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1. Introduction* 

Dynamic Games in Organization Theory 

Roy Radner 

AT &T Bell Laboratories 
Murray Hill, New Jersey 

and 
New York University 

In any but the smallest human organizations, no one person has all of the information relevant 

to the organization's activities, nor can he directly controi all ofthose activities. This is so even in 

organizations that are described as highly "centralized." It follows that individual members of 

the organization - Ishall call them agents - have some freedom to choose their own actions. If, in 

addition, there is some divergence among the agents' go als or objectives, then one can expect 

some inefticiencies to arise in the organization's operations. The analysis of these inefficiencies, 

and the possible remedies by me ans of organizational design, is the subject of this paper. 

If the behavior of the agents is "rational" in the sense typically used byeconomists and 

decision theorists, then the appropriate formal model would appeal' to be the theory of games, 

especially games of incomplete information, as developed in the pas t two decades. 1 This is the 

methodology that Ishall use here, although some aspects of "bounded rationality" will be 

touched on during the cours e of my exposition. Furthermore, the relationships among members of 

an economic organization are typically long-lived, calling for an analysis of dynamie games. 

Two special paradigmatic models have arisen in the game-theoretic analys is of organization. 

In the tirst, which I have elsewhere called a partnership, the agents act tagether to produce a joint 

outcome (output, profit). This outcome can be observed by the agents, but they cannot directly 

observe each others' actions, nor do they completely share each others' information. In the most 

* The views express ed here are those of the author, and not necessarily those of AT&T Bell Lahnratories or New 
York University. This is a revision of !ecture notes prepared for the Second International Workshop on Dynamic 
Sciences, IUI, Stockholm, June 5-16, 1989. In preparing the present version I benefited from comments by 
Joseph A. Doucet, Richard H. Day, and Gunnar Eliasson. However, to satisfactorily answer Professor Eliasson 's 
probing questions I shall have to do additional research. 

1. See Harsanyi (1967,1968) and Myerson (1985). Complcte references are gathered in lhe: bibliography at the end of 
the paper, together with additional bibliographical notes. 
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general - and realistic - case of this model, the outcome is also infiuenced by random variables 

that are only partially observed, if at all. The incompleteness of observation leads to what the 

statisticians call a "confounding" of the sources of variation of the outcomes, making it difficult 

to assign responsibility to the individual agents for the occurrence of unsatisfactory outcomes. It 

is this confounding that leads to organizational inefficiency, if the goals of the agents are not 

identical (and not identical with the go al of the organization). 

The second special model is suggested by the hierarchical structure of many organizations. In 

this modet there is a particular agent, called the "principal," who performs no immediately 

useful actions himself, but "supervises" the activities of the other agents, rewarding them 

according to their individual outcomes (and other information), and retaining the residual (output 

or profit) for himself. This is the so-called "principal-agent" model, the word "agent" here 

denoting a member of the organization who is not the principal. 

In fact, most organizations combine aspects of both the "pannership" and the "principal­

agent' 'models. A hierarchy can be thought of as a cascade of principal-agent relationships, each 

supervisor acting as a principal in relation to the persons he supervises, and as an agent in relation 

to his own supervisor. On the other hand, in most cases the valued outcomes of organizational 

activity depend on the joint actions of several agents, as in the partnership model, so that the 

attribution of specific outcome variables to specific individuals (as required by the principal-agent 

model) may not be strictly justified. Unfortunately, I am not aware of significant progress on 

more comprehensive models of organization that combine these two submodels in a systematic 

way. This is one of the main challenges that organization theorists face today. 

In the present exposition, I shall start with the partnership model. In fact, I shall start with the 

special case in which there is complete information and no uncertainty (Section 2). As in most of 

the models Ishall discuss, the behavior of the agents is assumed to be a (Nash) equilibrium of the 

corresponding game, Le., a combination of actions (or strategies), one for each agent, such that no 

agent can increase his own utitity by unilaterally changing his own action. Even in this special 

case, it is typically true that in the statie or one-period game the equilibria are inefficient. 

Efficiency here is defined in the Pareto sense; a combination of actions is efficient if there is no 

other combination that yields each agent at least as much utility, and yields at least one agent 

strictly more. On the other hand, if the partnership situation is repeated, leading to a dynamie 

game, then there will typically be many equilibria. Many of these dynamic equilibria may be 

inefficient; for example, the repetition of the one-period equilibrium will be a dynamic 

equilibrium. On the other hand, if the agents do not discount the future too heavily (are not too 
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impatient), then the re will typically be equilibria of the infinitely repeated game that are efficient. 

In Section 4 lintroduce uncertainty and incomplete information into the partnership model.2 

Equilibria of the one-period game are again typically inefficient, but in contrast with the certainty 

case, in the repeated game one cannot guarantee the existence of efficient equilibria when the 

agents' discount rates are sufficiently small. Indeed, equilibrium outcomes may be unijormly 

bounded away from efficiency as the agents' discount rates approach zero. 

I should point out here that the game played by the agents is not well-dcfined unless one 

specifies a particular rule for sharing the outcome among the agents (partners) as a function of the 

obseIVed outcome. The specification of the the sharing role is thus one of the design problems for 

the organization - or the organizer. From this perspective, the "uniform inefficiency" result 

alluded to above is quite strong, since it holds uniformly in the choice of sharing role as weIl as in 

the agents' discount rate. 

A special case of interest is the one in which the agents are neutral towards risk (Section 4.3). 

Here, with uncertainty, if the agents are suitably "different" then it is possible to design sharing 

rules such that an equilibrium of the corresponding game is efficient. These efficiency-inducing 

sharing rules must, however, be tailored to the agents' particular utility functions, which limits 

the practical implications of this result. 

In Section 4.4 I explore the case in which the agents can change their actions rapidly. This is 

done by embedding the problem in a continuous-time model. For the risk-neutral case one can 

provide explicit calculations of the efficiency-inducing sharing rules, and show that the 

corresponding outcomes converge (in a particular sense) as the time between actions converges to 

zero. On the other hand, if the sharing rule divides the outcome among the partners in fixed 

proportions (which is a natural method), then the re is an inteIVal of time between actions 

sufficiently small so that for all smaller inteIVals the players cannot attain an efficiency higher 

than that of the corresponding (inefficient) static equilibrium. 

In Section 5 I tum to the principal-agent model. The exposition here parallels that of the 

partnership model, starting with the static ca se and moving to the repeated-game formulation. The 

2. Because of limitations of space and time, Ishall discuss moral hazard but not adverse selection or strategic 
misrepresentation of information. For an explanation of this distinction, see Section 4. 
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latter, however, provides a contrast to the partnership. Here, as the players ' discount rate 

approaches zero, one can find equilibria of the repeated game that approach efficiency in the limit. 

Such approximately efficient equilibria can be characterized in some detail, depending on the 

specific model, and have interesting behavioral interpretations. Again, embedding the problem in 

a continuous-time mode! allows one to obtain sharper characterizations of the equilibrium 

strategies. 

In fact, these equilibria of the principal-agent game lead to optimization problems for the 

agent that might be called problems of "survival. " This prompts me to devote a special section 

(7) to the stud y of such problems, which also have an independent economic interest outside of 

the field of organization theory. 

Finally, it should be recognized that in realistic settings the organizational decision problems 

are not strictly repeated. Typically, there are one or more state variables that evolve in response to 

both organizational activities and exogenous random variables; for example, this is characteristic 

of situations involving investment. Although a comprehensive theory is not yet available, I 

illustrate this phenomenon in Sections 3 and 6, as weIl as in the section on economic survival. In 

Section 3, I discuss a partnership model - with certainty - of the joint exploitation of a productive 

asset as exemplified by "fishing wars." In Section 6, I sketch a principal-agent model of the 

regulation of a public utility, in which the principal is the regulator, and the agent is the firm 's 

manager who is engaging in risky research and development with the goal of reducing costs. In 

both cases the methods used for the repeated-game case can be extended and adapted to construct 

efficient - or approximately efficient - equilibria. 

In this exposition, I shall not attempt any great level of generality. Instead, Ishall illustrate the 

key ideas with a series of elementary mathematical examples, only sketching the directions in 

which further analysis has been successful. The interested reader may consult the corresponding 

references for treatments of greater depth and generality. 

2. Simple Partnerships with Certainty 

2.1 Introduction 

In a simple partnership game, with certainty, the output of the partners is jointly determined 

as a function of the individual inputs of the partners. This output is divided among the partnerS 

according to som e fixed rule. The utility to each partner in any one period is the difference 

between his compensation (i.e., his share of the output) and the cost (or disutility) of his input. 
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If the situation is repeated, then the resulting game is called a supergame. In the supergame, a 

strategy of a partner is a sequence of functions, one for each period, that determines his input in 

each period as a function of the history of all inputs and outputs in all previous periods. His utility 

for the supergame is the sum of his one-period utilities, typically discounted at some fixed 

(exogenous) rate. (In a variation on this definition, one may prohibit the partners from ever 

observing the inputs of the other players. This variation will be considered in Seetion 4 below.) 

In the one-period game, a strategy for a partner is simply an input - a single nonnegative 

number. The deseription of the game is completed by specifying the rule according to which the 

output is shared among the partners. For example, the sharing rule might speeify that the output is 

to be shared equally among the partners. A combination (veetor) of inputs is an equilibrium (or 

noncooperative Nash equilibrium) if no individual partner can increase his utility by unilaterally 

changing his input. A combination of inputs is efficient (Pareto optimal) if no other eombination 

of inputs yields each partner at least as much utility, and yields at least one partner strictly greater 

utility. 

With natural assumptions about the output funetion and the individual eost functions, it is 

intuitively plausible that an equilibrium eannot be efficient. For example, suppose that the 

partners share the output equally. At an equilibrium, a small inerease in one partner's input will 

result in an inerease is his eompensation that is approximately matehed by the eorresponding 

increase in his individual eost. On the other hand, the small increase in his input will also increase 

the compensation of every other partner, without eorresponding increases in their own eosts. 

Thus, starting from an equilibrium, a small increase in each partner's input will make all the 

partners better off. 

In eeonomie jargon, each partner's input produces a positive "externality" for the other 

partners, which he does not take into aecount in his own (equilibrium) behavior. Another way of 

putting it is that each partner tries (up to a point) to be a free rider on the inputs of the other 

partners. The result in equilibrium is that each partner' s input is smaller than it should be for 

effieieney. 

