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Abstract

Wemove from a triopoly game with heterogeneous players (E.M.Elabassy
et al., 2009. Analysis of nonlinear triopoly game with heterogeneous play-
ers. Computers and Mathematics with Applications 57, 488-499). We
remove the nonlinearity from the cost function and introduce it in the
demand function. We also introduce a different decisional mechanism for
one of the three competitors. A double route to complex dynamics is
shown to exist, together with the possibility of multistability of different
attractors, requiring a global analysis of the dynamical system.

keywords: Triopoly game; Heterogeneous players; Global analysis

1 Introduction

Oligopoly is the market structure in which the consequences of the bounded
rationality of economic agents are more evident. In this kind of markets an
higher level of rationality is required in order to make the best choice. In fact,
firms do not only have to know the shape of the demand function, but they also
have to be able to foresee the output choices of the competitors, because they
are in a situation of strategic interdependence caused by the influence of each
single firm on the market price. In the literature, a lot of papers are devoted
to the development and the analysis of the simplest oligopolistic case: duopoly.
Both homogeneous and heterogeneous firms cases are considered1 (see [1-6] for

1In this branch of literature the terms homogeneous and heterogeneous refer to the deci-
sional mechanism adopted by the firms.
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a few papers on homogeneous duopolies, [7] for a recent survey and [8-12] for
heterogeneous ones). The authors of these papers underscore the complicated
(and complex) dynamics that may emerge whenever firms have some degree of
bounded rationality. A more complicated case is the case of triopoly. Differently
with respect to duopolies, the case with three firms is not present in the literature
as well. One of the main reasons behind this low number of triopoly papers,
lies on the complexity of the models describing the dynamics of the quantities
that must be at least three-dimensional. Only under some particular restriction
it is still possible to analytically study this kind of models. For example, it
is almost always possible to deal with the equations governing the dynamics
of homogeneous triopolies (see [13-17] for some examples), at least for what
concerns the local stability of Nash equilibria. More difficult to study, but more
realistic, is the case with three heterogeneous firms. In such a case the study
must be necessarily performed by instruments both analytic and numeric. The
development of quite powerful computers, permits now to be able to handle this
case (see [18-20]).

To the best of our knowledge, in the triopoly games already studied, the
only road to complexity is a cascade of period doubling bifurcations, leading
to chaos2. Such a case only produce realistic disequilibrium dynamics for the
combinations of parameters for which a chaotic attractor is reached. In fact, it
appears quite unrealistic in the long period the persistence of periodic dynam-
ics. Even if the firms are assumed to be boundedly rational, it seems reasonable
that they are able to recognize a periodic path, modifying as a consequence
their decisional process. In heterogeneous duopoly games like [10-12] the pos-
sibility that the Nash equilibrium loses stability via flip bifurcation, is always
accompanied with the possibility to observe a Neimark-Sacher bifurcation, for
some values of the parameters. This is, in our opinion, a quite realistic sce-
nario in which, after the bifurcation, orbits display a quasiperiodic motion, that
require an higher degree of rationality for the firms in order to be recognized.
In [11,12] the double route to complex dynamics seems to be somehow related
with the assumption of isoelastic demand function. In the present model we
analyze an heterogeneous triopoly model taking [19] as a benchmark. We adopt
the following alternative assumptions with respect to [19]:

• We adopt a microfounded isoelastic demand function (see Puu [1]) and
linear costs, instead of a linear demand function and quadratic costs;

• We assume a different decisional mechanism for one of the three players:
instead of the adaptive player we introduce a firm that approximates the
demand function linearly around the last realized couple of quantity and
market price (see [5,22,23])

We show that these assumptions permit to obtain the double route to chaos al-
ready founded in some heterogeneous duopoly. Moreover, we numerically found
multistability of different coexistent attractors, and we perform a global anal-
ysis through numerical simulations in order to identify the basins of attraction

2With the exception of a working paper of one of the authors [21].
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of the attractors, that is the initial conditions leading to one attractor or the
other. The paper is organized as follows: in Section 2 we introduce the model
whose Nash equilibrium is obtained in Section 3 together with its local sta-
bility. Section 4 is devoted to the close examination of the Flip bifurcation
of the Nash equilibrium. Section 5 concerns the Neimark-Sacher bifurcation
of the Nash equilibrium, while in Section 6 we show the ambiguous role of the
marginal costs. Multistability and some numerical global analysis are in Section
7. Section 8 concludes.

