
Banerjee, Abhijit; Weibull, Jörgen W.

Working Paper

Evolution and Rationality: Some Recent Game-Theoretic
Results

IUI Working Paper, No. 345

Provided in Cooperation with:
Research Institute of Industrial Economics (IFN), Stockholm

Suggested Citation: Banerjee, Abhijit; Weibull, Jörgen W. (1992) : Evolution and Rationality: Some
Recent Game-Theoretic Results, IUI Working Paper, No. 345, The Research Institute of Industrial
Economics (IUI), Stockholm

This Version is available at:
https://hdl.handle.net/10419/95198

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/95198
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


I nd ustriens Utred n i ngsi nstitut 
THE INDUSTRIAL INSTITUTE FOR ECONOMIC AND SOCIAL RESEARCH 

A list of Working Papers on the last pages 

No. 345, 1992 

EVOLUTION AND RATIONALITY: SOME 

RECENT GAME-THEORETIC RESULTS 

by 

Abhijit Banerjee and Jörgen W. Weibull 

Paper presented at the Tenth World Congress of the International 
Economie Association, Moscow, August 24-28, 1992. 

Postadress 

Bpx 5501 
114 85 Stockholm 

Gatuadress 

Industrihuset 
Storgatan 19 

Telefon 

08-7838000 
Telefax 

08-661 7969 

October 1992 

Bankgiro 

446-9995 
Postgiro 

191592-5 



EVOLUTION AND RATIONALITY: 

SOME RECENT GAME-THEORETIC RESULTS* 

Abhijit Banerjee 

Department of Economics 
Harvard University 
Cambridge, MA. 02138 
U.S.A. 

and Jörgen W. Weibull 

Department of Economics, and Institute 
for International Economic Studies 
Stockholm University 
106 91 Stockholm 
Sweden 

First draft: 15 March 1992. Current version: 15 October 1992. 

* This paper was presented at the Tenth World Congress of the International Economic 
Association, Moscow, August 24-28, 1992. We are grateful for comments from Ken 
Binmore, Jonas Björnerstedt, Jean-Michel Grandmont, Peter Norman, Roy Radner, Susan 
Scotchmer, Johan Stennek and Karl Wärneryd, as weIl as from the participants in seminars 
at the Institute for International Economic Studies, Stockholm University and at the C.V. 
Starr Center for Applied Economics, New York University. 

Banerjee gratefuIly acknowledges the hospitality of the Institute for International 
Economic Studies at Stockholm University. Weibull gratefully acknowledges financial 
support from the Industrial Institute for Economic and Social Research, Stockholm, 
Sweden, and from the J an WaIlander Research Foundation. 



ABSTRACT 

This paper surveys the recent literature on evolutionary game theory from the viewpoint of 

economic theory. The aim is to underst and to what extent evolutionary arguments can 

substitute rationality-based arguments as a foundation for Nash equilibrium and other 

non-cooperative solution concepts. We conclude that there is an intimate connection 

between the attractors of evolutionary processes and Nash equilibrium even in 

environments which are much mor e general than the simple setting of the standard 

biological model. Furthermore, even when the evolutionary process does not converge, it's 

long-run evolution will, in continuous time, necessarily eliminate dominated and 

iteratively dominated strategies. However, we also find that the current evolutionary 

set-up needs substantial generalization if it is to incorporate plausible adaptive behavior 

by intelligent but boundedly rational players. We suggest some directions for such 

generalizations and show by example that in more general environments the connection 

between evolutionary outcomes and Nash equilibrium may be weaker. 
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I. INTRODUCTION 

A large part of economics, and economic theory in particular, relies on such solution 

concepts as Nash equilibrium and its refinements. Unfortunately, it is difficult to 

provide a solid theoretical or empirical justification for Nash equilibrium behavior. 

"Rationality," or even "common knowledge of rationality," is not enough to generate 

such behavior. Among other things, one also needs to assume that the players 

coordinate their beliefs about each others' actions (Armbruster and Boege, 1979; 

Johansen, 1982; Bernheim, 1984; Pearce, 1984; Bernheim, 1986; Binmore, 1987; 

Aumann, 1987; Tan and Werlang, 1988; Aumann and Brandenburger, 1991). Moreover, 

in games with a dynamic structure, the very notion of rationality becomes problematic, 

and common knowledge of rationality may even le ad to logical contradictions 

(Rosenthal, 1981; Binmore, 1987; Bicchieri, 1989; Basu, 1988, 1990). 

A completely different approach is to leave the epistemology of rationality aside 

and instead ask whether or not economic agents, and human decision-makers in general, 

behave as if they met the stringent rationality and coordination conditions inherent in 

Nash equilibrium and other non-cooperative solution concepts. One process which may 

justify this "as if' approach is "natural" selection. 1 More precisely, one may ask 

whether evolutionary selection among more or less boundedly "rational" behaviors in 

strategic interaction situations leads to (aggregate and/or long-run) Nash equilibrium 

behavior. One can then think of "players" as "hosts" of a variety of "competing" 

behaviors - including potentially "rational" behaviors - and ask which of these 

behaviors survive in an evolutionary selection process (Binmore, 1988). If the behaviors 

selected by evolutionary processes result in a Nash equilibrium out come, then one can 

claim that, whether or not players are genuinely "rational" and "coordinate their 

1 For pioneering suggestions in this direction, in the context of competitive markets, see 
A1chian (1950), Friedman (1953) and Winter (1964, 1971). 
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beliefs," in the long run they will behave as if they did indeed meet the underlying 

rationalistic assumptions (see Selten (1991b) for a discussion of some relevant 

paradigms). 

The most promising methodology for such an evolutionary justification of Nash 

equilibrium play is provided by recent advances in evolutionary game theory, a 

paradigm pioneered by the British biologist John Maynard Smith. This paradigm has 

been developed along two lines, one static approach using evolutionary stability as its 

key concept (Maynard Smith and Price, 1973; Maynard Smith, 1974, 1982), and one 

dynamic approach based on explicit Darwinian (or Malthusian) selection of behaviors. 

