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1. Introduction 

This paper presents a general method for deducing qualitative comparative 

statics in dynamic programming models and applies that method to a model of 

individual job search. The model uses a continuous-time Markovian set-up to 

analyze choice with respect to (i) how much effort to devote to job search and 

(ii) whether or not to accept new job offers. 

The methodological problem we consider is as follows. The first-order 

conditions for the choice variables in a dynamic programming problem typically 

involve the value functions associated with the states of the model. To carry 

out comparative statics one needs to know how these value functions vary with 

the exogenous parameters of the model. We show that if the equations defining 

the value functions are contraction mappings (ensuring the consistency of the 

model), then, under very weak conditions, these value functions are 

differentiable with respect to the exogenous parameters of the model. Further, 

the equations defining these derivatives are themselves contraction mappings. 

This means it is possible to use mathematical induction to derive qualitative 

properties of the derivatives, and of ten this is enough to establish 

qualitative comparative statics properties of the model. 

The model of job search we present is designed with the empirical 

analysis of the sources of variation across individuals in unemployment 

duration in mind. 1 It is very close to the two-state model presented in 

lPreliminary empirical results based on this model are presented in Albrecht, 
Holmlund, and Lang (1989). The objective of our empirical work is to 
disentangle the roles of "choice" and "chance" in determining individual 
unemployment durations (Mortensen and Neumann (1984». That is, can longer 
durations be understood primarily in terms of job search behavior (low search 
intensity and/or high reservation wage) or are exogenous environmental 
conditions (an unfavorable offer arrival rate and/or wage offer distribution) 
more to blame? And, to the extent that variations in job search behavior 
explain variation in unemployment duration, what factors determine the choice 
of search effort and a reservation wage? 
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Burdett and Mortensen (1978), a remarkable paper, which has something of the 

status of a neglected classic. The results presented in their paper are 

important, but it seems fair to say that the difficulty of the methods they 

used to derive their results has deterred those interested in this area. 

Relative to the techniques used in Burdett and Mortensen, our comparative 

statics methodology allows straightforward and unified derivations. 

The organization of our paper is as follows. In the next section we state 

and prove our comparative statics result on the differentiability of 

contraction mappings and explain how to apply this result. In Section 3 we 

present our model of job search, and in Section 4 we illustrate the use of our 

differentiability result to deduce the qualitative comparative statics 

properties of the model. In the final section we conclude. 

2. Comparative Statics in Dynamie Programming Models 

v(x) 

Consider a dynamie programming problem of the form: 

max T(s,8,v)(x), 
s€K(x) 

(l) 

where v is the "value function," s a vector of choice parameters belonging to 

n some compact subset K(x) of R , 8 a parameter vector, and T(s,8,') a 

contraction mapping with modulus fi < l taking bounded, continuous functions of 

x into new bounded, continuous functions of x. These conditions ensure the 

existence of a unique solution v, and we assume that T is increasing in v so 

that the maximization maximizes v (Bellman's Principle). 

For comparative statics analysis, the differentiability properties of (l) 

are of interest. Proposition l below states that the value function v is 

differentiable with respect to the exogenous parameters 8. Further, the 
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differentiated function is itself the fixed point of a contraction mapping. 

This last fact is very useful for deriving comparative statics properties of 

the derivative ve: Proposition 2 below shows how this fact can be used. 

Proposition l: Assume that the mapping T is continuously differentiable with 
respect to e and V,2 that the compact-valued correspondence K(x) is 
continuous, and that the maximization problem in (l) has a unique solution 

* s = s (x). Then v = v(e;x) is differentiable with respect to e, the continuous 
derivative ve is the unique solution to 

* * ve(x) = Te(s ,e,v)(x) + Tv(s ,e,v;ve)(x), 

and the right-hand side defines a contraction mapping in ve' 

Remark: As ve is defined by a contraction mapping, it too is continuously 

differentiable with respect to e. Indeed, Proposition l implies that v(e;x) is 
continuously differentiable to arbitrary order in e, so long as T is 
differentiable in vand e to the requisite orders. Note that Proposition l 
says nothing about the differentiability of v with respect to x. Results on 
this question are given in Benveniste and Scheinkman (1979). 

