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Eĺıas Moreno

University of Granada Sergio Venturini

L. Bocconi University, Milan

August 18, 2010

Abstract

We analyze the general (multiallelic) Hardy-Weinberg equilibrium prob-

lem from an objective Bayesian testing standpoint. We argue that for

small or moderate sample sizes the answer is rather sensitive to the prior

chosen, and this suggests to carry out a sensitivity analysis with respect

to the prior. This goal is achieved through the identification of a class of

priors specifically designed for this testing problem. In this paper we con-

sider the class of intrinsic priors under the full model, indexed by a tuning

quantity, the training sample size. These priors are objective, satisfy Sav-

age’s continuity condition and have proved to behave extremely well for
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many statistical testing problems. We compute the posterior probability

of the Hardy-Weinberg equilibrium model for the class of intrinsic priors,

assess robustness over the range of plausible answers, as well as stability

of the decision in favor of either hypothesis.

key words: Bayes factor; Hardy-Weinberg equilibrium; Intrinsic prior; Model poste-

rior probability; Robustness.

1 Introduction

The Hardy-Weinberg law plays a fundamental role in the study of population genetics

[?]. For a particular autosomal locus that is always one of r different alleles {Ai, i =

1, ..., r}, the law provides the sampling distribution of genotype counts in a random

sample of individuals drawn from a population which is assumed to be in Hardy-

Weinberg equilibrium (HWE). We recall that a genotype is an unordered pair of allele

combination {Ai, Aj}, and consequently a sample of genotype counts is a triangular

array of the form {yij , 1 ≤ j ≤ i ≤ r}. Interest centers on testing the null hypothesis

that the population is in HWE. Recently, there has been great interest in testing for

HWE in genome-wide association studies (GWAS) in which departure from HWE may

indicate problems with quality control for the single nucleotide polymorphism (SNP)

in question; see [?].

In the frequentist setting, the chi-square test does not provide reliable answers for

testing HWE especially when some counts in the sample are zero or the triangular

array is scarce; see [?]. This has led to the adoption of exact tests. Algorithms for

generating the exact distribution of genotype counts of a sample drawn from a popu-

lation satisfying the HWE have been developed by [?]. The paper by [?] provided for
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the first time general algorithms to perform an exact test using Monte Carlo methods.

Specifically, they presented two methods to estimate the significance level for the exact

test of HWE for multiple alleles: one is a direct Monte Carlo method, while the other

is based on a Markov chain approach. Recently, [?] provided a new and improved

Monte Carlo algorithm for testing HWE.

The HWE testing problem has also been analyzed from a Bayesian standpoint.

Early papers approached the two-allele case as an estimation problem, providing pos-

terior credibility intervals for a specific parametrization; see [?] and [?]. Such intervals

are used as acceptance regions for the HWE null model, even though the Hardy-

Weinberg law does not play any role in their construction. Alternative reparametriza-

tions were presented in [?] again for the two-allele case. [?] addressed the issue of

simultaneous estimation of the allelic proportions. More recently, HWE has been an-

alyzed according to an unconventional Bayesian hypothesis testing procedure by [?].

They computed a Bayes factor using a uniform prior on the parameter of the full

model, together with its “projection” prior on the parameter space corresponding to

HWE (the null model). Next they used this Bayes factor to set up an ordering of

the points in the sample space with the objective of computing a “Bayesian p-value”.

In [?] the “Full Bayesian Significance Test” is introduced. This is an unconventional

measure of evidence against the null hypothesis that the population is in HWE. The

computation of this quantity does not require a prior distribution for the parameters

of the HWE null model, but only a prior as well as a “reference” distribution (the two

can be equal) on the parameter space of the full model; see also [?]. In a very recent

contribution, [?] discuss notions of compatibility of prior specifications for comparing

nested models, illustrating the methodology with respect to HWE for the two-allele

testing problem, and computing the Bayes factor assuming that the prior under the full
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model is a symmetric Dirichlet distribution: the novelty lies in the construction of the

prior under the HWE model, which is obtained using a variety of methods, including

“Kullback-Leibler projection” and conditioning. Another very recent contribution is

[?]. This represents a rich contribution in the area because it clarifies various contexts

in which the issue of HWE may arise and deals simultaneously both with testing as

well as estimation of specific parameters which may indicate the strength of departure

from HWE. There is also a careful consideration of sampling models. For instance,

besides the full (saturated) model, alternative intermediate submodels are considered,

an interesting one being the inbreeding model; for further details and references see

[?, Section 2.2].