2 The model

Let us consider a market populated by three firms producing homogeneous
goods. The demand function is isoelastic, implying the hypothesis of Codd-
Douglas utility function of the consumers (see Puu [1]):

p = f(Q) =
1

Q
=

1

q1 + q2 + q3
, (1)

where Q is the total supply and qi, i = 1, 2, 3 represents the level of production
of the i−th triopolist. The cost function is linear:

Ci(qi) = ciqi, (2)

where ci for i = 1 to 3 are the constant marginal costs.
The first player does not know the shape of the demand function and at

each time period t it builds a conjectured demand function through the local
knowledge of the real demand function (1). In particular, the firm observes the
current market price p(t) and the corresponding total supplied quantityQ(t). By
using market experiments, the player is able to linearly approximate the demand
function around the point (Q(t), p(t)). In other words, it obtains the slope of
the demand function in that point and, in the absence of other information, it
conjectures the linearity of the demand function that must passes through the
point corresponding to the current market price and quantity (see [5,21,22]).
Given this assumption, the first player defines the conjectured demand for the
following period t+ 1:

pe1(t+ 1) = p(t) + f ′(Q(t))(Qe(t+ 1)−Q(t)), (3)

where f ′(Q(t)) is the inverse demand function, and Qe(t + 1) represents the
aggregate conjectured production for time t+1. By using the demand function
we obtain:

pe1(t+ 1) = f(Q(t)) + f ′(Q(t))(q1(t+ 1) + qe2(t+ 1) + qe3(t+ 1)−Q(t)) (4)

Concerning the expectations about the rivals’ outputs, we use the cournotian
hypothesis of static expectations, then the expected quantities for the next

3



period are the same supplied in the current one. By using this assumption in
(4) we have:

pe1(t+ 1) = f(Q(t)) + f ′(Q(t))(q1(t+ 1)− q1(t)) (5)

The choice of q1(t+ 1) is made in order to maximize the expected profit:

q1(t+ 1) = argmax
q1(t+1)

πe
1(t+ 1) = argmax

q1(t+1)

[pe1(t+ 1)q1(t+ 1)− c1q1(t+ 1)] (6)

The first order condition is the following:

∂πe
1(t+ 1)

∂q1(t+ 1)
= f(Q(t)) + 2q1(t+ 1)f ′(Q(t))− q1(t)f

′(Q(t))− c1 = 0 (7)

It is easy to verify the second order condition. So, the evolution of the output
of the first player is given the following first order nonlinear difference equation:

q1(t+ 1) =
q1(t)

2
+

c1 − f(Q(t)

2f ′(Q(t))
(8)

that is:

q1(t+ 1) =
2q1(t) + q2(t) + q3(t)− c1(q1(t) + q2(t) + q3(t))

2

2
(9)

The second player knows the shape of the demand function but it has to con-
jecture the choices of the other two players. We assume that it also is a näıve

player, that is it uses static expectations like the first player and then it maxi-
mize the expected profit given by:

q2(t+ 1) = argmax
q2(t+1)

πe
2(t+ 1) = argmax

q2(t+1)

[pe2(t+ 1)q2(t+ 1)− c2q2(t+ 1)] (10)

By using the demand function (1) and static expectations we obtain:

q2(t+ 1) = argmax
q2(t+1)

πe
2(t+ 1) = argmax

q2(t+1)

[

q2(t+ 1)

q1(t) + q2(t+ 1) + q3(t)
− c2q2(t+ 1)

]

(11)
that permits to derive the dynamic equation:

q2(t+ 1) =

√

q1(t) + q3(t)

c2
− q1(t)− q3(t) (12)