In the dynamic approach, one imagines pairwise and randomly matched interactions in a 

large population of individuals (Taylor and Jonker, 1978; Hofbauer et al., 1979; Zeeman, 

1980, 1981; Schuster et al., 1981a; Schuster and Sigmund, 1983; Bomze, 1986, Hofbauer 

and Sigmund, 1988). The players are confined to a limited menu of particularly simple 

behaviors, viz. those corresponding to always playing the same pure strategy in the 

two-player game in question. Hence, one may think of the players as being 

"programmed" to always play a certain (more or less involved) strategy when 

encountering another individual. In the biologists' models, payoffs represent 

reproductive fitness, usually measured as (expected) number of offspring, and the 

offspring inherits its (single) parent's behavior. Hence, the growth rate of a population 

share of individuals programmed to a certain behavior is proportional to its payoff in the 

current population composition. Using a term coined by the British socio-biologist 

Richard Dawkins, this reproductive selection dynamics is usually called the replicator 

dynamics. 2 The focus of the biologists' analysis is on population states which are 

attractors in this dynamics, such states being the natural candidates for long-run 

2 Dawkins used the term "replicator" for entities which can get copied and which are 
such that (a) their properties can affect their probability of being copied, and (b) the 
line of descent copies is potentially unlimited. 
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aggreagate population behavior. 

The relevance of this literature for the social sciences in general, and economics 

in particular, is limited in several ways. First, in economics, the payoffs in a game do 

usually not represent reproductive fitness, but rather firm's profits or households' 

utility. Moreover, in most such applications, the selection mechanism is not biological 

but the aggregat e result of more or less conscious choices made by the individuals. 

Accordingly, economists have generalized some of the analysis to fairly wide classes of 

selection dynamics containing the replicator dynamics as well as a variety of more or 

less rational individual adjustment processes (Nachbar, 1990; Friedman, 1991; Kandori 

et al., 1991; Samuelson and Zhang, 1992; Swinkels, 1992). A related limitation in the 

standard set-up of evolutionary game theory is its focus on behaviors which are not 

conditioned on any information that a player may have, such as the current aggregat e 

population behavior or the type of the opponent player. One way to relax this rigidity, 

indicated above, is to let players over time revise their choice of strategy in the light of 

the current population state (Banerjee and Weibull, 1991; Dekel and Scotchmer, 1992). 

An alternative way is to expand the menu of behaviors available at each moment 

(Robson, 1990; Banerjee and Weibull, 1991; Stahl, 1992; Banerjee and Weibull, 1992). 

There is also no a priori reason why, in all relevant situations, all the players should be 

modelled as coming from the same population. Indeed, a number of papers treat 

interactions between distinct populations, occupying different player roles in the game in 

question (Schuster et al., 1981b; Schuster and Sigmund, 1985; Hofbauer and Sigmund, 

1988; Friedman, 1991; Ritzberger and Vogelsberger, 1991; Samuelson and Zhang, 1992; 

Swinkels, 1992). 

The present survey discusses a number of papers on explicitly dynamic models of 

evolutionary selection of behaviors in games. This literature is currently growing fast 

and is closely related to at least three strands in economic theory, none of which is 

discussed here. The obviously most closely related of these strands is the important 
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literature on the static criterion of evolutionary stability. 3 The two other omitted fields 

are learning models and models in which decision maker s are represented as automata. 4 

Moreover, we are aware that we have not even covered all current and important 

contributions to explicitly dynamic evolutionary analyses. In particular, we do not 

discuss multi-population dynamics. We feel that many important aspects of the 

relationship between rationality and evolution - the focus of the present survey -

come out already in symmetric two-person games. For the same reason, we only briefly 

touch upon explicitly stochastic dynamic models. 

The material is organized as follows. Basic notation and elements of non­

cooperative game theoryare given in Section II. The explicitly dynamic version of 

standard evolutionary game theory, in particular its implications for "rational" and 

"coordinated" behavior, is discussed in Section III. Section IV discusses some extensions 

to a fairly wide dass of dynamics of relevance for models of boundedly rational 

individuals who revise their strategy choice over time. Section V discusses some models 

of evolutionary selection among more general boundedly rational behaviors. Our main 

condusions are summarized in Section VI. 

II. NOTATION AND PRELIMINARlES 

The analysis in the present paper is restricted to finite and symmetric two-player games 

in normal form. Let I={1,2, ... ,k} be the set of pure strategies. Accordingly, a mixed 

strategy is a point x on the unit simplex Å={XEIR+k : ~.x.=l} in k-dimensional Eudidean 
l l 

3 Every evolutionary stable strategy xEÅ is asymptotically stable (see footnote 25) in the 
replicator dynamics (Hofbauer et al., 1979), so the connection between the static and 
dynamic approaches is fairly tight. 

4 Unfortunately, a discussion of connections between these three research paradigms falls 
outside the scope of present paper. Two relevant papers are Blume and Easley (1991), 
for a connection between learning behaviors and evolution, and Binmore and Samuelson 
(1992), for the connection between automata and evolution. 



5 

space. The support of a mixed strategy xE.6 is the subset C(x)={iEI:xi>O} of pure 

strategies which are assigned positive probabilities. A strategy x is called interior (or 

completely mixed) if C(x)=I. 

Let aij be the payojj of strategy iEI when played against strategy JEI, and let A 

be the associated kxk payoff matrix. Accordingly, the (expected) payoff of a mixed 

strategy x, when played against a mixed strategy y, is u(x,y) = x-Ay = EiliaijYj' The 

payoff function u:.62 -+IR is clearly bi-linear, and the payoff of a pure strategy iEI, when 

played against a mixed strategy y, is u(ei,y), where ei is the i'th unit vector in IRk, etc. 

We will frequently identify a pure strategy iEI with its mixed-strategy counterpart 

eiE.6. 

A pure strategy iEI is weakly dominated if there exists a strategy xE.6 which 

never earns a lower payoff and sometimes a higher payoff (Le., u(x,y)~u(ei,y) VyE.6, 

with strict inequality for some y). A pure strategy iEI is strictly dominated if there 

exists a strategy xE.6 which always earns a higher payoff (i.e., u(x,y»u(ei,y) VyE.6). A 

best reply to a strategy yE.6 is a strategy xE.6 such that u(x,y)~u(x',y) Vx'E.6. For each 

yE.6, let f3(y)C.6 be its set of best replies. A Nash equilibrium is a pair (x,y) of mutually 

best replies, a Nash equilibrium is strict if each strategy is the unique best reply to the 

other, and a Nash equilibrium (x,y) is symmetric if x=y. By Kakutani's Fixed Point 

Theorem, every finite and symmetri c game has at least one symmetri c Nash 

equilibrium. 