Example 2.1. Suppose there are two partners, and denote partner i's input by aj. The 

eorresponding output is 

(2.1) 

and i' s share of the output is S i (y), where for every y, 
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Sl(Y) + S2(Y) = y. (2.2) 

Here a 1 and a2 must be nonnegative, and R is a positive eonstant. Denote i's individual eost by 

Qi(ai), then i's utility is 

In particular suppose that 

in which ease 

=1.. 
2 ' 

A one-period equilibrium is characterized by the first-order conditions: 

R 
--2qa·=O 2 I' 

so that the equilibrium inputs and utilities are 

* Uj = 

R 
4q , 

3R 2 

16q . 

i = 1,2, 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

To charaeterize the efficient input combinations, first note that if the utility pair (u 1 , U 2) is 

feasible, then so is any pair (Ul' U2) with 
, 

Ul=Ul+ S , 

, 
u2 = u2 - s. 

Henee (a l , a 2) is effieient if and only if it maximizes 
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+ S 2 (y) - Q 2 (a 2 ) 

= R (a 1 + a 2) - q at - q q~ . 

This uniquel y detennines the efficient inputs (a 1 , a 2 ), 

i = 1,2 , (2.7) 

as weIl as the sum of the utilities, 

(2.8) 

The various efficient utility pairs (u 1, U2) are now detennined by varying the sharing rule. In 

particular, the family of sharing rules 

(2.9) 

y 
S2(Y) = "2 - s, 

yields all the efficient utility pairs by varying the parameter s, provided the partners use the inputs 

al and a2. 

Comparing (2.6) with (2.7) and (2.8), we see that the efficient inputs are twice as large as the 

equilibrium inputs, and that the efficient sum of utilities is 4/3 times the equilibrium sum of 

utilities. Of course not every efficient utility pair is Pareto-superior to the equilibrium; see Fig. 1, 

where the efficiency frontier is the line with slope - 1. 

2.2 The Repeated Game 

Suppose now that the situation of the one-period game is repeated infinitely often. As 

described above, a partner's strategy determines his input in each period as a function of the 

previous history of inputs and outputs. A panner's utility for the supergame is the sum of his 

discounted one-period utilities. 

Extending the notions of equilibrium and cfficiency to the supergame in the obvious way, one 

can show that the supergame typically has many equilibria, some ofwhich may be efficient. 
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For example, consider a particular equilibrium of the one-period game, and de fine the 

stubbarn strategy of a partner to be the one in which he plays his one-period-equilibrium input in 

every period, no matter what the previous history is. It is easy to see that the strategy combination 

in which each partner plays his stubborn strategy is an equilibrium of the supergame; Ishall call 

this the stubbarn equilibrium. (To each equilibrium of the one-period game, there will 

correspond a stubbom equilibrium of the supergame.) If the one-period equilibrium is inefficient, 

then so is the stubborn equilibrium. 

To construct efficient equilibria, I shall now consider so-called trigger strategies. Having 

singled out, as before, some (inefficient) one-period equilibrium, let us also single out som e 

efficient input combination that makes every partner better off; call this the "target input" 

combination, and call the corresponding output the "target output." A trigger strategy for a 

partner is defined as follows: the partner uses his own target input until the first period, if ever, in 

which some partner does not use his corresponding target input; thereafter he uses his stubborn 

strategy. 

In order for the combination of trigger strategies to form an equilibrium, it must be that case 

that, for each partner, the one-period gain he gets from deviating (optimally) from the target input 

combination is less than the subsequent loss due to everyone switching to their respective 

stubbom strategies. However, as the partner's discount rate approaches zero, the ratio of his one­

period gain to his subsequent loss also approaches zero. Thus, for sufficiently low discount rates 

the trigger-strategy combination will be an equilibrium of the supergame. 

Example 2.2. Extending Example 2.1, let aj, and Ujt denote i's input and utility, respectively, in 

period t (t = 1,2, ... , and ini); then i's supergame utility is 

00 

Uj = L (1-0)0,-1 uil , (2.10) 
1=1 

where O, the discaunt jaetar, is between O and 1. (The discount rate is defined as (1- 0)/ O.) 

Note that both partners have the same discount factor. 

Let ai and aj be defined as in Example 2.1 (efficient and equilibrium inputs). Let the target 

utilities be (cf. (2.8» 

so that the total efficient utility is divided equally. Define i's trigger strategy by: 
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2) if for some j and t, a jr ;t: aj, then a is = ai for all s > t. 

Consider partner l's optimal deviation from the trigger-strategy pair; without loss of generality, 

we can take this to occur in period 1. If 1 deviates in period l, then 2 will use ai from period 2 

on, and so 1 should use aj from period 2 on. Therefore l's optimal deviation in period 1 is his 

optimal one-period input given that 2 uses az; it is easy to verify that this is aj, and that 1 's 

corresponding one-period utility is 

, 5R Z 
A 

Ull = -- > UI . 
16q 

('The fact that aj is optimal against az is special to this example.) Hence if 1 deviates optimally 

in period 1 his supergame utility will be 

(l-Ö)Ull + L. (l-Ö)Ör-Iuj 
r=Z 

= (1- ö) Ull + Ö U i . (2.11) 

On the other hand, if he stays with his target input, a l, then his supergame utility will be 

i: (l-Ö)Ör- 1 UI = uI . (2.12) 
r=l 

Since u l > uj, (2.12) will exceed (2.11) when Ö is sufficiently elose to 1. Hence for Ö 

sufficiently elose to 1, it will not be optimal for 1 to deviate from the trigger-strategy pair, and so 

the latter is an equilibrium of the supergame. 

Note that the above argument is quite general, since it used only the fact that u l > uj. Since 

the one-period equilibrium is in general inefficient, it will be possible to find an efficient pair of 

one-period utilities (UI' uz) that is Pareto-superior to the equilibrium (Ui > uD, and any such 

pair can be sustained in a supergame equiIibrium for Ö sufficiently elose to 1. 

In fact, using other methods, it can be shown that the set of equilibria of the supergame is 

quite large. Define the utility outcome of a game to be the vector of the players ' utilities (one for 

each player). A utility outcome isjeasible if it is yielded by som e combination of strategies, and 

it is individually rationaI if it gives each player at least as much utility as he could "guarantee" 

for himself. One can show that, under fairly general conditions, as the partners' discount factor 

approaches l, the set of equilibrium utility outcomes of the supergame approaches the set of 
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feasible and individually rational uti!ity outcomes of the one-period game. (This result is tme for 

a large dass of repeated games; see Fudenberg and Maskin (1986) and the references cited there. 

There is a corresponding result for the limit case in which each player's supergame utility is the 

long-mn average of his one-period utilities; this is sometimes called the "Folk Theorem" for 

repeated games.) 

3. A Partnership Game with Investment: 'The Dynamie Inefficiency of Capitalism' 

As noted in the Introduction, for most "realistic" models oflong-term relationships the one­

period game is not strictly repeated; rather there are one or more state variables that evolve 

through time as a function of the players' actions and possibly exogenous factors. In this section I 

shall illustrate this phenomenon with a model of the joint exploitation of a productive and 

producible asset.3 

The phrase "tragedy of the common" evokes an image of an overgrazed pasture used in 

common by many husbandmen. By extension, it refers to a situation in which a productive asset 

is exploited jointly by several economic agents whose "noncooperative" behavior results in an 

overexploitation of the asset, Le., an exploitation that is not efficient. Other than grazing, 

examples of this situation included fishing, forestry, and hunting. A novel example, and the one 

that first attracted the attention of J. Benhabib and myself, was studied by Lancaster (1973), who 

viewed the assets of a modem capitalist firm as being jointly exploited by the firm 's owners and 

its unionized workers. For various reasons, the owners and the workers cannot or do not bind 

themselves to long-term cooperative behavior, leading to what Lancaster called "the dynamic 

inefficiency of capitalism.' , 

Following the direction suggested by the work of Lancaster, Levhari and Mirman (1980), and 

others, Benhabib and I analyzed a fairly general model of the joint exploitation of a productive 

asset as a dynamic, noncooperative game. Here the state variable is the stock of the productive 

asset, which changes through time as a result of its own productivity and the actions of the 

players. Our goal was to understand the variety of equilibria of this game, and in particular to 

understand the conditions under which there are equilibria that are efficient. 

3. This section is based on Benhabib and Radner (1988). 
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In the continuous-time model that we study, the (positive) stock at date t, Y(t), evolves 

according to the differential equation, 

y' (t) = 11 [Y (t)] - C 1 (t) - C 2 (t) , 

where (for the case of two players), c 1 (t) and c2 (t) are the rates of consumption of the asset by 

players 1 and 2, respectively. The "pmduction function," 11, is assumed to be concave, and to 

take the value zem at both zero and some positive stock level. The strategy of each player 

determines his consumption rate at each time as a function of the previous history of the process, 

possibly with som e delay. We assume that each player's utility for the game is equal to his total 

discounted consumption over the duration of the game. The game ends when the stock becomes 

zero, if ever. The linearity of a player's utility in his consumption is the main special assumption 

of the model. We also assume that each player's rate of consumption is nonnegative and 

bounded. 

At an efficient equilibrium the weighted sum of the players ' total utility is maximized. Since 

the instantaneous utilities of the players are linear in consumption, this is equivalent to 

maximizing the discounted sum of the total consumption of the players. We show that the 

efficient consumption policy of the two players is to consume nothing until a certain level of the 

stock is reached. Af ter that the total consumption of the players is equal to the output of the 

stock, so that the stock level is stationary. We call a consumption policy of this type a "frugal" 

policy. By contrast, if a player follows a "prodigal" consumption policy he always consumes at 

the upper bound of his consumption rate. 

