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Vectors of two–parameter Poisson–Dirichlet processes

F. Leisen and A. Lijoi1

Universidad Carlos III de Madrid and Università di Pavia

Abstract

The definition of vectors of dependent random probability measures is a topic of
interest in applications to Bayesian statistics. They, indeed, represent dependent non-
parametric prior distributions that are useful for modelling observables for which spe-
cific covariate values are known. In this paper we propose a vector of two-parameter
Poisson-Dirichlet processes. It is well-known that each component can be obtained by
resorting to a change of measure of a σ-stable process. Thus dependence is achieved by
applying a Lévy copula to the marginal intensities. In a two-sample problem, we deter-
mine the corresponding partition probability function which turns out to be partially
exchangeable. Moreover, we evaluate predictive and posterior distributions.

Keywords: Bayesian nonparametric statistics; Bivariate completely random measures; Lévy copula; Par-

tial exchangeability; Poisson-Dirichlet process; Posterior distribution.

AMS Classification: 62F15, 62H05, 60G57, 60G51

1 Introduction

Random probability measures are a primary tool in the implementation of the Bayesian
approach to statistical inference since they can be used to define nonparametric priors.
The Dirichlet process introduced in [7] represents the first well–known example. After the
appearance of Ferguson’s work, a number of generalizations of the Dirichlet process have
been proposed. In the present paper, attention is focused on one of such extensions, namely
the Poisson–Dirichlet process with parameters (σ, θ), introduced in [16], which hereafter
we denote for short as PD(σ, θ). In particular, we confine ourselves to considering values
of (σ, θ) such that σ ∈ (0, 1) and θ > −σ. It is worth recalling that the PD(σ, θ) process
also emerges in various research areas which include, for instance, population genetics,
statistical physics, excursions of stochastic processes and combinatorics. See [18] and ref-
erences therein. Its use within Bayesian nonparametric and semiparametric models has
recently become much more frequent. Such a growing popularity in statistical practice
can be traced back to various reasons. Firstly, the PD(σ, θ) process yields a more flexible
model for clustering than the one provided by the Dirichlet process. Indeed, if X1, . . . , Xn

are the first n terms of an infinite sequence of exchangeable random variables directed by

1Also affiliaited to Collegio Carlo Alberto, Moncalieri (TO), and CNR–IMATI, Milano, Italy
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a PD(σ, θ) process, then the probability that X1, . . . , Xn cluster into k groups of distinct
values with respective positive frequencies n1, . . . , nk coincides with

Π
(n)
k (n1, . . . , nk) =

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k
∏

j=1

(1− σ)nj−1 (1)

for k ∈ {1, . . . , n} and for any vector of positive integers (n1, . . . , nk) such that
∑k

j=1 nj = n,
where (a)m = a(a+1) · · · (a+m−1) for any m ≥ 1 and (a)0 ≡ 1. See [16]. The parameter
σ can be used to tune the reinforcement mechanism of larger clusters as highlighted in
[13]. Another feature which makes convenient the use of a PD(σ, θ) process for Bayesian
inference is its stick–breaking representation. In order to briefly recall the construction, let
(ξi)i≥1 be a sequence of independent and identically distributed random variables whose
probability distribution α is non–atomic and let (Vi)i≥1 be a sequence of independent
random variables where Vi is beta distributed with parameters (1− σ, θ + iσ). If

p̃1 = V1 p̃j = Vj

j−1
∏

i=1

(1− Vi) j ≥ 2 (2)

then the random probability measure p̃ =
∑

j≥1 p̃j δξj coincides in distribution with a
PD(σ, θ) process. The simple procedure described in (2) suggests an algorithm for simulat-
ing the trajectories of the process. An alternative construction, based on a transformation
of the σ–stable completely random measure, will be used in the next sections. Finally, the
proposal and implementation of suitable Markov Chain Monte Carlo algorithms has made
the application of PD(σ, θ) process quite straightforward even in more complex hierarchical
mixture models. A work that has had a remarkable impact in this direction is [9].

Stimulated by the importance of PD(σ, θ) prior in Bayesian nonparametric modelling,
our main goal in the present paper is the proposal of a definition of a two–dimensional vector
of PD(σ, θ) processes along with an analysis of some of its distributional properties. In this
respect our work connects to a very active research area which is focused on the definition of
random probability measures suited for applications to nonparametric regression modelling.
They are obtained as families of priors {p̃w : w ∈ W} whereW is a covariate space and any
two random probabilities p̃w1

and p̃w2
, for w1 6= w2, are dependent. The proposals that have

appeared in the literature so far are based on variations of the stick-breaking representation
in (2). A typical strategy for introducing covariate–dependence in p̃ consists in letting
the distribution of the Vi’s or of the ξi’s, or both, depend on w. Among various recent
contributions, we confine ourselves to mentioning [15], [4], [5] and [21]. This approach,
though fruitful from a computational point of view, has some limitations if one aims at
obtaining analytical results related to the clustering structure of the observations or the
posterior distribution of the underlying dependent random probabilities. Besides these
noteworthy applications to Bayesian nonparametric regression, other recent contributions
point towards applications to computer science and machine learning. For example, in
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[24] a hierarchical Dirichlet process is applied to problems in information retrieval and
text modelling. The authors in [23] propose a dependent two parameter Poisson–Dirichlet
process prior which generalizes the hierarchical Dirichlet process of [24] and apply it to
segmentation of object categories from image databases. Finally, [22] have proposed a
dependent prior which takes on the name of Mondrian process and it is used to model
relational data.

In the present paper we resort to a construction of p̃ in terms of a completely random
measure µ̃, a strategy that can be adopted for defining the Dirichlet process itself, as pointed
out by [7]. Hence, any two random probability merasures p̃w1

and p̃w2
are dependent if

the completely random measures, say µ̃1 and µ̃2, that define them are dependent. We will
deal with the case where the covariate is binary so that W consists of two points. This
is a typical setting for statistical inference with two-sample data. Dependence between
µ̃1 and µ̃2 is induced by a Lévy copula acting on the respective marginal intensities. A
similar approach has been undertaken in [6] with the aim of modelling two-sample survival
data, thus yielding a generalization of neutral to the right priors. Assuming within group
exchangeability and conditional independence between data from the two groups, we obtain
a description of the partition probability function generated by the process we propose
as a mixture of products of Gauss’ hypergeometric functions. Moreover, we deduce a
posterior characterization which allows to evaluate the corresponding family of predictive
distributions. The structure of the paper is as follows. In Section 2, the bivariate two
parameter PD(σ, θ) random probability measure is defined. In Section 3, the analysis of
the induced partition structure is developed for a generic vector of two parameter PD(σ, θ)
processes. A specific case is considered in Section 4, where the PD(σ, θ) process vector
is generated by a suitable Clayton–Lévy copula. Finally, Section 5 provides a posterior
characterization, conditional on a vector of latent non–negative random variables, thus
generalizing a well-known result valid for the univariate case.

2 A bivariate PD process

Let (Ω,F ,P) be a probability space and (X,X ) a measure space, with X Polish and X the
Borel σ–algebra of subsets of X. Suppose µ̃1 and µ̃2 are two completely random measures
(CRMs) on (X,X ) with respective marginal Lévy measures

ν̄i(dx, dy) = α(dx) νi(dy) i = 1, 2

The probability measure α on X is non–atomic and νi is a measure on R
+ such that

∫

R+ min(y, 1) νi(dy) <∞. For background information on CRMs one can refer to [12]. We
further suppose that both µ̃1 and µ̃2 are σ–stable CRMs, i.e.

