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Abstract

I adopt the distribution dynamics framework to study labor productivity conver-

gence, in the period 1980-1995, among 28 developed and developing countries, in dif-

ferent manufacturing sub-sectors, identified, as according their technological content

into Resource Based, Low Technology, Medium Technology and High Technology. I

find that, exception made for High Technology and Manufacturing as a whole, all sub-

compartments are predicted to converge within small groups, validating the so-called

club-convergence hypothesis. Thus, as high tech sectors are the ones opening the best

growth-equity prospects, developing countries should target these kind of productions.

JEL Classification Code: C14, O33, O47.

Keywords: Italian Regions; Neoclassical and Technological Convergence; Distribution Dy-

namics.
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1 Introduction

In the past forty-five years, world gross domestic product has steadily increased at an

annual average rate of 3.5%.1 Contemporaneously, GDP per capita and GDP per worker

distributions have been characterized by two interesting features: first, the emergence of

two distinct peaks, corresponding to poor and rich countries; and, second, the reduction

of intra-distribution inequalities, that is a reduction in the spread between relatively poor

and relatively rich economies, Durlauf and Quah (1999).

This stylized evidence, summarized in Figure 1, prompted a resurgence of interest in cross-

country convergence. The point to be settled being whether or not developing countries

are catching-up with their richer counterparts, in terms of income per capita or per worker.

In this work I study labor productivity convergence tendencies, in the period 1980-1995,

among 28 developed and developing countries, in different manufacturing sub-sectors, iden-

tified, as according to Lall (2000) technological taxonomy, into Resource Based, Low Tech-

nology, Medium Technology and High Technology.2 Table 1 reports sample’s details.3

More in detail, I employ an unified distribution dynamics framework, as originally de-

veloped by Quah (1996a), to examine the three textbook (and competing) convergence

hypotheses, namely: absolute, conditional and club convergence.4

It is well known that according to the absolute convergence prediction, poor economies

tend to grow faster than rich ones; then, contemporaneous per capita income differences

are only transitory and will be null in the long run, Sala-i-Martin (1996). Conditional

convergence asserts, instead, that the long run equalization of per capita income will arise

only among countries that have identical structural characteristics (i.e. saving rates, inter-

1Own calculation from World Bank, World Development Indicators, for the period 1961-2007.
2The classification of Lall (2000) distinguishes manufacturing compartments according to their research

intensity, measured as Research and Development (R&D) expenditure share over sales’ value. In partic-
ular, Resource Based industries are the ones in which the value of production is essentially given by the
possession of primary resources (e.g. processed food, manufactured tobacco, refined petroleum products);
Low Technology includes productions whose R&D expenditure is below 1% of sales’ value (e.g. garments,
footwear, pottery and cutlery); in Medium Technology, R&D expenditure is between 1% and 4% (e.g.
automotive industry, agricultural machinery, perfumery and pesticides) and in High Technology R&D
expenditure is greater than 4% of sales’ value (e.g. electronics and scientific instruments).

3It must be noted that the choice of the countries and of the time span was dictated by data availability.
Only very recently (i.e. April 2010) new disaggregated data for manufacturing have become available.
The most promising data-set, with the aim of enriching the analysis with respect to both cross-sectional
and time-series dimensions, seems to be the United Nations Industrial Development Organization (i.e.
UNIDO), Industrial Statistics Database 2010 at the 2 digit level of the International Standard Industrial
Classification (i.e. ISIC) Code (Revision 3). This is left for (near) future research.

4For an exhaustive review on the different convergence hypotheses and the so-called “controversy on
convergence”, in both its theoretical foundations and empirical assessments, see the articles of Durlauf
(1996), Bernard and Jones (1996b), Galor (1996), Quah (1996b) and Sala-i-Martin (1996), all collected in
The Economic Journal Vol.106, No.437.
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temporal preferences, development stage,...), Barro(1991). Finally, when club convergence

hypothesis is not rejected, it means that in the long run countries will converge only within

small groups and not altogether. In other words, overall convergence comes up only if both

countries’ structural characteristics and initial conditions are evened out, Galor (1996).

With respect to club convergence, it is important to clarify that in this paper I will

consider physical capital stock and technological level as the key drivers of clustering dy-

namics. That is, paraphrasing Galor and Zeira (1993), the initial distribution of capital

stock (technology) affects aggregate output and investment both in the short and in the

long run.Moreover, the choice of physical capital is inspired by the literature on critical

thresholds while the one of technological level follows the tradition of technological catch-

up and absorptive capabilities.5

My work represents a significative contribution to the convergence literature because this

is the first study that assesses competing hypotheses concerning labor productivity con-

vergence between advanced and laggard economies, in manufacturing sectors, employing

distribution dynamics. In fact, previous analysis on alternative convergence predictions

have been focused on the behavior of GDP per capita or aggregate labor productivity,

either using parametric or non-parametric techniques.6 Moreover, when convergence ten-

dencies have been investigated in different economic sectors (i.e. agriculture, mining, ser-

vices,...) or sub-sectors (i.e. manufacturing industries), only OECD countries have been

considered. The sectoral analysis I am referring to are the ones of Broadberry (1993) and

Bernard and Jones (1996a) and the sub-sectoral ones of Dollar and Wolff (1988)(1993),

Boheim et al.(2000) and Caree et al.(2000). Interestingly, the sectoral studies fail to find

convergence in manufacturing sector as a whole, while the sub-sectoral ones confirm such

an hypothesis in all industrial compartments.

At this point, I want to mention that in Dal Bianco (2010) I investigated, through stan-

dard parametric tools, whether cross-countries convergence in Lall’s technological sectors

is manly due to capital accumulation (i.e. neoclassical convergence) or to technological

catch-up (i.e. technological convergence), employing a panel of 50 developed and devel-

oping countries, observed at five-years intervals, for the period 1980-2000.7 In particular,

5See Azariadiz and Drazen (1990) and Durlauf and Johnson (1995) for formal illustrations of critical
threshold’s frameworks; Baumol (1986) and Durlauf (1993) for, respectively, seminal contribution and
formal treatment of technological catch-up and absorptive capacities.

6See Islam (2003) and Durlauf et al.(2005) for exhaustive and authoritative reviews.
7The careful reader might note that, in my parametric study, both the time series and the cross-sectional

dimensions are larger than the present ones. This is mainly due to the choice of collecting the relevant
variables at 5-years intervals. See footnote 3 for further details on data-limitations problems.
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I found that both hypotheses hold in all sectors and countries and, more precisely, that

capital accumulation is the fundamental convergence determinant for (and in) industri-

alized economies, while technological catch-up is more important for (and in) emerging

ones. Although, given the econometric techniques employed, such results are exclusively

indicative of the behavior of the average economy. Thus, as the issue of convergence is

innerly related to the relative economic performance of distinct countries, in the present

work I employ distribution dynamics precisely because it allows to track such a relative

performance along time. Moreover, it has the great advantage of not requiring any sample

split for the assessment of the club convergence prediction, as for example in Desgoits

(1999), Bloom et al.(2003) and Graham and Temple (2006).