The equilibria of this dynamic game that correspond to the repeated static equilibria are those 

in which each player uses a strategy in which his action at any date is independent of the current 

stock of the asset; we might call these "extreme equilibria." In these equilibria, the players run 

down the stock of the asset as fast as possible ("prodigal" consumption). By analogy with the 

terminology of repeated-game theory, we de fine a trigger strategy equilibrium to be a Nash 

equilibrium in which the players threaten to reven to an extreme equilibrium whenever a player is 

caught deviating from the target efficient path. The effectiveness of such rhrr:l!s depends, of 

course, on the "detection technology," Le., on how much extra utility the dc\! I!;ng player can 

gain before his deviation is detected by the other palyers. In the model 1\ \' 'i \, cfficient 

trigger-strategy equilibria may exist from some staning states but not others. \ I, 'i L precisely, 

there is a stock level, say y', such that a trigger-strategy equilibrium exists from .slarting stocks 

greater than or equal to y', but not from those strictly less than y'. (This statement is meant to 

include the cases in which y' is zem or infinite.) 
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Under some circumstances, there may exist a new kind of equilibriurn, which we eaU a 

switching equilibrium. We show that, in our model, whenever y' is positive (and finite), there is 

an open interval J with upper endpoint y' such that, from any starting stock in I there is an 

equilibrium of the dynamic game with the following structure: the players foHow an inefficient 

but growing path until the stock reaches the level y', and then foHow a trigger strategy (efficient) 

after that. 

An important feature of our analysis is an explicit mode1ling of delayed information. In our 

treatrnent of trigger-strategy and switching equilibria we assume that each player can observe the 

state of the systern (the stock of the asset) with a fixed delay, Le., at time teach player can 

observe the history of the state variable up through time (t-t), where the delay t is a fixed, 

positive parameter of the model. The larger the delay, the more a player can benefit from a 

"defeetion" from a prescribed path before his defection is detected and the other player can 

respond. In previous discrete-time models, this delay has been implicitly equated to the length of 

the period between decision times. The use of a continuous-time model makes it convenient for 

us to vary the delay, 't, as an independent parameter, and we consider this to be an irnportant 

contribution of our analysis.4 

In fact, we show that, roughly speaking, for any fixed discount rate, (1) efficiency can be 

sustained by trigger-strategy equilibria from any positive initial stock, provided that the delay is 

sufficiently small, but (2) efficiency cannot be so sustained from any positive initial stock, 

provided that the delay is sufficiently large. A corresponding result holds for a fixed positive 

delay, as one varies the discount rate. 

4. Simple Partnerships with Moral Hazard 

4.1 Introduction 

In the present section lintroduce three new features into the model of a simple partnership 

that was described in Section 2: 

4. For an analysis of information processing as a source of delay, see Radner (1989). 
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l. The joint output is influenced by exogenous random factors (the environment), as weIl as 

by the partners' inputs. 

2. The partners cannot observe the random environmental factors. 

3. The partners cannot observe each others' inputs. 

A consequence of these new features is that, by observing the output alone, the partners cannot 

infer with certainty the cause of any departure from some "target" output. This situation is 

sometimes described as one of moral hazard. 

In a more realistic model, features 2 and 3 above would be re1axed to aIlow for imperfect 

observation of the environment and the actions of other partners. In particular, if different partners 

had different information about the environment, then phenomena such as advers e selection, self­

selection, misrepresentation, etc., might arise. For simplicity, however, Ishall restrict my 

attention to the case of moral hazard. 

If one assumes that the objective of each partner is to maximize his own expected utility , then 

the introduction of the above features does not essentiallyalter the analysis of the one-period 

game. On the other hand, the nature of the repeated game is changed in a fundamental way, as we 

shall see below. 

Example 4.1. Modify Example 2.1 so that the outcome is a random variable, say Y, whose 

probability distribution depends on a 1 and a z. In particular, suppose that Y can take on onl y two 

possible values, y 1 and Yo, with 

(4.1) 

and a 1 and a z are nonnegative. (Think of a i as i' s "effort. ") Without loss of generality , we 

may take Yl = 1, Yo = O, and a = 1. 

Let s iy denote partner i's compensation if the outcome is y; 

SIl + SZl = l , 

s 10 + szo = O . 

Partner i's utility is assumed to be linear in compensation and quadratic in effort: 

U i = S iy - qar . 

(4.2) 
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Hence his expected utility is, by (4.1) 

u j = S il (a 1 + a 2) + S iO (1- a 1 - a 2) - q ar 

= (Sil -SiQ)(al +a2) - q ar - SiD, 

(provided that al + a 2 S; 1). For example, if S i 1 = ~ and S iD = 0, then 

1 2 
Ui = - (al+a2) - qai . 

2 

(4.3) 

(4.4) 

Notice the fonnal similarity between (4.4) above and (2.5) in Example 2.1, the latter with R = 1. 

It follows that the analys is of efficiency and equilibrium in this example is the same as in 

Example 2.1. 

With the introduction of uncertainty, one should take account of the attitudes of the players 

towards risk. In Example 4.1 the partners are represented as neutral towards risk, but of course 

this is not the general case. The special implications of the assumption of risk-neutrality will be 

explored in Sections 4.3 and 4.4. 

4.2 Optimal Sharing Rules with Risk-Neutrality 

In Section 2.1 I argued heuristically that, in the certainty case, an equilibrium cannot be 

efficient. That argument was based on the assumption that the partners shared the output equally. 

In fact, one can show that under quite general conditions (with certainty) there is no sharing rule 

for which a corresponding equilibrium is efficient. 

With the introduction of uncertainty, the situation is changed. Following Williams and 

Radner (1988), in this section I shall sketch an argument to show that, if the number of possible 

outputs is at least 3, and if the partners are neutral towards risk, then - generically in the data of 

the game - there exists a sharing rule for which the corresponding equilibrium of the one-period 

game is efficient. 

Basically, what is required is that the partners be sufficiently different in the effects that their 

actions have on the distribution of output. On the other hand, if the partnership is symmetri c with 

respect to pennutations of the partners, then an efficiency-inducing sharing rule will typically not 

exist. (Generically, the partnership will not be symmetric.) 

I be gin by describing the Williams-Radner model, which is a generalization of Example 4. (. 

There are m > l partners. The i th partner ehooses his input aj from some closed and bounded 

subinterval A i of the real line. His choice is his own private infonnation. Let a == (a 1 , ..• , a m) 
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denote an input profile, and let a_j denote the (m -1)-tupIe (a l, ... , aj-l' a j+ l' ... , am)' 

Once the partners have chosen their inputs, one of severallevels of output results. This output 

is publicly observable. Let Y denote the range of output levels of the partnership. Except where 

otherwise noted, the reader should assume that Q is som e finite set of real numbers with n ~ 2 

elements, 

y = {Yl < Y2 < ... < Yn} . 

The partners' inputs determine a probability distribution over Y. For the input profile a, let 

F(·, a) denote the cumulative distribution that is determined by a, and let f(·, a) denote the 

corresponding density function. These functions are common knowledge, and each is a e l 

functionofthe inputs. For simplicity, letFj(y, a) == ~F (y, a) andfj(Y, a) == :f (y, a). 
Uaj Uaj 

The i th partner' s utility u j consists of whatever share s i (y) he receives of the observed output 

y, minus the disutility Q i (a i) of his contribution of the input a i: 

By assumption, Qi(') is a el function of the i th partner's contribution. Let qj(') == dQj/daj(·). 

We assume that q i ( .) is strictly positive. 

Since utility is transferable, an input profile a is Pareto optimal if and only if it maximizes the 

difference between the expected total output and the total disutility of the input contributions: 

il E ar~ax {E(yla) - ,~ QJa,)} . (4.5) 

m 
We assume that the re exists a solution to this maximization problem in the interior of II Aj. 

i= l 

Efficiency therefore requires each partner to make a positive input contribution. 

Our concern is the existence of a sharing rule s l ('), ... , S m ('), that satisfies the budget 

constraint 

m 

L Si(Y) = y, all y E Y , 
i=l 

and that also makes the efficient profile a into a Nash equilibrium, 

(4.6) 
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The problem of devising a sharing role with these properties is the partnership problem. The 

following tirst order conditions are necessary: if a is efficient, then for each partner the marginal 

expected total output must equal the marginal disutility of his contribution at a, 
n 
L Yj!i(Yj, a) = qj(aj) forall 1:::; i:::; m. (4.7) 

j= l 

On the other hand, if a is a Nash equilibrium, then each partner's marginal expected 

compensation must equal the marginal disutility of his contribution at a, 
n 
L Si(Yj)!i(Yj, a) = qj(aj) for all l:::; i:::; m . 
j=! 

(4.8) 

The problem of devising a sharing rule that satisties the tirst order condition (4.8) and the budget 

constraint (4.6) is the first order problem. 

Our approach is to solve the tirst order problem and then to determine whether or not this 

solution also solves the partnership problem. The main result is that the tirst order problem is 

solvable for ageneric choice of F ( .) and Q! (. ), ... , Q m ( .) when F ( " a) detines a probability 

distribution over at least three output leveis. Efficiency plays a relatively minor role in the proof; 

we actually prove the stronger result that in a generic problem with at least three output leveis, the 

budget constraint and the tirst order conditions for a Nash equilibrium are solvable at ageneric 

input profile. (In other words, for a generic input profile, there will be a sharing rule for which 

the input profile is an equilibrium.) 

To get an idea of the proof, suppose that there are n possible output levels y j' The 

"unknowns" in equations (4.6) and (4.8) are the mn numbers Sj(Yj)' Thus we can regard (4.8) 

and (4.6) as a system of m + n linear equations in the mn variables (s i (y j) h :s; j :s; m, l :s; j:S; n whose 

coefficients are determined by the efficient profile a. The left -hand sides of the tirst m equations 

(from (4.8» are the marginal expected payments to the partners, and the last n equations (from 

(4.6) form the budget constraint. Efficiency is used in the analysis of the n ~ 3 case only to 

determine the values of these coefficients; the argument could be carried out using coefficients 

determined by a generic input profile. The main task of the proof is to show that, generically in 

the data of the problem, these equations have full rank, provided n ;;:: 3. On the other hand, it is 

not difficult to show that, if n = 2, or if the equations are symmetric in the partners, then no 

solution is possible. 
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It is easy to construct linear examples in which every sharing rule that satisties both the 

budget constraint and the tirst order conditions for a Nash equilibrium also solves the partnership 

problem. More generally, Williams and Radner derive conditions on the output function under 

which at least one solution to the tirst order pr?blem also solves the partnership problem. For 

simplicity, they derive these conditions only when thcre are two partners and three levels of 

output. The conditions are awkward, and at present they have no economic interpretation. 

"Reasonable" examples exist, however, that satisfy them (see Section 4.4). 