To prove Proposition l we use the following lemma: 

Lemma: Assume that no choice parameter s is present, so that we consider the 
equation 
v(x) = T(e,v)(x). 
Then v = v(e;x) is differentiable with respect to e, the continuous derivative 
ve is the unique solution to 

ve(x) = Te(e,v)(x) + Tv(e,v;ve)(x), 

and the right-hand side defines· a contraction mapping in ve' 

Proof: The differentiability of v with respect to e follows from the implicit 
function theorem for mappings between Banach spaces so long as the derivative 
of v - T(e,v) with respect to v, ie, I - T (e,v;·), where I is the identity 

v 
map, is invertible (see, eg, Dieudonne (1960». But, T (e,v;') is a linear map 

v 
(by definition of derivative in this context) and since T by assumption 
satisfies a Lipschitz condition with Lipschitz constant p, the modulus of T 

v 

2Let B be aBanach space with norm 11·11, and let T:B -+ B. Let T :BxB -+ B be 
v 

linear in its second argument and be such that IIT(v+h)-T(v)-T (v,h)11 = o(lIhll). 
v 

Then T is the derivative of T with respect to v. See, eg, Dieudonne (1960) on 
v 

the differentiabi1ity of mappings between Banach spaces. 
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is at most p < 1. lt fo11ows that l - T (O,v;·) is invertib1e, the inverse 
v 

<O 

being L T (O,v; .)n. The fact that the modu1us of T is at most p proves the 
n=O v v 

last statement of the lemma. QED. 

Proof of the Proposition: The "maximum theorem" implies that the function 

* s (O;x) is continuous in O and x. Define g(O' ,O;x) by the equation 

* g(O',O;x) - T(s (O';·),O,g)(x). 
lt follows from the Lemma that g(O' ,O;x) is differentiable with respect to O 
for fixed O' and x and that gO(O' ,O;x) is continuous in 0', O, and x. By 

Bellman's Principle 
v(O;x) ~ g(O' ,O;x) 
with equality for O' = O. Hence by the Mean Value Theorem, for some ~ € (0,1) 
v(O+dO;x) - v(O;x) - gO(O,O;x)dO ~ g(O+dO,O+dO;x) - g(O+dO,O;x) - gO(O,O;x)dO 

= [gO(O+dO,O+~dO;x) - gO(O+dO,O;x)]dO = o(dO). 

(Here go denotes differentiation with respect to the second argument.) 

On the other hand, 
v(O+dO;x) - v(O;x) - gO(O,O;x)dO ~ g(O,O+dO;x) - g(O,O;x) - gO(O,O;x)dO 

= o(dO). 
These two relations show that v(O;x) is differentiable with respect to O with 
vO(O;x) = gO(O,O;x). The rest of the theorem now follows from the Lemma. QED 

The fact that the derivative of the value function with respect to the 

exogenous parameters is the fixed point of a contraction mapping allows the 

following standard result to be exploited: 

Proposition 2: Let T(f), f E B, be a contraction mapping on the Banach space 

B. The solution g = T(g) is obtained as g - lim fn, where fO E B is chosen 

arbitrarily and fn+l 

(ie, fn has propert y 
by limits in B. Then 

n->eo 
n = T(f ). Let P be some propert y that is preserved by T 

P implies fn+l = T(fn) has propert y P) and also preserved 
the unique solution g = T(g) also has the propert y P. 

By Proposition l, the derivative of the value function with respect to 

the exogenous parameters is the contraction mapping 

* * vO(x) = TO(s ,O,v)(x) + Tv(s ,0,v;vO)(x). (2) 

By Proposition 2, properties of Vo can be established inductively. That is, if 

one wants to show that Vo has some propert y P, then it suffices to show that 
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o some Vo has propert y P and that propert y P is preserved by the right-hand side 

of (2) and in the limit. Note, incidentally, that Proposition l does not 

follow from Proposition 2 since differentiability is a propert y that need not 

be preserved in the limit. 

