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Abstract 

In a situation when no single sample includes all the endogenous variables of a 

simultaneous equation model but there are two (or more) non-overlapping samples and 

each variable is induded in at least one, then it is possible to pool the data and estimate 

the model consistently by a two-stage least-squares procedure. The assymptotic variances 

of the estimates are not always larger than those which would have been obtained with 

TSLS from one complete sample. lt is also shown that under certain assumptions the same 

approach can be applied to an ordinary regression model. 

Key words: Missing data, Pooling data, Statistical matching, TSLS estimation 



l. INTRODUCTION AND BACKGROUND 

Survey data is a frequently used input in social science research and their 

importance is increasing. This has been true for a long time in sociology, for instance, but 

also in other disciplines there is a shiit in research interests. In economics the re is an 

increased emphasis on micro economics using survey data and panel studies as compared 

to macro economic problems analysed with aggregate time-series data. Large surveys 

are, however, veryexpensive and the increased response burden and the awareness of the 

privacy issue on the part of legislators and the general public makes it increasingly 

dlfficult to get the co-operation of the households and business establishments. We will 

thus frequently have to rely on al read y existing data iUes designed for different purposes. 

Most likely we then find that no data set contains all the information we would need. 

Sometimes it is possible to combine information from several data sets by exact matching, 

but this is not possible when they do not overlapp, i.e. when the probability for an 

individual to participate in more than one survey is very small~ or when identifying 

information like the social security number is not available or 1ts use is prevented by 

protection of privacy. 

We might thus have to face a situation when it is impossible to obtain a single 

sample including all the variables we would need to estimate a model or test a hypothesis, 

but it might be posslble to obtain two or more data sets, -each of which would not include 

all relevant variables, but each variable would be included in at least one data set. Can 

this type of data be used at all and if so how? 

One suggestion to deal with this situation is to use synthetic or statistical matching. 

If ~wo or more data set s have some variables in common, but do not include the same 

individuals, the common variables could be used to match "alike" individuals. In this way 

data for two (or more) individuals, one from each data set, is merged to a r,-w set of 

synthetic individuals. Ideally the new data set would have the same distributionai 

properties as a proper survey, but doubts have been raised about the possibilities to obtain 
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this without unrealistic1y strong assumptions about the universe. A survey of the 

llterature on statistical matching and an extensive list of references are given in areport 

from US Department of Commerce (1980). 

Although the advocates of statistical matching usually emphasize other uses of a 

synthetic file than estimation of multivariate models or tests of hypothesis about human 

behavior with control for confounding factors, this is from the social scientists point of 

view a likely reason to attempt a statistical match. The theoretical basis for the 

statistical matching techniques is, however, relatively weak and the approach suggested in 

this paper is not a statistical match, but the results obtained below invite to a few 

comparative remarks about statistical matching at the end of the paper. 

The problem treated in this paper is the estimation of one of the relations in a 

simultaneous equation model when the relevant variables have to be obtained from 

different data sets which have no individuals in common. The solution is a two-stage 

least-squares proce~dure which does not require matching. A more rigorous specification 

of the problem and the model is first given in section 2. Then follow the estimation 

method, an analysis of its properties and a discussion of the consequences of alternative 

assumptlons about the model and the data configuration. One special casl
s 

the linear 

regression model. 

2. THE PROBLEM 

The problem is to estimate the following equation, 

(1) 

which is part of the interdependent system, 
I , 

YB+Xr::U; (2a) 
, 

E(U) = O; E(U U) = nr (12b, c) 

where Y G' n· is a matrix of n observations on G endogenous variables, 

is a vector of the n observo. uons on the endogenous variable explained 

by (1), 
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y l,nog is a matrix of the n observations on the g explanatory endogenous 

variables in (1), 

is the observational matrix of all K exogenous variables, 

is a submatrix of X which inc1udes the k exogenous variables in 0),-

is a ma trix of stochastic disturbances, 

the vector of stochastic disturbances of (l), one of the columns of U. 

BCoC,f KoK are parameter matrices, 

Q v are vectors of the non-zero parameters in (l) I-'Col' tkol 

LCoC is an unknown positive definite moment matrix. 

It is assumed that (1) is identified. 

The reduced form of the complete system is, 
I 

Y = X1T + Y; 

I 

and Y = U(B r l. 

