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STOCHASTIC BEHAVIOUR OF DETERMINISTIC SYSTEMS 

LENNART CARLESON 

1. In the traditional use of mathematical models showing what is vaguely called chaotic 
behaviour, the number of variables is very large. This may refer to turbulence in aerody­
namics or to economic models. The very influencial discovery of E. N. Lorenz is that this 
behaviour is not necessarily caused by the size of the system. Very erratic and unstable 
behaviour can be observed already in small systems. In his case the system was a 3-variable 
differential equation and similar constructions can also be made in two variables. 

At this point the subject became accessible for mathematical analysis and the purpose 
if this report is to describe some of the mechanism and definitions which have emerged 
with focus on some aspects in which I have been personally involved. 

In most applications one is interested in the long time behaviour of solutions of 

dx 
dt = F(x), x(O) = Xo, 

where x = (Xl, .•. ,Xd) is a point in Rd • The erratic behaviour of x(t), t -7 00, is related 
to the non-linearity of F(x). If we denote x(l) = XI, the equation gives a mapping 
T: Xo -7 Xl, and the value of X at time n,xn , is obtained by iterating this mapping Tn 
times: X n = Tn( xo). This is a more convenient frame for a mathematical discussion and 
we sh all here only discuss such iterations. 

2. The one-variable case. It turns out that many characteristic phenomena occur 
already for mappings T of an interval, (-1,1) say, into itself. Characteristic for applica­
tions is that T also depends on one (ore several) parameters a. As a model case one can 
consider 

(1) T( x) = 1 - ax2
, O < a :s; 2. 

Of special importance is 

(2) 

We sh all use Dn = ITn' (xo)l. The chaotic behaviour is related to the growth of Dn. 
Clearly, this expresses the sensitivity of initial conditions since by the meanvalue theorem 
for two orbits: 

It is interesting to observe that the same sensitivity automatically occurs in the dependence 
on the parameter a. 



THEOREM 1. Suppose I ~~ I ~ B and I aLn I ;?: M n (X). Set 

Qn = I :~: I· 
aa 

If for some N 

then for n> N 
1 3 
2QN < Qn < 2QN. 

In the computer simulation of (l) the behaviour of the system for a > ao '" 1.4 shows 
chaotic regions mixed with small intervals I j so that for a E I j the system has an 
attractive cycle Xo, Xl •.• , X m = Xo, so that 

These intervals be come smaller and smaller as a -+ 2 and it seems that "chaotic" behaviour 
would more and more be the rule. We first need to make the concepts precise. 

3. Invariant measure. Let T be a mapping of some space S into itself. A positive 
measure p on S is invariant under T if for measurable sets E, peT-leE»~ = p(E). 
Invariant measures exist very generally. Take any point Xo and consider the orbit Xv = 
TV(xo),v = 1,2, .... Let Pn be the measure obtained by putting the mass ntl at 
Xv, v = O, ... , n. Then if for all v, p, Xv =1= XI" i.e. if we don't have a cycle 

and if we can choose convergent subsequences, as we can in our applications, we obtain an 
invariant limit. 

Intuitively, our dynamical system would be considered chaotic if an invariant measure 
charges "many" points. If we e.g. have an attractive cycle of length N, p would be a 
pointmass l/N at each point of the cycle. We can measure disorder in three ways. 

I. Entropy. If X is a stochastic variable taking a finite number of values with probabi­
lities PI ... P N, we call 

N 

H = - L Pv log Pv 
1 

the entropy of the stochastic variable. It measures the uncertainty i.e. the amount of 
information we get on the average by making an observation. 

For a continuous variable we can di vide the space into intervals I j of length ~ c 
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The intervals should also be adapted to the dynamical system so we consider 
n 

{Ij} = U {T-V(J!, ... , Jp )} 

v=1 

for fixed intervals J. The corresponding entropy is H n and 

lim Hn = H[J]. 
n 

exists. We can now take 

and this is the entropy of Il. 

H = supH[J] 
[1] 

II. Liaponov exponents. If Il is invariant as above one can prove that 

A(X) = lim 10gDn(x) 
n=oo n 

exists a.e (Il). A( x) > O is obviously an indication of chaotic behaviour of the system. 

III. Absolute continuity of Il. An extreme case of order is a finite attractive cycle. 
Disorder is related to the orbits being distributed on a large set. A natural way of describing 
this is to say that dll = B( x )dx, B( x) integrable with respect to ordinary Lebesgue measure. 

There is a beautiful connection between the concepts above. 

A. H :::; J max( A, O) dll( x) always. 

B. Il is absolutely continuous ifr there is equality in A. 

A natural definition is now: T is chaotic if there is an invariant measure which is 
absolutely continuous. In the example (1) it is unique but for higher dimensional cases, 
the uniqueness is not satisfactorily known. 

Parameter dependence - a model. 

In physical or economic problems the models depend naturally on usually many para­
meters such as gravitation constants or viscosity. As mentioned earlier the behaviour of 
orbits is sensitively depending on these parameters in the chaotic case. One can set up a 
stochastic model which captures the essentiai features of the system even when the model 
is not uniformly expanding, i.e ITn' (x) I ~ c > 1 for some n does not hold. A typical such 
example is (1) above. 