We also prove a paradoxical result that concems the nature of the solutions to the tirst order 

conditions when the output function satisties stochastic dominance with respect to each partner's 

input. (For each partner, given the inputs of the other partners, stochastic dominance holds if the 

observation of a higher level of output allows one to infer, in a probabilistic sense, that the 

seleeted partner contributed agreater level of input; e.g., see Whitt (1980).) When stochastic 

dominance holds, one might expect that a partner's payment should increase with the output; as 

Alchian and Demsetz (1972, p. 778) suggested in their analysis of the internal structure of tilTIlS, a 

partner may have an incentive to "sabotage" the organization if his reward and the output are 

inversely related. In fact, the opposite is true: when stochastic dominance holds, for any sharing 

rule that satis ties the tirst order conditions, some (at least two) of the partners' payments must be 

nonincreasing over some subsets of the range of outputs leveIs. Thus moral hazard can be 

overcome in some problems in which stochastic dominance holds, but only if some partners do 

not always benetit when the joint output increases. 

This paradox may explain why these results seem surprising, and why they have been 

overlooked in the literature on partnership. One can show that the Nash equilibria ofpartnerships 

are typically inefficient when the budget is balanced, provided that ei) each partner's payment 

increases with the output; (ii) for each state of arandom environment, the output is an increasing 

function of each partner's input. This second assumption implies that the output function satisties 

stochastic dominance. 

Bach of the above results can be extended to the case where the set of output levels is a 

subinterval of the real line. Thus it is possible to solve the partnership problem in our model, not 

because of any special assumption about the range of output leveis, but because the joint output is 

uncertain. 

This section focused on the case in which the partners are risk neutral. It can be shown that, 

in a generic problem with risk aversion, the partnership problem is unsolvable. 
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4.3 The Repeated Game 

I have aIluded above to the fact that the introduction of moral hazard into the partnership 

situation changes the repeated game in a fundamental way. The trigger strategies described in 

Section 2.2 can no longer be completely effective (even with discount factors close to l), because 

departures from the target output can be caused by random variations in the environment as weil 

as by deviations of the partners' inputs from their target values. 

However, the partners are not completely powerless to monitor each others' inputs, since they 

will have statistical evidence from the sequence of observed outputs. For example, suppose that, 

over time, the random environmental factors are independent and identically distributed. It 

foilows that, if each partner uses his target input in each period, then the sequence of outputs will 

be independent and identically distributed as weil; call this the target distribution of the outputs. 

Each partner could now use a statistical procedure to test whether the other partners are adhering 

to their target inputs, in a manner analogous to the statistical quality controi of a production 

process. A "failure" of the test would trigger a reversion by all of the partners to their respective 

stubbom strategies. 

Notice, however, that a procedure that had any chance of detecting deviations from target 

inputs would also produce a "false alarm" from time to time. In other words, even if the partners 

always used their target inputs, there would be a positive relative frequency of test failures, so 

that the reversion to stubbom strategies would eventually be triggered, with probability one. The 

inefficiency caused by this could be mitigated, but not entirely eliminated, by making the 

reversions to stubbom strategies last only a finite length of time (so-called "relenting" 

strategies).5 In this case, there would be an infinite sequence of "phases" of two types, one in 

which the partners used their target inputs, and one in which they used their stubborn strategies. 

Of course, this does not settle the question whether, as the players ' discount factor approaches 

1, efficiency can be approached by equilibria of the supergame. The conditions for this to be true 

are somewhat complicated, and I shall not attempt to describe them precisely here. Roughly 

speaking, what is required is that, for every pair of partners, the probability distributions of 

5. Note that relenting strategies could also have been used in the case of certainty, but would not have produced any 
further increase in efficiency. 
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outcomes corresponding to different pairs of deviations from the target inputs should be linearly 

independent. 6 

4.4 A Continuous-Time Moder 

In this section I summarize the results of a study by Radner and Rustichini (1988) of a 

partnership model with uncertainty, in a framework that allows the analysis of the effect of 

varying the reaction time of the partners, including the limiting case of instantaneous adjustment. 

The one-period outputs are normally distributed random variables, with means and variances 

depending on the inputs of the partners. The sequence of outputs is a stochastic process of Wiener 

type, which can be thought of as the discretization of a diffusion-type process. As the reaction 

time tends to zero this process tends to the solution of a stochastic differential equation. The 

sample paths are (almost surely) continuous. lt may be objected that in real-world partnerships 

the reaction time and the How of information are always, for practical purposes, different from 

zero; so "real" partners can not adjust instantaneously all the time. In fact, the same objection 

may be raised against any model of a dynamie game in continuous time. But since a universal 

10wer bound on the reaction time would certainly be arti fici al, the question arises whether the 

properties of the set of equilibria and of the strategies approach some limit when the reaction time 

becomes arbitrarily small. A related nontrivial question is the existence of equilibria. In other 

words, the analysis of a continuous-time model may be considered as a way of testing the 

robustness of the results for a discrete time (finite reaction) model; the study of the limit situation 

should clarify which properties of a discrete time model depend critically on the fixed delay in the 

reaction of the players when that delay is "small." 

The first question we analyze is the characterization of efficient sharing rules, Le., sharing 

rules that have the efficient outcome as a (Nash) equilibrium. This question was first examined in 

Williams and Radner (1987), where the generic existence of efficient sharing rules was 

demonstrated in a class of partnership models (see Section 4.3). Like Williams and Radner, we 

assume that the partners are risk-neutral. For our model, we provide a complete characterization 

of the partnerships for which the design of efficient sharing rules is possible, and a 

characterization of such rules. This characterization has a particularly simple f(\rrnulation in the 

6. See Fudenberg, Levine, and Maskin (1989). I should mention here that their analysis makes u,-: of a more general 
dass of supergame strategies than those described in the preceding paragraph. 
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case where the outcome is a random variable with a normal distribution. Simply stated, the 

condition requires that at least two of the partners are different enough, in the sense that the 

variance and the mean of the outcome vary differently as the efforts of these two partners vary. It 

is interesting to note that the preferences of the players (in our case, the cost or disutility of the 

input) plays no role. We then present a general procedure to design such sharing rules. From this 

very construction, it will be apparent that the set of possible sharing rules is very large. 

We then examine the problem of the existence of a limit for the optimization problem of each 

partner. The existence of such a limit is imponant from the point of view of the robustness of the 

equilibrium, as the repeated game becomes (in the limit) a continuous-time game. In fact the 

existence of such a limit is a necessary condition for the concept of equilibrium to be weIl 

defined. We prove that it is always possible to construct sharing rules that are both efficient and 

stable (with respect to this limit process). Indeed, very simple sharing rules can be formed, even 

with quadratic functions. 

Lastly, we discuss the performance of fixed-proportion sharing rules, as the reaction time 

tends to zero. We examine the case oftwo identical partners, with the sharing rule given by equal 

splitting of the outcome, and examine upper bounds on the efficiency of symmetric equilibria. 

The main result is that, when the re action time becomes shorter than a fixed positive quantity the 

only equilibrium of the repeated game is the equilibrium of the one-period game. A similar 

question has already been examined, with similar conclusions, in the paper of Abreu et al. (1987), 

for the not necessarily symmetric case. However, in their model the outcome is a stochastic 

process of Poisson type (rather than of Wiener type, as in our case), and the action space of the 

partners consists of two points. The model of the present paper and the one in Abreu et al. thus 

cover together all processes in continuous time for which: (1) increments over nonoverlapping 

time intervals are independent, (2) sample paths have at most discontinuities of the first kind, and 

(3) for any fixed time t, the sample paths are contlnuous in probability at t. (Such processes are 

caIled Levy processes; see Ito (1985) for an analysis of such processes and a proof of the fact that 

Levy processes are compositions of constant processes, Wiener processes and Poisson processes.) 

s. Principal-Agent Games 

5.1 Introduction 

I tum now to the principal-agent mode!, which is suggested by the hierarchical or supervisory 

relationships that are common in organizations. From a formal point of view, we may consider 
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the principal-agent model as a special case of the partnership model, in which one of the partners, 

called the "principal," effectively takes no action (fonnally, the outcome is independent of his 

action); the other partners are called the "agents." In fact, most of the literature deals with the 

case of only one "agent," which is the case Ishall discuss here? Also, most analyses assume that 

it is the principal who chooses the compensation function (sharing rule), subject to some 

constraints; this choice becomes the strategy of the principal. This is the approach Ishall follow 

in the present section. 

To surnmarize, we shall be considering the following situation. The "enterprise" comprises 

the principal and the agent. The output of the enterprise depends on the agent's action and on a 

stochastic environrnent, but the principal cannot fully monitor the agent's information and action, 

nor can he fullymonitor the environrnent. The principal can monitor the outcome, however, and 

in the simplest form of the principal-agent model - the one we shall study here - this is the only 

thing he can monitor. Thus in this simplest case the principal can make the agent's compensation 

depend at most on the outcome. More generally, the compensation can depend on anything else 

that the principal can observe, e.g., some incomplete infonnation about the agent's infonnation, 

action, or environrnent. 

Table 1 lists som e principal-agent relationships that can be more or less accurately represented 

by the general principal-agent model. The insurer-insured relationship is the one that gave rise to 

the term "moral hazard." The action of the insured (agent) is the care he takes to prevent an 

accident (say to propert y), and the outcome is the occurrence or nonoccurrence of the accident. 

The compensation that the principal (insurer) pays to the agent is negative (the premium) if the 

accident does not occur, and is typically positive (the claim minus the premium) if the accident 

does occur. If the preventive care is costly to the agent, then the fact that he has insurance may 

lead him to lower his level of care, and this is the phenomenon called moral hazard. In this 

relationship, the insured party is the agent, since he is the actor whose actions (care) are 

unobserved, and the insurer is the principal, who compensates the insured according to the 

outcome. 

7. This is clearly a limitation from the point of view of organization theory. See Radner (1987) and Groves (1973) for 
a more general discussion. 
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Although much of the literature on the principal-agent model refers to market or regulatory 

relationships, my concern here will be primarily with principal-agent relationships within 

organizations, such as those listed above the dotted line in Table l. 