νi(dy) =
σ

Γ(1− σ)
y−1−σ dy i = 1, 2 (3)
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with σ ∈ (0, 1). Moreover, µ̃1 and µ̃2 are dependent and the random vector (µ̃1, µ̃2)
has independent increments, in the sense that given A and B in X , with A ∩ B = ∅,
then (µ̃1(A), µ̃2(A)) and (µ̃1(B), µ̃2(B)) are independent. This implies that for any pair
of measurable functions f : X → R and g : X → R, such that

∫

|f |σ dα < ∞ and
∫

|g|σ dα <∞, one has

E

[

e−µ̃1(f)−µ̃2(g)
]

=

exp

{

−

∫

X

∫

(0,∞)2

[

1− e−y1f(x)−y2g(x)
]

ν(dy1, dy2) α(dx)

}

. (4)

The representation (4) entails that the jump heights of (µ̃1, µ̃2) are independent from the
locations where the jumps occur. Moreover, these jump locations are common to both
CRMs and are governed by α.

An important issue is the definition of the measure ν in (4): we will determine it in
such a way that it satisfies the condition

∫ ∞

0
ν(dx,A) =

∫ ∞

0
ν(A, dx) =

σ

Γ(1− σ)

∫

A
y−1−σ dy (5)

for any A ∈ B(R+). In other words, the marginal Lévy intensities coincide with νi in
(3). This can be achieved by resorting to the notion of Lévy copula whose description
is postponed to Section 4. It is worth pointing out that a similar construction has been
provided for bivariate gamma processes in [10]. Indeed, they define a vector of random
measures in a similar fashion as we do with (µ̃1, µ̃2) =

∑

i≥1(Ji,1, Ji,2) δXi
. There are

two main differences with the present paper. In [10] the marginal CRMs are gamma and
the dependence between jump heights Ji,1 and Ji,2 is induced by some dependent scaling
random factors. On the other hand, here we consider marginal σ–stable random measures
with dependence between the jump heights Ji,1 and Ji,2 induced indirectly through a Lévy
copula. Of course, both the scale invariance approach by [10] and the Lévy copula approach
can be extended to deal with CRMs different from the gamma and the σ–stable ones,
respectively.

The model we adopt for the observables is as follows. We let (Xn, Yn)n≥1 be a sequence
of exchangeable random vectors taking values in X

2 for which the following representation
holds true

P [(X1, Y1) ∈ A1, . . . , (Xn, Yn) ∈ An] =

∫

P
X2

{

n
∏

i=1

∫

Ai

p(dx, dy)

}

Q(dp)

=

∫

P 2
X

{

n
∏

i=1

∫

Ai

p1(dx) p2(dy)

}

Q∗(dp1, dp2)
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where PX2 is the space of probability measures on (X2,X 2), P 2
X
= PX × PX is the space

of vectors (p1, p2) where both p1 and p2 are probability measures on (X,X ) and the above
representation is valid for any n ≥ 1 and any choice of sets A1, . . . , An in X 2. It then
follows that Q is a probability distribution on (PX2 ,PX2) which degenerates on (P 2

X
,P2

X
).

In order to define Q∗ we will make use of the σ–stable CRMs µ̃1 and µ̃2. Suppose Pi,σ is
the probability distribution of µ̃i, for i = 1, 2. Hence Pi,σ is supported by the space of all
boundedly finite measures MX on X endowed with the Borel σ–algebra MX with respect
to the w♯–topology (“weak-hash” topology). Recall that a sequence of measures (mi)i≥1
in MX converges, in the w♯–topology, to a measure m in MX if and only if mi(A)→ m(A)
for any bounded set A ∈ X such that m(∂A) = 0. See [3] for further details. Introduce,
now, another probability distribution Pi,σ,θ on (MX,MX) such that Pi,σ,θ ≪ Pi,σ and

dPi,σ,θ
dPi,σ

(µ) =
Γ (θ + 1)

Γ
(

θ
σ + 1

) [µ(X)]−θ

We denote with µ̃i,σ,θ a random element defined on (Ω,F ,P) and taking values in (MX,MX)
whose probability distribution coincides with Pi,σ,θ. The random probability measure
p̃i = µ̃i,σ,θ/µ̃i,σ,θ(X) is a PD(σ, θ) process. See, e.g., [19] and [18]. Hence, Q∗ is the
probability distribution of the vector (p̃1, p̃2) of Poisson–Dirichlet random probability mea-
sure on (X,X ). We are, then, assuming that the sequence of random variables (Xn, Yn)n≥1
is exchangeable and such that

P

[

Xn1
∈ ×n1

i=1Ai; Yn2
∈ ×n2

j=1Bj | (p̃1, p̃2)
]

=

n1
∏

i=1

p̃1(Ai)

n2
∏

j=1

p̃2(Bj). (6)

with Xn1
= (X1, . . . , Xn1

) and Yn2
= (Y1, . . . , Yn2

). We will particularly focus on the case
where the dependence between p̃1 and p̃2 is determined by the copula C1/σ in (13).

3 Partition structure

The description of the model as provided by (6) implies that we are considering the two
samples (X1, . . . , Xn1

) and (Y1, . . . , Yn2
) as independent, conditional on (p̃1, p̃2). Each p̃i

is, almost surely, discrete so that

p̃1 p̃2 =
∑

i≥1

∑

j≥1

ω1,i ω2,j δZi
δZj

(7)

where δx is the usual notation for the unit mass concentrated at x,
∑

i≥1 ω1,i =
∑

i≥1 ω2,i =
1 (P–almost surely), and the Zi’s are i.i.d. from the non–atomic probability distribution α
on (X,X ).

Given the discrete nature of the random probability measure in (7), there might be ties,
i.e. common values with certain multiplicities, among Xi’s and the Yi’s. It, then, follows
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that there are 1 ≤ K ≤ n1 + n2 distinct values, say Z
∗
1 , . . . , Z

∗
K among the components of

Xn1
= (X1, . . . , Xn1

) and Yn2
= (Y1, . . . , Yn2

). Moreover, let

Ni,1 =

n1
∑

l=1

1Xl=Z
∗

i
Nj,2 =

n2
∑

l=1

1Yl=Z
∗

j
i, j = 1, . . . ,K

be the frequencies associated to each distinct value from the two samples. It is clear that
there might also be values in common between the Xn1

and the Yn2
sample so that for any

i ∈ {1, . . . , k} both Ni,1 and Ni,2 are positive integers with positive probability. According
to this, for our purposes the data can be described as the set

{K,N1,1, . . . , NK,1, N1,2, . . . , NK,2, Z
∗
1 , . . . , Z

∗
K}.

