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MIXED RISK AVERSION 

by Jordi Caballe and Alexey Pomansky 

1. Introduction. 

Most of the utility functions used to construct examples of choice under 

uncertainty share the propert y of having all odd derivatives positive and all 

even derivatives negative. The aim of this paper is to characterize the 

class of utility functions exhibiting this propert y which we call mixed risk 

aversion. Utility functions with this propert y are called mixed and, as 

follows from Bernstein's theorem. such functions can be expressed as mixtures 

of exponential utilities. 

Within the paradigm that follows the von Neumann-Morgenstern theory of 

expected utility, 'it was soon recognized the necessity of imposing additional 

restrictions on the utility functions representing preferences on the space 

of random variables. Besides the obvious requirement of risk aversion (or 

concavity) which allows expected utility maximization, Pratt [12] and Arrow 

[2] stressed the importance of the propert y of decreasing risk aversion so as 

to obtain plausible comparative statics results about the relation between 

wealth and risk taking by an investor. Thus, an investor with decreasing 

absolute risk aversion exhibits a demand for riskyasset which is increasing 

in her wealth. 

Pratt and Zeckhauser [13] considered the family of proper risk averse 

utility functions which constitute a strict subset of the functions with 

decreasing absolute risk aversion. A proper utility is the one for which an 

undesirable risk can never be made desirable by the presence of another 

independent, undesirable risk, that is: these two risks must aggravate each 

other. In their paper, Pratt and Zeckhauser have already proved that 

mixtures of exponential utilities are proper, and that some commonly used 

utility functions are mixtures of exponential utilities. 1 

As part of the process of refining the set of risk averse expected 

utility representations, Kimball [10] has introduced the propert y of 

standard risk aversion. Standardness means that every undesirable risk is 

aggravated byevery independent, loss-aggravating risk. It should be noticed 

that, since a loss-aggravating risk is a risk that increases the expected 

marginal utility, when absolute risk aversion is decreasing, every 

undesirable risk is loss-aggravating, but the converse is not true. 

Therefore, standardness implies Pratt and Zeckhauser's properness. 
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In this paper we take a step further in this refinement strategy and 

provide a characterization of mixed utility functions in terms of preferences 

over pairs of sequences of lotteries (or distributions). This 

characterization might be useful for testing by means of alaboratory 

experiment whether an individual is mixed risk averse. 

We also propose two alternative, more technical characterizations for 

increasing and risk averse preferences. One of these characterizations 

allows to show that mixed risk aversion implies standard risk aversion. Such 

a characterization requires that the measure of absolute prudence be 

decreasing, which is in turn necessary and sufficient for standardness. 

The class of mixed utility functions is large enough to include several 

general functional forms. Moreover, these utilities have the interesting 

propert y of being completely characterized by the (Lebesgue-Stieltjes) 

measure describing the mixture of exponential utilities. For instance, this 

measure contains information about the values of the indexes of absolute and 

relative risk aversion which are relevant for the comparative statics of 

simple portfolio selection problems. Therefore, by appropriately choosing a 

measure over exponential utilities we can construct examples of expected 

utility representations with appealing properties for which we can control 

the behavior of their indexes of risk aversion. 

Finally, it can also be proved that some standard concepts in the theory 

of decisions under uncertainty, such as stochastic dominance or mutual 

aggravation of risks, can be easily stated in terms of Laplace transforms 

when applied to the family of mixed utility functions. With this 

reformulation those concepts become more operative as some examples suggest. 

In the next section we define mixed risk aversion and we relate this 

concept to the one of complete monotonicity in order to establish some 

preliminary results. Section 3 characterizes mixed utilities, and discusses 

their properties. Section 4 and S reformulate the concepts of stochastic 

dominance and mutual aggravation of risks, respectively, for mixed utility 

functions. Section 6 analyzes the link between the distribution function 

characterizing a mixed utility and its absolute and relative risk aversion 

indexes. Section 7 analyzes some simple portfolio selection problems for 

mixed risk averse investors. Section 8 concludes the paper. 

2. Complelely Monotone Funclions and Mixed Risk Aversion. 

In this section we present some mathematical results which are useful for 
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the characterization of the class of utility functions we are interested on. 

DEFINITION 2.1: A real-valued function ~(w) defined on (0,00) is 

completely monotone if its derivatives ~n(w) of all orders exist and 

n n ) (-ll~(w ~O. for all w > O and n = O, l, 2 •... 