In this paper we concentrate on testing the HWE hypothesis. We argue that

this problem exhibits a high sensitivity to the choice of the prior whose subjective

specification may be problematic in some circumstances; this suggests an objective

approach coupled with a robust Bayesian analysis. Here is an outline of our procedure:

we start with a default parameter prior both under the full and the null HWE model;

next we derive a class of intrinsic priors on the parameter space of the full model,

conditional on the HWE null model. This generates objective Bayesian tests by letting

the prior distribution vary over the class of intrinsic priors, thus producing an effective

robustness analysis. For the notion of intrinsic priors see [?], [?] and [?]; for recent

analyzes of discrete data problems using intrinsic prior methodology see [?] and [?].

We implemented our methodology in an R package called HWEintrinsic available from

the Comprehensive R Archive Network (www.r-project.org).

The remainder of the paper is organized as follows. In Section 2 we highlight the

sensitivity of Bayesian testing to the choice of priors with specific reference to the

HWE problem. In Section 3 we obtain the posterior probabilities of the null and the
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alternative model using the intrinsic priors. Section 4 presents some applications to

simulated and real data sets. Section 5 contains some concluding remarks.

2 Motivating the Class of Intrinsic Priors for the

Hardy-Weinberg Testing Problem

The Hardy-Weinberg testing problem may exhibit a high sensitivity to the prior, as

illustrated in the following artificial example.

example 1: Consider the genotype counts y = {y11, y12, y22} = {6, 8, 6} for a sample

of 20 individuals drawn from a population with two alleles {A1, A2}, and unknown

genotype probabilities {p11, p21, p22}, where p11 + p21 + p22 = 1. The full sampling

model for this data is a trinomial with n = 20 and parameters {p11, p21, p22}, which

reduces to a closely related null model (see Section 3.4) indexed by a scalar parameter

p under HWE. As prior for the parameters {p11, p21, p22}, we consider a symmetric

Dirichlet distribution D(p11, p21, p22|α, α, α), which contains all default choices (in

particular the uniform and Jeffreys prior). Similarly, we take as prior for the parameter

p of the HWE null model the symmetric beta distribution Be(p|β, β).

For α = β = 1/2, the posterior probability of HWE is Pr(HWE|y) = 0.64, while

for α = β = 1 (uniform prior), we have Pr(HWE|y) = 0.55; finally for α = β = 3

the posterior probability turns out to be Pr(HWE|y) = 0.45. Therefore, using the

standard convention that an hypothesis is accepted whenever it exceeds 0.5, we would

accept HWE if α = β = 1/2 or α = β = 1, and reject it when α = β = 3. In fact, it

can be shown that infα,β Pr(HWE|y,α, β) = 0 while supα,β Pr(HWE|y,α, β) = 1. As

a curiosity, we note that the Dirichlet priors with α = 1 and α = 3 essentially produce
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the same Bayesian estimates for the data in Example 1. This shows that the Bayesian

tests do not necessarily share the stability exhibited by the Bayesian estimators.

It is a well-documented fact that testing problems in multinomial families are very

sensitive to the choice of priors. In a series of papers, [?], [?], and [?] analyzed in-

dependence in contingency tables and robustified the Bayesian model by considering

mixtures of Dirichlet distributions with respect to the common hyper-parameter α.

The recommended mixing distribution was a log-Cauchy distribution. Different mix-

tures of Dirichlet have also been considered by [?] and [?]. In the latter paper, these

mixtures arise as intrinsic priors for analyzing independence in contingency tables.

Intrinsic priors were initially introduced in order to convert objective priors for es-

timation (typically improper) into suitable priors for testing problems [?, ?]. However,

their scope is wider, and this becomes apparent for discrete data problems, wherein

default priors are usually proper. In this context, the intrinsic prior methodology gives

rise to a natural class of priors for testing nested models when prior information on

the parameters is weak. This class represents a suitable environment for evaluating

the robustness of the resulting test.

2.1 Intrinsic Priors

Consider a general model selection problem between two Bayesian models, M0 (null)

and M1 (full),

M0 : {f0(y|θ0), π0(θ0)},M1 : {f1(y|θ1), π1(θ1)}, (1)

with θ0 ∈ Θ0, θ1 ∈ Θ1, Θ0 ⊂ Θ1. The family of densities {f0(y|θ0), θ0 ∈ Θ0} is nested

in the family {f1(y|θ1), θ1 ∈ Θ1}. Finally, π0(θ0) and π1(θ1) are objective (possibly

improper) priors, such as those typically used for estimation purposes, for instance

reference priors [?].
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Note that, although the sampling model f0 is nested in f1, the objective prior

π1(θ1) is not related to the objective prior π0(θ0) in M0 because πi(θi) only depends

on fi(y|θi), i = 0, 1. This is not reasonable, as we expect some connections between

the prior distributions of the parameters θ0 and θ1; see also [?] on the general issue

of compatibility of prior distributions for Bayesian model choice. In particular, the

prior π1(θ1) will typically not concentrate enough probability mass around the null

parameter space Θ0. We will elaborate on this point shortly.