(3a) 

(3b) 

(3c) 

The part of the reduced form corresponding to the endogenous variables to the 

right of the equali ty in (1) is, 
I 

Yl = X1Tl + Yli (4) 

where 1T l and Y l are the corresponding g" K and n"g submatrices of 1T and Y respective-

ly. For later use it is also convenient to introduce a no(K-k) matrix X2 defined by, 

(5) 

Suppose now that data are not available in the form of one complete sample but 

there are two samples, A and B, none of which contains all variables. Assume that data 

come in the following form, 

Sample A: yA XA 
(n A ° 1); (n A o K) 

Sample B: yB x B 
l ,(n

B 
"g); (n

B 
"K) 

n A and nB are the two sample sizes. They are not necessarily equa1. Since (2c) implies 

that there is no residual correlation between observa tional uni ts, the two samples can be 
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treated as independent random samples. l 

An example for which this problem specification might be applicable is the joint 

estimation of dem and functions for consumer goods and household time-use functions, 

both derived from a household production type of model. Consumer expenditure data 

could be obtained from a household budget study, while time-use data would have to be 

taken from a separate time-use survey. There are presently no surveys which include both 

kinds of data. Both surveys wouid, however, give income data and other characteristics of 

the household. 

3. ESTIMA nON 

3.1 The estima tion proceedure. 

Eg. O) cannot be estimated from sample A alone since the Y l-variables are mis-

sing, but the two samples can be combined in the following two-stage proceedure, 

l. Estimate the reduced form eguations (4) from sample B by OLS which gives the 

estimates fir B. Use these estimates to predict Y l in sample A, i.e . 

.... A A " 'B 
Yl = X TII ; (6) 

II. Estimate by OLS from sample A 

A .... A A A-A 
Y =Y1 8+X 1 y+(u +Yl 8); (7) 

-A A"A 
where Yl = Y l -Yl . 

Note that Vl A is not the vector of least-sguares prediction errors from sample A and thus 

not necessaril y orthogonal to X A. 

With the following notation, 

I {t I '} 

<5 = 8 : y l-(g+k); 
A A I A 

Z - {y I X} . 
- l I l n A -(g+k)' 

then (7) becomes 

A A-A 
Y = Zo+(u +V1 8); (8) 

and the estima tor of o is, 

(9) 

If the two samples would colncide. ~ would be the usual TSLS estimator. 
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3.2 Properties 

3.2.1 ~~~J!_s_c:~e!~_~~~~ 

The expected value of o over the who1e sample space defined by both samples can be 

obtained in the following stepwise way: 

E(~ IXA,XB) = E{E(6 IfhB,XA)IXA,x B}. 

E{611h B,X A) = E{(Z'zflZ'yA} = 

E{ å+(z'zfl Z'(uA +V1 Ap)}= 

C+E{(Z'Zf1Z'v1
A s} = å+E{{Z'Zf1Z'( y1 A_ V1 A)p} = 

" A B " I 'B A _ B 
E(o Ix ,x ) = å+E{(Zzf1ZX(iTl-fh )e!X ~X }. 

(la) 

(12) 

The last term of (12) is in general not zero and the estimator is thus biased, a propert y it 

shares with the usual TSLS estimator. The following simple example might clarify this 

point further. .All variables and parameters are scalars. 

StrJctural form: 

Reauced form: 

and7rZl =Y211(1-BIZB z1 ) 

The first equation of the structural form is estimated with the folIowing two samples, 

A A Sample A: y l ,x . 

B B Sample B: yz ,x . 

The :irst step of the estimation proceedure gives, 
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and the estima tor of B 12 then becomes, 

=------- = 
A A 
TIll 

The flrst equation is exactly identified which explains why B12 in this case is a simple 

ratio of the estimates of two reduced form parameters. 

We now find that, 

E(S12 I xA ,xB) = EB {E A (1Tll A I 1T21 B)} = EB( 71 11 I 1T2 l B) f. 71 11 /71 21 = Bl 2' 

3.2.2 S:_~~~is!:~cy 

We will first look at the case when n A is finite and fixed while n
B 

tends towards 

infinity. Assume that the matrix {.L (xB)'X B} tends towards a finite non-singular matrix 
nB 

when nB tends towards infinity. It then follows that 

(l3a) 

(l3b) 

(l3e) 

A " A} Z+{X 711 :X 1 whenn
B 

..... co • (l3d) 

Set Zo A' A = {X 71 l : X l }, then 

(14) 

The expected value of this limit for the sample space defined by sample A is, 

(5) 