Therefore. a function is completely monotone if it is nonnegative and it 

has odd derivatives that are all nonpositive and even derivatives that are 

all nonnegative. The following famous theorem due to Bernstein shows that 

a function is alaplace transform of a distribution function iff it is 

completely monotone. Analogously. we can say that the set of negative 

exponential functions constitutes a basis for the set of completely monotone 

functions (see Gollier and Kimball [6]). 

THEOREM 2.1: The function ~(w) defined on (0.00) is completely monotone if 

and only if it has the following functional form: 

~(w) = JOOe-SWdF(S) , for all w > O • 
o 

where F is a distribution function on [0.00). 

PROOF: See Feller [S. Section XII.41 or Widder [17. Sections IV.12 and 

IV.13] for alternative proofs. 

Throughout .this paper we consider that a distribution function F(s) on 

[0.00) is a real valued. nondecreasing and right-continuous map from [0.00) 

into the set of nonnegative real numbers. Obviously, we can replace the 

improper Riemann-Stieltjes integral in (1) by the corresponding Lebesgue 

integral using the Lebesgue-Stieltjes measure ~ induced by F (see Ash [3, 

Section 1.4]). Note that lim F(s) exists because of the monotonicity of F, 
s~ 

but this limit is not necessarily finite. This means that both 

~(a,oo) = lim F(s) - F(a) and ~[a,oo) = lim F(s) - lim F(s) might be equal to 
s~ 

infinit y for every nonnegative real a. 

COROLLARY 2.1: If ~ is a completely monotone function and ~ is a positive 

function with a completely monotone first derivative, then the composite 

function ~(~) is completely monotone. In particular. the function 
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~(w) = ~exp[-a~(w)] is completely monotone for all nonnegative a and ~. 

PROOF: See Section XIII.4 of Feller [5]. 

COROLLARY 2.2: If the strictly positive function ~(w) defined on (O,~) is 

completely monotone, then ~(w) is log-convex, i. e., ln(~.(w» is convex. The 

convexity is strict when the support of F has at least two points. 

PROOF: Just compute 

[J~os2e-SWdF(S)] [J~oe-SWdF(S)] - [J~ose-SWdF(S)]2 
82[1n(~(w)] = ___________________ le o , 

where the inequality follows from the Cauchy-Schwarz inequality. Q.E.D. 

COROLLARY 2.3: The function ~ defined on (O,~) is completely monotone if 

and only if, for every nonnegative integer n, and for all strictly positive 

real numbers w and h, 

(2) 

PROOF: See Akhiezer [l, Section V.5]. 

It is also useful to rewrite (2) as 

[ (_l)k( n ) ~(w + kh) le O . 
k=O k 

(3) 

Let us assume that an agent has state-independent preference s defined 

over the space of nonnegative rand om variables, and that she has an expected 

utility representation u of these preferences. Then x is preferred to y if 

and only if E[u(x)] le E[u(y)], where x and y are nonnegative random variables 

and u is a real-valued Borel measurable function. 

DEFINITION 2.2: A real-valued, continuous utility function u defined on 

[O,~) exhibits mixed risk aversion iff it has a completely monotone first 

derivative on (O,~), and ufO) = o. 
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Utility functions displaying mixed risk aversion are called mixed. The 

requirement of u(O) = O is just an innocuous normalization for real valued 

functions on [0,00) since the preference ordering is preserved under affine 

transformations of the expected utility representation u. The choice of zero 

as the origin of the domain [0,00) is made for convenience. Of course, our 

analysis can be immediately adapted to different domains and normalizations. 

In particular, if we consider instead the open domain (0,00), all the results 

in this paper will hold with the obvious exception of the ones referred to 

the properties of u at zero. Thus, even if many expected utility 

representations used to model situations of choice under uncertainty exhibit 

mixed risk aversion, we should point that Definition 2.2 does not apply to 

the affine transformations of the logarithmic utility function u(w) = ln w 

and of the power function U(w) = ~w~, with ~ < O, since they are not finite 

at zero. Nevertheless, they can be arbitrarily approximated for all w > O by 

the mixed utilities u(w) = ln(w + d) - ln d and U(w) = ~(w + d)~ - ~d~, 

respectively, for positive values of d sufficiently close to zero. 

The following theorem due to Schoenberg [16] prov ides a functional 

characterization of mixed functions: 

THEOREM 2.2: The utility function u(w) defined on [0,00) displays mixed 

risk aversion iff it admits the following functional representation: 

J
OO 1 -se-

sw 
u ( w ) = dF ( s ) , 

o 

with JOO dFs(S) < 00 , 
.1 

for some distribution function F on [0,00). 