At this stage, it is expedient for the subsequent theoretical developments to ab-

stract from the actual data y and consider t independent random variables x =

(x1, ..., xt) with joint distribution f1(x|θ1, t) =
t
∏

j=1

f1(xj |θ1) under model M1 (No-

tice that the notation now involves explicitly the sample size t as this will play an

important role later on).

We assume that the marginal distribution m1(x|t) =
∫

f1(x|θ1, t) π1(θ1)dθ1 is

strictly positive and finite for an integer t, where t is called the training sample size.

Then, the intrinsic prior for θ1, conditional on the null point θ0 and for the given

training sample size t, is defined as

πI
1(θ1|θ0, t) = π1(θ1)Ex|θ1

f0(x|θ0, t)

m1(x|t)
, (2)

where the expectation is taken with respect to the sampling distribution f1(x|θ1, t).

Further, integrating out the parameter θ0, we obtain the unconditional intrinsic prior

for θ1 as

πI
1(θ1|t) =

∫

πI
1(θ1|θ0, t)π0(θ0)dθ0. (3)

The pair of distributions (π0(θ0), π
I
1(θ1|t)) represents the intrinsic priors for testing

model M0 versus M1 in (1) based on a training sample of size t. When the prior π1 is

improper, t is usually taken to be equal to the minimal sample size for which m1(x|t)

is positive and finite, so that πI
1(θ1|t) exists. However, this restriction on t is not
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necessary and other values of t can be of interest, as we will see below. We also note

that x is a random vector which is eliminated by integration, so that the intrinsic prior

πI
1(θ1|t) only depends on the training sample size t.

Intrinsic priors enjoy some interesting properties: i) since π0 and π1 are objective

priors they do not require prior elicitation on the side of the user; ii) the intrinsic prior

for θ1 satisfies the “Savage continuity condition” [?], thus providing a fairer comparison

between the two hypotheses under investigation, as will be illustrated for the HWE

testing problem. This condition is a widely accepted requirement; see [?], [?], [?], [?],

[?], [?]. Furthermore, it has also been argued that, if the null model is a reasonable

one, it is important to be able to distinguish f0 from close alternatives; on the other

hand, putting prior probability on extreme models, far from f0, will discount the more

reasonable alternatives [?]; iii) they are invariant to reparameterizations; iv) for the

HWE problem they allow us to assess posterior robustness of the test as t varies in the

set of integer {1, ..., n}, where n is the size of the observed sample; this is a crucial point

when n is small or moderate; v) in the HWE setting, closed-form expressions for the

Bayes factor, and posterior model probabilities, can be provided for intrinsic priors;

vi) the testing procedure is consistent. Finally, for large sample sizes, the intrinsic

testing procedure can be implemented using an efficient Monte Carlo technique.

3 Testing Hardy-Weinberg Equilibrium Using In-

trinsic Priors

We focus attention on a particular locus which is always one of r ≥ 2 different alleles

{Ai, i = 1, . . . , r}.
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3.1 Sampling Models

Suppose we draw a random sample of n individuals from this population and denote

by yij the number of genotypes in the sample of the form {Ai, Aj}. There are R =

r(r + 1)/2 counts {yij , 1 ≤ j ≤ i ≤ r} satisfying
∑

yij = n. Then, the probability

distribution of the observed triangular array y under the full model is given by

P1(y|p1, n) =
n!

∏

i≥j

yij !

∏

i≥j

p
yij
ij , (4)

where the probability pij of occurrence of the genotype {Ai, Aj} ranges over the space

Θ1 = {pij : pij ≥ 0,
∑

1≤j≤i≤r

pij = 1}

having dim(Θ1) = R− 1. A generic point in the space Θ1 is denoted by p1.

Under the Hardy-Weinberg equilibrium law the probabilities pij are assumed to

belong to the subset Θ0 ⊂ Θ1 defined as

Θ0 = {pij : pii = p2i , pij = 2pipj}, (5)

where {pi, i = 1, . . . , r} are such that pi ≥ 0 and
∑r

i=1 pi = 1, and represent the allele

frequencies in the population. We note that dim(Θ0) = r − 1.