Stochastic model - 1 variable. 

Let Dv(w), Do = 1, be random variables and Vi(W) stopping times VI = 1. If n = Vi 

is a stopping time we choose ti at random, O < ti < 1, with uniform distribution and 
define 

(3) 

where k is the smallest integer for which 

Dkt; > 1 

and we set Vi+l = Vi + k. One can prove the following 
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THEOREM 2. H a > te tben witb positive probability 

for some A> O. 

4. To underst and how this relates to (1) we first note that in order to prove any of I, 
II, III above it is sufficient that ITn'(l)1 ~ en> 1,0 being the (only critical) point where 
T'(x) = O and 1 = T(O). If Tn(o) = en we have 

and the formula (2) means that af ter a return at eP. very elose to zero (at distance ti) we 
repeat the original orbit el,"" evas long as 

The probability space is simply the parameters a. 

This can in fact be made completely rigorous and we have 

THEOREM 3. (1) bas cbaotic bebaviour for a set of positive measure of parameters a. 

The same argument works for any family of functions f(x,a) instead of 1 - ax2 with 
a finite number of extrem points. 

5. n-dimensional case. 

5.1. For an understanding of the degree of complexity that arises in higher-dimensional 
systems let us first recall two examples: 

1. Consider a mapping defined in a dough-nut shaped domain D in R3 which twists 
the domain by streching so that it makes two loops inside D without intersecting ifself. 
Dl = T(D) C D and T is invertible. When T is iterated we obtain Dn = T(Dn- l ) C 
D n- l and Dn converges to complicated Cantorlike set A. This A is a stange attractor.A 
has a neighborhood ~ so that Tn(~) -+ A. This is an example of what is called Anasov 
maps which are characterized by the uniform streching in certain directions and uniform 
contractions in other directions . These maps have the important propert y of being stable: 
small changes in the maps do not ch ange the general behavior. 

2. Consider now the map 
X' = 1- ax2 + y 

(3) y' = bx 

ao < a < 2, O < b < bo. For this map T (the Henon map) there is also a domain D with 
T(D) C D. However for certain parameter values strange attractors emerge in computer 
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simulations, for other values one obtains a finite attractive cycle. These maps are not 
uniformly expandingj contracting and are not stable. This situation is in some sense more 
common. 

5.2. Invariant measures We consider a smooth 1 - 1 mapping of a bounded domain 
D C Rn into itself. We can repeat the construction in §2 and can obtain an invariant 
measure fl. 

When we want to study the expansion of the map we must now distinguish different 
directions v. We fix x E D and decompose v = VI + ... + Vm into components. This 
decomposition can for almost all x (relatively fl) be chosen so that 

exist. Ai are called Liaponov exponents. Call the dimensions of the corresponding sub­
spaces di(x) 2: di = n. Anasov mappings are characterized by the existence and continuity 
of the decomposition for all x. 

Also in this case one can define an entropy H and both results A and B in §2 hold 

and equality is equivalent to fl being absolutely continuous in the directions where Ai > o. 
This must be given a technical con tent which I omit here. For the Henon map one can see 
these directions as the tangents of the curves which emerge in the simulations. 

For higher dimensional systems one must expect a much more complicated pattern then 
we observed in 1 dimension, with possible coexistence of attractiv periodic orbits and 
strange attractors, all with different domains of attractor. The veryexistenee of astrange 
attractors for a system such as the map (3) is in spite of the computer pietures not clear. 
The rest of this report will be devoted to a description of the dynamics of (3). 

This mapping (3) has a fixed point in x > O, Y > O which is of saddle type, i.e. there is an 
expanding direction with eigenvalue Al '" 2 and one contracting with eigenvalue '" !. 
Tangent to these are the unstable and the stable manifolds WU resp WS. What the 
computer picture shows are the leaves of W U

• For certain parameters values (a, b) there 
is an attractive periodie orbit and all points are drawn to this (e.g. a = 1.3, b = 0.3). 

The main problem about chaotic behaviour is to eliminate the posibility that the picture 
shows a very long periodie orbit combined with round off errors from the computation. 
One should not exaggerate the difference between these two cases from a practical point 
of view, but already a periodie point of cycle length 100 creates so much round off errors 
that it would not be detected by a normal computer study. 

A model for mappings such as (4) can be defined in analogy with the model for 1 variable. 
The difference is that we have to study a family of functions Dn(Yi w) where y belongs 
to a thin Cantor set E. A t every stoppingtime (4) has to be replaced by 

( 4') Dn+j(Y; w) = Dn- 1(Yi w) 2ati(Y) Dj(z; w) 
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for some choice of z and 

if y,y' E E and DmlY - y'l < L 

We dont give the details but it can also here be proved that the model has a uniform 
Liaponov exponent ..\ with positive probability. 

For the Henon map itself it can be proved that astrange attractor exists for a set of 
positive measure (a, b). What this means is that most orbits are dense on the unstable 
manifold WU. The relation to the model is that y stands for the leaves of WU. On each 
leaf there is a "critical" point and t in (4') measures the distance to this critical point. 
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