In particular, in the present Section we will investigate the probability distribution of the
partition of Xn1

and Yn2
expressed in terms of K, N1 = (N1,1, . . . , NK,1) and N2 =

(N1,2, . . . , NK,2). This takes on the name of partition probability function according to the
terminology adopted in [16] and we shall denote it as

Π
(n1,n2)
k (n1,n2) = P [K = k, N1 = n1, N2 = n2]

for 1 ≤ k ≤ n and for vectors of non–negative integers ni = (n1,i, . . . , nk,i) such that
∑k

j=1 nj,i = ni, for i = 1, 2, and nj,1 + nj,2 ≥ 1 for j = 1, . . . , k. As a consequence of (6)
one has

Π
(n1,n2)
k (n1,n2) = E

[∫

Xk

π
(n1,n2)
k (dz)

]

(8)

where

π
(n1,n2)
k (dz) =

k
∏

j=1

(

µ̃1,σ,θ(dzj)

µ̃1,σ,θ(X)

)nj,1
(

µ̃2,σ,θ(dzj)

µ̃2,σ,θ(X)

)nj,2

As we shall shortly see, an important lemma for obtaining an expression for Π
(n1,n2)
k in (8)

is the following

Lemma 1. Let (µ̃1, µ̃2) be a vector of CRMs with Laplace exponent ψ( · , · ). If Cǫ ∈ X is
such that diam(Cǫ) ↓ 0 as ǫ ↓ 0, then

E

[

e−sµ̃(Cǫ)−tµ̃(Cǫ)
2
∏

i=1

{µ̃i(Cǫ)}
qi

]

= (−1)q1+q2−1α(Cǫ) e
−α(Cǫ)ψ(s,t)×

×
∂q1+q2

∂sq1 ∂tq2
ψ(s, t) + o(α(Cǫ)) (9)

as ǫ ↓ 0.
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Proof. The proof follows from a simple application of a multivariate version of the
Faá di Bruno formula as given in [1]. For notational simplicity, let |w| :=

∑d
i=1wi for any

vector w = (w1, . . . , wd) in R
d. We then recall a linear order on the setNd

0 of d–dimensional
vectors of non–negative integers adopted in [1]. Given two vectors x = (x1, . . . , xd) and
y = (y1, . . . , yd) in N

d
0, then x ≺ y if either |x| < |y| or |x| = |y| and x1 < y1 or if |x| = |y|

with xi = yi for i = 1, . . . , j and xj+1 < yj+1 for some j in {1, . . . , d}. Hence note that

E

[

e−sµ̃(Cǫ)−tµ̃(Cǫ)
2
∏

i=1

{µ̃i(Cǫ)}
qi

]

= (−1)q1+q2
∂q1+q2

∂sq1 ∂tq2
e−α(Cǫ)ψ(s,t)

and by virtue of Theorem 2.1 in [1] one has that the right–hand side above coincides with

e−α(Cǫ)ψ(s,t) q1!q2!

q1+q2
∑

k=1

(−1)k[α(Cǫ)]
k ×

×

q1+q2
∑

j=1

∑

pj(q1,q2,k)

j
∏

i=1

1

λi!(s1,i!s2,i!)λi

(

∂s1.i+s2,i

∂ss1,i∂ts2,i
ψ(s, t)

)λi

where pj(q1, q2, k) is the set of vectors (λ, s1, . . . , sj) with λ = (λ1, . . . , λj) a vector whose

positive coordinates are such that
∑j

i=1 λi = k and the si = (s1,i, s2,i) are vectors such
that 0 ≺ s1 ≺ · · · ≺ sj . Obviously, in the previous sum, all terms with k ≥ 2 are o(α(Cǫ))
as ǫ ↓ 0. Hence, by discarding these summands one has the result stated in (9). �

If we further suppose that the bivariate Lévy measure is of finite variation, i.e.
∫

‖y‖≤1
‖y‖ ν(y1, y2) dy1dy2 <∞

where ‖y‖ stands for the Euclidean norm of the vector y = (y1, y2), then one also has
∫

‖y‖≤1 y
n1

1 yn2

2 ν(y1, y2) dy1 dy2 <∞ for any n1 and n2 positive integers. Consequently, one

can interchange derivative and integral signs to obtain from (9) the following expression

E

[

e−sµ̃(Cǫ)−tµ̃(Cǫ)
2
∏

i=1

{µ̃i(Cǫ)}
qi

]

= α(Cǫ) e
−α(Cǫ)ψ(s,t)gν(q1, q2; s, t) + o(α(Cǫ)) (10)

as ǫ ↓ 0, for any s > 0 and t > 0, where

gν(q1, q2; s, t) :=

∫

(0,∞)2
yq11 y

q2
2 e−sy1−ty2 ν(y1, y2) dy1dy2.

One can now state the main result which provides a probabilistic characterization of the
partition structure induced by the random probability distribution structure (7).
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Theorem 1 For any positive integers n1, n2 and k and vectors n1 = (n1,1, . . . , nk,1) and

n2 = (n1,2, . . . , nk,2) such that
∑k

j=1 nj,i = ni and ni,1 + ni,2 ≥ 1, for i = 1, 2, one has

Π
(n1,n2)
k (n1,n2) =

σ2

Γ2( θσ )

1
∏2
i=1(θ)ni

∫

(0,∞)2
sθ+n1−1tθ+n2−1 e−ψ(s,t) ×

×
k
∏

j=1

gν(nj,1, nj,2; s, t) ds dt. (11)

Proof. For simplicity, we let µ̃i denote the i–th σ–stable completely random measure µ̃i,σ,0,
for i = 1, 2. By virtue of the definition of the two–parameter Poisson–Dirichlet process one

can then evaluate Π
(n)
k in (8) by replacing π

(n1,n2)
k with

π̃
(n1,n2)
k (n1,n2, dz) =

σ2Γ2(θ)

Γ2
(

θ
σ

)
∏2
i=1 [µ̃i(X)]

θ+ni

k
∏

j=1

[µ̃1(dzj)]
nj,1 [µ̃2(dzj)]

nj,2

for any k ≥ 1 and ni = (n1,i, . . . , nk,i) such that
∑k

j=1 nj,i = ni for i = 1, 2. We will

now show that the probability distribution E

[

π̃
(n1,n2)
k

]

admits a density on N
2k ×X

k with

respect to the product measure γ2k × αk, where γ is the counting measure on the positive
integers, and will determine its form. To this end, suppose Cǫ,x denotes a neighbourhood
of x ∈ X of radius ǫ > 0 and Bǫ = ×

k
j=1Cǫ,zj . Then

∫

Bǫ

E

[

π̃
(n1,n2)
k (n1,n2, dz)

]

=
σ2

Γ2( θσ )
∏2
i=1(θ)ni

∫ ∞

0

∫ ∞

0
sθ+n1−1tθ+n2−1 ×

E



e−sµ̃1(X)−tµ̃2(X)
k
∏

j=1

[

µ̃1(Cǫ,zj )
]nj,1

[

µ̃2(Cǫ,zj )
]nj,2



 ds dt

Define Xǫ to be the whole space X with the neighbourhoods Cǫ,zr deleted for all j = 1, . . . , k.
By virtue of the independence of the increments of the CRMs µ̃1 and µ̃2, the expression
above reduces to

σ2

Γ2( θσ )
∏2
i=1(θ)ni

∫ ∞

0

∫ ∞

0
sθ+n1−1tθ+n2−1 E

[

e−sµ̃1(Xǫ)−tµ̃2(Xǫ)
]

×

×

k
∏

j=1

Mj,ǫ(s, t) ds dt

where, by virtue of Lemma 1,

Mj,ǫ(s, t) := E

[

e−sµ̃1(Cǫ,zj
)−tµ̃2(Cǫ,zj

) [

µ̃1(Cǫ,zj )
]nj,1

[

µ̃2(Cǫ,zj )
]nj,2

]

8



= α(Cǫ,zj ) e
−α(Cǫ,zj

)ψ(s,t) gν(nj,1, nj,2; s, t) + o(α(Cǫ,zj )).