The third player adopts the so-called myopic adjustment mechanism (see Dixit
[24]), that is:

q3(t+ 1) = q3(t) + αq3(t)φ3(Q(t)), (13)

where φ3(Q(t)) is the marginal profit of the third triopolist, that is:

φ3(Q(t)) = φ3(q1(t)+q2(t)+q3(t)) =
∂π3(q1(t) + q2(t) + q3(t))

∂q3(t)
=

q1(t) + q2(t)

(q1(t) + q2(t) + q3(t))2
−c3,

(14)
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In other words, the third firm increases/decreases its output according to the
information given by the marginal profit of the last period. The positive pa-
rameter α represents the speed of adjustment. By substituting (14) in (13) we
finally obtain the dynamic equation:

q3(t+ 1) = q3(t) + αq3(t) +

[

q1(t) + q2(t)

(q1(t) + q2(t) + q3(t))2
− c3

]

(15)

If we use x, y, z instead of q1, q2, q3 in (9),(12) and (15) we have that the dy-
namics of the firms’ outputs are given by the following discrete time dynamical
system:

(x′, y′, z′) = T (x, y, z) :



























x′ =
2x+ y + z − c1(x+ y + z)2

2

y′ =

√

x+ z

c2
− x− z

z′ = z + αz

[

−c3 +
x+ y

(x+ y + z)2

]

(16)

where ′ denotes the unit-time advancement operator.

3 Nash Equilibrium stability

In order to analyze the relationship between the stationary state of the dynam-
ical system (16) and the Nash equilibrium, we must seek the equilibrium point
as the solution of the following algebraic system:



























y∗ + z∗ − c1(x
∗ + y∗ + z∗)2

2
= 0

√

x∗ + z∗

c2
− x∗ − y∗ − z∗ = 0

z∗
[

−c3 +
x∗ + y∗

(x∗ + y∗ + z∗)2

]

= 0

(17)

which is obtained by setting x′ = x = x∗, y′ = y = y∗ and z′ = z = z∗ in (16).
The algebraic system (17) is solved by the origin O and by the point:

E :

(

2(c2 + c3 − c1)

(c1 + c2 + c3)2
;
2(c1 + c3 − c2)

(c1 + c2 + c3)2
;
2(c1 + c2 − c3)

(c1 + c2 + c3)2

)

. (18)

We do not consider the origin O because our map is not defined in such a point.
It is possible to prove (see [5,23]) that E is the only other stationary state
of the system. It is the Nash Equilibrium of the static game. We note that
such equilibrium is the same equilibrium obtained by Puu [13] in an equivalent
triopoly setting. The Jacobian matrix of the map T is the following:

J(x, y, z) :









1− b(x+ y + z) 1
2 [1− 2c1(x+ y + z)] 1

2 [1− 2c1(x+ y + z)]
(

x+z
c2

)

−
1

2 1
2c2
− 1 0

(

x+z
c2

)

−
1

2 1
2c2
− 1

αz
[

z−x−y

(x+y+z)3

]

αz
[

z−x−y

(x+y+z)3

]

1− αc3 + α(x+ y)
[

x+y−z

(x+y+z)3

]
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In order to analyze the local stability of the Nash equilibrium, you need to
evaluate the Jacobian matrix at the Nash equilibrium and calculate the eigen-
values. Unfortunately, it is not possible to find them analytically. We can still
say something through numerical simulations. After several numerical computa-
tions, we have found that a generic two-dimensional bifurcation diagram in the
(α, c3) parameters’ plane, is always qualitatively similar to the one represented
in Fig. 1.

———– FIG. 1 HERE ———–

Fig. 1 is representative of the ways by which the Nash equilibrium becomes
unstable. We can see a double route to instability: by period doubling or by
Neimark-Sacher bifurcation.