It is straightforward to verify that under law (5) the sampling model (4) reduces

to the null model

P0(y|p0, n) =
n!

∏

i≥j

yij !
2
n−

r∑

i=1
yii

r
∏

i=1

pri+ci
i , (6)

where p0 = (p1, ..., pr), ri =
i
∑

j=1

yij and ci =
r
∑

k=i

yki are the sum of the ith row and

ith column, respectively, of the triangular array y.

3.2 Intrinsic Priors

To complete the Bayesian specification of the sampling models (4) and (6) we need

prior distributions for the parameters p1 and p0. We start with the most simple
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objective prior distribution for the parameter p1, namely a uniform prior which we

can write as D(p1|1, ..., 1). We proceed similarly with the parameter p0 to which

we assign a Dirichlet distribution D(p0|1, . . . , 1). Clearly the dimensions of the two

distributions are different, although we do not make this explicit in the notation. Thus,

for a random array x = {xij , 1 ≤ j ≤ i ≤ r} having total t, that is
∑

xij = t, the

objective Bayesian models involved in the HWE testing problem are

M0 : {P0(x|p0, t), D(p0|1, ..., 1)}, (7)

and

M1 : {P1(x|p1, t), D(p1|1, ..., 1)}. (8)

Applying (2), we obtain the intrinsic prior for p1, conditional on an arbitrary but fixed

null point p0,

πI
1(p1|p0, t) = D(p1|1, . . . , 1)Ex|p1

P0(x|p0, t)

m1(x|t)
, (9)

where the sampling model P0 is defined in (6) and the expectation is taken with respect

to the sampling distribution P1(x|p1, t) with P1 defined in (4). The unconditional

intrinsic prior for p1 is given by

πI
1(p1|t) =

∫

πI
1(p1|p0, t)D(p0|1, ..., 1)dp0. (10)

Recall that the quantity t controls the degree of concentration of the conditional in-

trinsic prior πI
1(p1|p0, t) around the point p0. Consequently, t also controls the degree

of concentration of the prior πI
1(p1|t) around the null parameter space Θ0.
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3.3 Bayes Factor

Given the observed triangular array y ={yij , 1 ≤ j ≤ i ≤ r,
∑

yij = n}, we consider

the problem of choosing between the two models

M0 : {P0(y|p0), D(p0|1, . . . , 1)},

MI
1 : {P1(y|p1), π

I
1(p1|t)}, (11)

where MI
1 stands for the intrinsic Bayesian model (omitting for simplicity its depen-

dence on t). Assuming the common 0-1 loss function and the model prior Pr(M0) =

Pr(MI
1 ) = 1/2, the optimal model is the one having the larger posterior probability,

with the model posterior probabilities being given by

Pr(M0|y, t) =
1

1 +BI
10(y, t)

, Pr(MI
1 |y,t) = 1− Pr(M0|y, t), (12)

with BI
10(y, t) = 1/BI

01(y, t), where BI
01(y, t), the Bayes factor to compare M0 and

MI
1 , is given by

BI
01(y, t) =

m0(y)

mI
1(y, t)

=

∫

P0(y|p0, n)D(p0|1, . . . , 1)dp0
∫

P1(y|p1, n) πI
1(p1|t)dp1

.

Thus, for each t, equation (12) will provide the appropriate answer to the HWE prob-

lem.

We will let t vary between 1 and n (notice that t = 0 formally returns the standard

analysis with a uniform parameter prior under each of the two models). Condition

t ≤ n, i.e. the training sample size is less than or equal to the actual sample size,

ensures that prior precision does not exceed sample precision. Accordingly, we consider

the class of priors {πI
1(p1|t), t = 1, ..., n}. We compute the posterior probability

of H0 at t varies. The smaller the range of such probabilities, the more robust is

the analysis. Additionally, if the curve of posterior probabilities does not cross a
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conventional decision threshold (e.g. 0.5), then a stable decision in favor of either

hypothesis can be reached.

3.4 Two Alleles

For illustrative purposes we consider first the Hardy-Weinberg problem for the simplest

case of two alleles. We start from models (7) and (8) with r = 2, where

P0(x|p) =
(

t∏
i≥j xij

)

2x21p2x11+x21(1 − p)x21+2x22 , while P1 is a trinomial model

with two free cell-probabilities {p11, p21}. The default Bayesian models under consid-

eration are therefore

M0 : {P0(x|p, t), π0(p) = 1(0,1)(p)},

M1 : {P1(x|p11, p21, t), π1(p11, p21) = D(p11, p21, p22|1, 1, 1),

where 1A is the indicator function of the set A. The intrinsic prior, conditional on an

arbitrary but fixed point p, is

πI
1(p11, p21|p, t) = t!(t+ 2)!