Thus, if sample B is "very large" the estimation proceedure is almost equivalent to 

replacing Y l A by its expected value and estimating the following relation by OLS
l
2 

(6) 

For very large nB the estimates of S and r are thus almost unbiased. 
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l A l A} 
Now let both n and n

B 
tend to infinity. Assume that f-:::- (X )(X) and , A n A 

{_l_ (XB)\XB)} both tend to finite non-singular matrices as n A and nB respectively tend to 
nB 

infinity. Then, 

plim c = plim (plim c) = 
n A-HD 

n
B

+ cc 

l l _ . l 'A . l , A 
c+ (plim -=---<Zo Zo») l(pllm t::.-Zo u )+pl1m f--Z o V l 8))= o. n n n n

A
+ cc A n

A
+ cc A n A+ cc P-. 

The second equality follows from (14) and the third equality from the by definition zero 

correlation between the stochastic residuals and the exogenous variables. c is thus a con-

sistent estimator. 

Assume that nB= kn
A

, where k>Q is an arbitrary finite constant, and that 

(l/nA)(~'~) and Cl/nB) (XB'XB) both tend to finite non-singular limits when 

TIA and nB tend to infinity. Assume a1so that the rows of U are not only un

correlated but also independent. 

Since TI~ is a consistent estimator it follows that (l/nA)(Z'Z) tends in 

probability to a finite non-singular matrix, say Q. lt also follows that ·vt 
tends in distribution to VI' the submatrix of reduced form errors. Thus, 

(18) 

-1 ' A 
tends in distribution to Q (1/')lA)2

0
(u +Vl~)' lt will be proved below that 

(uA+V
1

B) has a scalar moment matrix, say G l. lt then follows from the Lindeberg

Levy theorem that 01 /n~) Z~ (uA+v l S) is asymptoticly normal with zero mean vector 

and covariance matrix cr 2Q. (For a proof se Theil (1971) p. 380). The asymptotic 

distribution of Q-l(1/~)Z~(uA+V1S) is thus normal with zero mean vector but 
. h h . . 2Q-l 

~lt t e covarlance matrlx o 

To prove that the covariance matrix of (uA+VlB) is scalar, assume ~ith

out loss of generality that (l) is the first structural equation of the 

system (2) and that the endogenous variables of that equation are the first 

g+l variables of Y .. If we par·tition the inverse of the parameter matrix B 
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in the fol1owing way, 

* ** 
(BGXg : BGx (G-g» ; 

it fol1ows that, 

and thus, 

* V=UB 
l 

U(B,)-l 

The covariance matrix of (/\+\'18) now becomes, 

E (u A u A,) + E (u A 5 ' B * , U') + E (UB * Su A, )-+ 

* * E ( VB B B 'B 'U'). 

(19) 

(20) 

(21) 

(22) 

F (2) Il ( .f.. A,) l f rom c it fo ows t hat E u u = vII I, where GlI is the top e t element 

of the moment matrix I. In order to evaluate the last three terms of (22) 

partition Iby its columns, 

~ ( I l I ) 
/...= °1 : ° 2 ~ ... : o G (23) 

We then obtain, 

er nxn 
* A 5 e'B ')E(u el U') * (l el S'B ')(1 ) n xn ~ vr 

* B'B' l 01 ; (24 ) 

and, 

(25) 
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and, 

* * *. * 
E(UB se'B 'U') = E {(UB B) (3 ( B' B I U I )} = E{ (l 

nxn 
* * e S'B ')(U(3U ' )(B Sel)} 

* =(I3B'B I )(HJa~ 

* =(S'B 'a l 
l 

.L 

* ' * I ={(S'B lO" :S'B '0
2 

l 
.I. I I 

* * =(S'B Lel)(B sel) 

(22), (24)-(26) now give, 

I 
f •••• 
I 

* * B 'B • LB BI. 

The expression within braekets is thus the scalar 0
2 refered to above. 

~ 

(26) 

(27) 

To conclude, if n
B
= kn

A
, then ItlA(o-o) asymptoticly follows a normal distri

-1 
oution with zero me an vector and covariance matrix (011+20iB*LB*S)Q . 
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In this case the variance of the two-stage least-squares estimates 

based on two samples thus differs from the variance of the ordinary TSLS 

estimator based on a complete sample A by the second and third terms inside 

the parenthesis of (27). Since these terms do not only depend on all 

varlancesand covariances but also on all the elements of B, the relative magnitude of the 
• >. _fll!t.>_ '. 

assyrnptotic' variance ofo.;.is~di.fficult:Yc).e:va1uate without knowing at least the structure 

of B and the signs of the non-zero parameters. One might believe that the two incomplete 

samples would be less informative than one complete sample. but this is not necessarily 

true because a large sample B might compensate for the missing variables in sample A. 