The idea that something like Propositions l and 2 might be used for 

comparative statics analysis in dynamic optimization problems has some 

precedent in the literature. Mortensen (1986, p. 875) uses Proposition 2 to 

inductively establish a propert y of the derivative of a value function with 

respect to an exogenous parameter. 3 He recognizes that if V can be 

differentiated with respect to O, then at least some such derivatives are 

themselves fixed points of contraction mappings. What Proposition l 

establishes is that such differentiation is "always" legitimate and that "all" 

such derivatives are fixed points. 

Our result is also related to Araujo and Scheinkman (1977), the standard 

comparative dynamics reference in the optimal growth literature. Using a 

calculus of variations set-up, Araujo and Scheinkman provide sufficient 

conditions for the differentiability of the policy function with respect to 

the exogenous parameters of the problem. That is, in the notation of our 

equation (l), they provide sufficient conditions for the differentiability of 

s with respect to O. The difficulty is that it does not seem possible to check 

these sufficient conditions (the "dominant diagonal" conditions of their 

Assumption 2, p. 608) in problems that cannot be easily fit into the calculus 

of variations framework. Araujo and Scheinkman's dominant diagonal conditions 

are required to ensure that the implicit function theorem can be applied in an 

infinite-dimensional setting. Likewise, the key to the proof of our 

3We thank Dale Mortensen for alerting us to this reference. 
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Proposition l is also the use of the implicit function theorem in infinite-

dimensional spaces. The virtue to the dynamic programming formulation of the 

optimization problem is that the applicability of the implicit function 

theorem falls out immediately. 

In the next two sections we present our model of job search and apply our 

comparative statics methodology. In these sections we focus on the model as an 

object of interest in its own right; however, in concluding this 

"methodological" section we want to make clear that the techniques we will use 

are certainly not limited to models of job search. Propositions l and 2 are 

applicable to any optimization problem that can be formula ted as a dynamic 

program, optimal growth and stochastic dynamic macroeconomics included. 

3.The Model of Job Search 

We consider an individual who at any instant is either employed (e) or 

not employed (n). This individual derives utility from the rates at which he 

or she consumes (c) and enjoys leisure (i) with a concave instantaneous 

utility indicator u(c,i); that is, the utility enjoyed over an interval of 

time of length ~t is given by u(c,i)~t + o(~t). The function u(c,i) satisfies 

Uc > O, ui > O, ucc < O, u
ii 

< O, and uci ~ O. The individual has an infinite 

l 
horizon and discounts the future at the rate l+p~t' 

If employed at wage w, this individual/s rate of consumption is c = wh+y. 

The fraction of time spent working, h, and the non-wage income flow, y, are 

exogenous. If the individual is not employed, he or she also receives the 

non-wage income y: in addition, benefits specific to non-employment are 

received at the rate b. These benefits are received by all non-employed, 

irrespective of how that state was entered and of behavior in that state. 

Finally, income and consumption are identical; ie, lending and borrowing are 
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precluded by assumption. 

An individual with a job can search for a better alternative. The 

fraction of time, s, spent searching for a better job (search intensity) is a 

choice variable constrained by i = l-h-s; ie, the fraction of time available 

for leisure equals the fraction of time spent neither working nor searching. 

An individual without a job is similarly constrained by i - l-s. 

Random events of two types may induce changes in utility flows. First, an 

individual may receive a job offer, which can either be accepted or rejected. 

Offers come from a known distribution, F(w), with support [~,w], and arrive 

according to Poisson processes with arrival rates o.(s), i=e,n. That is, there 
1 

are two offer arrival processes, one relevant while employed, the other while 

non-employed. The arrival rates are assumed to be bounded, increasing, and 

concave in s; and search off the job is assumed to be at least as efficient as 

search while employed, both in absolute terms and on the margin. (That is, 

o (s) ~ o (s) and o' (s) ~ o' (s) ~ 0, for all s E [O,l-h].) Second, an employed 
n e n e 

worker may lose his or her job. Shocks that induce separations arrive 

according to a Poisson process with parameter ~. Whereas the individual has 

the option to accept or reject job offers, separations cannot be avoided. 