∑

xij∈C2(t)

2x21

(x11!x21!x22!)
2 p

2x11+x21(1− p)x21+2x22
∏

i≥j

p
xij

ij ,

(13)

where C2(t) = {xij : 1 ≤ j ≤ i ≤ 2,
∑

xij = t}.

Figure 1 displays the intrinsic prior given p = 0.5 and for the values t = 5 and

t = 30, illustrating how the intrinsic prior concentrates more probability mass around

the null value p = 0.5 as t increases.

Integrating out the parameter p in expression (13) with respect to the uniform

prior, we obtain the unconditional intrinsic prior for {p11, p21} as

πI(p11, p21|t) =
t!(t+ 2)!

(2t+ 1)!

∑

xij∈C2(t)

[

2x21

(x11!x21!x22!)
2 (2x11 + x21)!(x21 +2x22)!

∏

i≥j

p
xij

ij

]

.

The null parameter space Θ0, which is now a curve in the plane, is plotted in Figure

2. The picture of the intrinsic prior πI(p11, p21|t) for t = 30 is given in Figure 3 and
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Figure 1: Conditional intrinsic prior of (p11, p21) given p = 0.5, with two distinct

degrees of concentration on the null corresponding to t = 5 (left panel) and

t = 30 (right panel).
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Figure 2: Null space Θ0 for the two alleles case; Θ0 = {p11 = p2, p21 = 2p(1−

p); 0 ≤ p ≤ 1}.
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Figure 3: Intrinsic prior for (p11, p21) with t = 30.

it shows how the prior concentrates mass around Θ0.

For the observed triangular array y = {yij , 1 ≤ j ≤ i ≤ 2,
∑

yij = n} the marginal

distribution of y under model M0 is

m0(y) =
n!

y11!y21!y22!
2y21

(2y11 + y21)!(y21 + 2y22)!

(2n+ 1)!
, (14)

while under MI
1 is

mI
1(y|t) =

t!(t+ 2)!

(2t+ 1)!(t+ n+ 2)!

n!
∏

i≥j

yij !

∑

xij∈C2(t)

[

2x21

(x11!x21!x22!)
2 (2x11 + x21)!

×(x21 + 2x22)!(x11 + y11)!(x21 + y21)!(x22 + y22)!

]

(15)

Both the Bayes factor and the posterior probabilities of model M0 and MI
1 are now

computable.
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Example 1 (continued): For the data set used in Example 1, the range of pos-

terior probabilities for the HWE model, as the intrinsic prior varies in the class

{πI(p11, p21|t), t = 1, ..., 20}, turns out to be min1≤t≤20 P (M0|y, t) = 0.53, max1≤t≤20 P (M0|y, t) =

0.55. Therefore, the optimal decision when using the intrinsic priors is to accept HWE,

and this decision is robust in the class of intrinsic priors.

3.5 The General Case of r Alleles

Consider models (7) and (8). Using (10), the intrinsic prior for the parameter p1 is

πI(p1|t) =
(t+R− 1)! (r − 1)! t!

(2t+R− 1)!

∑

xij∈Cr(t)

2
t−

r∑

i=1
xii

r
∏

i=1

(zi + di)!

(

∏

i≥j

xij !

)2 ×
∏

i≥j

p
xij

ij , (16)

where Cr(t) = {xij : xij ≥ 0, 1 ≤ j ≤ i ≤ r,
∑

xij = t, } and R = r(r + 1)/2.

For the observed sample y ={yij , 1 ≤ j ≤ i ≤ r,
∑

yij = n}, the marginal under

model M0 becomes

m0(y) =
(r − 1)! n!

(2n+ r − 1)!
2
n−

r∑

i=1
yii

r
∏

i=1

(ri + ci)!

∏

i≥j

yij !
, (17)

where ri =
i
∑

j=1

yij , and ci =
r
∑

k=i

yki, the sum of the ith row and ith column of the

triangular data array. The marginal data distribution under the intrinsic Bayesian

model MI
1 turns out to be

mI
1(y|t) =

t!(t+R− 1)!(r − 1)!

(2t+ r − 1)!(n+ t+R− 1)!

n!
∏

i≥j

yij !

∑

xij∈Cr(t)

[

2
t−

r∑

i=1
xii

r
∏

i=1

(zi + di)!