Finally, a by-product of the present exercise is represented by new series on Total Fac-

tor Productivity (i.e. TFP), estimated employing the superlative index approach of

Caves(1982a) and Caves et al.(1982b), and on net physical capital stock, obtained ap-

plying the Perpetual Inventory Method, assuming an exponential depreciation rate of

6%.8

Having explained the novelties of my contribution, I wish to further motivate the present

research.

The choice of investigating manufacturing sectors is due to a twofold motivation. Very

synthetically, the first is that if any cross-country convergence should be shown, it should

be shown exactly here. Before explaining this statement, I pass to the second motiva-

tion that concerns, more specifically, the policy implications that could be retrieved from

the analysis of manufacturing compartments. That is, as different countries might have

strongest convergence tendencies in different industries due, for example, to comparative

advantages that can cause employment shifts from less to more productive sectors, as

shown by Dollar and Wolff (1988)(1993), such sector-specific growth potential might call

for selective industrial policies or for the support of particular activities, as according the

infant industry argument.9

Turning now to the first argument, this is grounded on both theoretical considerations and

8Although of some potential interest, describing in detail the techniques employed will make the present
work (even) longer. So that, I refer to Griffith et al.(2004) for further details on TFP estimation and to
Vandenbuscche et al.(2006) for what concerns capital stock. With the latter respect, it might be worth to
mention that my results are robust to the change of the depreciation rate. In particular, I employed a 4%
and a 15% depreciation rate, respectively used by Nehru and Dhareshwar (1993) and Caselli and Wilson
(2004). Finally, to initialize capital stock series I have employed the formula of steady-state capital stock
in the neoclassical growth model.

9See Lall (?) for an effective review.
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stylized evidence.

In the first instance, since the seminal contribution of Lewis (1954), manufacturing has

been identified as the locus of economic growth. In fact, once subsistence level of food is

ensured by agriculture, the development of the industrial sector promotes intensive eco-

nomic growth, that is an increasing per capita income over time.10 In Figure (2.a), it

could be appreciated the decline of agricultural value added together with the increasing

share of industrial and service’s production. Second, manufacturing is technologically the

most dynamic sector in the world economy, in the sense that the greatest research efforts

are made to launch new manufactures or to improve existing ones, Cornwall (1977). It is

interesting to note that this evidence holds for both high and low income economies. In

fact, according to the World Intellectual Property Organization, between 1985 and 2005,

the number of patent applications, by both resident and non-resident inventors, has dou-

bled in developed countries and it has increased by four times in developing ones. Third,

as effectively described by the United Nations Conference on Trade and Development (i.e.

UNCTAD) in its World Investment Reports, industrial production is nowadays world in-

tegrated. This feature is crucial in convergence analysis because developed and developing

countries interact with each others and their growth paths are interlinked. The last two

panels of Figure (2) give a flavor of the degree of world-integration, mapping Foreign

Direct Investment and exports.11 Noticeably, laggard economies’ outward foreign invest-

ments are increasing and their high technology exports have reached the level of advanced

economies’.

To reassess this evidence, it is worth starting from the argument of Bernard and Jones

(1996a). That is, tradable goods are highly differentiated, as well as their production tech-

nologies, and that productive inputs’ endowments vary a lot across countries. Although,

the fact that capital is flowing towards (and from) low income economies and that frontier-

technologies are getting diffused, lead to think that manufacturing is the perfect stage for

cross-country convergence.

Passing now to the choice towards Lall’s taxonomy, this is motivated by two considera-

tions. First: as any sub-sectoral aggregation, Lall’s one makes inter-sectoral comparisons

possible and, as already mentioned, this fact drives to potentially nice policy implications.

Second: it offers the possibility to establish a 1 to 1 correspondence between the employed

10See, for example, Matsuyama (1992).
11For a very up-dated systematic review of the effects of Foreign Direct Investment on economic growth

in low income countries, see Bruno and Campos (?).
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classification and the International Standard Industrial Classification (i.e. ISIC) (Revision

2), which is the one followed by the United Nations Industrial Development Organization

(i.e.UNIDO) for the collection of sub-sectoral manufacturing data.12 Table 2 reports the

correspondence between ISIC and Lall’s classifications. Not casually, UNIDO data consti-

tute the basis for my empirical analysis. This represents a major advantage with respect to

other classifications, like Pavitt (1984), that, although effective in distinguishing industrial

compartments, present huge overlaps between their categories and ISIC’s ones.

To conclude, I want to sketch the main results of my analysis. In particular, I found

supportive evidence for absolute convergence in High Tech sectors and Manufacturing as

a whole, while technological initial conditions determine the club convergence behavior of

Resource Based and Medium Tech, while the ones on capital stock shape the clustering

dynamics of Low Tech industries. The main policy lesson that can be retrieved is in line

with the one of Lall (1997), that is: as high tech sectors open the better growth-equity

prospects, with the minimum effort, developing countries should concentrate more on this

kind of productions. This is because, in high tech sectors, even labor intensive activities,

such as assembly, are more stable, skill-creating and positive externality generating than

in traditional ones.

The paper is organized as follows. The second part presents the econometric methodology

employed. Details on empirical implementation and data sources are thorough the text.

The third illustrates and discusses the results obtained. Final comments and possible lines

for future research conclude.

2 Methodology

2.1 An Overview on Distribution Dynamics and Data

The kernel density estimator and the stochastic kernel are the two building blocks of

distribution dynamics estimation. The former is employed to estimate the density of a

random variable and it can be thought as a refinement of the histogram. In particular,

while in the histogram the frequency distribution is calculated for disjoint states, with the

12In particular, Lall (2000) technological taxonomy was originally developed employing the Standard
International Trade Classification (i.e. SITC) (Revision 2). Thanks to Eurostat tables, which put in in
correspondence ISIC Revision 2 with ISIC Revision 3, SITC Revision 2 with SITC Revision 3 and, finally,
SITC Revision 3 with ISIC Revision 3, is then possible to obtain a 1 to 1 relation between UNIDO data
and Lall’s manufacturing sectors.
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kernel estimator the frequency distribution is estimated for a large number of overlapping

class intervals, which gives a much smoother appearance, resembling a probability density

function. The stochastic kernel maps, instead, the density of a random variable at one

point in time into the density in a subsequent period, where the density functions have been

calculated through kernel density estimators. In other words, the stochastic kernel, which

can be thought as a set of conditional densities, describes the law of motion of a sequence

of distributions and it serves to retrieve the evolution of the probability distribution of

a random variable along time, Quah (1993). As already mentioned, this tool is very

convenient for convergence analysis. In fact, it allows to distinguish whether economies

are converging overall or they are clustering within clubs.