One solution concept which is weaker than Nash equilibrium is iterative strict 

dominance. A pure strategy iEI is said to be iteratively strictly undominated if it is not 

strictly dominated in the original game G, nor in the game G' obtained from G by 

removal of all strictly dominated strategies, nor in the game Gli obtained from G' by 

removal of all strategies which are strictly dominated in G', etc. Arelated, but 

different, solution concept is rationalizability. A pure strategy iEI is never a best reply if 

there exists no mixed strategy yE.6 against which iEI is a best reply, and iEI is 
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rationalizable (Bernheim, 1984; Pearce, 1984) if it is not a "never best reply" in the 

original game G, nor in the game G' obtained from G by removal of all "never best 

replies," nor in the game G" obtained from G' by removal of all "never best replies," 

etc. Each of these two methods of iterated elimination of pure strategies stops in a 

finite number of steps. Pearce (1984) has shown that, while the two remaining sets may 

differ in games with more than two players, they coincide in all two-player games. 5 

Hence, in the present setting, a strategy iEI is rationalizable if and only if it is 

iteratively undominated. 

m. NASH EQUILmRlUM AS THE RESULT OF EVOLUTIONARY 

ADAPTATION 

In the basic dynamic setting of evolutionary game theory, one imagines pairwise and 

randomly matched interactions in a large population of individuals, each interaction 

taking the form of play of a symmetric and finite two-player game. As in Section II, let 

I denote the strategy set, A the payoff matrix, and u:~ 2 -iIR the associated payoff 

function. Interactions take place contiuously over time, the current aggregate behavior 

of the population, or its state, is a vector x=(xl' ... ,xk)E~, where each component xi is 

the population share currently using strategy iE!. Accordingly, it is immaterial for a 

player whether he plays against a player using a mixed strategy XE~ or against a 

randomly drawn individual from a population of pure-strategy players in state xE~. In 

both cases, the (expected) payoff of a pure strategy iEI is u(ei,x). In the population 

setting, the average payojj in the population is simply u(x,x) = Thciu(ei,x). In the 

biologists' modeIs, payoffs represent "fitness", which is usually taken to be the 

5 A strictly dominated strategy is never a best reply, and hence the set of rationalizable 
strategies is always a subset of the set of strategies surviving the iterated elimination of 
strictly dominated strategies. 
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(expected) number of offspring, and each offspring inherits its (single) parent's strategy, 

so (implicitly presuming the law of large numbers) the replicator dynamics in continuous 

time is 

x. = u(el-x,x). x. 
l l 

[ViEI, VXEL1], (1) 

with dots for time derivatives. 6 

In other words, the growth rate x. Ix. of each sub-population iEI equals the 
l l 

difference between its current payoff and the current population average. Evidently, a 

sub-population whose strategy iEI is a best reply to the current aggregate behavior xEL1 

has the highest growth rate in this dynamics, but also other sub-populations may grow, 

viz. those who use strategies which do bett er than average. 

In the special case k=2, i.e. a (symmetric) 2x2 game, it is easily established that 

this implies convergence to some (symmetric) Nash equilibrium, from any interior initial 

state. More exactly, if initially all strategies in the game are used by some individuals, 

i.e. x(O) is interior, then the state x(t) converges over time to some state X*EL1 such that 

(x*,x*) constitutes a Nash equilibrium (Hofbauer and Sigmund, 1988). (In certain cases, 

the limit state x* depends on the initial state x(O).) Hence, the evolutionary approach 

lends strong support to the Nash equilibrium paradigm in such low-dimensional 

settings. 

Unfortunately, for general symmetric kxk games the connection between 

evolutionary dynamics and Nash equilibrium is somewhat less tight. The problem is 

that the evolutionary selection process in higher-dimensional spaces need not converge. 

6 This system of ordinary differential equations is polynomial. Hence, it has a unique 
solution through every intial state x(O)EL1. Moreover, it leaves the unit simplex L1 
invariant, x(O)EL1 :} x(t)EL1 Vt~O, and the system (1) is unaffected by affine trans­
formations of payoffs, modulo a change of time scale. For an analysis of the validity of 
the implicit use of the law of large numbers, see Boylan (1992). 
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However, just as in the 2x2 case any population state which is (Lyapunov) stable in the 

replicator dynamics corresponds to a symmetri c Nash equilibrium, and a strategy which 

is in Nash equilibrium with itself is stationary in this dynamics.7 In other words, if 

evolutionary selection induces no movement in the composition of the population's 

aggregate behavior, and that behavior is dynamically robust with respect to small 

perturbations, then it is compatible with the stringent rationality and coordination 

hypotheses in the rationalistic justification of Nash equilibrium behavior: 

Proposition A (Bomze, 1986): If the population state x is (Lyapunov ) stable in 

the replicator dynamics (1), then (x ,x) is a Nash equilibrium. If (x ,x) is a Nash 

equilibrium, then x is stationary in the replicator dynamics. 

The intuition behind these daims is fairly straight-forward. The second daim is 

simplest to see. For if (x,x) is a Nash equilibrium, and hence xELl is a best reply to 

itself, then all pure strategies in its support C(x) earn the same (maximal) payoff, which 

also is the average payoff, since strategies not in C(x) are absent from the population. 