(

∏

i≥j

xij !

)2

∏

i≥j

(xij+yij)!

]

,

(18)

where zi =
∑i

j=1 xij and di =
∑r

k=1 xki.

The ratio m0(y)/m
I
1(y|t) provides the Bayes factor BI

01(y|t) to compare M0 and

MI
1 based on the intrinsic prior. Using (12) we obtain the posterior probability of

model M0 and MI
1 for the given training sample size t.

15



3.6 Computation of the Bayes Factor

From the structure of mI
1(y|t) given in (18) it is clear that the computation of BI

01(y|t)

can become rapidly infeasible if the training sample size t is large (this may easily

be the case if n is large because we would like to let t range over the grid 1, . . . , n

to evaluate robustness). To overcome this difficulty, we calculate BI
01(y, t) using a

Monte Carlo method, following the approach outlined in [?]. In particular, we use

an importance sampling strategy in order to speed up convergence. We choose as

candidate distribution a specific R-dimensional multinomial

x ∼ Multinomial(t, p̂1) (19)

with probabilities p̂1 = (p̂11, p̂21, . . . , p̂rr) equal to

p̂ij =
yij + 1

n+R
, i = 1, . . . , r, j = 1, . . . , i. (20)

We then generate M random deviates x(k), k = 1, . . . ,M , from (19) and approximate

the Bayes factor using a Monte Carlo average; specifically we evaluate

B̂I
10(y|t) =

1

M

t!(t+R− 1)!(2n+ r − 1)!

(2t+ r − 1)! 2n−
∑

r
i=1 yii

∏r

i=1 (ri + ci)!

M
∑

k=1

[

2t−
∑r

i=1 x
(k)
ii

∏r

i=1 (zi + di)!
(

∏

i≥j x
(k)
ij !

)2

×
∏

i≥j

(

x
(k)
ij + yij

)

!
1

t!
∏

i≥j x
(k)
ij

!

∏

i≥j p̂
x
(k)
ij

ij

]

.

(21)

Apart from M (the number of Monte Carlo iterations), convergence achievement ap-

pears to depend critically on the data sparseness, (more sparse observations lead to

slower convergence), and the training sample size t (higher values of t typically require

a higher number of Monte Carlo iterations M to reach convergence). However, even

with a considerable number of iterations (in most of the applications presented in the
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next section M is fixed at 300, 000), the computational burden of the algorithm is still

very reasonable.

4 Examples

In this section we illustrate some features of the testing procedure developed in Section

3 through some examples which for illustration purposes are confined to the case of

two-alleles; next we analyze two data sets for the case of multiple alleles also discussed

in [?].

4.1 Two Alleles

We consider four different data sets each referring to n = 20 artificial observations,

and the corresponding counts for the genotypes (A1A1, A2A1, A2A2) are:

• Data set 1: (3, 9, 8) ,

• Data set 2: (8, 2, 10) ,

• Data set 3: (12, 5, 3) ,

• Data set 4: (2, 13, 5) .

These data sets have been selected to highlight and better appreciate some features of

our methodology. The results are summarized in Figure 4, wherein each row represents

a specific data set ordered from top to bottom as above. The first three columns refer

to selected intrinsic priors indexed by the fractions f = 0.1, 0.5, 1, where f = t/n and

n is the actual sample size. Each panel in these three columns report the contour

lines of the intrinsic prior (solid black) and those of the (normalized) likelihood (solid

gray), together with the null parameter space Θ0 (represented by the dashed curve).

Every individual panel in the last column reports the posterior probability of M0 using
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the Monte Carlo approach described in (21) with M = 300, 000 iterations together

with the corresponding exact curve obtained from (14) and (15) (dashed gray): the

latter is mostly barely visible because of the excellent approximation provided by our

Monte Carlo method. The horizontal dotted line represents the posterior probability

of the null model derived from the standard Bayes factor computed using the uniform

prior both under the full and the null model. Notice that this value is actually a

special case of the Bayes factor based on the intrinsic prior because it can be formally

obtained by setting t = 0. Focus now on the first data set, i.e. row one of Figure

4. The observations are in very good agreement with the null hypothesis, as one can

gather from the fact that the null parameter space intersects the highest likelihood

contours. As f increases, panels (a) to (c), the highest contour lines of the intrinsic

prior move towards the center of the likelihood surface, thus increasing the marginal

data distribution under M1, m
I
1(y|t), and hence taking away evidence from M0. This

explains the monotone decreasing behavior of the null posterior probability in panel