My empirical analysis focuses on the evolution along time of labor productivity distribution

and it employs two types of stochastic kernel:

1. unconditioned stochastic kernels

2. conditioned stochastic kernels

The unconditioned stochastic kernels give information on the likelihood that an economy,

starting from a given relative position in the initial period t, will end up improving or

worsening its relative position in the final period t + s. More technically, unconditioned

stochastic kernels measure the transition probabilities from a labor productivity status to

another in a given time span.

Unconditioned stochastic kernels are used here to detect polarization tendencies and to

assess, as it will be clarified soon, the absolute convergence hypothesis.

Conditioned stochastic kernels are an extension of unconditioned ones and they allow to

identify the factors that eventually lead to intra-distributional changes. In fact, the effects

of conditioning are identified by changes in shape and location of the stochastic kernel

with respect to the unconditioned case.

I will use conditioned stochastic kernels for assessing both the conditional and club con-

vergence hypotheses.

More in detail, when distribution dynamics is employed, any convergence prediction is dis-

charged if the corresponding long-run labor productivity distribution (i.e. ergodic distri-

bution) is multi-peaked and relatively highly dispersed. So that, in my empirical exercise,

I start with analyzing the behavior of labor productivity distribution, as estimated via

unconditioned stochastic kernels, in order to assess the absolute convergence prediction;

7



then, if the unconditioned ergodic is multi-peaked, I pass to evaluate conditional conver-

gence, looking to the time evolution of the labor productivity distribution conditioned to

steady-state proxies; and, finally, if also this ergodic turns out to be multi-modal, providing

supportive evidence for the club convergence hypothesis, I assess whether such a cluster-

ing dynamics can be ascribed to insufficient capital accumulation (technical upgrading)

adding capital stock per worker (technological proxy) to the set of steady state condition-

ing factors. Thus, as this latter ergodic distribution is likely to be single-peaked, it can

be concluded that its (previous) multimodal shape was due to capital stock (technology)

initial conditions. So that, smoothing cross-country differences in terms of capital stock

(technology) ensures labor productivity equalization in the long run.

For what concerns the data employed and their sources, the variable of interest is the log of

manufacturing value added per worker in each country and sector. In particular, I tracked

the time-evolution of the relative labor productivity distribution, that is I normalized in-

dividual countries’ data with the ones of the leading economy. In this case, United States

are the leader because they exhibit the highest labor productivity in all sectors, along

the whole period considered. In the spirit of Quah (1996a) and Desmet and Fafchamps

(2006), this normalization is useful for removing some of the trend from the cross-section

and, thus, for avoiding degenerate long-run distributions.13 Finally, it is important to

clarify that sectoral labor productivity is expressed in 1996 international dollars to allow

international and inter-temporal comparisons.

Concerning the steady state proxies, following Quah (1996a),14 I took the investment

rates in both physical and human capital and a development dummy, where the reference

group is made by high-income economies. In the empirical implementation, such variables,

dummy apart, are taken in natural logarithms and they are normalized with respect to

US values.

In assessing club convergence determinants, I employed originally estimated sectoral capi-

tal stock and TFP series.15 In particular, capital stock per worker is normalized to United

13It is worth noting that a cross-country average, instead of the leader, could have been used. My
choice is motivated on the basis of the technological transfer literature, according to which the dynamics of
innovation in the leader country and imitation in the laggard economies is at the hearth of both growth and
convergence processes. See with this respect, the seminal contributions of Gerschnkron (1954), Nelson and
Phelps (1966), Pack and Westphal (1986) and Hansson and Henrekson (1994). Moreover, it is interesting
to note that Caselli and Wilson (2004) tackle this issue looking to embodied technological change, that is
capital stock.

14See Durlauf et al.(2005) and Sala-i-Martin et al.(2004) for up-to-date discussions on the problem of
(significant) growth determinants.

15See Introduction and footnote 8, for further details on capital stock and TFP estimates.
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States and it is expressed in natural logarithms. The technological variable, instead, is

modeled as an interacted TFP gap (i.e. TFPgap).16 More clearly, following Griffith

et al.(2004), TFPgap, calculated as the difference between leader’s TFP and the one of

any follower, is taken to proxy the potential for technological imitation while secondary

schooling attainment rates, in logs and normalized with respect to United States, are used

as absorption capability proxy.17

Turning to data sources, labor productivity were obtained combining UNIDO Industrial

Statistics Database 2004, at 3-digits of ISIC Code (Revision 2), World Bank Development

Indicators and the Penn World Tables (PWT 6.1).18

Sectoral investment rates in physical capital refer to Gross Fixed Capital Formation share

to manufacturing value added, taken again from UNIDO. To proxy human capital accu-

mulation rates in each country, I use the average years of schooling in the population over

age 15. This series, together with secondary schooling attainment data, comes from Barro

and Lee (2000) data-set. With respect to human capital variables, three aspects must

be clarified. First, the Barro and Lee (2000) data are registered at five-years intervals.

To overcome this difficulty, I interpolate the available data implicitly assuming that the

between-observed values lie on a straight line. Second, my preference towards population

over age 15, instead of 25, which is also available, is due to the fact that working age

in developing countries can be quite low, as documented by Bennell (1996). Finally, the

choice of secondary schooling as absorptive capability proxy is motivated on the basis of

Gemmell (1996), which shows that for middle income countries, which are well represented

in my sample, secondary education matters more than primary and tertiary ones.

2.2 Unconditioned stochastic kernels

In this section I provide a technical illustration of the methodology employed to estimate

unconditioned transition probabilities, which are used to investigate the absolute conver-

16For further clarifications see Rogers(2003).
17For seminal contributions on absorptive capacities, see Baumol (1986) and Cohen and Levinthal (1989).
18From UNIDO I collected disaggregated data on workers and on manufacturing value added in Local

Currency Unit (LCU); from World Bank Development Indicators (WDI), GDP data in LCU; finally, from
Penn World Tables (PWT 6.1), GDP data expressed in Purchasing Power Parity. After having calculated
sectoral value added in manufacturing as percentages of GDP, using World Bank and UNIDO data in LCU,
I combined such percentages figures with WDI and PWT6.1. My preferred measure of real value added
in manufacturing is based on Penn World Tables Real GDP Chain Index (RGDPCH). This is because
RGDPCH does not suffer from the so-called ‘Laspeyres fixed-based problem’ and, then, it is the most
appropriate measure when inter-temporal comparisons are at issue, Summers and Heston (1991).
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gence hypothesis.