Thus each sub-population is either extinct or earns the average payoff, establishing x=O 

in (1). The intuition for the stability daim is that if (x ,x) is not a Nash equilibrium, 

and hence x is not a best reply to itself, then there exist some pure strategy i which 

earns mor e against x than some pure strategy j in the support of x. Hence, along all 

solution paths of (1) in a neighbourhood of x, sub-population j decreases towards zero 

over time, implying that the population state le aves the neighborhood (since by 

hypothesis jEC(x), and hence xj>O). Consequently, x then is not stable. In fact, by 

similar arguments one can show that, just as in the 2x2 case, if the population state 

7 A state is called stationary if, starting in x, the system remains at x. A state xELl is 
said to be (Lyapunov) stable if there for every neighborhood VCLl of x exists some 
neighborhood UCLl of x such that, starting in U, x(t) never leaves V, see e.g. Hirsch and 
Smale (1974). 
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converges from an initial state in which all strategies are used, then the limiting state 

has to be Nash equilibrium behavior: 8 

Proposition B (Nachbar, 1990): If an interior dynamic path in the replicator 

dynamics (1) converges to some XE~, then (x ,x) is a Nash equilibrium. 

This simple observation implies that every strictly dominated strategy is wiped 

out from the population, granted all strategies are represented in the initial population 

and that the induced dynamic path converges. But what if aggregate behavior does not 

converge? It tums out that all strictly dominated strategies are nevertheless wiped out. 

In fact, as shown by Samuelson and Zhang (1992), only strategies which are 

rationalizable can survive evolutionary selection, given all pure strategies are initially 

present in the population: 9 

Proposition C (Samuelson and Zhang, 1992): If a pure strategy is not 

rationalizable, then its population share converges to zero along any interior 

dynamic path in the replicator dynamics (1). 

Consequently, even if the evolutionary selection process fails to converge, in the 

long run virtually no individual will behave irrationally in the sense of playing strategies 

which are never best replies, nor will they play strategies which are never best replies 

when others avoid strategies which are never best replies etc. In fact, since all non­

rationalizable strategies are wiped out in the long run, all players eventually behave 

8 If the initial state x(O) is interior, then so are all future states x(t). In other words, the 
interior of the unit simplex ~ is invariant in the replicator dynamics (1), and so one 
may unambiguously speak about interior (solution) paths. 

9 Samuelson and Zhang establish this for interactions between two populations, implying 
the present daim as a corollary. For a direct proof see Weibull (1992). 
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almost as if rationality (in the sense of best-reply behavior) were common knowledge. 

What is missing from the kind of behavior presumed in Nash equilibrium play is the 

coordination of beliefs. 10 

However, the intuition for this result is not so straight-forward. Indeed, by way 

of a cleverly construed counter-example, Dekel and Scotchmer (1992) show that the 

result is not valid in the standard discrete-time version of the replicator dynamics, 

(2) 

In this version, each generation lives for one period, and all individuals reproduce 

simultaneously. If an individual using strategy iEI has u[ei,x(t)] offspring when the 

population state is x(t), and alloffspring inherit their "parent's" strategy, then (2) 

results. l1 It tums out that a strategy which is strictly dominated by a mixed strategy, 

but not by any pure strategy, may, along non-convergent solution paths to (2), 

periodicaIly do sufficiently weIl to avoid extinction. 

The example in Dekel and Scotchmer (1992) is the special case a=0.35 and fJ 0.1 

of the following extension of the so called "Rock-Scissors-Paper" game: 

[ 

1 2+a O fJ] 
A - O 1 2+a fJ 

- 2+a O 1 fJ 
l+fJ l+fJ l+fJ O 

10 Even in certain non-convergent cases does Nash equilibrium appear; Schuster et al. 
(1981a) show that if a game has a unique interior Nash equilibrium pELl, then p is also 
the time average of every periodic dynamic path in Ll (whenever such exist). 

11 Unlike the continuous-time version of the replicator dynamics, (2) requires all payoffs 
to be positive. With this restriction, the dynamics (2) leaves the unit simplex, as weIl 
as its interior, invariant. However, while the continuous-time version (1) is invariant 
under affine transformations of payoffs, (2) is not. Indeed, addition of a positive 
constant 'Y to all payoffs in (2) does affect its solution paths in Ll (Hofbauer and 
Sigmund, 1988). 
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It is easily verified that the fourth strategy is strictly dominated by the unique 

Nash equilibrium strategy m=(~,~,~,O)E.6. if a>3,8>0, a condition met by Dekel's and 

Scotchmer's numerical example. Moreover, one can show that near the boundary face 

x4 =0 of the unit simplex .6., i.e., in states where only a small fraction of the population 

uses the dominated strategy 4, this sub-population grows whenever aggregate behavior 

xE.6. is at some distance from m. In fact, when a<4,8, as in Dekel's and Scotchmer's 

example, x4 grows outside a circular disk as shown in Figure 1. 12 Hence, if, along a 

dynamic path near this face, the population state drifts along the edges, then the 

population share x4 grows. In the continuous-time replicator dynamics (1) this does 

not happen; for the system converges towards m from any initial state on (the relative 

interior of) that face. However, in the discrete time dynamics (2), the system diverges 

on the face x4=0 towards the three edges of that face. Dekel and Scotchmer (1992) 

prove that x4(t) converges to zero in the dynamics (2) if and only if initially all three 

undominated strategies appear in identical shares. 

:3 

Figure l 

12 Near the face x4=O, x4>0 iff xi+x~+x~ > 1-2,8/ a, see Weibull (1992) for details. 
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However, the discrete-time version (2) does not seem entirely compelling for 

general evolution ar y analyses since it assumes that the whole population reproduces at 

the same time. As a first approximation, it appears more natural to assume that agents 

reproduce continuously, or else discretely but in smaller batches, at a more or less 

uniform rate over time. Indeed, Cabrales and Sobel (1992) show that if one uses discrete 

time but lets onlyasmall fraction, A, of the whole population reproduce each time, then 

the discrete-time dynamics differs from (2) and in fact becomes more and more similar 

to the continuous-time dynamics as A decreases. In this fashion, they establish the 

validity of Proposition C also for discrete-time versions of the replicator dynamics with 

A sufficiently small. As a result, the anomal y raised by Dekel and Scotchmer is not too 

damaging to the qualitative results discussed above. 

In the current formulation, the population share of each strategy changes in a 

deterministic way. A more general formulation would allow for a stochastic evolution of 

the population shares. A pioneering contribution in this vein is Foster and Young 

(1990), who add white noise to the (continuous-time) replicator dynamics (1). In this 

fashion they obtain an ergodic stochastic process with a unique limiting distribution. 