4 Flip bifurcation

The first one is via period-doubling bifurcation (also called Flip bifurcation).
This kind of local bifurcation is not new in the literature on both homogeneous
and heterogeneous triopolies (see [1-20]). It occurs when moving the value of a
parameter, one of the eigenvalues of the Jacobian matrix calculated at the Nash
equilibrium, becomes lower than −1, while the other two are still lower than 1
in absolute value . A 2-cycle appears and it attracts all the orbits previously
attracted by the fixed point. The bifurcation diagram at Fig.2 shows that this
is what happens by increasing the value of the speed of reaction parameter α,
keeping fixed the marginal costs at c1 = 0.5, c2 = 0.55 and c3 = 0.15 (the
direction A in Fig.1).

———– FIG. 2 HERE ———–

The bifurcation diagram also shows that if we keep increasing the value of
α a cascade of period doubling bifurcations occurs (see the bifurcation diagram
in Fig. 2a). This is a typical route to chaos, as it is confirmed but the maximal
Lyapunov exponent, in Fig. 2b. A chaotic attractor in the three-dimensional
phase plane is showed in Fig. 3b.

———– FIG. 3 HERE ———–

5 Neimark-Sacker bifurcation

Another route to complicated dynamics occurs whenever the Nash equilibrium
undergoes a Neimark-Sacker bifurcation (NS bifurcation henceforth). This hap-
pens when, increasing the value of α the system enters in the yellow region of
the parameters plane in Fig. 1. Fig. 4a shows the locally attractive closed
invariant curve that is created after the local bifurcation. Differently from the
flip bifurcation case, now the dynamics are quasi-periodic. A further increasing
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in the value of α may lead to chaotic dynamics (as proved by the numerical com-
putation of the maximal Lyapunov exponent in Fig.5b). The annular chaotic
attractor is showed in Fig. 4b. The double route to chaos (via NS and via flip
bifurcation) is new with respect to [19] and also respect to the other triopoly
games. This is an important feature from an economic point of view, because
it means that firms may face both periodic and quasi-periodic dynamics. While
the former can be recognized by a rational enough firm, the latter are very hard
to detect by looking at the time series of the quantities. This means that im-
mediately after the NS bifurcation the system displays complicated dynamics,
differently from what happens after the period doubling bifurcation in which a
periodic attractor appears.

———– FIG. 4 AND 5 HERE ———–

6 The role of the marginal costs

The two-dimensional bifurcation diagram in Fig.1 permits us to also say some-
thing about the role played by the marginal costs. We can see the this role is
ambiguous, especially for high values of the speed of adjustment. In fact, it is
possible to have a situation in which for low values of the marginal cost the
Nash equilibrium is unstable and the orbits converge to a chaotic attractor or
a closed invariant curve. For intermediate values of α the Nash equilibrium is
locally stable but increasing again the marginal cost it loses stability via flip
bifurcation and then, with higher values of α the Nash equilibrium becomes
locally stable again (see the bifurcation diagram in Fig.6).

———– FIG. 6 HERE ———–

Note the qualitatively nothing would change in Fig.1 by using c1 or c2 instead
of c3.

7 Global Analysis

In this section we present the main novelty of this model with respect to the
other heterogeneous triopolies already studied in the literature. Until now we
limited our analysis to the local stability of the Nash equilibrium. We have also
shown that the positivity of the Nash equilibrium implies that the other fixed
points are locally unstable. This is also what happens in the other triopolies
studied so far. The Nash equilibrium, or the attractor originating from its loss
of stability, was not only locally attracting but to it are asymptotically directed
all the feasible trajectories (i.e. those that are not divergent). This is not what
happens in our triopoly game. In fact, we can find sets of parameters leading
to a bistability of different attractors. Fig. 7b shows the locally stable Nash
equilibrium coexisting with a locally stable 3-cycle whose points are located
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around it. From the bifurcation diagram of Fig. 7a we can see that the 3-cycle
becomes unstable by increasing the value of α, giving rise to a higher periodicity
cycles, and even to a chaotic attractor. Nevertheless the Nash Equilibrium still
remains locally stable.