Sectoral convergence tendencies are inferred analysing the dynamic behaviour of cross-

country distribution of log relative labour productivity.19

Individual country i labour productivity, in sector j, at time t is called yit, where I omit-

ted the sector index for notational convenience (i.e. yit = log(Yijt/YUSjt)). Cross country,

sector specific, labour productivity distribution, at time t, is denoted as fYt(yt), where Yt

indicates the corresponding random variable.

I assume that year-to-year changes in the distribution of labour productivity can be rep-

resented by an homogeneous Markow process, in such a way that, ∀t:

1. fYt+1|Yt
(yt+1|yt) = fYt+1|Yt

(yt+1|yt, yt−1, yt−2, ...)

2. fYt+1|Yt
(yt+1|yt) = fYt|Yt−1

(yt|yt−1)

The first property guarantees that only previous period income distribution impacts on

next period one (i.e. history does not matter). The homogeneity assumption in 2 ensures

that the transition probabilities do not vary with the time. Although quite restrictive,

both hypotheses are necessary for estimating long run transition probabilities given the

available data.

Conditional density functions, fYt+1|Yt
(yt+1|yt), represent the cornerstone of distribution

dynamics convergence analysis. This kind of distribution, in fact, encodes information

about individual economies’ passages over time. Thus, it sheds light on both intra-

distribution dynamics and external shapes, making inference about convergence tenden-

cies possible. For example, observing conditional density mappings, is it possible to know

whether poor countries are catching-up with their richer counterparts, whether rich coun-

tries are still enriching, whether countries are converging overall or are clustering within

clubs.

The empirical estimation of conditional densities is handled by non-parametric techniques.

As for its definition, in the empirical implementation, the conditional distribution is ob-

tained simply dividing the joint distribution by the marginal distribution. Formally:

fYt+1|Yt
(yt+1|yt) =

fYt+1,Yt(yt+1, yt)

fYt(yt)
(1)

19Please note that in what follows ‘relative labour productivity’ and ‘labour productivity’ are used
interchangeably.
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The joint distribution of (Yt+1, Yt) can be estimated non parametrically using a bivariate

stochastic kernel, while the marginal distribution of Yt is obtained by numerical integration

of the joint distribution. Finally, the conditional distribution is simply obtained by dividing

one to the other, after appropriate discretization of the joint support.20

Long run tendencies towards convergence are encoded by the ergodic distribution. This

is the stationary distribution of labor productivity, which will be approached in the long

run should certain technical conditions hold.21 In particular, if the ergodic distribution is

unimodal and has a low variance, then long run cross-country convergence can be claimed.

Formally, the ergodic is the distribution f which solves the following functional equation:

f(yt+1) =

∫
+∞

−∞
fYt+1|Yt

(yt+1|yt)f(yt)dyt (2)

In order to compute the ergodic distribution, it is necessary to make the support of Y

discrete. It is important to note that, following Desmet and Fafchamps (2006), I employ

such a discretization only for calculating the ergodic. The standard approach would have

been, instead, to make the Y support discrete also for computing the joint and marginal

distributions in Equation (1), as in Quah (1996a). But, as shown by Desmet and Fafchamps

(2006), this leads to transition matrices which are usually quite coarse, due to the fact

that the smoothing properties of the kernel estimators are not exploited.

Getting now into ergodic calculation’s details, the support of Y is discretized in a set of

N equally large intervals, where interval h is denoted as Ωh.22 Then, the probabilities

of transition from one interval to another are calculated. Formally, the probability of

transition from the interval Ωh to another Ωk, in one time period, is denoted as:

αkh = Pr(yt+1 ∈ Ωk|yt ∈ Ωh)

At this point, it is useful to adopt a compact matrix notation. Hence, the ergodic distri-

bution is the vector p that solves the following system of equations:

p = Ap

20Bivariate stochastic kernel estimation is performed using the command kdens2 in STATA 8.2. Marginal,
conditional and ergodic distributions are calculated in Matlab. All programs are available from the author
upon request.

21See Stockey, Lucas and Prescott (1989); Luenberger (1979).
22To avoid crude ergodic calculations, it is necessary to work with a sufficiently high N . My calculations

have been done for N=50. Using N=200 and N=500 do not alter any conclusions but it has the disadvantage
of slowing down computer’s routines. Also the program for ergodic calculation is available upon request.

11



(I − A)p = 0

where each component of the vector p represents the probability of Y assuming a value

comprised in a given Ω and A is the matrix of transition probabilities αkh.

Since each column of matrix A is a conditional density and, then, its elements sum to 1; A

does not have full rank and, by consequence, the system does not have a unique solution.

To find a unique solution it is standard to simply drop one row of A (to make its columns

linearly independent) and then add the restriction that the entries of vector p sum to 1.23

Then, matrix A is rewritten as B:




1 − α11 . . . −α1N

. . . 1 − αii . . .

B= −αN−1,1 ... −αN−1,N

1 ... 1




The modified system is then:

Bp = b

where the vector b, for the constraint added, has all entries equal to 0 except the last one,

which is equal to 1.

At this point, the unique ergodic distribution, p, can be easily found inverting B:

p = B−1b

2.3 Conditioned stochastic kernels and conditioning techniques

This part outlines the conditioning technique I used to assess conditional convergence and

club convergence determinants.

Under the conditional convergence hypothesis, cross-country productivity equalization can

not be found in the original relative labor productivity distribution, fY , but in the con-

ditioned one, fY |X , where X denotes steady state proxies. Then, the object of interest

are the transition probabilities of the part of labor productivity not explained by the

steady state proxies (i.e. the residuals, ǫ̂). Employing the former notation, such transition

23This constraint must hold for the definition of probability.
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probabilities are formally written as:

fYt+1|Yt,Xt
(yt+1|yt, xt) (3)

Exploiting Chamberlain(1984) results, the part of labor productivity orthogonal to auxil-

iary variables is computed as Ordinary Least Squares (OLS) residuals of the projection of

labor productivity growth on each of the steady state proxies.24 Such calculation involves

three steps:

1. estimating the part of countries’ relative productivity growth rate explained by con-

ditioning steady state variables;

2. finding the initial level of relative labor productivity explained by conditioning steady

state variables ;

3. combining the previous results to find the level of relative labor productivity unex-

plained by the auxiliary variables (i.e. orthogonal to steady state proxies).

Call git the growth rate of yit (i.e. log relative productivity in country i, sector j at time t),

where again the sector index is omitted for notational convenience. Name ĝit the part of

git explained steady state proxies, which are: investment rate in both physical and human

capital, indicated as rit and hit, and the dummy development, ddev. Finally, the part of

labor productivity orthogonal to steady state proxies, which is the object of interest, is

called ǫ̂it.