This shows that E[π̃k] admits a density with respect to γ2k × αk and it is given by

σ2

Γ2( θσ )
∏2
i=1(θ)ni

∫ ∞

0

∫ ∞

0
sθ+n1−1tθ+n2−1 e−ψ(s,t)

k
∏

j=1

gν(nj,1, nj,2; s, t) ds dt

And this completes the proof. �

It is worth noting that the results displayed in the previous Theorem 1 can be adapted
to obtain an evaluation of the mixed moment of the vector (p̃1(A), p̃2(B)) for any A and
B in X . Indeed, one has

Theorem 2 Let A and B be any two sets in X . Then

E [p̃1(A)p̃2(B)] = α(A)α(B)+

α(A ∩B)− α(A)α(B)

[Γ( θσ + 1)]2

∫

(R+)2
(st)θe−ψ(s,t)gν(1, 1; s, t) dsdt (12)

Proof. Proceeding in a similar fashion as in the proof of the previous Theorem 1, one has

E [p̃1(A)p̃2(B)] =
σ2

θ2Γ2(θ/σ)

∫

(R+)2
(st)θ E

[

e−sµ̃1(X)−tµ̃2(X)µ̃1(A) µ̃2(B)
]

ds dt

It now suffices to consider the partition of X induced by {A,B} which allows to exploit the
independence of the increments of (µ̃1, µ̃2) and resort to the following identity

∫

(R+)2
(st)θ e−ψ(s,t) {gν(1, 0; s, t)gν(0, 1; s, t) + gν(1, 1; s, t)} ds dt = Γ2

(

θ

σ
+ 1

)

,

for any θ > −σ, σ ∈ (0, 1) and ν. Then the application of the multivariate Faá di Bruno
formula yields the claimed result. �

The expression in (12) can be used to determine the correlation between p̃1(A) and
p̃2(B), a quantity which is of great interest for prior specification in Bayesian nonparametric
inference. Recalling that E[p̃i(C)] = α(C) for any C ∈ X and for any i = 1, 2, then

cov(p̃1(A), p̃2(B)) =
α(A ∩B)− α(A)α(B)

[Γ( θσ + 1)]2

∫

(R+)2
(st)θe−ψ(s,t)gν(1, 1; s, t) dsdt

As expected, if the two events A and B are independent with respect to the probability
measure α, then the corresponding random probability masses p̃1(A) and p̃2(B) are un-
correlated. Moreover, if one recalls that for a Poisson-Dirichlet process p̃ with parameters

9



(σ, θ) and baseline measure α one has var(p̃(A)) = α(A)[1− α(A)](1− σ)/(θ+ 1), one can
straightforwardly note that

corr(p̃1(B), p̃2(B)) =
θ + 1

(1− σ)Γ2
(

θ
σ + 1

)

∫

(R+)2
(st)θe−ψ(s,t)gν(1, 1; s, t) dsdt

for any B in X . The fact that the previous correlation does not depend on the specific
set B is usually seen as a desired property in applications to Bayesian inference, since it
suggests an overall measure of dependence between random probability measures p̃1 and
p̃2.

4 Lévy-Clayton copula

Let us now focus on the case where the µ̃i’s are both σ–stable CRMs whose dependence
is determined by a Lèvy copula. See [2] and [11]. A well–known example is the so–called
Lévy–Clayton copula defined as

Cλ(x1, x2) = (x−λ1 + x−λ2 )−
1

λ (13)

with λ > 0 and its name is due to fact it is reminiscent of the Clayton copula for probability
distributions. In this construction λ is a parameter that tunes the degree of dependence
between µ̃1 and µ̃2. See [2]. As a consequence of Theorem 5.4 in [2], the Lévy intensity of
the random vector (µ̃1, µ̃2) is

ν(y1, y2) =
∂2Cλ(x1, x2)

∂x1∂x2

∣

∣

∣

∣

x1=U1(y1), x2=U2(y2)

ν1(y1) ν(y2)

where Ui(y) = νi(y,+∞), for i = 1, 2, are the marginal tail integrals. It can be easily
checked that in this case one would have

ν(y1, y2) =
(λ+ 1)σ2

Γ(1− σ)

yλσ−11 yλσ−12

(yλσ1 + yλσ2 )
1

λ
+2

1(0,+∞)2(y1, y2). (14)

A direct use of this bivariate Lévy intensity in Theorem 1 makes it difficult to provide an
exact analytic evaluation of the function gν(nj,1, nj,2; s, t). On the other hand, if we confine
ourselves to considering the case where λ = 1/σ one has

ν(y1, y2) =
σ(1 + σ)

Γ(1− σ)
(y1 + y2)

−σ−2
1(0,+∞)2(y1, y2). (15)

and the function gν can be exactly evaluated. Besides this analytical advantage, it should
also be noted that setting λ = 1/σ links the parameter governing the dependence between
µ̃1 and µ̃2 and the parameter that influences the clustering structure induced by the bi-
variate PD processes (p̃1, p̃2). The effect of this assumption is a lower bound on λ since it
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implies that λ ∈ (1,∞). In other terms, λ cannot approach values yielding the independent
copula from (13). See [2]. Nonetheless, if one is willing to preserve the general form of the
intensity in (14), with the additional parameter λ governing the correlation structure, it is
possible to proceed with a numerical evaluation of the integral defining gν(nj,1, nj,2; s, t).
Alternatively, a full Bayesian analysis based on this vector prior can be developed by re-
lying on a simulation algorithm as devised in [2]. Here we do not pursue this issue which
will be object of future research.

If we take (15) as the bivariate Lévy intensity, for any s, t > 0, with s 6= t, the Laplace
exponent of (µ̃1, µ̃2) is

ψ(s, t) :=

∫

(0,+∞)2

[

1− e−sy1−ty2
]

ν(y1, y2) dy1dy2 =
tσ+1 − sσ+1

t− s
. (16)

Moreover, ψ(t, t) = (σ + 1)tσ for any t > 0. Interestingly note that ψ is symmetric, i.e.
ψ(s, t) = ψ(t, s) for any s > 0 and t > 0. Given this, we now proceed to determine the
partially exchangeable partition probability function corresponding to the bivariate PD
process. Define the function

ζk(n1,n2; z) :=
k
∏

j=1

nj,1!nj,2!

(n̄j + 1)!
2F1(nj,2 + 1, n̄j − σ; n̄j + 2; 1− z)

2F1(1,−σ; 2; 1− z)

ξk(n1,n2; z) =

k
∏

j=1

nj,1!nj,2!