(4) 

(5) 

Since u is obtained by Riemann integrating a completely monotone function 

which has the functional form given in (1), condition (5) is necessary and 

w 
sufficient for the convergence of the integral J ~(x)dx defining u(w) for 

o 

we[O,oo). As in Akhiezer [1], we could also extend the domain of u to 

[0,00], and its range to the extended real numbers, by making u(oo) = lim u(w). 
w~ 

As pointed by Pratt and Zeckhauser [13], most of the utility functions 

used in applied work have completely monotone first derivatives. For 
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instance, if the utility function u is HARA, i.e., it satisfies 

- u" (w) 
u' (w) 

= lb with a > O, b > O, then (4) holds with 
a + w 

(l/b)-l -(a/bIS . . dF(s) = As e ds, where A lS a scallng factor. Therefore, the 

HARA utility functions are mixed since they are mixtures of exponential 

functions characterized by an arbitrarily scaled gamma distribution 

function. 2 As limit cases of HARA functions, we obtain the isoelastic (or 

power) function u(w) = Cw~ with O < ~ < 1 when b = 1/(1 - ~) and a = O. In 

this case F(s) is a power distribution, i.e., dF(s) = As-~ds. If a = l/p and 

b = O, we get the exponential (or CARA) utility function u(w) = C[l 
-pw 

e l 

with P > O and, then, F(s) is the Dirac distribution, F(s) ,= Cp for s ~ p and 

F(s) = O for O s s < p. Finally, if b = 1 and a = d/c, the utility function 

is logarithmic, u(w) = C[ln(d + cw) - ln dl with d > O and c > O, and F(s) 

. -(d/c)s 
turns to be exponential, l.e., dF(s) = Ae ds. 

COROLLARY 2.4: Let u be a mixed utility function which is analytic at the 

point K > O with interval of convergence (K-C, K+C), where K > C > O. Then 

u(w) can be expressed as the power series 

co 
with Po = f 

o 

co 
u(w) = [ Pn(w - K)n, for WE(K-C, K+C) , 

n=O 

-(-l)nfco n-l -SK dF(s) and p = I S e dF(s), for n = 
n n. 

O 

where F is a distribution function on [O,co). 

(6) 

l, 2, ... , 

PROOF: It follows directly from applying Taylor's theorem to (4). Q.E.D. 

It should be noticed that a mixed utility u(w) is analytic for all w > O, 

that is, it can be expressed as a power series in (w - K) which converges in 

some neighborhood of K, for all K > O (see Widder [7, Section 11.5]). 

Moreover, it can be proved that if the mixed utility u is characterized by a 

distribution function having a density f, i.e., F' (s) = fes) for all SE(O,co), 

and f is bounded above, then (6) holds for WE(O, 2K) and for all K > O. 

Finally, it is obvious that (6) also holds for-wE(O, co) and for all K > O 

when F(s) has discrete support. 
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3. Properties and Characterizations of Mixed Utility Functions. 

An immediate consequence of Corollary 2.4 is the following propert y which 

refers to the response of the expected utility when there is a marginal 

change in just one of the moments of a small risk (or random variable). 

COROLLARY 3.1: Assume that u is a mixed utility function which is 

analytic about the point K > O with interval of convergence (K-C. K+C), where 

K > C > O. Assume also that W is a random variable having weIl defined 

moments of all orders and whose support is included in the interval 

(K-C. K+C). Then E[u{w)] has nonnegative (nonpositive) partiaI derivatives 

with respect to the odd (even) moments of W, that is, 

_ ( -1) r BE [u ( w) ] 
B[1l (w)] 

r 

where Il (w) = E[ (w{]. 
r 

~ O • for r = 1, 2, ... , 

PROOF: Af ter expanding the binomiaI expressions (w - K)n in (6). it can 

be seen that the coefficients of the terms wn are positive (negative) when n 

is odd (even). The result then follows from evaluating the corresponding 

expecta tion. Q.E.D. 

Therefore. when a mixed risk averse agent faces a choice between two 

small risks that only differ in the rth moment, she prefers the risk with 

higher moment if r is odd and the risk with lower moment if r is even. 

According to our previous discussion, if the mixed utility u is characterized 

by a distribution function having a bounded density, then the conclusion of 

Corollary 3.1 holds for every nonnegative random variable with bounded 

support. Moreover, the same result also holds for all nonnegative random 

variables if the distribution function describing u has discrete support. 

