer so under the EPP π∗
Gu

(pcond
Gu

). The

marginal data distribution under Gu induced by the EPP can be shown to be

m∗
Gu

(y) =
∑

x:
P

i x(i)=M

mR
Gu

(y|x)m∗(x). (7)
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4.2 Base-model EPP

In our context, a natural choice for the base-model is represented by the complete

independence model G0. We therefore set

m∗(x) = mR
G0

(x) =

∫
fG0

(x|pcond
G0

,M)πR
G0

(pcond
G0

)dpcond
G0

.

Accordingly, the base-model EPP for model Gu is

π∗0
Gu

(pcond
Gu

) =
∑

x:
P

i x(i)=M

πR
Gu

(pcond
Gu

|x)mR
G0

(x), (8)

with marginal data distribution

m∗0
Gu

(y) =
∑

x:
P

i x(i)=M

mR
Gu

(y|x)mR
G0

(x). (9)

For later use, we report the analytic expression of mR
G0

(x) in the Appendix.

4.3 Empirical EPP

This strategy requires some careful thinking in our case because the original definition

of empirical EPP is based on subsamples of individual observations, while our problem

is more naturally cast in terms of contingency tables.

We start by considering a realized sample of N individuals z = (z1, . . . , zN), with

z ∈ Z. Each zj is a |V |-dimensional vector whose γ-component takes values in the

set of configurations of the discrete random variable Aγ, γ ∈ V . The N individuals

can be subsequently classified in a |V |-dimensional contingency table y = y(i), i ∈ I

of size N where

y(i) =
N∑

j=1

Izj
(i), i ∈ I.

Consider now the subspace Z̃M = {z̃1, . . . , z̃B} of all subsamples of size M ≤ N

from z = (z1, . . . , zN). The generic element of Z̃M is z̃b = (zb1 , . . . , zbM
), with b1, . . . , bM
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denoting distinct indices in {1, . . . , N}. Let B =
(

N

M

)
be the cardinality of Z̃M , i.e. the

number of all subsamples of size M . Then, on the basis of the empirical distribution,

the probability of each z̃b is k(z̃b) = 1/B. Each subsample z̃b can be classified in a

|V |-dimensional contingency table of size M where

ỹδ(b)(i) =
M∑

j=1

Iz̃bj
(i), i ∈ I.

Notice that distinct subsamples z̃b may give rise to the same contingency table. Let

∆ = {1, . . . , D} represent the set of all distinct contingency tables. The contingency

table generated by a subsample z̃b ∈ Z̃M will be denoted by ỹd = (ỹd(i), i ∈ I), with

d = δ(b) ∈ ∆.

Lemma 4.1. Let y be a contingency table of size N . The space of contingency tables

generated by all subsamples of size M ≤ N is defined by ỹd = (ỹd(i), i ∈ I), d =

1, . . . , D, such that

(i)
∑

i∈I ỹd(i) = M

(ii) ỹd(i) ≤ y(i), for every i ∈ I.

Under the empirical distribution, the probability of each ỹd is

q(ỹd) =
1

B

∏

i∈I

(
y(i)

ỹd(i)

)
, (10)

with
∏

i∈I

(
y(i)
ỹd(i)

)
denoting the number of subsamples z̃b having as image the same

contingency table ỹd of size M . Clearly, if M = N , then q(y) = 1, where y is the

observed contingency table. Therefore the empirical marginal distribution on the

space of all contingency tables x of size M is given by

memp(x) =
D∑

d=1

Iỹd
(x)q(ỹd).
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Setting m∗(x) = memp(x), we obtain the empirical EPP for model Gu

π∗emp
Gu

(pcond
Gu

) =
D∑

d=1

πR
Gu

(pcond
Gu

|ỹd)q(ỹd).

The marginal data distribution for any model Gu under the empirical EPP is therefore

m∗emp
Gu

(y) =
D∑

d=1

mR
Gu

(y|ỹd)q(ỹd).