(n̄j + 1)!
2F1(nj,1 + 1, n̄j − σ; n̄j + 2; 1− z)

2F1(1,−σ; 2; 1− z)

where n̄j := nj,1+nj,2 ≥ 1, for any j, and 2F1 denotes the Gauss hypergeometric function.
Hence, one can deduce the following result

Theorem 3 For and integer n ≥ 1 and vector (k,n, l) in An1,n2
, one has

Π
(n1,n2)
k (n1,n2) =

σ1+k Γ
(

2θ
σ + k

)

Γ2( θσ )
∏2
i=1(θ)ni

k
∏

j=1

(1− σ)n̄j−1

∫ 1

0

(

1− z

1− zσ+1

) 2θ
σ

×
[

zθ+n2−1ζk(n1,n2; z) + zθ+n1−1ξk(n1,n2; z)
]

dz (17)

Proof. Set q̄ := q1 + q2, for any integers q1 and q2, and suppose q̄ ≥ 1. Since ψ(s, t) is
evaluated as in (16) one obtains

gν(q1, q2; s, t) = (−1)q̄−1
∂ q̄

∂sq1∂tq2
ψ(s, t)

=

q2
∑

j=0

[σ + 1]j(−1)
q1−j+1 (q̄ − j)!

(

q2
j

)

tσ+1−j(t− s)−q̄−1+j

11



+

q1
∑

i=0

[σ + 1]i(−1)
q2−i+1 (q̄ − i)!

(

q1
i

)

sσ+1−i(s− t)−q̄−1+i

where [a]j =
∏j
i=1(a− i+1) is the j–th descending factorial coefficient of a, with [a]0 ≡ 1.

First split the area of integration in (11) into the two disjoint regions A+ = {(s, t) : 0 <
t ≤ s < ∞} and A− = {(s, t) : 0 < s ≤ t < ∞}. For (s, t) ∈ A+, one can resort to
Proposition 7 in the Appendix to obtain

gν(q1, q2; s, t) =
q1!q2!σ(σ + 1)(1− σ)q̄−1

(q̄ + 1)!
sσ−q̄ 2F1

(

q2 + 1, q̄ − σ; q̄ + 2; 1−
t

s

)

and the change of variable (t/s, s) = (z, w) leads to

∫

A+

sθ+n1−1tθ+n2−1e−ψ(s,t)
k
∏

j=1

gν(nj,1, nj,2; s, t) dsdt

= σk(σ + 1)k
k
∏

j=1

nj,1!nj,2!(1− σ)n̄j−1

(n̄j + 1)!

∫ ∞

0
w2θ+kσ−1

∫ 1

0
e−w

σ 1−zσ+1

1−z zθ+n2−1

×
k
∏

j=1

2F1(nj,2 + 1, n̄j − σ; n̄j + 2; 1− z) dz dw

= σk−1 Γ

(

2θ

σ
+ k

) k
∏

j=1

(1− σ)n̄j−1

∫ 1

0
zθ+n2−1

(

1− z

1− zσ+1

) 2θ
σ

ζk(n1,n2; z) dz

where the last equality follows from 1 − zσ+1 = (σ + 1)(1 − z) 2F1(1,−σ; 2; 1 − z). One
works in a similar fashion for (s, t) ∈ A− since, in this case, Proposition A.1 yields

gν(q1, q2; s, t) =
q1!q2!σ(σ + 1)(1− σ)q̄−1

(q̄ + 1)!
tσ−q̄ 2F1

(

q1 + 1, q̄ − σ; q̄ + 2; 1−
s

t

)

so that

∫

A−
sθ+n1−1tθ+n2−1e−ψ(s,t)

k
∏

j=1

gν(nj,1, nj,2; s, t) dsdt = σk−1Γ

(

2θ

σ
+ k

)

×

×
k
∏

j=1

(1− σ)n̄j−1

∫ 1

0
zθ+n1−1

(

1− z

1− zσ+1

) 2θ
σ

ξk(n1,n2; z) dz

The proof of (17) is then completed. �

The representation obtained in Theorem 3 suggests a few considerations that are
of great interest if comapred to the well-known results for the univariate two parame-
ter PD process. A nice feature about the exchangeable partition probability function
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Π
(n)
k in (1) is its symmetry: for any permutation τ of the integers (1, . . . , k) one has

Π
(n)
k (n1, . . . , nk) = Π

(n)
k (nτ(1), . . . , nτ(k)). The exchangeability property can be extended

to the partition probability function of bivariate PD process in the following terms. Let
rj = (nj,1, nj,2) and note that there might be rj vectors whose first or second coordinate
is zero. To take this into account, we introduce disjoint sets of indices I1 and I2 identi-
fying those rj with the first or the second zero coordinate, respectively. Hence, if ki is
the cardinality of Ii one has 0 ≤ k1 + k2 ≤ k. An interesting configuration arises when
I1 ∪ I2 = {1, . . . , k} which implies corresponds to the case where Xi 6= Yj for any i and j
and k1 + k2 = k. When this happens, we set I1 = {i1, . . . , ik1}, I2 = {j1, . . . , jk2} and

Π
(n1,n2)
k (n1,n2) = Π

(n1,n2)
k (ni1,1, . . . , nik1 ,1, nj1,2, . . . , njk2 ,2)

One can now immediately deduce the following

Corollary 4 The partition probability function in (17), seen as a function of (r1, . . . , rk)
is symmetric in the sense that for any permutation τ of (1, . . . , k) one has

Π
(n1,n2)
k (r1, . . . , rk) = Π

(n1,n2)
k (rτ(1), . . . , rτ(k))

Moreover, if k1 + k2 = k, then for any permutations τ1 and τ2 of integers in I1 =
{i1, . . . , ik1} and I2 = {j1, . . . , jk2}, respectively, one has

Π
(n1,n2)
k (ni1,1, . . . , nik1 ,1, nj1,2, . . . , njk2 ,2) =

Π
(n1,n2)
k (nτ1(i1),1, . . . , nτ1(ik1 ),1, nτ2(j1),2, . . . , nτ2(jk2 ),2)

Hence one observes that, seen as a function of the pairs of integers (nj,1, nj,2), Π
(n1,n2)
k

is symmetric. On the other hand, if Π
(n1,n2)
k is restricted to those partitions of n1+n2 data

such that Xi 6= Yj for any i and j, then Π
(n1,n2)
k is partially exchangeable with respect to

the single frequencies ni,1 and nj,2.

As for the correlation between p̃1(A) and p̃2(B), one has

gν(1, 1; s, t) =
sσ−2(−σ − 1)3

3!
2F1

(

2− σ, 2; 4; 1−
t

s

)

0 ≤ t ≤ s <∞

and, by virtue of symmetry of the function (s, t) 7→ (st)θe−ψ(s,t)gν(1, 1; s, t),

∫

(R+)2
(st)θe−ψ(s,t) gν(1, 1; s, t) dsdt = 2

∫ ∞

0
ds

∫ s

0
dt (st)θ e−ψ(s,t)gν(1, 1; s, t)

= 2

∫ ∞

0
dw

∫ 1

0
dz w2θ+σ−1e−w

σ 1−zσ+1

1−z zθ (1− z)−3 ×
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×







−

1
∑

j=0

[σ + 1]j(2− j)!z
σ+1−j(1− z)j+

+
1

∑

0

[σ + 1]i(2− i)!(1− z)
i

}

dz

=
Γ
(

2θ
σ + 1

)

(1− σ2)

3

∫ 1

0
zθ

(

1− z

1− zσ+1

) 2θ
σ
+1

2F1(2− σ, 2; 4; 1− z) dz

This implies that for any A and B in X

corr(p̃1(A), p̃2(B)) =
α(A ∩B)− α(A)α(B)

√

α(A)α(B)(1− α(A))(1− α(B))

(θ + 1)(σ + 1)Γ
(

2θ
σ + 1

)

3 Γ2
(

θ
σ + 1

) ×

∫ 1

0
zθ

(

1− z

1− zσ+1

) 2θ
σ
+1

2F1(2− σ, 2; 4; 1− z) dz

from which one easily deduces corr(p̃1(B), p̃2(B)). A simplification occurs if θ = 0, in
which case p̃i is a normalized σ–stable completely random measure and

corr(p̃1(B), p̃2(B)) =
1

3

∫ 1

0

2F1(2− σ, 2; 4; 1− z)

2F1(−σ, 1; 2; 1− z)
dz (18)

for any B in X . The correlation between p̃1(B) and p̃2(B) does not depend on the specific
set B: this is an argument commonly used in Bayesian statistics to interpret the expression
in (18) as a prior guess on the correlation between p̃1 and p̃2.