Step 1. is implemented regressing git on a two sided distributed lag of conditioning vari-

ables and saving the fitted values. For each steady state proxies one of such regressions

is run. Then, cumulating the fitted values, by country and sector, the part of countries’

relative productivity growth rate explained by conditioning steady state variables, ĝit, is

obtained.

Note that in empirical work, multi-sided regressions are employed to handle endogeneity

issues, which are represented in this specific case by the likely bidirectional causality be-

tween labor productivity growth rate and steady state proxies. This technique, introduced

by Sims (1972), has been extensively used by Quah, who noted that just 2 leads and 2

24Quoting Quah(1996a), Chamberlain(1984) finds that:

the projection of growth on investment, not allowing for individual effects, is precisely the
best linear predictor and, thus, correctly gives residuals that are the components unexplained
by (or, more correctly, orthogonal to) investment.

13



lags are sufficient to clear the estimated growth rate from feedback effects, Quah (1996a).

Step 2. is taken running a pooled OLS regression of yit on time averages of steady state

proxies (i.e. rit and hit) and the estimated growth rate (i.e.ĝit). For each sector, the co-

efficients that solves the following minimization problem are used to pin down the initial

level of labor productivity explained by steady state variables, ŷi0:
25

minβ1,β2,β3

∑

i

∑

t

[yit − (β1rit + β2hit + β3ddev + ĝit)]
2

In fact, thanks to the estimated coefficients, β̂s, the initial level of log relative labor

productivity explained by conditioning variables can be expressed as:

ŷi0 = β̂1rit + β̂2hit + β̂3ddev

Then, adding the growth rates of step 1, the level of relative labor productivity ex-

plained by steady state variable is calculated as:

ŷit = ŷi0 + ĝit

Finally, ǫ̂it, which represents the productivity level not accounted for (or conditional to)

steady state proxies is simply found subtracting from actual the estimated relative labor

productivity:

ǫ̂it = yit − ŷit

Once country and sector specific ǫ̂it series have been calculated, the empirical implemen-

tation for assessing conditional convergence is the same as absolute (or unconditional)

convergence.

In particular, bivariate stochastic kernel densities fit cross-country, sector specific, dis-

tribution of relative productivity orthogonal to steady state variables, which I denote as

f
Êt+1,Êt

(ǫ̂t+1, ǫ̂t). By numerical integration of the joint distribution, the marginal density

f
Êt

(ǫ̂t) is obtained. Finally, the transition probabilities of Equation(3) are found dividing

the joint distribution, f
Êt+1,Êt

(ǫ̂t+1, ǫ̂t), by the marginal distribution, f
Êt

(ǫ̂t).

Long-run distribution of relative labor productivity conditioned to steady state variables

is retrieved from the ergodic distribution of random variable ǫ̂t. Such a distribution is

25As Quah(1996a) explains, this technique exploits the cross section variation of conditioning variables
to compute the initial value of productivity explained steady state proxies.
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calculated as for the unconditional case (previous section).

Turning now to club convergence analysis, it should be intuitive that the conditioning

scheme described so far can be easily extended to determine the relative strength of club

convergence inner drivers.

In particular, when club convergence hypothesis holds, the object of interest becomes

the dynamics of labor productivity distribution conditioned to both steady state proxies

and club convergence driving forces, namely capital and technological initial conditions.

Formally, the following transition probabilities have to be computed:

fYt+1|Yt,Xt,Zt
(yt+1|yt, xt, zt) (4)

where the variable Z represents either initial capital stock or initial technological level,

which has been proxied by TFPgap and school attainment rate.

To retrieve the relative strength of capital stock (or technology) as club convergence de-

terminant, relative labor productivity orthogonal to both steady state proxies and capital

stock (or technology) initial level must be calculated. This is done implementing the three

steps previously described, taking into consideration capital stock (or technology) as extra

conditioning variable.

By the same tokens as before, the density in Equation (4) and the ergodic distributions

are computed.

3 Results

3.1 Interpreting results

I now provide the fundamental tools for inferring convergence tendencies from Figures 3

to 16, which constitute the first set of results of my analysis. Such diagrams, mapping

unconditioned and conditioned stochastic kernels allow to investigate all the convergence

hypotheses under scrutiny.

Panels (a) and (b) of the aforementioned figures describe eight-years horizon evolution

of labor productivity distributions and they are used to establish medium run tendencies

to convergence.26 More precisely, the first type of graphs shows a tridimentional plot of

26I also calculated transitions over one year horizon. Although the results do not change significantly
over such a shorter period, mobility is slightly lower and emerging patterns seem more difficult to trace.
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transition probabilities; the second, mapping the level curves, represents the stochastic

kernels in just two dimensions. In both diagrams, the floor axis, marked as Period t and

Period t + 8, measure the log of relative productivity in different times. To make graph

interpretation easier, Table 3 reports Period t and Period t + 8 relative labor productivity

values in percentage terms with respect to the United States (i.e. the leader).

From such graphs, convergence tendencies in the medium run can be claimed if the kernel

rotates clockwise and accumulates on a single ridge parallel to Period t axis. That is,

relative productivity levels become equal across countries, regardless of economies’ initial

position. Persistence is found when the mass concentrates along the 45 degrees line. So,

countries’ initial and the final positions coincide. Improvements, with respect to the ini-

tial position, are detected if the mass piles above the 45 degrees line; by the same token,

worsening occur when the mass lies below the diagonal. Club convergence is signalled by

distinct peaks along the diagonal.

As explained in the methodological section, long run tendencies, should the current dy-

namics persist, are assessed through ergodic distributions, as in Panels (c).27 It is worth

recalling that, in general terms, supportive evidence for any alternative convergence hy-

pothesis is found when the correspondent ergodic distribution is unimodal and has a low

variance.

3.2 Discussing results

The general results of my analysis can be inferred from the evidence provided by Figures 3

to 16 and by Table 4, which report the supports and some basic descriptive statistics for the

ergodic distributions, estimated under the relevant alternative convergence hypotheses. In

particular, my findings are consistent with the hypothesis of club convergence in Resource

Based (i.e. RB), Low Technology (i.e. LT) and Medium Technology (i.e. MT) sectors and

with the one of absolute convergence in High Techonology (i.e. HT) and Manufacturing as

a whole (i.e. TOT). More precisely, technological and capital initial conditions seem to be

the inner drivers of clustering behavior in, respectively, RB and LT while the dynamics of

MT industries is less clear-cut. Then, exception made for MT, observing the counter plots

27It might be of some interest to note that the shape of the ergodic distribution is likely to be anticipated
by standard mobility analysis.
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of the relevant graphs,28 it could be appreciated that cross-country productivity differ-

ences tend to shrink over time. That is, poor countries are likely to improve their relative

position (i.e. mass piled above the 45 degrees line), while rich are more likely to get worse

(i.e. mass below the same diagonal). Moreover, looking to the ergodics of the same figures

and to Table 4, it could be seen that the relevant long run distributions are single-peaked

and exhibit the lowest dispersion (i.e. coefficient of variation).29

Getting into more details now, it is interesting to discuss first two facts that seem quite

well established in the literature: that manufacturing as a whole converges in absolute

terms, while its sub-sectors do not, and the absence of supportive evidence for the condi-

tional convergence hypothesis.