(d). Despite the very good agreement of the likelihood with the null hypothesis, the

posterior probability of HWE does not exceed 67%: this is due to the fairly moderate

sample size. Finally, the small range of variation of the posterior probability of M0,

always well above the conventional 0.5-threshold, provides a robust conclusion in favor

of the null hypothesis. Consider now the second data set, i.e. row two of Figure 4. It is

evident that the null hypothesis is not supported by the data, because the likelihood

surface is not crossed by the Θ0-curve, see panels (e)-(g). This is reflected in the

very small values of the posterior probability of M0 which never exceeds 1.2%, see

panel (h). The monotone increasing behavior of the curve in the latter panel is easily

explained as follows: by increasing f the intrinsic prior is pulled towards Θ0 and thus

away from the likelihood surface as it is apparent from the sequence of panels (e),
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(f) and (g). In this way, mI
1(y|t) decreases, thus taking away evidence from M I

1 ,

equivalently adding strength to M0. Notice that the support for the HWE model

remains negligible throughout the range 0 ≤ f ≤ 1, so that a highly robust conclusion

against M0 can be drawn in this case, too. The third data set, which is represented in

the third row of the same figure, presents a non-monotone null posterior probability

curve, see panel (l). Here the data are in some accord with the null, because the

Θ0-curve is somewhat tangential to the likelihood surface. Moving from f = 0.1 -

panel (i) - to f = 0.5 - panel (j), the intrinsic prior starts peaking around Θ0, and

in so doing it hits some high likelihood levels, thus producing a reduction in the

evidence for M0. However by further increasing f the curve further shrinks on Θ0

but this makes it capture only some peripheral likelihood levels - panel (k) for f = 1,

thus removing evidence from M1 and making the posterior probability of M0 increase

again. The final answer is again robust, because the posterior probability of Hardy-

Weinberg equilibrium is always inside the (0.33, 0.35) interval. Finally, let us turn to

the fourth row which analyzes the last data set. Similarly to the previous case, the

data are in some accord with the null, because there is some overlapping between the

null-curve and the likelihood surface, although this occurs only for low-level contours.

As we move from panel (m) to (n) some evidence in favor of M1 is lost because high

level prior contours retract towards Θ0, thus making the posterior probability of M0

increase, albeit very slightly. A further increase in f makes M1 more competitive

because some high prior contours make their way inside the likelihood surface. The

actual changes to the posterior probability of M0, panel (p), are however very small,

and thus the conclusion is still robust, although evidence for M0 is not markedly below

the conventional 50%-threshold.
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Figure 4: Posterior probability of Hardy-Weinberg equilibrium. First three

columns: each panel reports the intrinsic prior (solid black) and the normal-

ized likelihood (solid gray) contours together with the null parameter space Θ0

(dashed black). Last column: Posterior probability of Hardy-Weinberg equilib-

rium and comparison between Monte Carlo averages based on M = 300, 000

iterations (solid black) and exact values (dashed gray) for 0 ≤ f = t/n ≤ 1.
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4.2 Multiple Alleles

example 2: This example is concerned with a population of r = 8 alleles and the

data given in Table 1 represent a sample of size n = 30 of genotype frequencies

simulated under the Hardy-Weinberg equilibrium when the underlying gene frequencies

are (.2, .2, .2, .2, .05, .05, .05, .05); see [?, Example 2].

Table 1: Simulated data from [?, Example 2].

A1 A2 A3 A4 A5 A6 A7 A8

A1 3

A2 4 2

A3 2 2 2

A4 3 3 2 1

A5 0 1 0 0 0

A6 0 0 0 0 0 1

A7 0 0 1 0 0 0 0

A8 0 0 0 2 1 0 0 0

Figure 5 reports the intrinsic posterior probabilities of Hardy-Weinberg equilibrium

calculated using the Monte Carlo approach (21) with M = 300, 000 iterations together

with the value derived from the standard Bayes factor using uniform priors. Notice

that the curve is (essentially) monotone decreasing. The rationale for this behavior is

analogous to that described for Data set 1 in Subsection 4.1, because the data clearly

support the Hardy-Weinberg equilibrium model M0. The intrinsic testing approach

provides strong evidence in favor of the null model. The null posterior probabilities,
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Figure 5: Guo and Thompson (1992); r =8 alleles; n = 30; data simulated under

Hardy-Weinberg equilibrium. Posterior probability of Hardy-Weinberg equilib-

rium: Monte Carlo averages based on M = 300, 000 iterations as a function

of the ratio f = t/n. The horizontal dashed line is derived from the standard

Bayes factor based on uniform priors.