Summarizing the notation: 



u(c,i) 

c = wh+y 

c - b+y 

i l-h-s 

i l-s 

a (s) 
e 

a (s) 
n 

F(w) 

p 

8 

instantaneous utility indicator 

consumption rate when employed at wage w 

consumption rate when non-employed 

leisure when employed 

leisure when non-employed 

arrival rate of job offers when employed 

arrival rate of job offers when non-employed 

wage offer distribution with support [!,w] 

separation rate 

discount rate 

The individual's objective is to maximize expected lifetime utility 

discounted over the infinite horizon by ehoosing search intensities and an 

acceptance rule for job offers. This decision problem will be characterized by 

two value functions - V(w), the value (ie, expected discounted lifetime 

utility) of being employed at wage w, and U, the value of non-employment. We 

begin by developing expressions for these values conditionaI on any given 

search intensities and acceptance rules. 

For an interval of time of length ~t the value function for an individual 

employed at wage w and searching with intensity s is 
e 

l 
V(w) = l+p~t{ u(wh+y,l-h-se)~t + ae(se)~tEmax[V(w'),V(w)] 

+ 7~tU + (l-(a (s )+7)~t)V(w) + o(~t) }. (3) 
e e 

The analogous value of non-employment, conditionaI on a search intensity sn' 

is 

In both expressions the expectation is taken with respect to the distribution 

of the prospective new wage offer, w', and the acceptance rule is presumed to 

be optimal relative to the given search intensities, s and s . 
e n 
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The interpretation of (3) is as follows. The "instantaneous utility" of 

being employed at wage w is proportional to the length ~t of the time 

interval. With probability a (s )~t a new job offer will be reeeived, and that 
e e 

offer will be aeeepted if the value of the new job exeeeds that of the eurrent 

job. This refleets the assumption that the aeeeptanee rule is optimal relative 

to the given s . With probability 16t a separation will oeeur with the 
e 

associated value U. With probability l - (a (s )+1)~t the worker will neither 
e e 

reeeive a new offer nor lose his eurrent job. In this case he or she retains 

the value V(w). The remainder term o(~t) reflects the assumptions that as 

6t ~ O any non-proportionality of utility to the length of the time interval 

goes to zero at an even faster rate. Likewise, the probability of receiving 

more than one job offer or more than one separation-indueing shock goes to 

zero at an even faster rate. Finally, all of the above is discounted at the 

l 
rate l+p~t' The interpretation of (4) is analogous. 

It is easier to treat the individual's deeision problem in continuous 

time. Re-arranging, dividing through by 6t, and taking limits as ~t ~ O gives 

l V(w) = -{u(wh+y,l-h-s )+a (s )Emax[V(w' ),V(W)]+1U-(a (s )+1)V(W)} 
p e e e e e 

(5) 

l U = -( u(b+y,l-s ) + a (s )Emax[V(w'),U] - a (s )U ). 
p n n n n n 

(6) 

It is eonvenient to re-write these equation slightly. Choose any eons tant 

M> O sueh that M > a (S)+1 and M > a (s) for all sE[O,l). Multiplying (5) and 
e n 

(6) by p, adding MV(w) (resp., MU) to both sides, and dividing through by M+p 

gives 

l 
V(w) = M+p (u(wh+y,l-h-se ) + ae(se)Emax[V(w'),V(w)] 

+ 1U + (M-a (s )-1)V(w)} 
e e 

(7) 

U 
l 

M+p 
(u(b+y,l-s ) + a (s )Emax[V(w'),U] + (M-a (s »U ). n n n n n 

(8) 

For short we write these equations as 



v - <j>(V,U) 

U-l/J(V,U). 
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Since (i) V2(w) ~ V1 (w) and U2 ~ U1 implies <j>(V2 ,U2) ~ <j>(V1 ,U1) and 

l/J(V
2

,U
2

) ~ l/J(V1 ,U1) (monotonicity) and (ii) for any constant c > 0, 

<j>(V+c,U+c) ~ <j>(V,U) + fic and l/J(V+c,U+c) ~ l/J(V,U) + fic, where fi - M~P < 1 

(discounting), we have that <j>,l/J defines a contraction mapping on the Banach 

space CxR, where C denotes continuous functions on [!,wl and R the real 

numbers, with norm given by lI(f,m)11 = max[ sup If(w) I, Iml l. The proof is a 
w~w~w 

slight genera1ization of B1ackwell (1965). 