Although seemingly different form their base-model counterpart, both π∗emp
Gu

(pcond
Gu

)

and m∗emp
Gu

(y) can be written in the same format as (8), respectively (9). For example

we can write m∗emp
Gu

(y) as

m∗emp
Gu

(y) =
∑

x:
P

i x(i)=M

mR
Gu

(y|x)memp(x).

5 Bayesian model comparison based on EPP

Consider a collection of G0, . . . , GU of discrete decomposable graphical models. For

every pair Gu, Gv, with u, v = 0, . . . , U and u 6= v, the Bayes factor based on the EPP

is

BF ∗
GuGv

(y) =
m∗

Gu
(y)

m∗
Gv

(y)
,

where m∗
Gu

(y) is defined in (7). The posterior probability of model Gu is then given

by

Pr∗(Gu|y) =
(
1 +

∑

v 6=u

wv

wu

BF ∗
GvGu

(y)
)−1

, u = 0, . . . , U, (11)

where wu = Pr(Gu) is the prior probability of model Gu. If prior odds on model space

are all equal to 1, so that wu/wv = 1 for all u 6= v, then formula (11) is simply a

function of the Bayes factors BF ∗
GvGu

(y).
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5.1 Model comparison under the base-model expected poste-

rior prior

Consider two decomposable undirected graphical models Gu and Gv. The Bayes factor

calculated with respect to the base-model EPP is

BF ∗0
GuGv

(y) =
m∗0

Gu
(y)

m∗0
Gv

(y)
, (12)

where m∗0
Gu

(y) is defined in (9). Pérez & Berger (2002) show that the Bayes factor in

(12) satisfies the coherence condition

BF ∗0
GvGu

(y) = BF ∗
GvG0

(y)BF ∗
G0Gu

(y),

where

BF ∗0
GuG0

(y) =
m∗0

Gu
(y)

mR
G0

(y)
. (13)

The denominator in (13) is the marginal data distribution under model G0 and prior

πR
G0

(pcond
G0

) reproduced in the Appendix. Recall that

m∗0
Gu

(y) =
∑

x:
P

i x(i)=M

mR
Gu

(y|x)mR
G0

(x), (14)

with mR
Gu

(y|x) denoting the ‘predictive’ distribution under Gu (notice that we actually

predict real data y conditionally on imaginary data x), when the prior is πR
Gu

(pcond
Gu

).

The marginal distribution m∗0
Gu

(y) requires summing over all possible contingency

tables such that
∑

i x(i) = M . This computation can be very demanding, and virtually

unfeasible, even when M and/or the dimension of the table |I| are only moderately

large. We therefore approximate expression (14) using a Monte Carlo sum; for a similar

strategy in a related context, see Casella & Moreno (2007). In particular we use an
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importance sampling algorithm with the following importance function

gGu
(x) = Mu(x|p̂Gu

,M),

i.e. a multinomial distribution with M trials and cell-probabilities p̂Gu
, the maximum

likelihood estimate of p under model Gu. If we draw T independent samples x(t) from

gGu
(x), the Bayes factor (13) can be approximated as

B̂F
∗0

GuG0
(y) =

1

mR
G0

(y)

1

T

T∑

t=1

mR
Gu

(y|x(t))mR
G0

(x(t))

gGu
(x(t))

.

The estimated posterior probability of model Gu is then

P̂ r
∗0

(Gu|y) =
(
1 +

∑

v 6=u

wv

wu

B̂F
∗0

GvGu
(y)

)−1

, u = 0, . . . , U,

where

B̂F
∗0

GvGu
(y) = B̂F

∗0

GvG0
(y)B̂F

∗0

G0Gu
(y).