With the first respect, this result is consistent with the findings of Dollar and Wolff

(1988)(1993) and Dal Bianco (2010), for what concerns manufacturing sectors, and with

the ones of Bernard and Jones (1996a), with respect to disaggregated GDP (i.e. agri-

culture, mining, industry and services). In particular, these works show that converging

tendencies in the aggregate sector are different from the ones prevailing in its sub-sectors.

More specifically, the aggregate converges faster than its parts, because the cross-section

dispersion is lower for the aggregate than for the parts. Looking to Table 4, it could be

seen that this kind of explanation holds also in the present case. Moreover, it is worth

noting that the similar patterns of HT and TOT can not be automatically interpreted as

if the technology intense compartments were leading the whole industrial performance. In

fact, if on the one hand it is true that, in the period considered, HT has grown faster than

all other sectors (i.e. 8% vs 4% on average); on the other, HT accounts for only the 12%

of total manufacturing production.

Passing now to conditional convergence, from Figure 19 and Table 4, it could be seen that

when steady states differences are taken into account, the location of the ergodic distri-

butions of RB, LT and MT shift towards higher values, because some countries overtake

the leader (i.e. log relative productivity greater than zero), but such distributions are not

characterized by unimodality and low dispersion. This finding, consistently with the ones

of Quah(1996a) and Bandyopadhyay (2006), shows that structural factors, although rele-

vant for enhancing the level of labor productivity in each country and, thus, cross-country

28The relevant graphs are Panel(b) of Figures: 6, RB, Club convergence technology; 9, LT, Club con-
vergence capital; 15 and 16, HT and TOT absolute convergence.

29I prefer the coefficient of variation (i.e. standard deviation divided by the mean) to the standard
deviation because the former indicator overcomes the problems related to a changing mean.
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average, as predicted by the standard neoclassical growth model, are unable to affect the

dynamics of the entire distribution, as according to the theory of poverty traps, Azariadis

and Stachurski (2004).

At this point I want to show that my results on labor productivity club convergence are

consistent with the predicted dynamics of capital accumulation and technological upgrad-

ing. In the spirit of Johnson (2005), Figure 17 and Figure 18 show the ergodic distributions

of relative physical capital stock per worker and the interacted TFPgap, while Table 5 syn-

thetically reports the main lines for interpreting this evidence. In particular, looking to

HT and overall manufacturing, it could be easily seen that both capital and technology

are predicted to converge in the long run, so that the club convergence hypothesis can be

discharged. On the contrary, considering LT, as the ergodic distribution of capital stock

is bimodal and the one of TFPgap is not, one might expect that capital stock would be

at the root of club convergence in this sector. Or, put in other terms, that cross-country

convergence will be reached only if capital stock differences will be evened out. Similar

reasoning applies to technological clubs in RB and MT, although it is worth anticipating

that MT sectors deserve some further clarifications.

For a detailed discussion of my results, I mainly refer to Figures 19 and 20 and, again,

to Table 4. These graphs report cross-country intra-sectoral and inter-sectoral long-run

scenarios. From the economic policy point of view, this exercise appears particularly valu-

able. In fact, comparing the ergodics resulting from alternative convergence predictions,

within the same sector, it is possible to retrieve some indications on the sector-specific

long-run growth and inequality perspectives. The inter-sectoral comparisons, instead, al-

lows to evaluate which sector is relatively most promising, again in terms of the levels and

the dispersion of living standards.

I start with commenting the behavior of each technological sector, as in Figure 19.

Regarding RB, my finding is that dissimilar technological initial conditions are preventing

from overall convergence. In particular, for how I constructed the technological proxy,

backwardness might be due either to a limited-in-scope imitative potential or to insuffi-

cient absorptive capabilities. Concerning the first explanation, although it is very difficult

to say which technology is potentially relevant for a specific sector, in the sense put forward

by Baumol (1986), Lall (2001) suggests to consider the focal activities of Multinational

Corporations (i.e. MNCs). As shown by UNCTAD (2002),(2003),(2005), in the past 30

years, top 50 world MNCs has been investing in High Technology sectors while top 50 de-
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veloping countries’s MNCs, 33 of whom from South East Asia, operate in LT and service

sectors. Thus, the limited investment in traditional sectors, which account for an average

77% of laggards economies’ manufacturing value added, might have lowered the potential

for technological upgrading. However, it must also be noted that, according to UNCTAD

(2005), the degree of mechanization in RB sectors has sensibly increased in the last 50

years. So that, technological backwardness might be due to insufficient capacities of un-

derstanding, employing and exploiting new technologies. Finally, looking to Table 4, it

could be seen that the predicted mean income associated with smooth technological initial

conditions lies between the one linked to conditional convergence and the one of “club

capital convergence”.30 The first fact might be explained recalling the importance of a

relatively wide technological gap, which is predicted to shrink once technology is diffused;

the second one, instead, seems to suggest that the accumulation of (rough) capital will

not ensure sensible economic growth nor cross-country equity.

Turning now to LT, it is evident that labor productivity gap will be closed in the long-run

through capital accumulation and not through technological catch-up. This result, in line

with the established literature, is hardly surprising. In fact, it must be recognized that

such industries employ mature technologies, already spread around the world, and they are

characterized by low knowledge barriers, in the sense that the absorptive capacities nec-

essary for technological progress are limited and, then, imitative activities are easier, Lall

(2000), (2001), Caree et al.(2000) and Dal Bianco (2010). Further confirmative evidence

on this point is found when looking to the very low predicted mean income associated to

“club technological convergence”. With some caution, it might be said the growth poten-

tial associated to innovative and imitative efforts in these industries is quite limited when

compared to the opportunities opened by increasing the scale of production.