(Hence, unlike the deterministic replicator dynamics, its long-run behavior is 

independent of its initial state.) In this framework, and using powerful analytical 

techniques due to Freidlin and Wentzell (1984), they are able to derive interesting 

limiting results for the case when the white noise terms is reduced towards zero, for a 

number of numerical examples. 13 

13 See Fudenberg and Harris (1992) for an alternative stochastic specification. 
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IV. NASH EQUILillruUM AS THE RESULT OF BOUNDEDLY RATIONAL 

ADAPTATION 

In applications to economics and other social sciences, payoffs usually represent utility 

or profits, and, moreover, one is interested in the dynamics of cognitive and social 

adaption processes, such as learning or imitation of successful behavior, rather than in 

biological reproduction as SUCh. 14 Hence, we now ask whether the results for the 

replicator dynamics carry over to such dynamics. In fact, economists have recently 

studied properties of certain dasses of evolutionary dynamics which are intended to be 

wide enough to contain a variety of plausible social evolutionary processes. All of these 

dynamics are, in one way or another, monotone with respect to payoff differences 

between current strategies (Nachbar, 1990; Friedman, 1991; Samuelson and Zhang, 1992; 

Swinkels, 1992). 

Here, we formalize one particular such dass, viz. dynamics with the propert y 

that if some pure strategy earns more than another, then the first sub-population grows 

at a higher rate than the second. Clearly the replicator dynamics belongs to this dass, 

but note the new interpretations that such a generalization admits; one may now think 

in terms of infinitely lived, boundedly rational individuals who consciously choose their 

strategy, or, more precisely, revise their choice of strategy over time. The dynamics will 

simply represent the aggregat e effect of the rules for revising strategies that individuals 

use. 15 A wide range of dynamics are admissible under this specification, induding 

14 An exception being evolutionary theories for the formation of preferences such as 
altruism etc. 

15 To this date, only very special and simplistic social evolutionary adaptation 
mechanisms have been studied (Friedman, 1991). In this respect, the learning literature 
is more advanced than the evolutionary literature, see discussion in Section V. 
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arbitrarily fast revisions towards the current best replies. 16 

Formally , the dass of dynamics under consideration, to be called monotone, is 

given by 

x. = cp. (x) ·x. 
l l l 

[Vi El, VxE Ll ], (3) 

for some Lipschitz continuous function cp:Ll-+IRk satisfying the orthogonality condition 

x· cp(x)=O at all states XELl, and the monotonicity condition CPi(x);CP/x) if u(ei,x)~ 

~ u(~,x), conditions dearly met by the replicator dynamics. 17 The orthogonality 

condition is necessary and sufficient to leave the unit simplex Ll invariant. 

It is easily verified that, in the special case of (symmetric) 2x2 games, the 

qualititative properties of the replicator dynamics are shared by all monotone dynamics 

(Weibull, 1992). Hence, irrespective of how dose the dynamic adjustment is to instant 

best-reply behavior, aggregat e behavior always converges to Nash equilibrium in these 

low-dimensional settings. 

Moreover, it is not difficult to show that, even for arbitrary (symmetric) kxk 

games, many properties of the replicator dynamics are valid for any monotone dynamics. 

In particular, Propositions A and B generalize directly: 

16 Note that the limiting case of individuals who instantly switch to the best replies in 
general does not induce a well-defined dynamics in continuous time, since the best­
reply correspondence need not be lower hemi-continous, and hence not always permit a 
continuous selection, see Gilboa and Matsui (1991) for an approach to this issue. 

17 The latter propert y is called relative monotonicity in Nachbar (1990), order 
compatibility (of predynamics) in Friedman (1991), and monotonicity in Samuelson and 
Zhang (1992). 
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Proposition A' (Friedman, 1991): If the population state x is (Lyapunov) stable 

in some monotone dynamics (3), then (x,x) is a Nash equilibrium. If (x ,x) is a 

Nash equilibrium, then x is stationary in any monotone dynamics (3).18 

Proposition B' (Nachbar, 1990): If an interior dynamic path in a monotone 

dynamics (3) converges to some state x, then (x,x) is a Nash equilibrium. 

The more subtle Proposition e does not appear to be fully generalizable to the 

present dass of dynamicsj instead of asserting the extinction of all strategies which are 

strictly (iteratively) dominated by some pure or mixed strategy, Samuelson and Zhang 

only assert, for monotone dynamics, the extinction of all strategies which are strictly 

(iteratively ) dominated by some pure strategy: 

Proposition e' (Samuelson and Zhang, 1991): If a pure strategy is (iteratively) 

strictly dominated by a pure strategy, then its population share converges to zero 

along any interior dynamic path in any monotone dynamics (3).19 

The stochastic version of monotone dynamics (3) requires that if one strategy 

performs better than another, the share of the former is likely to grow faster than that of 

the latter. A model along these lines is offered by Kandori, Mailath and Rob (1991), 

who consider stochastic evolution under monotone dynamics in a dass of 2x2 

18 Friedman (1991) makes the slightly weaker daim (for a wider dass of dynamics) that 
asymptotic stability implies Nash equilibrium play, see his Proposition 3.3. A simple 
proof of the present daim is given in Weibull (1992). 

19 Samuelson and Zhang (1991) in fact show that the statement in prop.e' is valid for two­
population dynamics, implying Proposition e' as a corollary. They also show, again for 
two-population dynamics, that the slightly stronger statement in Proposition e is valid 
for a subdass of monotone dynamics which they call aggregate monotone. Nachbar 
(1990) established Proposition e' in the special case of games in which only one strategy 
survives the iterated elimination of pure strategies which are strictly dominated by other 
pure strategies. 
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coordination games. In contrast to Foster and Young (1990), who add a stochastic term 

to the continuous-time replicator dynamics (1), K andori , Mailath and Rob assume 

deterministic montone adjustment towards the more profitable strategy, and introduce 

the stochastic element by assuming that the population is finite, time is discrete, and 

each player has a positive (U.d) probability of switching, or 'mutating,' to the other 

strategy. Given these assumptions, the evolution of each individual's strategy is 

governed by an irreducible Markov chain, and therefore each individual's play will 

converge to the same ergodic distribution over the two strategies. Furthermore, 

Kandori, Mailath and Rob show that, as the (exogneous) mutation probability tends to 

zero, the probability that, in the ergodic limiting distribution, the individual will play 

the risk-dominant strategy, goes to 1. Hence, not only does this approach, just as the 

deterministic monotone dynamics approach, lend support for Nash equilibrium; in 

simple games the stochastic approach even selects among Nash equilibria which, taken 

individually, are stable in the corresponding deterministic monotone dynamics. 20 

V. MORE GENERAL BOUNDEDLYRATIONAL BEHAVIORS 

The results discussed in the preceding section suggest that the close connection between 

evolution and Nash equilibrium that was obtained under the replicator dynamics 

extends to a wide range of adaptive dynamics. 21 Nevertheless, this can only be among 

the very first steps in studying the long-run evolution of boundedly rationai behaviors. 