In this section Ishall use a simple ex ample of a one-period principal-agent model to illustrate 

how moral hazard can lead to inefficiency. Suppose that the (stochastic) outcome of the enterprise 

is either "success" or "faiIure," and that the probability of success depends on the agent's 

action. In the case of success, the principal earns one unit of money (say one million dollars), but 

in the case of failure, he earns nothing. The principal will compensate the agent according to the 

outcome, giving him a compensation of w l for a successful outcome and a compensation of Wo 

for a failure. (In principle, a compensation may be negative, although institutionai constraints 

might rule that out.) The principal's utility is assurned to equal the difference between the 

outcome and the compensation he pays the agent. (Thus the principal is neutral towards risk.) The 

agent's utility is assumed to depend both on his action and on his compensation. (Re may be 

neutral towards risk or averse to it.) 

Table l. Examples of Principal-Agent Relationships 

board of directors 
manager 
foreman 

dient 
customer 
regulator 
insurer 

chief executive officer 
subordinate 
worker 

lawyer 
supplier 
public utility 
insured 

Ishall represent this situation as a two-move game. The principal moves first, announcing a 

pair of compensations, (wo, w l)' to which he is committed. The agent moves second, choosing 

his action. The outcome is then obseIVed by both players, and the agent is compensated 

accordingly. In this game the principal' s strategy is the same as his move, namely the 

compensation-pair; but the agent's strategy is a decision-rule that determines his action 

corresponding to each alternative compensation-pair that the principal could announce. 

An equilibrium8 of the game is a pair of strategies, one for the principal and one for the agent, 

8. The game-theorist will recognize that I have added the condition of subgame-perfection. 
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such that 

1. Given the announced compensation-pair, the agent chooses his action so as to maximize his 

own expected utility. 

2. Given the optimizing behavior of the agent described in item 1, the principal chooses a 

compensation-pair that maximizes his own expected utility. 

In the formulation of a principal-agent model one typically adds one or both of the following 

constraints on the compensation-pair that the principal may announce: 

1. The compensation-pair must enable the agent to attain (ex ante) an "acceptable" expected 

utility. 

2. The individual compensations are bounded below by some exogenously given bound. 

The first constraint can be intetpreted as requiring that the principal must offer the agent an 

expected utility at least as large as what the agent could obtain in other employment. The second 

constraint recognizes that the agent's wealth is finite, and so the agent cannot pay the principal 

arbitrarily large amounts ofmoney (negative compensations). 

A strategy-pair is defined to be efficient if no other strategy-pair yields one of the players more 

expected utility and yields the other no less. The main proposition of this section is, with one 

interesting exception, that under" realistic" conditions, an equilibrium is not efficient. Precise 

mathematical statements of the model and the proposition are given at the end of this section. I 

shall try to make the proposition plausible here with an informal argument. 

Suppose that the agent is averse to risk. First, Ishall argue that in an efficient strategy-pair 

the agent's compensation must be independent of the outcome, that is, Wo must equal wl. 

Suppose, to the contrary, that the two compensations were different (wo :I: wd, and let w be the 

expected compensation corresponding to the agent's action. Since the agent is averse to risk, he 

would be better off if he used the same action but received a compensation equal to w regardless 

of the outcome. The principal, on the other hand, would be no worse off in this new situation, 

since he is neutral towards risk. Indeed, if one wanted to make both players strictly better off, the 

principal could pay the agent a constant compensation that is slightly less than w. 

On the other hand, a strategy-pair in which the agent's compensation does not depend on the 

outcome typically cannot be an equilibrium, unless by a coincidence the action that the agent 

most prefers in itself is also part of an efficient strategy-pair. For ex ample, if increasing the 



- 24-

probability of success requires more "effort" by the agent, and the agent prefers less effort to 

more, then if the compensation is independent of the outcome the agent will have no incentive to 

exert any effort at all! Thus in an equilibrium the agent typically must get alarger compensation 

for success than for failure. The incentive requirements for equilibrium, therefore, are 

incompatible with the conditions for efficiency. 

An exception to the proposition occurs if the agent is neutral towards risk and is sufficiently 

wealthy. In this case, an efficient equilibrium is obtained if the principal sells the agent a 

"franchise" to the enterprise, that is, the agent pays the principal a fixed fee, and then keeps the 

entire outcome. (It is easy to see that this is equivalent to making the compensation for failure 

negative, and to making the compensation for success one unit higher than the compensation for 

failure.) 

Are there any remedies for the inefficiency of equilibrium in the principal-agent relationship? 

One possible remedy is for the principal to expend resources to monitor the agent's action (and, 

more generally, his information and environment). Whether this will improve net efficiency will 

depend, of course, on the cost of monitoring. The prevalence of de facto decentralization in large 

organizations suggests that accurate monitoring of agents' actions is too costly to be efficient, or 

even practicable. 

Another remedy for inefficiency of equilibrium may be available if the principal-agent 

relationship is a long-term one. This topic is discussed in the next subsection. 

Example 5.1. I start with a formal model of the example of the principal-agent game discussed 

in this section. The notation is chosen, as far as possible, to indicate how this example is related 

to the model of Section 4. The action of the agent is a nonnegative real number, a, and the 

resulting output is 

y = G(a, X) , 

where X is a random variable. In this example, X is distributed uniformly on the unit interval, and 

G(a, X) = {l, 
0, 

ifa:?!X, 

if a<X. 

We may interpret Yas success or failure, X as the difficulty of the agent's task, and a as his effort. 

From the specification of G, 

Prob(Y = 1) = min Ca, l) . 
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The agent has no information about X (other than its distribution) when he chooses his action. 

The agent's compensation depends on the output Yaccording to 

S (Y) = {wo, if Y = O , 
wI, ifY=1. 

The agent's resulting utility is 

U l = P[S(Y)] - Q(a) , 

where P and Q are differentiable and strictly increasing functions, P is strictly concave, and Q is 

strictly convex. Hence we may assume a ::;; 1. Notice that I have assumed that the agent is averse 

to risk. Without loss of generality I make the convention that 

P(O) = Q(O) = O . 

The principal receives what is left of the output after compensating the agent. Assume that 

his utility is equal to what he receives, that is, 

U o = y - S(n . 

(Thus the principal is neutral toward risk.) 

In this game, the principal moves first, choosing a compensation function S, and then the 

agent moves, ehoosing an action a after leaming what S is. Conditional on the agent' s action, the 

resulting expected utility to the principal is 

(S.l) 

and to the agent is 

VI = aP(wl) + (l-a)P(wo) - Q(a) . (S.2) 

The principal's strategy is the compensation function S, and the agent's strategy is a mapping a 

from compensation functions to actions: 

a = a(S) . 

An equilibrium of the game is a pair of strategies, (S* , a*), such that: 

(1) S* maximizes Vo given a*. 

(2) a*(S*)maximizesVI givenS*. 
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In addition, Ishall require that in an equilibrium, for every S (not just S*), a* (S) maximizes the 

agent's expected utility given S. (Thus I require that equilibria be perfect, in this two-move game 

such equilibria are also called Stackelberg.) Ishall write a * = a* (S*). 

Typically, it is realistic to impose two constraints on the compensations. The first constraint 

is that the principal may not impose arbitrarily large penalties on the agent; in other words, the 

compensations are constrained so that the agent's disutility is bounded from below. The second 

constraint expresses the condition that the agent is free to refuse to enter into the relationship (Le., 

to play the game). For this, Wo and wl must be such as to enable the agent to achieve som e 

minimum expected utility. For the purposes of this chapter, it is sufficient to impose a constraint 

of the first type; the addition of the second constraint would slightly complicate the exposition; 

however, it would not ch ange the results in any essential way. To express the first constraint, we 

can assume that the compensations are bounded from below (and that the function P is finite 

everywhere); without loss of generality I assume that they are nonnegative: 

Space limitations do not pennit a complete analysis of this game. We can verify easily from 

(5.2) that ifwo = Wl = W, then the agent will have no incentive to work, that is, a* (w, w) = O. 

In addition, we see from (5.2) that if 

Q' (O) ~ P(1) , 

then a * (wo, W l) = O for all Wo and w l between O and l; in this case the onl y equilibrium has 

S* = (O, O) and a* = O. On the other hand, if 

Q' (O) < P(1) , (5.3) 

then the equilibrium is characterized by 

O = Wo < wi < 1 , 

(5.4) 

a* > O; 

also, a*(O, wl) is strictly increasing in Wl whenever a*(O, WI) is strictly between O and 1. 

This is the case Ishall discuss from now on. 

A pair (.5, a) is efficient (pareto optimal) if no other pair (S, a) yields each player as much 

expected utility and at least one player strictly more. From the concavity of the function P, it 

follows that, for the same level of effort, the agent prefers the compensation function (iV, iV) to 
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the compensation function (wo' W l ), where 

w = awl + (l-a)wo , 

whereas the principal is indifferent between the two (recall that the agent is risk-averse and the 

principal is risk-neutral). Hence, if [(wo, wd, a] is efficient, then Wo = Wl. Together with 

(5.4) this shows that an equilibrium is not efficient. 

There are, of course, many efficient pairs [(w, w), a]; we can show that for O < a < 1, they 

are characterized by the condition p' (w) = Q' (a). 

5.2 Repeated Games 

In this subsection, I examine som e ways that the two players can exploit a long-term 

principal-agent relationship to escape, at least partially, from the inefficiency of short-term 

equilibria. The long-term relationship will be modeled as a situation in which the one-period 

situation is repeated over and over again. These repetitions give the principal an opportunity to 

observe the results of the agent' s actions over a number of periods, and to use some statistical test 

to infer whether or not the agent was choosing the appropriate action. The repetitions also 

provide the principal with opportunities to "punish" the agent for apparent departures from the 

appropriate action. Finally, the fact that the agent's compensation in any one period can be made 

to depend on the outcomes in a number of previous periods (e.g., on the average over a number of 

periods) prov ides the principal with an indirect me ans of insuring the agent, at least parti ally , 

against random fluctuations in the outcomes that are not due to fluctuations in the agent's actions. 

Thus, the repetitions prov ide an opportunity to reduce the agent's risk without reducing his 

incentive to perform weil. 

The same beneficiai results could be obtained, of course, if the agent had some means of self­

insurance, for example, through access to a capital market or because his wealth was substantiaL 

However, in many interesting cases (such as the owner-manager relationship), the random 

fluctuations in outcome are too large compared to the agent's wealth or borrowing power to make 

such self-insurance practical. With such cases in mind, Ishall confine my attention to 

nonnegative compensation functions. 