As already mentioned, the results concerning MT industries are quite tricky. On the one

hand, the long run behavior of club convergence determinants reported in Figures 17 and

18 lead to the conclusion that the lack of cross-country convergence is due to technological

initial conditions but, on the other, Figure 19, Panel (c), clearly shows that also capital

stock plays a role. Moreover, one could be tempted to assert that my results are consis-

tent with the conditional convergence prediction. I think this is not the case. In fact,

looking to Table 4, it could be seen that the cross-section dispersion increases with respect

30Note, with some indulgence, that with the expression “club capital convergence” (“club technological
convergence”) I refer to the labor productivity distributions (i.e. conditioned stochastic kernels) conditioned
by steady state variables and capital stock (technological) initial conditions.
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to the absolute convergence case. So that, the bottom line of the analysis is that nei-

ther structural factors, nor capital or technological differences alone can account for club

convergence dynamics. This might be due, and this is the explanation I propose, to MT

industries’ peculiar features. Narrative evidence suggests that they have complex technical

requirements and they demand for large-scale production. Thus, to fill the productivity

gap developing countries have to properly develop dynamic advantages (i.e. technology

and skill) as well as strengthen credit markets, in order to reach the critical threshold level

of capital stock per worker.

Concerning HT, as mentioned, my analysis supports the absolute convergence hypothesis.

That is, in the long run countries will converge to the same productivity level, regardless

their structural and initial conditions.31 This result sounds quite surprising. In fact, due

to the high technological content of such productions, technical and capital deficiencies in

developing countries might have been expected. However, at least two interpretations can

be proposed.

The first one starts from technological catch-up literature predictions and it is supported

by the established literature. In words: foreign capital inflows, together with targeted edu-

cational and industrial policies, have provided good initial conditions in HT industries and

have effectively rescued laggard economies, making labor productivity convergence possi-

ble. In fact, if, on the one hand convergence studies on manufacturing sectors in developed

economies find that labor productivity and TFP convergence has been weaker in High Tech

industries than in traditional sectors, Caree et al.(2000) and Scarpetta and Tressel(2004),

on the other, when developing countries are included in the cross-section, standard para-

metric analysis shows that high-tech compartments exhibit the fastest converge speed, Dal

Bianco (2010). However, this point should be investigated further. Narrative evidence,

in fact, suggests that, in the period considered, the majority of HT production in low in-

come countries was due to the delocalization strategies of Western firms, UNCTAD (2005).

Thus, developing countries might have acted just as outdoor plants, assembling foreign

intermediates, and, typically, re-exporting them, Singh (2006). As solving this problematic

issue goes beyond the scope of the present work, this is left for future research.

The second one relates, instead, to sample selection problems. The present analysis is

31To confirm the robustness of unconditional convergence prediction, I have used as counterfactuals
HT labor productivity distributions conditioned to steady state proxies alone and together with capital
or technological initial conditions. As these ergodics are multi-peaked, the unconditional convergence
prediction is validated. To save space I did not report these results, which are available upon request.
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based on a cross-section of just 28 countries, among which old and new Asian Tigers are

well represented. As clearly demonstrated by Lall (1997), these economies are very pro-

ductive in HT industries, so that this result may lack of representativeness and it might

be biased towards convergence. Although, it must be said that this evidence could be con-

sistent with future scenarios. According to Sala-i-Martin (2006), in fact, world’s income

per capita differences have shrunk in the last 50 years because of the spectacular growth

rates of initially poor countries.32 What prevents from thinking that new tigers will roar?

Turning now to inter-sectoral comparisons, observing Figure 20, Panel (a), it could be

said for sure that HT is the compartment that pays more with the the minimum effort,

in terms of both growth and equity. Panel (e), instead, shows that when cross-country

equity is at issue or, put in other terms, under the relevant convergence hypothesis, RB

sectors are the ones that open the better prospects: highest mean income and lowest dis-

persion. But the precondition to be met, in this case, is to smooth out steady state and

technological differences. Finally, when comparing the scenarios which ensure the highest

intra-sectoral mean, as in Panel (f), it could be seen that, again, HT industries ensure the

better combination in terms of long-run labor productivity and cross-sectional dispersion.

Although potential biased by sample selection, my analysis supports the hypothesis of Lall

(1997), that is HT sectors ensure the relatively higher productivity gains. So that, from

the policy perspective, it seems advisable that instead of relying on static comparative

advantages associated to LT sectors, low income economies concentrate their industrial

policy in the search of dynamic comparative advantages, as the ones of opened by HT

production. This is because, in high tech sectors, even labor intensive activities, such as

assembly, are more stable, skill-creating and positive externality generating than in tradi-

tional ones.

4 Conclusions

In this paper I have assessed through an unified distribution dynamics framework the

hypotheses of absolute, conditional and club convergence, among 28 industrialized and

emerging economies, in different manufacturing sub-sectors, during the period 1980-1995.

My analysis has shown that, exception made for High Technology and Manufacturing as a

32Sala-i-Martin employs distribution analysis to show that China’s and India’s growth experiences caused
the increase of world’s living standards and the decrease of world income inequality.
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whole, all sub-compartments are predicted to “go clubbing”. From the policy perspective,

the main recommendation is that laggard economies concentrate their industrial policies

on high tech productions.

I am sure that this kind of analysis will be enriched a lot expanding both the cross-section

and the time series dimensions of the data employed. So that, I will soon take advantage

of the latest release of UNIDO Industrial dataset, in order to strengthen my results and

to mitigate the sample selection problem.

Moreover, another interesting research path is given by the the comparison of tradable

and non-tradable sectors. In particular, are tradable sectors converging faster than non-

tradable ones? Has the development of non-tradable sector an indirect impact on the

convergence dynamics of tradable one? If so, which manufacturing industries are affected?

Can we explain inter-sectoral dynamics through the comparative advantage argument?
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Tables and Graphs

Table 1: Country Sample

Developed Developed Developing Developing
OECD NON OECD Middle Income Low Income

Australia Cyprus Bolivia Bangladesh
Austria Hong-Kong Chile India
Finland Israel Egypt
Greece Singapore Indonesia
Italy Iran
Japan Jordan
Korea Malaysia

Norway Philippines
Spain Sri Lanka

United Kingdom Turkey
United States Venezuela

Table 2: Correspondence between ISIC 3-digits and Lall Technological Taxonomy.