5.2 Model comparison under the empirical expected poste-

rior prior

Given two decomposable graphical models Gu and Gv, the Bayes factor based on the

empirical EPP is

BF ∗emp
GuGv

(y) =
m∗emp

Gu
(y)

m∗emp
Gv

(y)

=

∑D

d=1 mR
Gu

(y|ỹd)q(ỹd)∑D

d=1 mR
Gv

(y|ỹd)q(ỹd)
, (15)

where q(ỹd) is defined in (10). As in the previous subsection, the number of terms in

both the sums of (15) can be prohibitively large. Accordingly, we propose to approx-

imate each of the two marginal distributions appearing in (15) using an importance

18



sampling strategy. Then,

m̂∗emp
Gu

(y) =
1

T

T∑

t=1

mR
Gu

(y|x(t))memp(x(t))

gGu
(x(t))

, (16)

where the importance function gGu
(x) is again a multinomial distribution with cell-

probabilities p̂Gu
.

When using the empirical EPP, the training sample size M should be the smallest

possible, to reduce double-counting. Notice that the support of the importance func-

tion is strictly larger than that of the empirical distribution; as a consequence, some

random draws from the importance function are ‘Not Subsamples’ (NS) ỹd of y. In

general, the percentage of NS should be small for an efficient approximation. A further

reason to limit the value of M is that higher values of M will generally increase the

percentage of NS. In particular, for M = N , the empirical distribution degenerates on

the observed vector y, and thus the percentage of NS is likely to be close to 100. On

the other hand, when M is too small, cells with low probabilities under p̂Gu
are likely

to receive zero-counts in many draws, so that the importance function will result in a

poor approximation to the empirical distribution. Since p̂Gu
varies across models, it

would seem reasonable to adapt the minimal training sample to each specific model,

setting for instance MGu
= 1/min(p̂Gu

). In this way, the expected count of each cell,

under the importance function, is at least one, thus providing a better approximation

to the empirical distribution, since the number of cell having zero-count draws are

likely to be very limited. A drawback of this procedure is that it may produce highly

variable values for MGu
across models. In this way, model choice could be unduly

driven by a different use of the data set information. To overcome this difficulty, we

recommend using the same value of M for each model, and to perform some sensitivity
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Alcohol intake

Obesity Hypertension 0 1-2 3-5 6+

Low Yes 5 9 8 10

No 40 36 33 24

Average Yes 6 9 11 14

No 33 23 35 30

High Yes 9 12 19 19

No 24 25 28 29

Table 1: Alcohol, hypertension and obesity data. Alcohol intake is measured by number of

drinks/day.

analysis over the range M ≤ M ≤ M , where M = minu{MGu
} and M = maxu{MGu

}.

The approximate Bayes factor based on the empirical EPP is

B̂F
∗emp

GuGv
(y) =

m̂∗emp
Gu

(y)

m̂∗emp
Gv

(y)
,

where both numerator and denominator are defined in (16), leading to the approximate

posterior probability of model Gu

P̂ r
∗emp

(Gu|y) =
(
1 +

∑

v 6=u

wv

wu

B̂F
∗emp

GvGu
(y)

)−1

, u, v = 0, . . . , U, u 6= v.

6 Example: hypertension, obesity, and alcohol in-

take data

We consider the data set in Table 1 representing the classification of 491 subjects

according to three categorical variables, namely hypertension (H: yes, no), obesity

(O: low, average, high) and alcohol intake (A: 0, 1-2, 3-5, 6+ drinks per day). This

2× 3× 4 table was analyzed by Knuiman & Speed (1988) and from a Bayesian model

determination perspective by Dellaportas & Forster (1999).
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Figure 1: Top panel: undirected decomposable graphical models of conditional indepen-

dence. (a) AHO: the unrestricted model. (b) AH + HO: A ⊥⊥ O | H. (c) AO + HO:

A ⊥⊥ H | O. (d) AH + AO: H ⊥⊥ O | A. Bottom panel: undirected decomposable graphical

models of marginal independence. (e) A+HO: A ⊥⊥ HO. (f) O+AH: O ⊥⊥ AH. (g) H +AO:

H ⊥⊥ AO. (h) A + H + O: A ⊥⊥ H ⊥⊥ O; the complete independence model.