in fact, range from 0.80 to 0.97.

example 3: These data concern the antigen class of 45 French type 1 diabetes patients,

with the classes being DR1, DR3, DR4, and Y, a fourth class corresponding to all

other antigens. The counts (r = 4, n = 45) are given in Table 2. These data are

discussed in [?, Example 1] and [?]; the latter in particular, reported an exact p-value

of 0.01744, which under conventional levels would indicate some evidence against the

Hardy-Weinberg model. Interest here centers in the mode of inheritance of type 1

diabetes, with a hypothesized recessive model being equivalent to the HWE model;

see [?, Section 4.1]. This example is interesting because it reveals how the HWE model
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can be usefully adapted to a specific scientific context.

Table 2: Genotype frequency data from [?].

A1 A2 A3 A4

A1 0

A2 3 1

A3 5 18 1

A4 3 7 5 2

The null posterior probabilities using the intrinsic prior methodology, as well as

the standard approach, are reported in Figure 6. The behavior of the curve, and its

explication, is analogous to that described for Data set 2 in Subsection 4.1. The poste-

rior probabilities of the null range from 0.07 to 0.10, thus providing robust substantial

evidence against HWE; see [?] for a description of the scale of evidence against the

null hypothesis in line with Jeffreys’ recommendations. [?, Section 4.1] also analyzed

these data using an informative prior; he obtains a Bayes factor in favor of HWE equal

to 0.074 which, with prior odds equal to one, translates to a posterior probability of

HWE of 0.07: this coincides with our lower bound. We are thus able to replicate his

findings within our objective framework without any prior elicitation.

We also analyzed a more elaborate data set consisting of nine alleles and 8297

individuals (see [?]), thus showing that our method scales up nicely. We do not report

the results here because they are wholly comparable with those obtained by [?, Section

4.2], showing that for these data there is overwhelming evidence in favor of the HWE

hypothesis. The interested reader can find all the routines and the examples (including

the nine alleles one) used to prepare this paper in the R package called HWEintrinsic
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Figure 6: Guo and Thompson (1992, Example 1); r = 4; n = 45. Posterior

probability of Hardy-Weinberg equilibrium: Monte Carlo averages based on

M = 300, 000 iterations as a function of the ratio f = t/n. The horizontal

dashed line is derived from the standard Bayes factor based on uniform priors.

available from the Comprehensive R Archive Network (www.r-project.org).

5 Concluding remarks

The Hardy-Weinberg equilibrium law has received considerable attention in recent

years, thanks to the increasing availability of genetic data. For instance, [?] claim that

detecting departures from Hardy-Weinberg equilibrium of marker-genotype frequencies

is a crucial first step in almost all human genetic analyzes; for a related viewpoint see

also [?]. It seems therefore appropriate to apply recently developed testing procedures

to this problem.

The Bayesian approach to hypothesis testing and model comparison has been ad-
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versely affected over the years because of its high sensitivity to prior specification.

This feature can be problematic, especially for scientific communication, where objec-

tive, or at least benchmark, analyzes are preferred. Unfortunately standard default

reference priors do not work for Bayesian hypothesis testing (for instance, the Bayes

factor is not even well-defined when the priors are improper). However, it is by now

recognized that the methodology based on intrinsic priors represents a sound and vi-

able alternative, especially for nested models. Intrinsic priors are suitably tailored to

the hypothesis under investigation and produce sensible Bayes factors. One important

reason for this highly satisfactory behavior is that parameter values close to the null

receive higher probability mass under the intrinsic prior, a natural desideratum as

recognized by several authors.

In this paper we have developed an objective Bayesian testing procedure making

systematic use of the notion of intrinsic priors. It turns out that a whole class of

intrinsic priors, governed by a single scalar quantity (the training sample size t) is a

natural class of priors for assessing robustness of the test. The quantity t naturally acts

as a concentration parameter (around the null subspace) for the prior under the full

model. Making t vary between 1 and the observed sample size n, we are able to obtain

a whole range of posterior probabilities for the null model which provides a natural

sensitivity analysis. The smaller the range of such probabilities, the more robust is

the analysis. A separate issue concerns whether the curve does, or does not, cross the

0.5 threshold (or whatever other level is deemed appropriate, depending on the loss

function, to make a decision in favor of either hypothesis). If the threshold is crossed,

then the experimental evidence does not allow to choose between the two hypotheses,

signalling that more data are needed. The HWEintrinsic R package, which implements

the methods presented in this paper, is available from the the Comprehensive R Archive

25



Network (www.r-project.org).
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