Sector Lall(2000) Tech.Sector
ISIC 3-digits Tech.Sector Acronym

Food (311) Beverages (313) Resource Based RB
Tobacco (314)

Textiles (321) Clothing (322) Low Technology LT
Leather Products (323) Footwear (324)

Wood Products (331) Resource Based RB

Furniture (332) Low Technology LT

Paper and Paper Products (341) Resource Based RB

Printing and Publishing (342) Low Technology LT

Chemicals (351, 352) Medium Technology MT

Petroleum (353, 354) Resource Based RB

Rubber (355) Resource Based RB

Plastic products (356) Medium Technology MT

Pottery (361) Low Technology LT

Glass (362) Low Technology LT

Other non metallic mineral products (369) Resource Based RB

Basic metals (371, 372) Low Technology LT

Metal products (381) Low Technology LT

Non electrical machinery (382) Medium Technology MT

Electrical machinery (383) High Technology HT

Transport equipment (384) Medium Technology MT

Instruments (385) High Technology HT

Other manufacturing (390) Low Technology LT
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Table 3: Graphs Scale

Logarithmic scale Labour productivity

yijt = log
(

Yijt

YUSjt

)
in % with respect to US

-4 2%

-3.5 3%

-3 5%

-2.5 8%

-2 13%

-1.5 22%

-1 37%

-0.5 60%

0 100%

0.5 164%

1 271%

1.5 448%

24



Table 4: Ergodic distributions: support in 1996 PPP $ and descriptive statistics

Ergodic distributions, different convergence hypotheses

Log relative Support in 1996 PPP $ Support in 1996 PPP $ Support in 1996 PPP $ Support in 1996 PPP $
labor productivity, yijt

Resource Based Absolute Conditional Club, Capital Club, Techological

-4.5 841

-4 1,386

-3.5 2,286 2,286

-3 3,768 3,768

-2.5 6,213 6,213 6,213

-2 10,243 10,243 10,243

-1.5 16,889 16,889 16,889 16,889

-1 27,845 27,845 27,845 27,845

-0.5 45,908 45,908 45,908 45,908

0 75,689 75,689 75,689 75,689

0.5 124,790 124,790

1 205,745

Descriptive statistics, 1996 PPP $

Mean 17,212 78,502 27,469 42,521

Median 13,231 64,899 25,784 39,906

Std.Deviation 11,000 53,844 17,110 17,521

Coef. of variation 0.64 0.69 0.62 0.41

Low Technology Absolute Conditional Club, Capital Club, Tech.

-4.5 519

-4 855

-3.5 1,410 1,410

-3 2,324 2,324 2,324

-2.5 3,832 3,832 3,832

-2 6,317 6,317 6,317

-1.5 10,415 10,415 10,415 10,415

-1 17,172 17,172 17,172 17,172

-0.5 28,312 28,312 28,312 28,312

0 46,678 46,678 46,678 46,678

0.5 76,959 76,959 76,959

1 126,885

1.5 209,198

Descriptive statistics, 1996 PPP $

Mean 13,673 44,635 22,276 11,678

Median 10,249 38,636 20,301 11,068

Std.Deviation 9,439 26,516 11,309 7,638

Coef. of variation 0.69 0.59 0.51 0.65

Medium Technology Absolute Conditional Club, Capital Club, Tech.

-3.5 2,170 2,170 2,170

-3 3,578 3,578 3,578

-2.5 5,899 5,899 5,899

-2 9,725 9,725 9,725 9,725

-1.5 16,034 16,034 16,034 16,034

-1 26,436 26,436 26,436 26,436

-0.5 43,585 43,585 43,585 43,585

0 71,860 71,860 71,860 71,860

0.5 118,477 118,477 118,477

1 195,336

Descriptive statistics, 1996 PPP $

Mean 15,428 16,847 16,655 7,956

Median 21,339 18,335 23,236 8,681

Std.Deviation 9,653 12,649 11,063 6,784

Coef. of variation 0.63 0.75 0.66 0.85

High Technology Absolute Manufacturing Absolute

-4 1,112 -3 3,065

-3.5 1,834 -2.5 5,054

-3 3,023 -2 8,333

-2.5 4,984 -1.5 13,738

-2 8,218 -1 22,651

-1.5 13,549 -0.5 37,345

-1 22,338 0 61,571

-0.5 36,830

0 60,722

0.5 100,114

Descriptive statistics, 1996 PPP $

Mean 31,122 Mean 20,357

Median 36,723 Median 24,799

Std.Deviation 13,627 Std.Deviation 8,335
Coef. of variation 0.44 Coef. of variation 0.41
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Table 5: Club Convergence Determinants

Relative physical capital stock per worker

Descriptive statistics Accumulation dynamics. Ref. Figure 3

Sector Average Developed Std.dev Average Developing Std.dev Time evolution Shape of the erdogic Implication

RB 0.78 0.35 0.34 0.45 Less dispersed, gap closing Unimodal No Capital Clubs

LT 0.92 0.31 0.78 1.42 Towards bimodality Bimodal Capital Clubs

MT 0.78 0.33 0.3 0.19 Gap closed Unimodal No Capital Clubs

HT 0.73 0.26 0.38 0.97 Gap closed Unimodal No Capital Clubs

TOT 0.82 0.24 0.53 0.83 Gap closed Unimodal No Capital Clubs

Interacted TFPgap

Descriptive statistics Technological catch-up dynamics. Ref.Figure 4

Sector Period Average HI Std.dev Period Average LI Std.dev Time evolution Shape of the erdogic Implication

RB 0.74 0.29 0.40 0.19 Towards bimodality Bimodal Technological Clubs

LT 1.07 0.40 0.73 0.30 Gap shrinking Unimodal No Technological Clubs

MT 0.92 0.35 0.58 0.26 Gap shrinking but bimodality Bimodal Technological Clubs

HT 1.33 0.50 0.9 0.38 Gap shrinking Unimodal No Technological Clubs

TOT 1.01 0.38 0.62 0.24 Gap shrinking Unimodal No Technological Clubs

Expected labor productivity long-run behavior
RB: Clubs due to technological initial conditions
LT: Clubs due to capital initial conditions

MT: Clubs due to technological initial conditions
HT: No Clubs

TOT: No Clubs
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Figure 1: Stylized evidence on GDP per capita.

Source: World Bank, World Development Indicators, 2010.
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Figure 2: Other stylized facts

Source: World Bank, World Development Indicators, 2010.
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Figure 3: Resource Based: Absolute Convergence
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Figure 4: Resource Based: Conditional Convergence
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Figure 5: Resource Based: Club Convergence, Capital Stock
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Figure 6: Resource Based: Club Convergence, Technology
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Figure 7: Low Technology: Absolute Convergence
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Figure 8: Low Technology: Conditional Convergence
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Figure 9: Low Technology: Club Convergence, Capital Stock
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Figure 10: Low Technology: Club Convergence, Technology
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Figure 11: Medium Technology: Absolute Convergence
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Figure 12: Medium Technology: Conditional Convergence
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Figure 13: Medium Technology: Club Convergence, Capital Stock
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Figure 14: Medium Technology: Club Convergence, Technology
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Figure 15: High Technology: Absolute Convergence
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Figure 16: Manufacturing: Absolute Convergence
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Figure 17: Accumulation dynamics: log relative capital stock per worker by sector
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Figure 18: Technological dynamics: TFPgap interacted with schooling by sector
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Figure 20: Inter-sectoral long run scenarios
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