Altogether there exist eight possible decomposable undirected graphical models

for this problem illustrated in Figure 1. We first consider a conventional approach,

i.e. assigning the conjugate family of priors (4) under each model, and computing the

corresponding Bayes factor

BFGuGv
(y|αGu , αGv) =

mC
Gu

(y|αGu)

mC
Gv

(y|αGv)
,

where mC
Gu

(y|αGu) is reported in (5). In particular we choose three distinct sets of

values for αGu = α, namely: αU = 1
¯
, corresponding to a product of uniform priors;

αJ = 1
2
1
¯
, a product of Jeffreys priors; αP = ( 1

|IRl
|
, l = 1, . . . , k), a product of priors

each corresponding to a Dirichlet distribution originally proposed by Perks, and dis-

cussed also by Dellaportas & Forster (1999). (Recall that R1 = C1; furthermore the

unit vector 1
¯

has variable dimension across models, but for simplicity we omit such

21



Model αU αJ αP

AHO 0.000 0.000 0.000

AH + HO 0.344 0.146 0.004

AO + HO 0.001 0.000 0.000

AH + AO 0.000 0.000 0.000

A + HO 0.549 0.683 0.191

O + AH 0.044 0.043 0.001

H + AO 0.000 0.000 0.000

A + H + O 0.062 0.128 0.804

Table 2: Posterior model probabilities under conjugate priors, for distinct choices of α.

dependence in the notation). These priors can be thought of as being progressively

more diffuse. Indeed their ‘overall precision’, as measured by the sum of the elements

of α, is for each given model greatest under αU , intermediate under αJ and least under

αP . For instance, each of the uniform priors on a specific residual-table has an overall

precision equal to the number of cells in that subtable, while the overall precision

under each of the Percks prior is equal to one.

Table 2 contains the posterior probabilities for each decomposable graphical model

using conjugate priors (we assume that all prior odds are equal to one). We no-

tice that the posterior probability is essentially concentrated on three models, namely

(AH + HO), (A + HO) and (A + H + O). However the distribution of these proba-

bilities is highly sensitive to the value of α. Specifically, model (A + HO) receives the

highest posterior probability under αJ , and αU . On the other hand, the top model

under αP is by far the independence model (A + H + O). The results in columns αJ

and αp of Table 2 are very close to those obtained by Dellaportas & Forster (1999),

using a hyper-Dirichlet prior, (see their Table 1). Notice however that they consid-

ered, in addition to the eight decomposable graphical model listed above, also the

hierarchical non-graphical model (HO + AH + AO) which however received negligible
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posterior probability in all their experiments. Furthermore, their analysis with the

hyper-Dirichlet involves only two priors under the unrestricted model AHO, namely

a Jeffreys and a Percks Dirichlet. The results in Table 2 are also comparable to those

obtained using the method suggested by Raftery (1996) and implemented in the S-

plus function ‘glib’, again reported in Table 1 of Dellaportas & Forster (1999). These

Authors also report the results, based on a particular normal prior on the log-linear

parameters (using three distinct sets of variances to gauge sensitivity), obtained using

a reversible-jump MCMC procedure. The latter method is shown to be less sensi-

tive to the choice of the prior hyperparameters in the sense that the best model is

that of mutual independence (A + H + O), regardless of the prior variances (posterior

probabilities vary in the range 51%− 81%), followed by the model of independence of

alcohol from the pair (hypertension-obesity), (A + HO), whose posterior probabilities

vary between 47% and 19%. For the choice αU (uniform prior on the simplex under

each residual-table), Table 2 reveals that the model of mutual independence is not

the most likely one, receiving a bare 6% probability; much stronger evidence in given

to models (A + HO) and (AH + HO), the latter being a model of conditional inde-

pendence (between alcohol intake and obesity given hypertension). Although quite

simple, this example brings home the message that Bayesian model determination is

particularly sensitive to specifications regulating the degree of diffuseness of the prior,

whose impact would typically be modest in conventional prior-to-posterior analysis

within a single model.