In the present section, we try to identify important limitations of the model of bounded 

20 See Kandori and Rob (1992) for an extension to kxk games. See Nöldeke and 
Samuelson (1992) for a model of stochastic evolutionary dynamics in a class of 
sequential-move games in extensive form. 

21 Actually, the extension is not quite complete since the stronger Pro{losition C holds 
only for aggregat e monotone dynamics, see Samuelson and Zhang (1991). It is still not 
clear whether there are reasonable social adaptation procedures which are monotone but 
not aggregat e monotone, see Friedman (1991) and Swinkels (1992) for discussions of 
wide clas ses of adaptation dynamics. 
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rationality underlying the evolutionary models discussed above, and we investigate some 

of the consequences of generalizing tha t model. 

The only element of the history of play that goes into the above models of 

strategy adaptation is the current payoff. In reality, individuals use their memory, and 

the success of different strategies over (at least part of) the past count in their decision 

making. A variety of models of behavioral adaptation based on the history of play is 

supplied by the learning literature, a research field falling outside the scope of this 

survey. However, an interesting environment for evolutionary selection over 

history-contingent behaviors arises when interacting individuals use differing learning or 

search rules. These rules may be more or less ad hoc, some may use Bayesian updating 

etc. Within the context of a stochastic asset market with this flavor, Blume and Easley 

(1991) find that the link between evolutionary selection and rationality is weak. 

Although their analysis is quite interesting, its setting falls outside the scope of the 

present survey. Another element of the history that appears of ten to be significant in 

social adaptation is the pattern of choice made by others. People may, for example, be 

prone to choose strategies that others are using, or phrased differently, adopt prevalent 

behaviors. Weibull (1992) suggests that if players can sample other players' current 

payoffs and move from less to more profitable strategies on the basis of such sampling, 

then the resulting selections dynamics is monotone, and hence the results of the previous 

section apply. 

Another important aspect which is not captured in the monotone adaptive 

dynamics discussed in the previous section is that, in the real world, people are to some 

extent forward looking. There are really two independent issues here. First, in the 

standard evolutionary models discussed in the previous sections, individuals are myopi c 

in the sense of only paying attention to current payoffs. In models with a finite number 

of (long-live d) individuals, it may not always be optimal to choose the myopically best 

strategy. By choosing some other strategy, a player may influence other players' future 
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behavior to his advantage. Secondly, in choosing their strategies, agents (in finite or 

infinite populations) may want to anticipate the future behavior of others. Af ter all, 

they know that as they themselves change strategy, everybody else is also changing 

theirs, so that what is currently a good strategy may not be quite so good by the time it 

gets played. This kind of anticipatory behavior is beyond the scope of the models 

outlined ab ove (see Selten, 1991a). On the other hand, continuous-time monotone 

dynamics does perrnit strategy adaptation arbitrarily close to the instantaneous 

adoption of a best reply (IABR henceforth). It may be argued that as one approaches 

IABR, the individuals' strategy choices may not be very different from those which 

incorporate a forward-Iooking element. (For, af ter all, the limit case of IABR is one in 

which agents perfectly anticipate what the others will choose.) However, this is not 

true; as each individual's play approaches IABR, the whole population may change 

strategies faster and faster. As a result, even though everybody is only a little late in 

responding to what the others are doing, they may be way off in strategy space. 

Lack of anticipatory behavior is one aspect of the broader issue that standard 

evolutionary models are based on a very mechanical model of boundedly rational play. 

Bounded rationality (BR henceforth) should not be equated with using a mechanical 

rule to mo ve towards a strategy that is currently doing weIl. Boundedly rational players 

think, albeit imperfectly. The imperfection in their thinking can take many forms and 

there is no a priori reason why some of these are more appropriate for evolutionary 

analysis than others. Therefore, the right way to do evolutionary analysis appears to be 

to allow for the widest possible variety of boundedly rational behaviors. 

The paper which come s closest to this project is Stahl (1992), who, in an 

otherwise standard set-up of evolutionary game t heory , introduces a hierarchy of 

increasingly sophisticated players who he calls smartn players, for n=O,l,2, .. 22 The 

22 AIso Blume and Easley (1991) analyze evolutionary selection of mor e or less 
sophisticated behaviors, but do this in the context of a stochastic asset market rather 



19 

usual pre-programmed players in evolutionary game theoryare called smarto' and, for 

n>O, a smartn player is one who knows the current aggregate behavior of all players at 

alllower smartness leveis. This limits the possible beliefs of a smartn player about what 

his potential opponents could be playing, and he plays a (pure) strategy which is 

optimal under some belief satisfying this restriction. 23 The total population, within 

which the usual random matchings takes place, is decomposed into n* smartness 

categories, and the distribution accross strategies within each such category n can be 

represented as a point xn on the (usual) unit simplex !l, for n=O,1,2, ... ,n*. 

If the share of the total population in smartness category n is An' the aggregat e 

population behavior is the convex combination p = EAnxn, again a point on the unit 

simplex !l. Stahl uses a version of the discrete-time replicator dynamics (2) which 

induces dynamie paths elose to those of the continuous-time version (1) (c.f. discussion 

of Dekel and Scotchmer (1992) and Cabrales and Sobel (1992) in Section III above). In 

Stahl's setting, this selection dynamics specifies the growth rates of each of the 

k o (n*+l) population shares. 