The decision rule that the principal uses to adjust the agent's compensation in any one period 

in the light ofprevious observations constitutes the principal's (many-period) strntrf;V. Likewise, 

the agent will have a (many-period) strategy for adjusting his actions in thc light of the past 

history of the process. In principle, the players ' strategy spaces are very large and contain very 
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complex strategies. For this reason, I shall devote most of my attention to equilibria that are 

sustained with relatively simple strategies. 

It may be helpful to have a stylized example in mind; Ishall call this the "owner-manager" 

story. In the story, the owner is the principal and the manager is the agent. The owner of an 

enterprise wants to put it in the hands of a manager. In each of a number of successive periods 

(month, quarter, year) the profit of the enterprise will depend both on the actions of the manager 

and on the environment in which the enterprise is operating. The owner cannot directly monitor 

the manager's actions, nor can the owner costlessly observe all of the relevant aspects of the 

environment. The owner and the manager will have to agree on how the manager is to be 

compensated, and the owner wants to pick a compensation mechanism that will motivate the 

manager to provide a good return on the owner's investment, net of the payments to the manager. 

Ishall consider two kinds oflong-term relationship. In the tirst, the principal "punishes" the 

agent by replacing him with another agent. Ishall call this the replacement mode/. In this model, 

there may be an infinite sequence of agents, either because an agent has a maximum potential 

tenure, or because the players use strategies that imply that, with probability one, each agent will 

eventually be replaced. In the second type of long-term relationship, which Ishall call the 

nonreplacement mode l, a single agent is associated with the principal forever. The players 

"punish" each other by changing their actions in response to the publiely available information, 

just as the partners do in the equilibria of Section 4.2. Ishall discuss the replacement model tirst. 

It is perhaps intuitively plausible that it makes a great difference whether or not the principal 

can commit himself in advance to a particular compensation strategy.9 Ishall tirst discuss the ca se 

in which, in the context of the replacement model, the principal can so commit himself. One can 

show that, with simple strategies, the principal can induce the agent to behave in away that yields 

both players discounted expected utilities that are elose to one-period efficiency, provided that the 

players' discount factors are elose to 1, and the agent's potential tenure is long. An important 

step in the analysis is the derivation of a lower bound on the expected tenure of the agent, as a 

function of the agent's discount factor, his maximum potential tenure, and minimal information 

about his one-period utility function. 

9. Since the agent's actions cannot be observed by anyone else, there is no credible way in which th(' ~l!ent C.1n 

cornrnit himself in advance to a particular strategy. 
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Here is an infonnal description of one elass of such simple strategies for the principal, which I 

call "bankruptcy strategies:" In this description, as in the remainder of the subsection, Ishall use 

the language of the owner-manager story. The owner pays the manager a fixed compensation 

(wage) w per period until the end of the first period T in which the total of the gross returns in 

periods 1 through T fall below T(r +w) by an amount at least s (where w, r, and s are parameters 

of the owner's strategy). At the end of such a period T, the manager is replaced and the owner 

engages another one under the same regime. This can be interpreted as requiring the manager to 

produce a "paper" gross return of (r+w) each period (a net return of r), and also allowing any 

surplus to be added to a (paper) "cash reserve" and requiring any deficit to be subtracted. The 

manager starts with a positive "cash reserve" equal to s and is replaced by a new manager the 

first time the cash reserve falls to zero. 

Since the cash reserve is only an accounting fiction, the bankruptcy strategy is really only a 

scoring fonnu1a for evaluating the manager's long-term perfonnanee, together with a criterion 

(based on the manager's score) for ending his tenure. 

One can show that, if the players ' discount rate is sufficiently elose to 1, and if the manager' s 

potential tenure is sufficiently long, then the parameters of the bankruptcy strategy can be chosen 

so that the manager's correspondingly optimal strategy yields a stochastic process of outcomes 

for which the pair of expected discounted utilities is elose to one-period efficiency. (See Radner, 

1986b, for the analys is and the statement of appropriate assumptions.) 

I tum now to a brief discussion of another elass of simple strategies for the owner, which will 

also play a role in the noncommitment, nonreplacement case. I eall these review strategies; in 

these strategies, the owner periodically reviews the manager's perfonnance, and replaces the 

manager if his cumulative perfonnance since the last review is unsatisfaetory in a sense to be 

defined. 

A review strategy for the owner has three parameters t, r, and s, where: 

1. t is the number of periods covered by each review, and 

2. the manager is replaced immediately af ter any review for which the total return during 

the t periods preceding the review does not exceed t r -s. 

Thus the first review occurs at the end of period t, and the manager is replaced if 

Se =R 1 + ... +Res;tr-s; 
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otherwise the manager continues in office until the end of period 2e, at which time he is replaced 

if 

Su - Se = Re+l + ... + Ru $; er-s, 

and so on. The manager's total tenure, say T, will be some random multiple of e, that is, 

T = Ne . 

Ishall call the periods from [(n - 1).f + 1] to ne the n th review phase; thus e is the length of each 

review phase and N is the number of review phases in the manager's tenure. 

Assume that during his tenure the manager receives from the owner a fixed payment per 

period. Consider a period t that is in the n th review phase, and take the "state of the system" at 

the end of period t to be the pair 

then with this state space the manager faces a standard finite-state dynamic programming 

problem. We may therefore, without loss of generality, suppose that the manager uses a strategy 

that is "stationary" in the sense that: 

1. in each period, action depends only on the state of the system at the end of the previous 

period; 

2. in periods 1, e + 1, 2 e + 1, and so on, action is the same and independent of the history 

of the process. 

In other words, the beginning of each review phase is a point of renewal of the process. 

One can prove (see Radner, 1986b) results for review strategies that are sim ilar to those for 

bankruptcy strategies. 

Up to this point I have assumed that the owner (principal) could precommit to a particular 

strategy, even though the manager (agent) could not. In fact, such precommitments are the 

exception rather than the rule in owner-manager relations, although precommitment, in the form 

of contracts, can be found in other principal-agent relationships (e.g., customer-supplier and 

client-broker). 

For the strategies that have been considered in previous sections, there are many situations in 

which the owner might be tempted to change strategy in mid-course. For example, in the case of 

the bankruptcy strategy, if the manager has accumulated an unusually large cash reserve, he can 
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be expected to .. coast" for many periods while the cash reseIVe falls to a lower level (but one that 

is still "safe" from the manager's point of view). Similarly, if the manager is near the end of the 

maximum potential tenure, and has a relatively safe cash reseIVe, he will have an incentive to 

coast. In both of these situations the owner would be tempted to replace the manager 

immediately with a new one. Analogous situations arise under the review strategies. The 

manager would be expected to move away from the actions that produce the highest retums if the 

reseIVe were sufficiently high or sufficiently low. In both cases the probability of passing review 

would be very little affected by the manager's choice of actions du ring the remainder of the 

review period, and so the manager would have an incentive to choose actions that gave him 

higher one-period utility. 

On the other side of the balance, there may be costs to the owner of replacing a manager, costs 

that have not been taken into account in the previous discussion. First, the owner may find it 

more difficult to find replacements for the manager's position if it is known that the owner has 

departed in mid-course from a previously announced strategy, or in other words has "reneged" 

on a promise or understanding. Second, there may be replacement costs that are incurred whether 

or not the replacement conforms to the announced strategy, due to a breaking-in period for the 

new manager, replacements of subordinates, interruptions of established routines, and so on. 

These costs would give the owner an incentive to avoid replacement as a deterrent even in the 

announced strategy and to find some other means of inducing good behavior by the manager. 

These considerations lead one to consider a model in which the manager is never replaced, but 

the consequence of poor performance is a temporary reversion to a "noncooperative" or 

"adversarial" phase in which the manager receives a less satisfactory compensation than under 

the normal "cooperative" phase. To the extent that the noncooperative phases are also less 

favorable for the owner, the owner will be deterred from ending the cooperative phases 

prematurely. One can show that the review strategies described above can be transformed into 

self-enforcing agreements by prescribing the noncooperative phases to be equilibria of the one­

period game that are inferior to the cooperative phases (in expected value) for both the owner and 

the manager. Furthermore, one can do this in such a way as to sustain supergame equilibria that 

are approximately efficient, as in the case of the replacement model. (For the detaiIs of this 

construction under various conditions, see Radner, 1981, 1985, 1986b.) 

In the nonreplacement modet the owner and the manager are bound to each other "forever." 

A more general model would incorporate explicitly thc costs to the owner and manager of the 

owner replacing the manager and of the manager quitting. The analysis would show how the 
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structure of self-enforcing agreements (supergame equilibria) would depend on those costs and on 

the other parameters of the model. I am not aware of any such general formal analysis. 

S.3 A Continuous-Time Model 

In more specialized models of repeated principal-agent games one can obtain sharper 

characterizations of supergame equilibria. This is the case in a particular continuous-time version 

of the "replacement model" of the the previous subsection. In this model (see Dutta and Radner, 

1987): 

1. The cumulative gross return is a controlled diffusion process, as in the continuous-time 

version of the repeated partnership game of Section 4.4. 

2. At each instant of time, the manager's action (control) can take on one of finitely many 

values. To each action is associated a drift and variability of the diffusion process. lO The 

manager' s strategy must satisfy certain measurability conditions as a function of the 

previous histories. 

3. The owner uses a continuous-time analogue of a bankruptcy strategy, corresponding in an 

obvious way to the discrete-time bankruptcy strategies described in the previous 

subsection. During his tenure, the manager receives a wage rate that is constant. This wage 

rate (per unit time) is a parameter of the owner's bankruptcy strategy. As before, the other 

parameters are the initial stock and the (constant) target rate of return. 

4. The manager's supergame utility is the expected integral of his discounted instantaneous 

utility over his tenure (the latter is a random variable.) His instantaneous utility is a 

function of his wage rate and his current action. Of the several actions, some have a higher 

instantaneous utility for him, but also have a smaller drift. It is this feature that creates the 

confiict between him and the owner. 

5. The owner's expected utility is the expected discounted integral of his net return, Le., his 

"instantaneous" gross return minus the wage rate. Il 

10. The continuous-time diffusion process corresponds, roughly speaking, to the limit case of the model of Section 4.4 
in which the time between successive actions is "infinitesimal." However. in the present mode]. only the manager 
controls the drift and the variabiIity of the diffusion. 

Il. Strictly speaking. since the time-derivative of a diffusion process is almost-everywhere nonexistent. the 
"instantaneous" gross return is not well-defined. Nevertheless. the theory of stochastic integration prov ides a basiS 
for defining the cumulated gross return. with or without discounting. 
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6. The two players have the same discount rate. 