We now consider model determination, for the same data set, using the base-model

EPP. For each model the starting distribution was the same as the one considered in
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αU αJ αP

Model M25 M50 M75 M100 M25 M50 M75 M100 M25 M50 M75 M100

AHO 0.000 0.002 0.005 0.012 0.000 0.001 0.004 0.065 0.000 0.001 0.003 0.007

AH + HO 0.707 0.747 0.697 0.685 0.679 0.748 0.730 0.581 0.674 0.754 0.738 0.658

AO + HO 0.011 0.027 0.071 0.063 0.009 0.024 0.042 0.070 0.007 0.023 0.031 0.046

AH + AO 0.001 0.005 0.011 0.018 0.001 0.005 0.011 0.018 0.001 0.005 0.009 0.017

A + HO 0.234 0.174 0.162 0.158 0.262 0.178 0.159 0.196 0.270 0.175 0.168 0.174

O + AH 0.034 0.035 0.043 0.050 0.036 0.035 0.042 0.054 0.034 0.034 0.040 0.081

H + AO 0.001 0.001 0.003 0.005 0.000 0.001 0.003 0.005 0.000 0.001 0.002 0.004

A + H + O 0.011 0.008 0.009 0.010 0.013 0.008 0.009 0.011 0.014 0.007 0.009 0.013

Table 3: Posterior model probabilities under the base-model EPP, for different training

sample sizes M , and distinct choices of α.

the conventional analysis, namely a conjugate prior (4) with three choices for α, namely

αU , αJ and αP . Table 3 collects the results obtained according to the three values of α

and the training sample size M . For the latter, four values were chosen corresponding

to 25%, 50%, 75% and 100% of the actual sample size N , in order to evaluate the

sensitivity of the analysis. Relative to the conventional analysis described earlier, two

features emerge clearly. For each fixed M there is now a broad agreement between the

results obtained under the three distinct priors; in particular the behaviour under αP

is now comparable to the other choices of α: in other words robustness with respect to

the starting prior has been achieved. Secondly, the highest posterior probability model

is now (AH + HO) followed by (A + HO) (notice the interchange of ranking relative

to the conventional approach under αU and αJ). Finally variation of the results with

respect to M is limited, especially for the top model and if one removes the rather

unrealistic case M100, corresponding to a training sample size equal to the actual

sample size (M = N). As a further check, we have also run the analysis modifying

the (perfect) ordering of the cliques, for those models which would allow alternative
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αU αJ α1
P α2

P

Model M = 49 M = 101 M = 49 M = 101 M = 49 M = 101 M = 49 M = 101

AHO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AH + HO 0.625 0.806 0.561 0.774 0.000 0.000 0.484 0.585

AO + HO 0.003 0.009 0.002 0.007 0.002 0.023 0.002 0.011

AH + AO 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000

A + HO 0.324 0.155 0.385 0.190 0.866 0.846 0.447 0.350

O + AH 0.032 0.024 0.031 0.022 0.067 0.103 0.034 0.042

H + AO 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

A + H + O 0.016 0.005 0.021 0.005 0.065 0.027 0.033 0.011

Table 4: Posterior model probabilities under the empirical EPP, for different training sample

sizes M , and distinct choices of α.

orderings, e.g. (AH +HO). Notice that this induces a distinct parameterization pcond
G ,

and distinct priors. However, the results were quite comparable to the ones reported in

Table 3, and accordingly we omit details. Relative to the base-model EPP analysis, we

can therefore conclude that the top model is (AH + HO) with a posterior probability

of the order of 70%, followed by model (A + HO), and that these results are robust

with respect to the starting model priors, as well as to the training sample size.