———– FIG. 7 HERE ———–

This is not only a new feature interesting from a mathematical point of view.
Coexistence has a lot of economic consequences. The two coexisting attractors
are characterized by quite different levels of variance of the quantities produced
by the triopolists. In one case what will happen in the future is much more
predictable with respect to the other one. Initial conditions assume a crucial
importance in determining to which attractor the system will asymptotically
converge. So, besides the local analysis of the Nash equilibrium, we need to
perform some kind of global analysis. In Fig. 8 we can see three different
sections of the basins of attractions in a situation of coexistence between the
locally stable NE (whose basin of attraction is made up by blue points) and
a locally stable 3-cycle (whose basin of attraction is in red). The structure of
the basins appear quite complicated and this is probably a consequence of the
non-invertibility of the map (16).

———– FIG. 8 HERE ———–

The shapes of the basins of attractions when the Nash Equilibrium coexists
with a chaotic attractor (Fig. 9) are complicated as well. This permit us to
conclude that this heterogeneous triopoly is characterized by an higher degree of
unpredictability with respect to other similar models present in the literature.

———– FIG. 9 HERE ———–

8 Conclusions

A triopoly game with heterogeneous players is analyzed in this paper. Nonlin-
earties are present both in the demand function and in the decisional mechanism
adopted by the firms. We have numerically proved the existence of two different
route to complex dynamics: through a flip bifurcation and through Neimark-
Sacher bifurcation of the Nash equilibrium. Another important feature of this
model is the arising, for some parameters’ constellation, of multistibility between
two different attractors. We have numerically performed some global analysis
show how complicated can be the basins of attractions.

8



References

[1] T. Puu, Chaos in duopoly pricing, Chaos Solitons Fractals 1 (1991) 573-581.

[2] M. Kopel, Simple and complex adjustment dynamics in Cournot duopoly
models, Chaos Solitons Fractals 7 (1996) 2031-2048.

[3] H.N. Agiza, On the analysis of stability, bifurcation, chaos and chaos control
of Kopel map, Chaos Solitons Fractals 10 (1999) 1909-1916.

[4] G.I. Bischi, M. Kopel, Equilibrium selection in a nonlinear duopoly game
with adaptive expectations, J. Econ. Behav. Organ. 46 (2001) 73-100.

[5] A. Naimzada, L. Sbragia, Oligopoly games with nonlinear demand and cost
functions: two boundedly rational adjustment processes, Chaos Solitons Frac-
tals 29 (2006) 707-722.

[6] F. Tramontana, L. Gardini, T. Puu, Cournot duopoly when the competitors
operate multiple production plants, J. Econ. Dynam. Contr. 33 (2009) 250-
265.

[7] G.I. Bischi, C. Chiarella, M. Kopel, F. Szidarovsky, Nonlinear Oligopolies:
Stability and Bifurcations, first ed., Springer-Verlag, New York, 2009.

[8] H.N. Agiza, A.A. Elsadany, Nonlinear dynamics in the Cournot duopoly
game with heterogeneous players, Physica A 320 (2003) 512-524.

[9] H.N. Agiza, A.A. Elsadany, Chaotic dynamics in nonlinear duopoly game
with heterogeneous players, Appl. Math. Comput. 149 (2004) 843-860.

[10] J. Zhang, Q. Da, Y. Wang, Analysis of nonlinear duopoly game with het-
erogeneous players, Econ. Modelling 24 (2007) 138-148.

[11] N. Angelini, R. Dieci, F. Nardini, Bifurcation analysis of a dynamic duopoly
model with heterogeneous costs and behavioural rules, Math. Comput. Simul.
79 (2009) 3179-3196.

[12] F. Tramontana, Heterogeneous duopoly with isoelastic demand function,
Econ. Modelling 27 (2010) 350-357.

[13] T. Puu, Complex dynamics with three oligopolists, Chaos Solitons Fractals
7 (1996) 2075-2081.

[14] H.N. Agiza, Explicit stability zones for Cournot games with 3 and 4 com-
petitors, Chaos Solitons Fractals 9 (1998) 1955-1966.