The first result of this analysis is that the manager's optimal policy is of the "switch-point" 

type: for example, if there are two actions then there is a critical stock, called the switch-point, 

such that the manager uses the higher-drifi action when current stock is below the switch-point, 

and the lower-drift action (preferred by him) when the current stock is above the switch-point. 

The switch-point can be calculated explicitly as the solution of a transcendental equation. In 

certain "extreme" cases, the switch -point may be zero or infinite. 

As the manager's discount rate approaches zero, his (optimal) switch-point increases without 

bound, but in the limit there is no optimal policy (Le., under the expected long-mn average 

objective). One can also characterize the dependence of the switch-point on the other parameters 

of the bankruptcy policy. 

With this information, one can characterize in som e detail the bankruptcy policy that is 

optimal for the owner, given the manager's reservation utility, Le., the lowest expected utility that 

will induce him to take the job. 

Finally, one can calculate how fast the players' respective (equilibrium) expected utilities 

approach efficiency as their discount rate approaches zero. 

6. ARegulated Firm with Investment in Research and Development 

A study by P. B. Linhart, F. W. Sinden, and myself provides an application of the ideas of 

principal-agent theory to the development of regulatory policy. The policy in question is the so­

called "price-cap" method of regulation, which has recently been adopted in the U.K. and the 

U.S., replacing the rate-of-return method in the regulation of telecommunications.12 From a 

formal point of view, this stud y extends the analysis of' 'bankmptcy strategies" (Section 5.2) to a 

non-stationary principal-agent model. 

We consider the problem faced by the regulator of a monopoly firrn who wants to provide 

incentives for the firm to effect cost reductions - and hence price reductions - through 

12. This smdy is reported in more detail in Linhart et al. (1987). The latter paper is itself based upon research done at 
AT&T Bell Laboratories several years earlier as part of the process of developing the price-cap method; see, for 
example, Linhart and Radner (1983). 
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technological change and other means. For reasons explained elsewhere, we seek an alternative 

to conventional rate-o f-return regulation. We model the manager of the firm as facing constraints 

imposed by the shareholders and other providers of capital, by the customers, and by the 

regulator. The regulator' s ultimate objective is a secular real decrease in the firm' s prices. 

However, the manager's private utility may not be maximized by activities that are maximally 

cost-reducing. Moreover, the regulator cannot directly observe all of the manager's actions, the 

outcomes of which are also inffuenced by random exogenous events. Hence a problem of moral 

hazard arises. 

We propose a regulatory policy in which the regulator directly requires the firm to lower its 

real prices at (or faster than) some prescribed target annual rate. We suppose that the manager is 

replaced when he can no longer simultaneously repay the cost of capital, lower the prices at the 

rate prescribed by the regulator, and satisfy the market dem and at those prices. Whenever a 

manager is replaced, the regulator reverts to conventional rate-of-return regulation for a period 

sufficient to enable the firm to build up a new cash reserve. 

The resulting situation leads naturally to a model of a sequential principal-agent relationship, 

in which the regulator is the principal and the manager is the agent This is not a repeated game, 

however, because both the firm's prices and its productivity are changing through time, 

endogenously and stochastically. Using new techniques for the analysis of this nonstationary 

process, we (l) derive a lower bound on the expected length of tenure of a manager, and (2) show 

that if the manager does not discount future utility very much, then the realized long-mn rate of 

price decrease will be correspondingly close to the target rate. 

The model takes account of the following fundamental characteristics, among others, of the 

regulatory situation: 

1. The regulator and the firm 's manager have different information. In particular, the 

manager has more information about the possibilities for productivity improvement than 

regulators. In fact one of the manager's options is to invest in research in order to obtain 

more of this information. In principle, the regulator could also obtain more information 

at some cost, but matching the manager's information seldom appears to be part of the 

regulator's strategy. In the present model the regulator doc s not even try to elicit 

information about the firm's costs, hence misrepresentation is not a problem. 

2. The regulator and the firm 's manager to some extent have different goals. The regulator 

may strive to provide incentives strong enough to overcome the difference, but in general 
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we would not expect an equilibrium outcome to meet the regulator's goals entirely. 

3. The setvice is deemed essential, so that its continued availability must be assumed in 

spite of possible mismanagement and/or bankroptcy. 

4. To be acceptable in the real world, aregulatory mechanism must not differ too radically 

from those that already exist. The strategies we discuss resemble conventional 

regulation in that periods of regulatory inaction alternate with periods of action that are 

intended to be corrective. 

The essence of the regulator's problem is that he cannot directly obsetve the manager's 

actions, nor can he obsetve the exogenous random events that also affect productivity. He can, 

however, obsetve the consequences of those actions and events, namely the realized profits of the 

firrn, and whether or not demand is met. (He may also, with additional effort, be able to obsetve 

productivity changes, but we do not in our model rely on this possibility.) 

Suppose that the regulator provisionally fixes a sequence of prices that deeline in real terms at 

a fixed "target rate" (which must be suitably chosen). If this sequence of prices is beyond the 

firm's controi, then it has, essentially, the desirable incentive propert y of a lump-sum payment. 

Suppose further that the regulator requires the firm to meet dem and at the given prices, as long as 

it is feasible to do so, and that the shareholders and directors require the manager to pay out the 

cost of capital at a given rate, again as long as this is feasible. These two requirements can be met 

as long as the firm 's cash resetve is positive. However, through bad luck or bad management, the 

cash resetve can become negative. This event we call a crisis; when a crisis occurs, the manager 

is fired and replaced. The regulator must now provide some way for the firm to get back on its 

feet. Thus time is divided inta alternating segments: incentive phases and recovery phases. 

In the context of a particular formal model of a single-product firm, we have shown that, 

under this elass of regulatory strategies, the management of the regulated firm will have an 

incentive to engage in productivity improvement. Furthermore, if the managcment's behavior is 

optimaljrom its own point oj view, then the incentive phases will be long- rC'lative to the recovery 

phases, and the resulting long-ron average rate of actual price dccrcase will be elose to the 

regulator's target rate of price decrease, provided the management does not discount its own 

future benefits too strongly. 

Thus, under suitable conditions, this c1ass of regulatory strategics induces approximately 

efficient behavior on the part of the manager, without placing a large informationai burden on the 
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regulators and their staff, and in particular without requiring the regulators to monitor the firm 's 

rate of return. 

Several features of our approach should be emphasized. First, as mentioned above, we model 

the firm's manager as the active decision-maker in the firm, optimizing his own utility subject to 

constraints imposed by shareholders, customers, and regulators. 

Second, we portray the regulators as seeking a mechanism that is easy to administer and that 

gives "satisfactory" results. In this case, "satisfactory" means achieving a target rate of price 

reduction, perhaps only approximately. Thus the regulator does not seek an "optimal" 

mechanism in any precise sense. 

Third, we propose aregulatory mechanism that does away with explicit rate-of-return 

regulation. We are interested in alternatives to rate-of-return regulation because (1) we are 

concerned about the weakness of its incentive properties, and (2) its informational requirements 

are heavy. Rate-of-return regulation is also difficult to administer if some of the firm's activities 

are regulated and others are not, as in the case of telecommunications today; see Linhart and 

Radner (1983). 

Fourth, from a technical point of view, our model requires an analysis that goes substantially 

beyond currently available results for repeated principal-agent games. The reason for this is that 

both the firm's productivity and its prices are changing from period to period, and these changes 

are both endogenous and stochastic. Thus our modelleads to a sequential - but not repeated -

principal-agent relationship, with endogenous state variables, namely the current prices and 

productivity. 

7. Survival 

7.1 Introduction 

When responding to the "bankruptcy policies" described in Sections 5.2, 5.3, and 6, the 

agent is faced with a problem of survival. Similar problems arlse in the context of economic 

development and in the situation of an indebted investor (see Majumdar and Radner, 1990). From 

a formal point of view, these problems have in common the features that (l) the :1~('nt controis 

(imperfectly) a stochastic process of gross returns, (2) the agent must pay or consulllc at a fixed_ 

rate out of his gross returns, (3) the resulting net return (which may be positive or negative) is 

cumulated in a stock of capital or cash reserve, and (4) the agent starts with an exogenously 
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determined stock, and "fails" or is "ruined' , if the stock falls to or below some prescribed level, 

say zero. 

Closed-form characterizations of optimal polides for such problems of survival under 

uncertainty are difficult to obtain without making fairly detailed assumptions. One example was 

sketched in Section 5.3. Another case is described in the present section,13 also using a 

continuous-time diffusion model, which allows for a fairly general model of a stochastic linear 

technology of "investment," but pays for this generality by assuming that the agent does not 

discount the future, Le., his objective is to maximize the expected long-run average of his utility. I 

shall say that the agent survives (forever) if he is never ruined, Le., if the stock never falls to zero. 

If the agent has available a strategy that enables him to surv iv e with positive probability, then the 

above objective reduces to the objective of maximizing that probability, which is the case on 

which Ishall concentrate. 

We consider the situation in which, at each instant of time, the agent can reallocate his total 

capital stock among a set of alternative investment opportunities. Each investment opportunity is 

a diffusion process, characterized by the drift and variability of its rate of return (this will be made 

more precise below). In the case in which the probability of survival is positive we are able to 

characterize the optimal policy of the agent in a relatively simple fashion. A striking feature of 

this optimal policy is that when the agent's capital is below a criticallevel he uses investments 

that are "inefficient" in the mean-variance sense, namely, there are other investments that have 

the same mean but a lower variance. Another interpretation is that the agent exhibits "risk­

loving" or "risk-averse" behavior according as his capital is below or above some criticallevel. 

7.2 A Diffusion Process with Positive Probability of Survival 

We start with a discrete-time model and then describe the corresponding diffusion model that 

arises in the limit as the time between successive returns and payouts approaches zero, Le., as the 

investment retums and the payouts (consumption) occur in continuous time. 

13. The material of this section is adapted from Majumdar and Radner (1989). In order to give a precise description of 
the optimal policies, this section is somewhat more mathematical than the previous ones. It also prov ides the reader 
with a heuristic derivation of the continuous-time controlled diffusion model as a limit of discrete-time modeIs. 
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In the discrete-time model, let h denote the length of time between dates, starting at date O. 