We finally turn to the empirical EPP analysis whose results are presented in Table

4. Again, we report posterior model probabilities under the three choices αU , αJ and

αP and based on two different training sample sizes, namely M = 49 and M = 101

corresponding respectively to the model (A + H + O) and (AH + HO). Although not

shown, we also computed the percentage of ‘Not Subsamples’ (NS): this is close to zero

under M , while it varies from almost zero to 4% under M . Looking at columns αU

and αJ , we notice that the highest probability model is still (AH + HO) followed by

(A+HO); this result is consistent with that obtained under the base-model EPP, also

in terms of actual probability-values. We also verified that changing the clique ordering
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(when this is applicable) does not modify the results under αU and αJ . This conclusion

does not hold however under the αP choice. Specifically, for one ordering, which

corresponds to α2
P in the Table 4, results are broadly similar to those just described for

αU and αJ ; on the other hand, for an alternative clique-ordering, corresponding to α1
P

in the Table, results differ. Essentially, the probability assigned to the union of the two

highest posterior probability models (AH +HO)∪ (A+HO) is now concentrated onto

the simpler model A+HO. In conclusion, the EPP based on the empirical distribution

confirms the finding that the two best models are (AH + HO) and (A + HO), with

(AH + HO) receiving higher probability, except for the choice of α1
P .

7 Concluding remarks

In this paper we have developed a methodology based on Expected Posterior Priors

(EPP) to perform Bayesian model comparison for discrete decomposable graphical

models. In this connection, the parameterization and priors presented in Consonni

& Massam (2007) proved to be particularly useful. Our method could be adapted to

Directed Acyclic Graph (DAG) models, see e.g. Cowell et al. (1996), which however

require an ordering of the variables involved. The basic idea is to replace cliques with

individual nodes, and use the collection of parents instead of the separators. This

would result in a new pcond
G parameterization, and corresponding conjugate family

of priors, which would retain the basic feature of local and global independence as

described in this paper.

We have illustrated our methodology analysing a 2×3×4 contingency table. Since

the number of variables involved was very limited, we were able to individually con-
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sider all the eight possible decomposable models, thus illustrating fully the sensitivity

of a conventional analysis, as well as highlighting the main features of our method.

Despite being a small-scale problem, computation of relevant quantities, such as the

marginal data distribution under the EPP, required an importance sampling strat-

egy to evaluate a sum of terms over the space of all 2 × 3 × 4 contingency tables.

Clearly, for problems involving a high number of variables, exhaustive consideration

of each single decomposable model would be unfeasible. In this case our method could

still be useful, but should be coupled with MCMC techniques to search over model

space. We have discussed a base-model, as well as an empirical distribution, approach

to EPP. The former presents several comparative advantages: it uses only imaginary

data, thus making no double use of the actual data; as a consequence the full range of

training sample sizes can be used (0 ≤ M ≤ N), so that robustness issues can be more

adequately evaluated. Furthermore, as revealed by the analysis of our data set, the

base-model EPP method showed no particular bias in favour of the simpler models,

while exhibiting greater stability to prior specifications than the empirical distribution

EPP. However, when a base-model cannot be identified for the problem at hand, the

empirical EPP approach may represent a viable alternative.
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A Appendix

1. The vector v = (v(i), i ∈ I,
∑

i∈I v(i) = L) is distributed according to the

multinomial-Dirichlet family, MuDi(v|α,L), if its density is

m(v|α) =
L!∏

i∈I v(i)!

Γ(α+)∏
i∈I Γ(α(i))

∏
i∈I Γ(α(i) + v(i))

Γ(L + α+)
,

where α+ =
∑

i∈I α(i).

2. The marginal distribution of a set x of imaginary data of size M under model

G0 is

mR
G0

(x|αG0) = h(x|M)
∏

γ∈V

(
h(xγ|M)

)−1
MuDi(xγ|αγ,M).
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