[15] H.N. Agiza, G.I. Bischi, M. Kopel, Multistability in a dynamic Cournot
game with three oligopolists, Math. Comput. Simul. 51 (1999) 63-90.

[16] A. Agliari, L. Gardini, T. Puu, The dynamics of a triopoly Cournot game,
Chaos Solitons Fractals 11 (2000) 2531-2560.

9



[17] H. Richter, A. Stolk, Control of the triple chaotic attractor in a Cournot
triopoly model, Chaos Solitons Fractals 20 (2004) 409-413.

[18] E.M. Elabbasy, H.N. Agiza, A.A. Elsadany, H. EL-Metwally, The dynamics
of triopoly game with heterogeneous players, Int. J. Nonlinear Sci. 3 (2007)
83-90.

[19] E.M. Elabbasy, H.N. Agiza, A.A. Elsadany, Analysis of nonlinear triopoly
game with heterogeneous players, Comp. Math. Appl. 57 (2009) 488-499.

[20] W. Ji, Chaos and control of game model based on heterogeneous expec-
tations in electric power triopoly, Discrete Dynamics in Nature and Society,
Volume 2009 (2009), Article ID 469564, 8 pages.

[21] A.A. Elsadany, F. Tramontana, Heterogeneous triopoly game with isoelas-
tic demand function. Mimeo.

[22] J. Tuinstra, A price adjustment process in a model of monopolistic compe-
tition, Int. Game Theory Rev. 6 (2004) 417-442.

[23] G.I. Bischi, A. Naimzada, L. Sbragia, Oligopoly games with local monop-
olistic approximation, J. Econ. Behav. Organ. 62 (2007) 371-388.

[24] A. Dixit, Comparative statics for oligopoly, Int. Econ. Rev. 27 (1986) 107-
122.

10



FIGURES

Figure 1: Two-dimensional bifurcation diagram in the (c2, α) parameters plane.
The value of c1 is fixed to 0.5, while c2 = 0.55. In the blue region the Nash
Equilibrium is locally stable. In the red region of eigenvalue is lower than -1,
while in the yellow region a couple of complex and conjugated eigenvalues has
a modulus higher than 1.
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Figure 2: In (a) one-dimensional bifurcation diagram with respect to the pa-
rameter α. The fixed parameters are: c1 = 0.4, c2 = 0.55 and c3 = 0.6. In (b)
the corresponding maximum Lyapunov exponent, displaying a chaotic behavior
for high values of α.

Figure 3: In (a) a 2-cycle obtained with α = 6.5. The chaotic attractor in (b)
is obtained by using α = 8.
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Figure 4: In (a) one-dimensional bifurcation diagram with respect to the pa-
rameter α. The fixed parameters are: c1 = 0.4, c2 = 0.55 and c3 = 0.1. In (b)
the corresponding maximum Lyapunov exponent, displaying a chaotic behavior
for high values of α.

Figure 5: In (a) an attracting closed invariant curve obtained with α = 4.476.
The annular chaotic attractor in (b) is obtained by using α = 5.57.
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Figure 6: One-dimensional bifurcation diagram obtained by varying the
marginal cost c3 and keeping fixed the other parameters at the values c1 = 0.5,
c2 = 0.55 and α = 0.55.

Figure 7: In (a) one-dimensional bifurcation diagram with c1 = 0.5, c2 = 0.55
and c3 = 0.2. α varies between 5.2 and 6.2. The sudden jump from the fixed
point to a 3-cycle is caused by the initial conditions that enter the basin of
attraction of the 3-cycle. In (b) the Nash Equilibrium coexisting with a locally
stable 3-cycle at α = 5.66.
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Figure 8: 4 different sections of the basins attraction of the coexisting Nash
Equilibrium (basin in blue) and 3-cycle (basin in red). In grey the basin of
attraction of diverging trajectories.
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Figure 9: 4 different sections of the basins attraction of the coexisting Nash
Equilibrium (basin in blue) and 3-pieces chaotic attractor (basin in red). In
grey the basin of attraction of diverging trajectories.
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