Despite this much more general environment, Stahl is able to show that the 

counterparts to Propositions B and C hold. He also shows that, whether or not the 

process converges, the subpopulation of smarto players will never be wiped out, granted, 

of course, that initiallyall types of player are present. Intuitively, the smarto players 

survive despite the presenee of more rational players because some of them happen to be 

programmed to the "right" strategies, and hence these earn the same payoff in a 

stationary state as smarter players. Put in the author's words: "being right is just as 

good as being smart." However, one should remember that in general the aggregat e 

population behavior changes over time. Therefore, smarter players, who can adjust 

than for pairwise game playing. 

23 In order to specify selections within best reply sets, all players of smartness n~ 1 are 
assumed to have some lexicographic preference over strategies. 
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their play to their environment, will of ten be in a better position than smarto players 

who always play the same strategy, and, consequently, the survival of smarto players is 

non-trivial: 

Proposition D (Stahl, 1992): If an interior path in the discrete-time replicator 

dynamics converges to some PE~, then (p,p) is a Nash equilibrium. The 

population shares of smarto players playing non-rationalizable strategies 

converge to zero along any interior dynamic path. Moreover , for any interior 

path in the dynamics, the limit superior of the population share AO(t) of smarto 

players is positive. 

In sum: as long as the evolutionary process in Stahl's setting converges, the 

long-run out come remains a Nash equilibrium. In this sense, the "as if" justification of 

Nash equilibrium generalizes beyond the standard environment of evolutionary game 

theory. On the other hand, whether the process will converge and what its long-run 

behavior will be like if it does not converge, does depend on the composition of the 

population in terms of levels of rationality. The result concerning the survival of smarto 

players is important because it says that if the initial population contains smarto 

players, the long-run population will also contain smarto players and therefore (as long 

as the process does not converge) the presence of smarto players may have a real effect 

on the long-run behavior of the system. In other words, one cannot simply ignore the 

actual levels of rationality of the players in the game, as the proponents of the "as if" 

methodology would suggest we do. 

Another generalization of the basic evolutionary environment, different from the 

ones considered by Stahl (1992), is introduced in Banerjee and Weibull (1992). We 

define the set of types to be some finite set T={1,2, ... ,r}, and consider any (symmetric) 

two-player game with pure strategy set I={1,2, ... ,k}. One can then think of a possible 
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behavior as a map from T to I, Le., a map b which for each type 7ET of opponent 

prescribes a strategy iE!. Denote the set of all behaviors :ii. A player-cell then is an 

element of the product set Tx:ii, Le., each player in cell (7,b) is himself of type 7ET and 

uses strategy b( 7')EI when meeting a player of type 7'ET. 

In this terminology, the standard environment of evolutionary game theory is the 

special case of k types, Le., T=I, and every player of type iET is constrained to the 

constant behavior b(j)=i VjET. Banerjee and Weibull (1991) corresponds to the 

somewhat less special case of k+1 types, Le., T=IU{k+1}, each of the k first types being 

constrained to constant behaviors, just as in the standard setting of evolutionary game 

theory, and the k+1'st type being constrained to the best-reply mapping. 24 More 

specifically, we there study the replicator dynamics (1) in an environment with k types 

of smarto players, one for each pure strategy iEI, and one additional type, k+1, who 

plays a best response against each of the other types, and some rationalizable strategy 

(or strategies) against its own type. Let a denote the payoff that players of the 

optimizing type k+1 obtain when meeting each other. 

In this mixed set-up, and in the correspondingly augment ed continuous-time 

replicator dynamics (1), we provide sufficient conditions for smarto players to persist, or 

vanish, in the long run. Let 1+ el be the (possibly empty) subset of pure strategies 

which earn mor e than a when meeting their best replies, and let I-el be the (possibly 

empty) subset of strategies which earn less than a when meeting their best replies. One 

may refer to strategies in 1+ as aggressive and those in 1- as yielding. It is intuitively 

dear that if the game has some aggressive strategy, then the stationary state in which 

all players are of the optimizing type k+ 1 is unstable in the replicator dynamics. For 

suppose there are virtually only such players around. Then these obtain a lower payoff 

24 In a similar spirit, Dekel and Scotchmer (1992, Example 2) introduce players who play 
best responses to last period's population state. Banerjee and Weibull (1991) also study 
the case of players who play best responses to the current state, in continuous time. 
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than the few aggressive smarto players who are present, since the latter meet virtually 

only optimizing players. Conversely, all yielding smarto players vanish in the long run: 

Proposition E (Banerjee and Weibull, 1991): Consider any interior path in the 

replicator dynamics (1) for k types of smarto players and one optimizing type, 

k+1. If 1+ :f:~, the share of optimizing players does not converge to 1 over time. 

For each iEI-, the population share xi of players of type i converges to zero. 

An immediate consequence of this result is that if the game lacks aggressive 

strategies, which for example is the case with every constant-sum game which has no 

symmetric Nash equilibrium in pure strategies, then only optimizing players survive in 

the long run, along any interior dynamic path. In contrast, if a game has some 

aggressive strategy (such as the "hawk" strategy in the famous Hawk-Dove game), then 

some aggressive smarto players may survive in the long run, along with optimizing 

players. 

Moreover, in striking contrast with the results for the replicator dynamics in the 

standard setting of evolutionary game theory, (Lyapunov) stable states in environments 

containing optimizing players need not correspond to Nash equilibrium behavior at all 

(cf. Proposition A). In fact, even·asymptotically stable states may involve the playing of 

a strictly dominated strategy.25 This disturbing phenomon arises in the following 

dominance-solvable game: 

A - [~~ ~l. 
125 

25 A state pELl is called asymptotically stable if there is a neighborhood UcLl of p such that 
solution paths in U approach x as hm, see e.g. Hirsch and Smale (1974). 
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Here strategy 2 is strictly dominated by strategy 1 (and by strategy 3), and, once 

strategy 2 has been deleted, strategy 1 strictly dominates strategy 3. In the absence of 

smarto players, the out come would hence be the standard non-cooperative solution that 

all optimizing players use the unique rationalizable strategy 1. Likewise, if only smarto 

players were present in the population, as in the standard setting of evolutionary game 

theory, the long-run dynamic outcome wouid, once again, be that only strategy 1 would 

be used (Proposition C). But the presence of both types of player allows for an 

asymptotically stable outcome in which all three strategies are used. 