Equations (7) and (8) define a contraction mapping for each fixed pair of 

search intensities, se and sn' a10ng with the corresponding acceptance ru1e 

with modu1us independent of s and s . Now consider 
e n 

1 
V(w) max (u(wh+y,l-h-s ) +0 (s )Emax[V(w'),V(w)l + 

seE[O,l-h l M+p e e e 

u = 

~U + (M-o (s )-~)V(w)l 
e e 

1 
max M+p (u(b+y,l-s ) + o (s )Emax[V(w'),Ul + (M-o (s »U l. 

s E[O,ll n n n n n 
n 

(9) 

(10) 

Bellman's Princip1e ensures that equations (9) and (10) define both the va1ue 

functions V(w) and U and the "strategies" (s* = s*(w) and s* plus the 
e e n 

corresponding optimal acceptance ru1e) that maximize V(w) and U.4 

Since equations (9) and (10) define a contraction mapping, we can use 

Proposition 2 to estab1ish that V(w) is increasing in w. Regarding U as fixed, 

equation (9) is a contraction mapping for V(w). The Banach space is that of 

continuous functions defined on [!,wl and normed by Ilfll = sup_lf(w)l. Thus, 
w~w~w 

the optimal acceptance ru1e for an emp10yed worker is simp1y to take any job 

4The resu1ts of Sharma (1987) cou1d a1so be used to show that (9) and (10) 
define a contraction mapping. 
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offering a higher wage. Likewise, the optimal acceptance rule for an 

individual without a job is a simple reservation wage rule: Accept any job 

offering a wage w iff w ~ r, where the reservation wage r is defined by 

V(r) = U. 

This allows us to re-write the value functions once again, this time in a 

way that is useful for deriving the necessary conditions for the optimal 

search intensities and reservation wage: 

l w 
V(w) = max ---M (u(wh+y,l-h-s )+0 (s )I[V(w')-V(w)]dF(w' )+1U+(M-1)V(W)} (11) 

+p e e e 

u max 
sn,r 

s w 
e 

w 
M:P (u(b+y,l-h-sn ) + °n(sn)I[V(w')-UjdF(w') + MU}. 

r 
(12) 

Thus, the first-order condition for the optimal search intensity while 

employed is 

w 
-un(wh+y,l-h-s*) + o' (s*)I[V(w')-V(w)jdF(w') :S O ("=" if s* > O ). (13) 

~ e e e e 
w 

If the optimal search intensity while employed, s*, is positive, then s* is 
e e 

such that the marginal utility of leisure is equated to the expected gain from 

search at the margin. The second-order condition (given s* > O) is that the 
e 

LHS of (13) be decreasing in s . The concavity of u and of o ensure that this 
e e 

will always be satisfied. 

An individual without a job chooses both a search intensity and a 

reservation wage. From (12) the first-order conditions for the optimal 

off-the-job search intensity, s~, and reservation wage, r*, are 
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w 
-u n (b+y,l-s*) + a' (s*)I [V(w')-U]dF(w') S O ("_If if s* > O )0 

~ n n n r* n 
(14) 

u - V(r*) - O. (15) 

An individua1 without a job, if he or she searches at all, again does so to 

equate the marginal uti1ity of 1eisure to the expected gain from search at the 

margin. The reservation wage is chosen to equate the va1ue of the marginal job 

with the va1ue of unemp10yment. The second-order condition for s* is ensured 
n 

by the concavity of u and of a , and the second-order condition for r* is 
n 

ensured by the fact that V(w) is increasing in w. 