Also assymptoticly the variance of ö can be exceeded by the variance of the TSLS 

estimator based only on sample A which, for instance, can be shown with the two-equation 

model used in the example above. In this model 

B= 
{ 

1 -SI2} 

-132 l l 

and thus, 

Asy. var (6) = n
A

- 1{0'11+2(0'1lSI22/U-612621)+0'12 Bn(l-SI2621»)+ 

,/ , 
(1312 / (l-S 121321 »i( a Il S 12 2+2 al 2612+ 0'2 2)}X plim(n A-l Z Z).-l 

With, for instance, fh2=0.05, 621=1,0'11=0'22=1 and 0'12=-0.9 the scala r expression withln 

braces is less than a l l , but if the sign of a l 2 is reversed i t exceeds a l l. 3 

The fact that the two-sample estimator may have a smaller variance than 

the ordinary TSLS estimator might at first be a surprise. The explanation 

is th~t since the last term of (18), Z'V1B, does not vanish, unlike the 

corresponding term of the ordinary TSLS estimator, its limit in distribution 

may be negatively correlated with the first term, Z!uA, and if this cor

relation is sufficiently strong the variance of the total error will become 

less than the variance of the first error term. 

4. ALTERNA nYE ASSUMPTIONS ABOUT DATA CONFIGURAnON AND MODEL 

Note that all exogenous variables are induded in both samples. In the ordinary 
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case with only one sample, consistent estimates of the parameters of (1) can be obtained 

by the instrumental variables method if there are at least g X2.-variables inc1uded in the 

sample to serve as instruments. However, for the case discussed in this paper it is not 

possible to obtain consistent estimates with one or more of the exogenous variables 

missing from elther sample. If we would attempt to estimate a reduced form with some 

of the Xl-variables missing or replaced by other variables the estimates of if l would in 

general be biased and inconsistent, (l3c) would no longer hold and (.) would not be a consis

tent estlmator. To see this note that plim (n A-l 2 0 'V l As) in (17) has to be replaced by plim 
nA~ nA~ 

(n A-l Z'Vl As) and that the critlcal part of this expression is, nB+c:o 

( -A '){' B '} pHm n
A 

l(X I )X ifl- plim (fh ) S. 
nA+~ nB+c:o 

(29) 

Thus, when fh B is not a consistem estimator (29) does not vanish and 8 becomes inconsis-

tent. 

One may also note that even if sample A would inc1ude data on all endogenous 

variables in (1) but there would be less than g X2.-variables included in the sample, the 

information in sample B can not be utilized to obtain consistent estimates. 

If sample A would include all the endogenous variables of (1) but not all X l-variables, 

could we then use the information in sample B to estimate Xl? It is not obvious that such 

a proceedure can be justified within the present model. The problem is that there is no 

theoretlcal basis for predlcting X l since these variables are exogenous. However, if i t, 

for instance, would be realistic to add to the model the assumption that all exogenous 

variables are multivariate normal then one could proceed to use both samples to estimate 

the model. ~ 

A special case of O), with S=O, is the common model, 
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I 

Y = X l Y + U; E(u I X d = O; E(uu I X l) = O' Id. (30) 

Assume that, 

(31) 

Since the regression surfaces in a multivariate normal distribution are linear, we can 

write, 

where R is a matrix function of }.Il, }.I2 and n. (32) inserted into (30) gives, 

R can be estimated from sample B and provided K-k> k, X2 ARB gives k linearly indepen

dent predictions of X l A which inserted into (33) give, 

(32) 

(33) 

yA = x 2
ARBy + (u + q + X2

ADy); (34) 

where D=R-R. (34) is an errors-in-variable model and the OLS estimates of y will have a 

small sample bias. They will, however, be consistent and assymptotically unbiased since D+ 

o when n
B 

-+0::>. 

If the assumption of no explanatory endogenous variables, B=O, is relaxed again, the 

two-stage least-squar~s proceedure taking into account both the simultaneity of the model 

and the need to estimate Xl would require that K-k.?:g+k. 