5 A posterior characterization

The determination of the posterior distribution of the vector (p̃1, p̃2), given D = {Xi, Yj :
i = 1, . . . n1, j = 1, . . . , n2} represents an important issue in Bayesian statistical inference.
In the one-sample case, in [17], it is shown that if (Xi)i≥1 is a sequence of exchangeable
random elements directed by a PD(σ, θ) process, then, conditional on a sample X1, . . . , Xn

featuring k distinct values X∗1 , . . . , X
∗
k with respective frequencies n1, . . . , nk, the random

probability measure p̃σ,θ is identical in distribution to

k
∑

j=1

wj δX∗j + (1− w1 − · · · − wk) p̃
∗

with the vector (w1, . . . , wk) being distributed according to a k–variate Dirichlet distribu-
tion with parameters (n1 − σ, . . . , nk − σ, θ + kσ) and p̃∗ coinciding in distribution with a
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PD(σ, θ+kσ) process. Here we aim at extending this result to a vector (p̃1, p̃2) of dependent
PD(σ, θ) random probability measures.

To this end, we suppose the n1 + n2 data in D are represented by k distinct values,
Z∗1 , . . . , Z

∗
k , with corresponding frequencies (m1, . . . ,mk) where mi = ni,1+ni,2 for any i =

1, . . . , k. The vector of completely random measures (µ̃1, µ̃2) has intensity ν on (R
+)2 and

we let (S, T ) be a vector of non–negative random variables whose distribution, conditional
on D, admits a density

f(s, t|D) ∝ sθ+n1−1tθ+n2−1 e−ψ(s,t)
k
∏

j=1

gν(nj,1, nj,2; s, t) (19)

with ∝ meaning that equality holds up to a proprtionality constant. As in the previous
section, (µ̃1, µ̃2) has the intensity ν specified in (15) so that the marginal components are
both σ–stable. Morevoer, conditional on (S, T ) and onD, (µ̃∗1, µ̃

∗
2) is a vector of completely

random measures with Lévy intensity ν∗(y1, y2) = e−Sy1−Ty2ν(y1, y2). From this one can
deduce that the conditional univariate Lévy intensities of µ̃∗1 and of µ̃

∗
2 are

ν∗1(y) =
σ(σ + 1) tσ+1

Γ(1− σ)
e−(s−t)y Γ(−σ − 1; ty)

ν∗2(y) =
σ(σ + 1) sσ+1

Γ(1− σ)
e−(t−s)y Γ(−σ − 1; sy)

respectively. The Laplace exponent of (µ̃∗1, µ̃
∗
2) is given by ψ

∗(λ1, λ2) = ψ(s+ λ1, t+ λ2)−
ψ(s, t) for any s, t, λ1, λ2, where ψ is as in (16). Note that this implies, for example, that
the marginal Laplace exponent for µ̃∗1 coincides with

ψ∗1(λ1) =
σ(σ + 1)tσ+1

Γ(1− σ)

∫ ∞

0

[

1− e−λ1y
]

e−(s−t)y Γ(−σ − 1; ty) dy

for any s, t and λ1 such that s 6= t and s + λ1 6= t. Finally, introduce a collection of k
mutually independent random pairs {(Mj,1,Mj,2) : j = 1, . . . , k} and the density function
of (Mj,1,Mj,2), conditional on (S, T ) and on D, is

xnj,1ynj,2 e−Sx−Ty ν(x, y)

gν(nj,1, nj,2;S, T )
1(0,+∞)2(x, y) (20)

At this point, we are able to describe a characterization of the posterior distribution of
(µ̃1,σ,θ, µ̃2,σ,θ) given the data D and the random vector (S, T ).

Theorem 5 Let (p̃1, p̃2) be a vector of dependent two–parameter Poisson–Dirichlet pro-
cesses and suppose the data D = (Xn1

,Yn2
) satisfy (6). Moreover, let D contain k dis-

tinct values Z∗1 , . . . , Z
∗
k with respective frequencies n1,1+n1,2, . . . , nk,1+nk,2. The posterior
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distribution of (µ̃1,σ,θ, µ̃2,σ,θ) given D and (S, T ) coincides with the distribution of the CRM

(µ̃∗1, µ̃
∗
2) +

k
∑

j=1

(Mj,1 δZ∗j , Mj,2 δZ∗j ) (21)

where (µ̃∗1, µ̃
∗
2) and the k vectors of jump heights (Mj,1,Mj,2), j = 1, . . . , k, are independent.

An analogous description for the univariate PD(σ, θ) process is provided by [14], where
the mixture is explicitly evaluated so to reproduce Pitman’s result. It is worth noting
that from (20) one can deduce an expression for the marginal distributions of the jumps,
conditional on (S, T ) and on D. Resorting to (3.383.4) and (7.621.3) in [8] one finds out
that the density function of Mj,1, conditional on (S, T ) and on D, is

fMj,1
(x) =

(n̄j + 1)!

nj,1!Γ(n̄j − σ)

t1−
nj,2−σ

2 s−1−nj,1

2F1(nj,1 + 1, σ + 2; n̄j + 2; 1− t
s)
×

× xnj,1+
nj,2−σ

2
−1 e−(s−

t
2
)xW

−
nj,2+σ+2

2
,−

nj,2−1−σ

2

(tx)

where n̄j := nj,1+nj,2,Wλ,µ is the Whittaker function and 2F1(a, b; c;x) is to be interpreted
as the analytic continuation of the series representation of the hypergeometric function for
x in the complex plane cut along [1,∞).

Example 1. A possible use of previous result is the determination of the predictive
distribution with a bivariate two parameter Poisson–Dirichlet process. For the ease of
exposition, here we confine ourselves to considering a sample of size n1 = 1 and n2 = 0
and will determine P[Y1 ∈ A|X1, S, T ] and P[X2 ∈ A|X1, S, T ]. In this case, conditional

on (X1, S, T ), by virtue of Theorem 4 one has (µ̃1,σ,θ, µ̃2,σ,θ)
d
= (µ̃∗1, µ̃

∗
2) + (M1δX1

, M2δX1
).

This leads to

P[Y1 ∈ A|X1, S, T ] = E

[

µ∗2(A) +M2δX1
(A)

µ∗2(X) +M2

]

.