To see how this is possible, first note that the strictly dominated strategy 2 is the 

unique aggressive strategy of the game, and strategy 3 is its unique yielding strategy. 

By Proposition E, the share x4 of optimizing players will not converge to 1, and the 

share x3 of players of type 3 will converge to zero. Figure 2 shows the qualitative 

properties of the replicator dynamics near the face x3=O of the unit simplex. The 

diagram shows one basin of attraction for a continuum of stationary states, all of which 

contain a mix of smarto players of type 1 and optimizing players. In these (Lyapunov) 

stable states, all players use the unique rationalizable strategy 1. However, one also sees 

a basin of attraction for an asymptotically stable state in which 2/3 of the players are 

optimizers and 1/3 are smarto of the aggressive type 2. In this stationary state, the 

latter type of player of course use strategy 2, since by definition they have no choice, 

and the optimizing players use the unique rationalizable strategy 1 against each other 

and the iteratively dominated strategy 3 against the aggressive players - the latter 

strategy being the best reply to the strictly dominated strategy 2. As a result, the 

aggregat e population behavior is the completely mixed strategy m=( 4,3,2)/9. The 

reas on why smarto players of type 1 are selected against in a neighborhood of this state 

is that they perform worse than the optimizing players in states with aggressive (type 2) 

players present. 
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Robson (1990) enriches the standard set-up of evolutionary game theory in a 

similar way. In his mo del , players may be of (a few different) types, some players can 

distinguish the type of their opponent and condition their behavior accordingly. Re 

shows that this richer set-up enables evolutionary selection for the Pareto efficient Nash 

equilibrium in simple coordination games (just as the model of Kandori, Mailath and 

Rob (1991) would predict), and that it also enables temporary cooperation in the 

Prisoners' Dilemma game. Rowever, he does not allow for all possible behaviors, and 

hence, as he notes, cooperation in the Prisoners' Dilemma may break down if some 

players of the "cooperative type" in fact plays the dominant strategy. 

Both these models (Robson, 1990; Banerjee and Weibull, 1991) contain 

restrictions on the set of behaviors. As the above example shows, such restrictions can 

lead to outcomes which are sharply at odds with Nash equilibrium. In principle, one 



25 

should allow for all possible behaviors (i.e. the full set !il) when testing whether or not 

evolution in such richer behavioral frameworks can lead away from the Nash paradigm 

(Banerjee and Weibull, 1992). 

VI. CONCLUSIONS 

In broad outlines, the current stage of research in the field of game-theoretic approaches 

to evolution and rationality provides some support for the rationalistic approach of non­

cooperative game theory. One conelusion which appears to be fairly robust is that if 

aggregate behavior is stationary and (Lyapunov) stable with respect to evolutionary 

dynamic forces, then it corresponds to some Nash equilibrium of the underlying game. 

In this sense, evolutionary selection makes individuals behave as if they obeyed the 

stringent rationality and coordination requirements underlying the rationalistic 

approach to Nash equilibrium. Likewise, if the evolutionary selection process converges, 

then its limi ting state (even if it is not stable) again corresponds to some Nash 

equilibrium. There is nothing inherent in the evolutionary process, however, which 

guarantees its convergence. If the process does not converge, aggregetate behavior is 

nevertheless rational, in the sense of not being strictly (iteratively ) dominated. Thus, 

when evolutionary convergence is lost, so is the coordination but not the rationality of 

the induced aggregat e behavior. 

Moreover, the above qualitative results remain valid even if the biological 

reproduction dynamics is replaced by some boundedly rational process of individual 

behavior adaptation, and irrespective how elose the adaptive behavior is to instant 

switching to optimal strategies. However, the possibility remains open, in games with 

more than two pure strategies, that fewer trajectories are convergent as adaptive 

behavior approaches instant switching to optimal strategies. Using somewhat 

metaphorical language, let us imagine that we identify the form of "rational and 
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coordinated" behavior, represented by some Nash equilibrium in a given game, by a 

"point of full rationality" , p, in some "rationality space." It is then possible that there 

is a neighborhood of this point outside which long-run aggregat e behavior conforms to 

the Nash equilibrium but inside which it does not, except at the point p itself. If this is 

the case, the Nash equilibrium paradigm is problematic, representing only an isolated 

"ideal point" in "rationality space." It is clearly important for the validity of both the 

rationalistic and the standard evolutionary approach to determine whether this is the 

case. More generally, it is an interesting research task to understand whether the 

introduction of more sophisticated players might make the evolutionary process less 

likely to converge. 

The qualitative results mentioned above all concern individuals who are 

constrained to particularly simple behaviors in the game played. Judging from some 

recent research, evolutionary selection in richer behavior spaces, containing more or less 

boundley rational, information-conditioned behaviors, evolutionary selection, even when 

convergent, need not result in Nash equilibrium behavior. However, it still remains an 

open question whether results which are negative in this sense are robust with respect to 

expansions of the space of behaviors. Maybe we will see some "rationalistic" 

equilibrium behavior result from evolutionary selection processes in sufficiently rich 

behavior spaces (Banerjee and Weibull, 1992). 

There is also the further issue of whether we are justified in rationalizing Nash 

equilibrium play in terms of arguments which refer only to the long-run outcomes. 

Af ter all, the long run could be very long indeed. In terms of interpreting the above 

results, it would hence be extremely useful if environments and adaptation rules could 

be identified for which the convergence to Nash equilibrium is relatively rapidjslow. 

Finally, a specific laguna in the literature can be located; there is a serious 

shortage in explicit selection mechanisms with plausible and general boundedly rational 

micro foundations. Also, it seems desirable to complement the current standard 



27 

framework of pairwise interactions towards multi-player interactions (see references 

mentioned in the introduction) and towards more market-like settings. Viewing this 

whole enterprise as bridge-building between evolutionary (biological) and rationalistic 

(economic) approaches, one could say that while most current research builds from the 

biologyend of the bridge, borrowing much of the general setting and technical 

machinery from there, we now need more work on its economics end, using the settings 

of standard economic institutions. 
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