4. Comparative Statics Results: An Illustration of the Method 

Using the first-order conditions we can now address the standard 

comparative statics questions of how the choice variables vary with respect to 

the exogenous parameters of the model. Specifically, we examine how s* s* 
e' n' 

and r* vary with respect to changes in 1, p, y, b, O , O , and O . The three 
w n e 

heretofore undefined parameters, O , O , and O , refer to improvements in the w n e 

wage offer distribution and in the two offer arrival functions. More 

precisely, O is any parameter such that w 

aF(w;O ) w ----a-o--- S ° for all w; similarly, On 
w 

and O are such that 
e 

aa (s ;0 ) n n n 
ao 

n 

aa (s ;0 ) e e e 
~ 0, for all sn and ao ~ 0, for all 

e 

respectively. In addition, we examine how s* varies with respect to a 
e 

change in w. 6 

* * oWe are implicitly ruling out the solutions s - l-h and s 1 g priori. This 
e n 

could be justified by the natural assumption that lim u
1

(c,1) ~. 

1~0 

* * 6Throughout this section we are assuming that s and s are positive, ie, that 
e n 

(13) and (14) hold as equalities. 
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To carry out a comparative statics analysis we need to take into account 

that the first-order conditions involve not on ly the endogenous variables and 

the exogenous parameters but also the value functions. In considering the 

effect of a variation in an exogenous parameter account needs to be taken of 

both the direct effect of the parameter ch ange and the indirect effect via the 

change in the value functions. 

Propositions l and 2 handle this complication. We illustrate the idea by 

working through the comparative statics of an improvement in the wage offer 

8s* 
distribution on s*. We now show e O. -- > 

e 80 -
w 

The first-order condition for s* (equation (13) ) is of the form e 

G(s*,O ) = O. The parameter O enters both directly through the distribution 
e w w 

function F(w;O ) and indirectly through the value function, V(w). 
w 

Differentiating the first-order condition with respect to O gives 
w 

-8G(s*, O )/80 8s* 
e 

80 w 

e w w 
8G(s*,O )/8s . But, 

e w e 

8G(s*,O ) 
e w 

8s 
e 

< O by the second order condition, so the 

8s* 8G(s*,O ) e e w 
sign of au- is determined by the sign of -~8~O--- That is, 

8s* 
e 

the sign of 80 
w w w 

is the same as that of 

w w 
a~(s~){ f [Vo(w')-Vo(w)] dF(w') + f [V(w' )-V(w)] dFO(w') l. 

w w 

Here, of course, subscripting by Odenotes differentiation with respect to O . 
w 

Differentiate V(w) (equation (11» with respect to O (Proposition l 
w 

allows us to do this), substituting in the maximizing va1ues of s~, s~, and r* 

in advance. This gives 

w 
VO(w) = M!P{ ae(s~)EVO(max[w' ,w]) + ae(s~)f[V(w')-V(w)] dFO(w') 

w 

(16) 
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Note from equation (16) that 

w w 
Qe(s~){ I [Ve(w')-Ve(w)] dF(w')+ I [V(w')-V(w)] dFe(w') } = (p+~)Ve(w) - ~ue' 

w w 

Both Q (s*) and Q' (s*) are positive, so all that needs to be shown is e e e e 

that (p+~)Ve(w)-~Ue ~ O. This is done by appea1ing to Proposition 1 to show 

that (16) is a contraction mapping for any fixed value of Ue so that 

Proposition 2 can then be used to inductively establish the result. 

o The application of Proposition 2 is as follows. Choose any Ve(w) such 

that (P+~)V~(W) ~ ~Ue for all w. We need to show that (P+~)V~(w) ~ ~Ue implies 

n+l 
(p+~)Ve (w) ~ ~Ue' where 

w 
v~+l(w) - ~{ Q (s*)EV~(max[w' ,w]) + Q (s*)f[V(w' )-V(w)] dFLl(w') 

~ M+p e e ~ e e ~ 
w 

Multiplying through by (~+p) and using the inductive hypothesis, 

W n+l l ( ~+ p) V Ll (w) > - { 
~ - M+p Q (S*)~ULl + (~+p)Q (s*)I[V(w')-V(w)] e e ~ e e 

w 
+ (~+p)~Ue + (M-Qe(s:)-~)~Ue ). 