The next propositions provide three characterizations of the utility 

functions displaying mixed risk aversion. The first one is based on the 

camparison of two sets of sequences of random variables, whereas the second 

and the third apply to ~ncreasing and concave functions and rely on the 

behavior of risk aversion indexes and derivatives of all orders. 

The following lemmas are crucial for the first characterization we 

propose in this section: 

LEMMA 3.1: The function u(w) defined on (O,~) satisfies (_1)nan+lu (w) ~ O, 
h 
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for every nonnegative integer n and for all real h > O, if and only if 

(_l)nAn~ (w) ~ O for all real a > O, where ~ (w) = u(w + a) - u(w). 
h a a 

PROOF: See the Appendix. 

LEMMA 3.2: Let u(w) be a continuous function on [O,~) with u(O) = O. The 

function u(w) is mixed if and only if ~ (w) = u(w + h) - u(w) 
h 

is completely monotone with respect to w on (O,~), for all h > O. 

PROOF: See the Appendix. 

Let us now define two sets of sequences of lotteries (or discrete 
. e ~ 

distributions) faced by an agent. The sequences {L (h)} of "even" 
n n=l 

lotteries are indexed by a positive real number h. For a given h > O, the 

nth element Le(h) of the even sequence is generated by tossing n times a 
n 

balanced coin. If the number of heads k is even the individual receives kh 

dollars, and he receives zero dollars otherwise. Similarly, the sequences 

{Lo(h)}~ of "odd" lotteries are constructed as the even ones except that 
n n=l 

now the payoff is kh if k is odd and zero otherwise. Table I summarizes the 

payoffs and probabilities of those two families of lotteries. 

(INSERT TABLE I ABOUT HERE) 

Note that the lotteries Le(h) and LO(h) have their first n-l moments 
n n 

identical. However, the moments of higher or equal order than n of Le(h) are 
n 

greater than those of LO(h) when n is even, and the converse holds when n is 
n 

odd, that is, 

for O < r < n , 

for r ~ n, n = 2m m = l, 2, ... , 

for r ~ n, n = 2m + 1 , m = O, l, 2, .... 

PROPOSITION 3.1: Let u(w) be a continuous utility function on [O,~) with 

weIl defined derivatives of all orders on (O,~) and such that u(O) = O. 

Then u(w) is mixed if and only if, for all initial wealth w ~ O, the odd 

lottery LO(h) is preferred to the even lottery Le(h), for all h > O and every 
n n 

positive integer n, i.e., 

E [u(w + kh)] ~ E [u(w + kh)] n = l, 2, ... , h > O , (7) 
LO(h) Le(h) 

n n 
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where the subindex in the expectation operator indicates the lottery who se 

distribution is used to evaluate the expected utility. 

1 l PROOF: For n = 1. (7 ) becomes - u(w) a + - u(w 
a 

+ h) ~ u(w) . For n = 2. we 

1 u(w) 1 + h) 3 l u(w + 2h). have - + - u(w ~ - u(w) + - For n = 3. a a 4 4 

1 3 u(w + h) l s 
u(w) 3 - u(w) + - + - u(w + 3h) i!: - + - u(w + 2h), and a 8 8 8 8 

Therefore. by induction we derive the following inequalities: 

m (2) m ( u(w) L m + L 
k=O 2k k=l 

2m )U(W + [2k - l)h) ~ 
2k-1 

so on. 

for n = 2m. m = 1. 2 ....• 

and 

u ( w) [ ( 2m+ 1 ) 
k=O 2k 

r ( 2m+1 ) ( + L u w + 
k=l 2k-1 

[2k - 1) h) i!: 

m ( 2m+ 1) m ( 2m+ 1 ) u(w) L + L u(w + 2kh) • for n = 2m + 1. m = O. 1. 2 .... 
k=l 2k-1 k=O 2k 

These two last inequalities can be compactly rewritten as 

n () 
k-l n L (-l) u(w + kh) i!: O • 

k=O k 
for n = 1. 2 •... 

which. from the equivalence between (2) and (3). becomes 

n-l n 
(-l) 6u(w)i!:O. 

h 
for n = 1. 2 •... 

From Lemma 3.1. condition (8) holds iff (_1)n-16n-l~ (w) i!: O for all a > O 
h a 

and n = 1. 2, ...• where ~ (w) = u(w + a) - u(w). Therefore. ~ (w) is 
a a 

(8) 

completely monotone as dietated by Corollary 2.3. Finally Lemma 3.2 allows 

us to conclude that (8) holds iff u(w) is mixed. Q.E.D. 