Since M2 is a non–negative random variable whose density, conditional on (X1, S, T ), co-
incides with

fM2
(y) =

2

Γ(1− σ)

t−1 s
σ+1

2

2F1(1, σ + 2; 3; 1− s
t )
y

1−σ
2
−1 e−(t−

s
2
)y W−σ+3

2
, σ
2

(sy)

Using this fact, one obtains

P[Y1 ∈ A|X1, S, T ] = α(A)ω0 + δX1
(A)ω1 (22)

where

ω0 =
σ(σ + 1)

2

sσ+1tσ−2 eψ(s,t)

2F1

(

1, 2 + σ; 3; 1− s
t

)

∫ ∞

0
(t+ u)−1 e−ψ(s,t+u)
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× 2F1

(

1, 2 + σ; 3; 1−
s

t+ u

)

2F1

(

1, 1− σ; 3; 1−
s

t+ u

)

du

ω1 =
1− σ

3

s
σ+1

2 t−1 eψ(s,t)

2F1

(

1, 2 + σ; 3; 1− s
t

)

×

∫ ∞

0
(t+ u)−2 e−ψ(s,t+u) 2F1

(

2, 2 + σ; 4; 1−
s

t+ u

)

du

Similarly, one can show that

P[X2 ∈ A|X1, S, T ] = α(A)ω′0 + δX1
(A)ω′1 (23)

with

ω′0 =
σ (σ + 1)

(2 + σ) Γ(1− σ)

eψ(s,t)tσ+2s−2

2F1

(

2, 2 + σ; 3; 1− t
s

)

∫ ∞

0
(s+ u)σ−2 e−ψ(s+u,t)

× 2F1

(

2 + σ, 2 + σ; 3 + σ; 1−
t

s+ u

)

2F1

(

1, 1− σ; 3; 1−
t

s+ u

)

du

ω′1 =
2

(3 + σ) Γ(1− σ)

tσ+2s−2 eψ(s,t)

2F1

(

2, 2 + σ; 3; 1− t
s

)

∫ ∞

0
(s+ u)σ−3 e−ψ(s+u,t)

× 2F1

(

3 + σ, 2 + σ; 4 + σ; 1−
t

s+ u

)

du

It should be recalled that an analogous expression could have been attained by resorting
to the partition probability function described in Section 4.
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Appendix

A Technical results

We first prove a combinatorial result that serve as a tool for proving the Proposition 7
below.

Lemma 6 Suppose h ∈ {0, 1, . . . ,m} and let n ≥ m. Then

h
∑

j=0

(−1)j
(

h

j

)(

n− j

m

)

=
h!(n− h)!

m!(n−m)!

(

m

h

)

. (24)
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If h ∈ {m+ 1, . . . , n}, then

h
∑

j=0

(−1)j
(

h

j

)(

n− j

m

)

= 0. (25)

Proof. It is straightforward and similar to the proof of Lemma A.1. Indeed

h
∑

j=0

(−1)j
(

h

j

)(

n− j

m

)

=
1

m!

∂m

∂sm

h
∑

j=0

(−1)j
(

h

j

)

sn−j
∣

∣

∣

∣

s=1

=
1

m!

∂m

∂sm
sn−h(s− 1)h

∣

∣

∣

∣

s=1

=
1

m!

m
∑

i=0

(

m

i

)

∂i

∂si
sn−h

∣

∣

∣

∣

s=1

∂m−i

∂sm−i
(s− 1)h

∣

∣

∣

∣

s=1

=
1

m!

(

m

h

)

[n− h]m−hh!

and (24) follows. �

Let us now state the main proposition which is involved in the proof of the results
stated in Theorem 2.

Proposition 7 Let q1 and q2 be two non–negative integers and q̄ = q1 + q2. For any
z ∈ (0, 1) one has

q1
∑

j=0

[σ + 1]j(q̄ − j)!

(

q1
j

)

zσ+1−j(1− z)j −

q2
∑

i=0

(−1)i [σ + 1]i(q̄ − i)!

(

q2
i

)

(1− z)i

= (1− z)q̄+1 (−1)
q1q1!q2!(−σ − 1)q̄+1

Γ(q̄ + 2)
2F1(q1 + 1, q̄ − σ; q̄ + 2; 1− z)

Proof. Suppose that q2 > q1. Since z
σ+1−j =

∑

v≥0[σ + 1− j]v(−1)
v(1− z)v/v!, then

q1
∑

j=0

[σ + 1]j(q̄ − j)!

(

q1
j

)

zσ+1−j(1− z)j

=
∞
∑

v=0

(−1)v

v!

q1
∑

j=0

[σ + 1]j+v(q̄ − j)!

(

q1
j

)

(1− z)j+v

=

∞
∑

h=0

[σ + 1]h(1− z)
h

h
∑

v=0∨(h−q1)

(−1)v

v!
(q̄ − h+ v)!

(

q1
h− v

)

=





q1
∑

h=0

+

q2
∑

h=q1+1

+

q̄
∑

h=q2+1

+

∞
∑

h=q̄+1



 [σ + 1]h (1− z)
h ×
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×
h

∑

v=0∨(h−q1)

(−1)v

v!
(q̄ − h+ v)!

(

q1
h− v

)

and a ∨ b := max{a, b}. As for the first sum above, note that for any h ∈ {0, 1, . . . , q1}

h
∑

v=0

(−1)v

v!
(q̄ − h+ v)!

(

q1
h− v

)

=
q1!q2!

h!

h
∑

v=0

(−1)v
(

h

v

)(

q̄ − h+ v

q2

)

=
q1!q2!

h!
(−1)h

h!(q̄ − h)!

q1!q2!

(

q2
h

)

where the last equality follows from (24) in Lemma A.2. When h ∈ {q1 + 1, . . . , q2} one
has

h
∑

v=h−q1

(−1)v

v!
(q̄ − h+ v)!

(

q1
h− v

)

= (−1)h(q̄ − h)!

q1
∑

j=0

(−1)j
(

q1
j

)(

q̄ − j

q̄ − h

)

= (−1)h(q̄ − h)!

(

q2
h

)

by virtue of (24) to show that the second sum is zero. On the other hand, for any h ∈
{q2 + 1, . . . , q̄} it can be seen that

h
∑

v=h−q1

(−1)v

v!
(q̄ − h+ v)!

(

q1
h− v

)

= (−1)h
q1
∑

j=0

(−1)j
(

q1
j

)

[q̄ − j]q̄−h = 0.

Hence, one is left just with the last sum where h ≥ q̄ + 1. In this case, from equation
0.160.2 in [8] one has

h
∑

v=h−q1

(−1)v

v!
(q̄ − h+ v)!

(

q1
h− v

)

= (−1)h+q1
Γ(h− q2)q2!

h!Γ(h− q̄)
.

Consequently, one has

q1
∑

j=0

[σ + 1]j(q̄ − j)!

(

q1
j

)

zσ+1−j(1− z)j −

q2
∑

i=0

(−1)i[σ + 1]i(q̄ − i)!

(

q2
i

)

(1− z)i

=

∞
∑

h=q̄+1

[σ + 1]h(−1)
h+q1 q2!Γ(h− q2)

h!Γ(h− q̄)
(1− z)h

=
∞
∑

j=0

[σ + 1]j+q̄+1(−1)
j+q2+1Γ(j + q1 + 1)q2!

Γ(j + q̄ + 2)j!
(1− z)j+q̄+1
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=
(−1)q1q1!q2!