Let t be an integral multiple of h, say nh, and let Y(t) denote the agent's capital at date t; then the 

agent' s capital at date (t + h) is 

Y(t+h) = eR'+l [Y(t) - ch] , (7.1) 

where c is a positive constant, and {R n} is a sequence of independent and identically distributed 

Gaussian random variables, each with mean mh and variance vh. The parameter m is the drift and 

v is the variability. 

The sequence {Y(nh) } is a Markov chain, and we are interested in the probability that Y(nh) 

never becomes zero or negative, given Y(O) = y > O. We shall be able to provide an explicit 

expression for this probability in the limiting case in which h tends to zero, and the process 

{Y(nh)} tends to a diffusion process (see, e.g. Karlin and Taylor, 1981). To this end it will be 

more convenient to deal with the process 

ZU) == In YU) . 

More precisely, we define Tto be the tirst t such that Y(t) S; 0, and 

t < T, 

t~ T. 

If the agent survives, then T = +00 and Z(t) is always finite. 

(7.2) 

(7.2') 

Since the process is Markovian, it suffices to consider the conditional distribution of Z(h) 

given Z(O) = z == In y. (Note that, since y > 0, z is well-defined.) 

For a given y, the smaller h the smaller is the probability that Y(h) S 0, Le., that Z(h) = -00. 

In the following heuristic argument we shall suppose that h is so small relative to y that the 

probability that Y(h) S O is "negligible." 

From (7.1) and (7.2), 

Z(h) = R + In (y -ch) 

= R + ln(e Z -ch) 

= R + z + ln(l-hce- Z
) • 

Hence 
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Z(h) - z = R + ln(l-hC) 

note that C depends on z. 

(7.3) 

(7.4) 

It will be useful to have expressions for the conditional mean and variance of [Z(h)-z], 

given Z(O) = z. (In what fol1ows, all expectations are to be understood as conditional on 

Z(O) = z.) Expanding ln(1-hC) in powers of h, we get from (7.3), 

h2 C2 
Z(h) - z = R - hC - -2- + O(h 3 ) . 

Hence 

E[Z(h)-z] = (m-C)h + O(h 2) , (7.6) 

Var [Z(h)-z] = vh, (7.7) 

E[Z(h)-z]2 = vh + O(h2) , (7.8) 

E[Z(h)-z]3 = (E[Z(h)-z])3 + 3E[Z(h)-z] Var [Z(h)-z] = O(h 2) . (7.9) 

Define, for y ;;::: O, 

U(y) == Prob (Survival I y(O) = y) , 

V(z) == U(e Z
) , 

where U(O) = V( -00) = O. Because the process is Markovian, 

V(z) = EV[Z(h)] , (7.10) 

where, as before, the expectation is conditional on Z(O) (2:: O). Now assume Z(O) = z > O. 

Supposing Vis sufficiently smooth, we expand V[Z(h)] in a Taylor's series: 

V[Z(h)] = V(,) + V'(,)[Z(h)-,] + [~ l V"(,)[Z(h)-,]' + O([Z(h)_,]3). (7.1\) 

Taking the expectation ofboth sides of (7.11), we have from (7.6)-(7.9), 

EV[Z(h)] = V(z) + V'(z)(m-C)h + [~ l V"(,)vh + O(h2 ) , (7.12) 

and so from (7.10), 
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V(z) = V(z) + V'(z)(m-C)h + [~ l V"(z)vh + OCh') , 

o = V'(z)(m-C) + [~ l V"(z)v + [~ l OCh') . 

Letting h tend to zero in (7.13) we get the differential equation 

(m-ce-')V'(z) + [; l V"(z) = o. 

(7.13) 

(7.14) 

The remainder of this subsection is devoted to the case in which the agent has no choice of 

investment, Le., m and vare fixed in time, and strictly positive. (The reader may skip to 

Section 7.3 without loss of continuity.) The general solution for V' of the differential equation 

(7.14) is: 

where 

2m 
a=-, 

v 
b =~ - , 

v 

(7.15) 

(7.16) 

and H is an arbitrary positive constant whose particular value will be determined by the boundary 

conditions in the problem. 

Before solving for V, we list (without proof) some properties of V'. First, one can show that 

V' (z) > O . 

Second, V' (z) is decreasing if and only if 

or 

Third, 

c 
y > 

m 

lim V'(z) = lim V'(z) = O. 
Z -7-00 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

In summary, V' (z) is strictly positive, and increases monotonicaily from O as z increases from 

-00 to ln(clm), and then decreases monotonically towards zero as z increases beyond ln(clm). It 
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follows that 

V"(z);"O a ZSln[~l. (7.21) 

We tum now to the stud Y of the function U. Recall that 

U(y) = V(ln y) . 

Clearly U(O) = O, and by an independent argument, one can show that 

lim U(y) = 1 . 
Y-7 00 

This is the boundary condition that will detennine H. It is now straightforward to show that 

where 

U( ) 1 ooJ a-I -xdx y =-- X e , 
rea) b/y 

00 

J xa- I e-xdx == rea) . 
o 

Equation (7.22) can also be written as 

[ ] 

bly 

U(y) = 1 - reIa) l xa-
I 

e-Xdx. 

(7.22) 

(7.23) 

The integral in the right-hand side of (7.23) is of course the incomplete gamma function. Thus 

(7.23) - or (7.22) - completely solves the problem of determining the probability of survival, 

starting from an initial capital y. 

7.3 The Optimal Investment Policy when the Probability of Survival is Positive 

We shall now derive the agent's optimal investment policy when at each instant of time the 

agent can choose from a set of alternative investments, each of which is characterized by a pair 

(m, v) as in Section 7.2. Recall that for each (m, v), the rate of return for the corresponding 

investment is a Brownian motion with drift m and variability parameter v. The agent's objective 

is to maximize the probability of survival. 

For mathematical simplicity, we shall analyze in detail the case in which the set of alternative 

pairs (m, v) is a compact convex set with smooth boundary. This willlead to an optimal policy 
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that is continuous in the capital. From the analysis of this case the nature of the optimal policy 

for more general cases will be clear, although a rigorous treatment contains some difficulties 

because the optimal policy may be discominuous. 

Let A denote the set of alternative pairs (m, v) available to the agent at any instant of time, 

and assume that A is compact and strictly convex, with a smooth boundary. Define 

v' == min {v I (m, v) E A} , 

v" == max {v I (m, v) E A}, 

and assume that 

o < v' < v" . 

For any v in the closed interval [v' , v"] define 

I(v) = max {m I (m, v) E A} . 

(If we plot v on the horizontal axis, and m on the vertical axis, then the graph of I is the upper 

boundary of the set A; see Figure 2.) It follows that I is strictly concave and differentiable on 

(v', v"), and that 

lim, f' (v) = + 00 , 

v-tv 

lim f' (v) = - 00 • 

" v-tv 

Let v* denote the (unique) point in [v', v"] at which/attains its maximum, Le., 

I(v*) = max {f(v) I v' S; v S; v"} ; 

it follows from (7.24) that 

v' < v* < v" . 

Our last assumption is that there is some investment in A that is favorable: 

I(v·) > O . 

(7.24) 

To simplify the exposition, we make the stronger assumption that all of the investments in the 

graph of/are favorable: 

I(v) > O on [v', v"] . 
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We now describe the optimal investment policy. As in Section 7.2, as long as the capital y(t) 

is strictly positive, let Z(t) == In Y(t). If the current state is Z(t) = z, then the optimal current 

investment is 

v = ~(z) , 

m = f[~(z)] , 

where ~(z) is the unique solution v of the equation 

f(v) - vi' (v) = ce- Z 
• 

We shall show that ~ is strictly decreasing and that 

lim ~(z) 
z --+ -00 

" = v 

lim ~(z) = Vo , 
Z -4 +00 

where [f(vo) , vo] maximizes the ratio (m/v) in the set A (see Figure 2). 

(7.25) 

These properties of the optimal policy have an interesting interpretation. Recall thatfreaches 

a maximum at v*, which is between Vo and v". The part of the graph offbetween v* and v" is 

"inefficient" in the usual treatment of mean-variance portfolio analysis, since from any of those 

points one can reduce the variance without decreasing the mean. Nevertheless, when the agent's 

capital is sufficiently low, his optimal choke of (m. v) will be in this "inefficient" pan of the 

boundary of A. Rather than call such chokes ' 'incfficient.· , we shall say that for the 

corresponding values of z the agent exhibits "risk-Ioving" behavior. 

The critical value of z, call it z*. below which the agent exhibits "risk-Ioving" behavior is 

easily calculated. Observe that v* and z* must satisfy (7.25); also. sincefattains its maximum at 

V*,f' (v*) = O. Hence 

Let 

then 

Compare this with (7.21). 

f(v*) + ce-z· 

m* == f(v*) , 

* y = 

* • y = eZ 
; 

c 
m* 
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For a proof of the se results, the reader is referred to Majumdar and Radner (1989). In brie f, at 

every instant of time the function V must satisfy the differential equation (7.14); in addition, the 

optimal choices of the instantaneous drift and variability must satisfya continuous-time analogue 

of the Optimality Equation for dynamie programming. One can also extend the analysis in a 

straightfOIward way to the case in which the set of investment opportunities is not convex, and 

possibly contains points with negative drift and/or zero variability. 

The reade r is also referred to the above paper for a discussion of the case in which, for any 

policy of the agent, the probability of surv iv al is zero. In this case, the agent may be supposed to 

want to maximize the expected time to failure. Again, for a fixed drift and variability, one can 

obtain an explicit expression for the objective function. However, in the general c~se in which the 

agent has a choice among alternative investment opportunities, no explicit solution appears to be 

available at the present time. 

8. Concluding Remarks 

The models of dynamic games sketched here hardly constitute a theory of economic 

organizations. For such a theory, the partnership and principal-agent models will have to be 

merged and subsumed in a richer and more comprehensive model capable of depicting the 

interactions among many persons. This is particularly true if one's ambition is to develop a 

theory of the internal workings of today' s large industri al enterprises, many of which have tens -

or even hundreds - of thousands of employees. In addition, it will probably be necessary to take 

account of the costs of communication and information processing, as weIl as other aspects of 

"bounded rationality. ,,14 Nevertheless, the insights revealed by these relatively primitive 

analyses of moral hazard and free riding in long-term relationships will probably prove to be 

durable. 
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