Multiplying both sides by (M+p) and cancelling some common terms gives 

n+l w 
(M+p)(~+p)Ve (w) ~ (~+p)Qe(s~)I[v(w')-V(w)] dFe(w') + (M+p)~Ue' 

w 

Finally, note that if ~(w') is any positive, non-decreasing function of w' , 

w 
then I~(w')dFe(w') ~ O. (Proof: Integration by parts.) Hence 

w 

w ~l 
I[V(w')-V(w)] dFe(w') ~ O, ie, (p+~)Ve (w) ~ ~Ue' 
w 

Using Proposition 2 we have shown (~+p)Ve(w) ~ ~Ue' QED. 

The remaining comparative statics calcu1ations use similar methods. The 

results of these calculations are presented in Table l; the calculations 



15 

themselves are available from the authors on request. We are able to sign 27 

out of the 28 effects using our qualitative comparative statics methodology. 

[Table l goes about here] 

The comparative statics results presented in Table l have straightforward 

interpretations. For example, individuals with high values of ~, ie, those who 

can expect short employment durations, will search less intensely, both on-

and off-the-job, but will be less selective about which wage offers to accept, 

than will otherwise equivalent individuals with low values of ~. Note that the 

effect of an increase in ~ on expected duration in non-employment is ambiguous 

since the hazard from non-employment to employment is a (s*)[l-F(r*)] and a 
n n 

ch ange in ~ affects s* and r* in the same direction. The effects of an 
n 

improvement in the wage offer distribution and of an increase in the marginal 

efficiency of search while non-employed are similarly ambiguous. The net 

effects of these changes must be determined by the data. 

Table 2 presents Burdett and Mortensen's comparative statics results in 

our notation. 

[Table 2 goes about here] 

The specification they used for their comparative statics analysis differs 

from ours in three ways. First, they assumed the search technology to be the 

same in both states and the average and marginal efficiencies of search to be 

identical; ie, Burdett and Mortensen assumed a (s) = a (s) = as. They gave 
e n 

comparative statics results for "an improvement in the worker's labor market"; 

in Table 2 this is the amalgamated parameter ~. Their comparative statics 
p+-y 

results are sensitive to the assumed search technology. Second, Burdett and 

Mortensen did not allow for any unemployment compensation in their 

specification. This does not seem to drive any of their other comparative 
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statics resu1ts. Finally, hours are determined endogenously in Burdett and 

Mortensen versus exogenously in our model. Exogenous hours allow us to derive 

a resu1t that they could not, name ly , 8s*/8y S O; on the other hand, 
e 

endogenous hours a110wed Burdett and Mortensen to derive a sharper result for 

8s*/8y than the one we obtain. However, these differences are minor. There is 
n 

basic agreement between our comparative statics results and those of Burdett 

and Mortensen. 

5. Conclusion: 

In this paper we have made two contributions. First, we have presented a 

technique for carrying out qualitative comparative statics analysis in dynamic 

programming models. The basic idea is that if a value function v, which 

depends on some exogenous parameter O, is defined by a contraction mapping, 

then the derivative of v with respect to O exists and is also defined by a 

contraction mapping. Since this derivative is defined by a contraction mapping 

its qualitative properties can be investigated using mathematical induction. 

This technique should find useful application in models of job search, optimal 

growth, stochastic dynamic macroeconomics, etc. 

We illustrated our comparative statics methodology with an application to 

a model of job search. The model is a variant of one developed by Burdett and 

Mortensen (1978), and our second contribution has been to rederive their 

results in a unified methodological framework. From the point of view of 

empirical analysis, an important moral of both our analysis and that of 

Burdett and Mortensen is that models of individual job search that treat the 

reservation wage as the only decision variable are likely to be misleading. 

Changes in the labor market environment that have unambiguous effects on the 
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reservation wage of ten have offsetting effects on search intensity. Dur 

comparative statics methodo1ogy has allowed us to i11ustrate this point in a 

straightforward fashion. 
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Table l -- Comparative Statics Results 
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-------------------------------------------
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