5. A BRIEF COMPARISON WITH STATISTICAL MATCHING 

The two-stage least-squares proceedure described above can be com pared with 

statistical matching. Suppose we want to estimate (1) using the two samples A and B as 

given on page 3. If statistical matching is defined as arandom drawing of a vector of Y 1-

values, say Y l- '*, among those observations of sample Bwith a given vector {X l- A: X2-A}, 
l 1 l 

to replace the unknown Y l--vector in sample A, then the equation to estimate becomes, 
l 

A '* A A 
y = y l B+X 1 y+(GB+ u ); (35) 

'* where G = Y 1-Y l It is assumed that nB is so much larger than n A that a match can 

always be found. 

Since Y 1'* comes from sample B and uA from sample A and there is by assumption 
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no correlation between the residuals of the two samples, Y 1"* is uncorrelated with UA. 

Statistical matching thus takes care of the simultaneity problem, but at the same time it 

introduces an errors in variables problem because the matching error G is now part of the 

residual. OLS estimates of (35) will thus neither be unbiased nor consistent, but this 

problem can be overcome if (:35) is estimated by a method which takes the matching error 

into account, for instance, and instumental variables method. TSLS applied to (35) would 

be assymptotically equivalent to the two-stage proceedure suggested above, but in small 

samples it might be less effident since some of the information in the larger B-sample is 

ignored. s 

If it is not always possible to find a match with identically the same vector {Xl' : X 2 .} 
l l 

but instead a match is defined by some distance function on the exogenous variables, a 

systematic error is introduced which presumably makes also the TSLS estimates of (35) 

inconsistent. Matching constrained to a one-to-one correspondence between the X-values 

of the two samples is almost equivalent to simulating the reduced form (4), but matching 

of observations with only approximately the same X-values can be compared to a 

simulation based on the wrong vector {Xl· : X 2 .}. 
l l 

The same results seem to carry over to the regression model with multivariate 

normal X-variables. The replacement of the unobserved Xl A by a match from sample B, 

"* say Xl ,will introduce a matching or measurement error. Estimation of y would then re-

quire a method which takes these errors into account. 

The simple form of statistical matching assumed here does not do justice to the 

variety of techniques used in practice, but one general conclusion is that the estimation 

method used af ter a statistical match should take into account the random - and if 

possible any non-random - matching error. Ordinary least-squares will in general not do 

this. 

6. CONCLUDING REMARKS 

Future research based on micro data might have to rely more and more on the kind 

of incomplete data discussed in this paper. To be able to do this we will need some 
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vehicle, a mode1 1 which links the variables of the different data sets. In our case the 

simultaneous-equation model and the multivariate normal distribution both served this 

purpose. Such a theoretical basis is necessary for solving the missing data problem 

whether this is done by the two-stage least-squares proceedure or statistical matching and 

it seems unlikely that a model free and purely design-based proceedure could be 

developed. If this is true the kind of general purpose argument, sometimes given for 

statistical matching, would have little validity for these two approaches. It also raised 

the issue of how robust these methods are for model specification errors. 

In the first part of the paper no particular family of distributions was assumed 

which in a natural way leads to least-squares theory. In section 4 a multivariate normal 

distribution was introduced. The particular family is not principally important - although 

the normal distribution is very convenient - but if i t is realistic to assume a distribution 

there might be more efficient methods based on maximum likelihood theory. With large 

micro data samples efficiency mlght, however, be of secondary importance. 
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Footnotes 

l 

2 

3 

5 

Note that this model spedfication is within the econometric "superpopulation" 

tradition and there is no mentioning of a sample design. Although this is. a 

controversal issue, it can be argued that the estimation proceedure will not depend 

on the sampling design ~s long as the selection probabilities are independent of the 

resi duals U. 

Note the similarity with Wold's generalized interdependent systems, GEID, (Mosbaek 

&. Wo1d, 1970). 
, A 

For 012= -0.9 asy. var (o) :::0.9131 n A-1plim(n A -l Z Z)-l. For (J12 = +0.9 asy. var (o) ::: 
I 

1.1030 n
A

- 1 plim(n
A

- 1ZZf 1 • 

This assumption does not imply any causal relation between the exogenous variables. 

In practice the smaller sample A would probably be matched into sample B, which 

implies that each y.-value might be used repeatedly and more of sample B would be 
l 

used. There is, however, no guarantee that the whole of sample B can be used since 

there may be vectors {XI,Bi x2 ,B} which have no correspondence in sample A. 
l l 
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