Γ(q̄ + 2)
(1− z)q̄+1

∞
∑

j=0

Γ(−σ + j + q̄)

Γ(−σ − 1)

(q1 + 1)j
j! (q̄ + 2)j

(1− z)j

which yields the stated result. For the case q2 ≤ q1 one works in a similar fashion. �

B Proof of Theorem 4.

The result will be proved by evaluating the posterior Laplace transform of the vector
(µ̃1,σ,θ(A), µ̃2,σ,θ(A)), given D and (S, T ). To this end, we resort to a technique introduced
in [20]. The idea is to evaluate an approximation of the posterior which is simpler to
handle and, then, obtain the posterior via a limiting procedure. This is better illustrated as
follows. First note that since X is separable there exists a sequence (Πm)m≥1 of measurable
partitions, with Πm = {Am,i : i = 1, . . . , km}, such that: (a) Πm+1 is a refinement of Πm;
(b) if Gm = σ(Πm), then X = σ(∪m≥1Gm); (c) max1≤i≤km+1 diam(Am,i)→ 0 as m→∞.
Accordingly, define sequences (X ′m,i)i≥1 and (Y

′
m,i)i≥1 of X–valued random elements with

X ′m,l =
∑km+1

i=1 xm,i δAm,i
(Xl) and Y

′
m,l =

∑km+1
i=1 ym,i δAm,i

(Yl), for any l ≥ 1, where xm,i
and ym,i are points in Am,i. It follows that

P[X ′m,r ∈ A, Ym,s ∈ B | (µ̃1,σ,θ, µ̃2,σ,θ)] =

km+1
∑

i,j=1

µ̃1,σ,θ(Am,i)

µ̃1,σ,θ(X)

µ̃2,σ,θ(Am,j)

µ̃2,σ,θ(X)
δxm,i

(A) δym,j
(B).

It is apparent that if F
(m)
n1,n2

= σ(X ′
m,n1

,Y ′
m,n2

) is the σ–algebra generated by X ′
m,n1

=
(X ′m,1, . . . , X

′
m,n1

) and Y ′
m,n2

= (Y ′m,1, . . . , Y
′
m,n2

), then

F
(m)
n1,n2

⊂ Fn1,n2
:= σ(X1, . . . , Xn1

, Y1, . . . , Yn2
).

Moreover, set j = (j1, . . . , jn1+n2
) ∈ {1, . . . , km + 1} and Rm,j = ×n1+n2

i=1 Am,ji , and note
that

E[e−λ1µ̃1,σ,θ(A)−λ2µ̃2,σ,θ(A) |F (m)
n1,n2

] =
∑

j

1Rm,j
(X ′

m,n1
,Y ′

m,n2
)×

E

[

e−λ1µ̃1,σ,θ(A)−λ2µ̃2,σ,θ(A)
∏n1

i=1
µ̃1,σ,θ(Am,ji

)

µ̃1,σ,θ(X)

∏n1+n2

l=n1+1

µ̃2,σ,θ(Am,jl
)

µ̃2,σ,θ(X)

]

E

[

∏n1

i=1
µ̃1,σ,θ(Am,ji

)

µ̃1,σ,θ(X)

∏n1+n2

l=n1+1

µ̃2,σ,θ(Am,jl
)

µ̃2,σ,θ(X)

]

for any positive λ1 and λ2. An application of Proposition 2 in [20] implies that

E[e−λ1µ̃1,σ,θ(A)−λ2µ̃2,σ,θ(A) |F (m)
n1,n2

]→ E[e−λ1µ̃1,σ,θ(A)−λ2µ̃2,σ,θ(A) |Fn1,n2
] (26)
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almost surely, as m→∞. Our main goal will then be the evaluation of the left hand side
of (26), so that the stated equivalence in distribution with (21) can be achieved by taking
the limit as m → ∞. Let us suppose that, for m large enough, the data are gathered
into 1 ≤ k ≤ n1 + n2 sets Am,i1 , . . . , Am,ik and set the frequencies nj,1 =

∑n1

r=1 1Am,j
(Xr),

nj,2 =
∑n2

r=1 1Am,j
(Yr). The left hand side of (26) reduces to

E

[

e−λ1µ̃1,σ,θ(A)−λ2µ̃2,σ,θ(A)
∏k
j=1

(

µ̃1,σ,θ(Am,j)
µ̃1,σ,θ(X)

)nj,1
(

µ̃2,σ,θ(Am,j)
µ̃2,σ,θ(X)

)nj,2
]

E

[

∏k
j=1

(

µ̃1,σ,θ(Am,j)
µ̃1,σ,θ(X)

)nj,1
(

µ̃2,σ,θ(Am,j)
µ̃2,σ,θ(X)

)nj,2
] (27)

By virtue of Theorem 1, the denominator coincides with

σ2
∏k
j=1 α(Am,j)

Γ2
(

θ
σ

)
∏2
i=1(θ)ni

∫ ∞

0

∫ ∞

0
sθ+n1−1tθ+n2−1 e−ψ(s,t)

k
∏

j=1

gν(nj,1, nj,2; s, t) dsdt+ am

as m→∞, where am is such that limm→∞ = am/(
∏k
j=1 α(Am,j)) = 0, and we are taking

into account that α is a non–atomic probability measure on (X,X ). On the other hand,
one can check that the numerator of (27) is

σ2
∏k
j=1 α(Am,j)

Γ2
(

θ
σ

)
∏2
i=1(θ)ni

×

∫ ∞

0

∫ ∞

0
sθ+n1−1tθ+n2−1 e−α(A)ψ(s+λ1,t+λ2)−α(A

c)ψ(s,t) ×

∏

j:A∩Am,j 6=∅

∫ ∞

0

∫ ∞

0
xnj,1ynj,2e−(λ1+s)x−(λ2+t)yν(x, y) dxdy dsdt+ a′m

as m → ∞, where a′m is such that limm→∞ = a′m/(
∏k
j=1 α(Am,j)) = 0. When taking the

limit as m→∞ one finds out that for any A ∈ X

E

[

e−λ1µ̃1,σ,θ(A)−λ2µ̃2,σ,θ(A)
∣

∣

∣

∣

D

]

=

∫

(R+)2
f(s, t|D) e−α(A)[ψ(s+λ1,t+λ2)−ψ(s,t)]×

×
∏

i:Z∗i ∈A

∫

(R+)2 e
−λ1x−λ2y xnj,1ynj,2e−sx−tyν(x, y) dx dy

gν(nj,1, nj,2; s, t)
ds dt

And this yields the representation in (21). �
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[21] A. Rodŕıguez, D.B. Dunson, A. Gelfand (2008). The nested Dirichlet process. J. Amer.
Statist. Assoc. 103, 1131–1144.

[22] D.M. Roy, Y.W. Teh (2009). The Mondrian process. In Advances in Neural Infor-
mation Processing Systems (NIPS) 21 (D. Koller, Y. Bengio, D. Schuurmans and L.
Bottou (Eds.)).

[23] E. Sudderth, M.I. Jordan (2009). Shared segmentation of natural scenes using depen-
dent Pitman-Yor processes. In Advances in Neural Information Processing Systems
(NIPS) 21 (D. Koller, Y. Bengio, D. Schuurmans and L. Bottou (Eds.)).

[24] Y.W. Teh, M.I. Jordan, M.J. Beal, D.M. Blei (2006). Hierarchical Dirichlet processes.
J. Amer. Statist. Assoc. 101, 1566-1581.

23