The previous proposition might be useful for testing by means of a 

laboratory experiment whether an individual is mixed risk averse. Of course. 

such a test would suffer obvious (and typical) limitations since it would be 

necessary to choose an appropriate grid of values for the elementary payoff h 

and wealth w. and a finite number of tosses n. 

Kimball [9] introduced the index of absolute prudence as a measure of the 

strength of the precautionary saving motive in an intertemporal context when 
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the future endowments are uncertain. This measure of prudence shifts up a 

derivative the measure of absolute risk aversion. In general, we can define 

the nth order index of absolute risk aversion as A (w) = _un
+
1(w)/un(w). for 

n 

n = l, 2, ... The function A (w) corresponds to the Arrow-Pratt index of 
1 

absolute risk aversion, whereas A (w) is the aforementioned Kimball index of 
2 

prudence. 

PROPOSITION 3.2: Let the continuous utility function u(w) defined on 

[O,~) be increasing, concave and smooth on (O,~) with u(O) = O and un(w) * O 

for all w > O and n = 1, 2, ... Then u(w) is mixed if and only if A (w) is 
n 

nonincreasing for all n = 1, 2, ... 

PROOF: (Sufficiency) It can be immediately shown that the requirement of 

nonincreasing A (w) is equivalent to un
+
2(w)'un(w) ~ [un

+
1 (w)]2, which 

n 

implies that un
+
2(w) and un(w) have the same sign for n = 1, 2, .. , and w > O. 

The assumption of monofonicity and concavity allows us to conclude 

inductively that u has positive odd derivatives and negative even 

derivat i ves. 
2n-l (Necessity) The odd derivatives u (w), for n = 1, 2, ... , are 

completely mo~otone by assumption. On the other hand, the negative of the 

even derivatives _u2n (w), for n = 1, 2, ... , are also completely monotone 

functions. Complete monotonicity implies log-convexity (see Corollary 2.2), 

and log-convexity is in turn equivalent to have A (w) nonincreasing for 
n 

n = 1, 2, ... Q.E.D. 

The previous proposition shows that mixed utilities constitute a strict 

subset of the class of utility functions displaying standard risk aversion, 

i.e., utility functions for which every loss-aggravating risk aggravates 

every independent, undesirable risk (see Kimball [10]).3 Kimball proves that 

an utility function is standard risk averse iff A (w) is nonincreasing on 
2 

(O,~) so that the characterization of Proposition 3.2 is clearly more 

stringent. 4 Needless to say, this characterization is quite technical since 

we lack an economic interpretation of A (w) for values of n greater than two. 
n 

The following proposition is also technical and it can be viewed as an 

alternative definition of mixed risk aversion for increasing and concave 

utility functions: 

PROPOSITION 3.3: Let the continuous utility function u(w) defined on 
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[O,~) be increasing, concave and smooth on (O,~) with u(O) = O. Then u(w) is 

mixed if and only if the derivatives of all orders of u(w) are either 

uniformly nonpositive or uniformly nonnegative. 

PROOF: It follows immediately from adapting the argument in Ingersoll 

[8, p. 41]. Q.E.D. 

4. Stochastic Dominance and Mixed Risk Aversion. 

If we consider a subset ~ of the set of real valued Borel measurable 

utility functions defined on [O,~), we say that the random variable x 
1 

~-stochastically dominates the random variable x iff E[u(x )] ~ E[u(x )] for 
212 

all ue~. When ~ is the set of continuous increasing (concave) utility 

functions, ~-stochastic dominance coincides with the concept of first 

(second) degree stochastic dominance. 

Let M be the set of mixed utility functions. Then the following 

Proposition characterizes M-stochastic dominance by requiring that all 

Laplace transforms of the dominated distribution be greater than those of 

the dominating distribution. 

PROP05ITIÖN 4.1: Let G and G be the distribution 
1 2 

nonnegative random variables x and x , respectively. 
1 2 

M-stochastically dominates x if and only if 
2 

functions of the 
-Then x 

1 

J~ -sz J~ -sz 
e dG 1 (z) ~ e dG 2 ( z) , for all s ~ O. 

o o 
(9) 

PROOF: (5ufficiency) Every u belonging to M can be written as in (4). The 

result follows from exchanging the order of integration of the corresponding 

expected utility and simplifying. Note that the exchange of the order of 

integration is Justified by Fubini's theorem since the distribution functions 

G (z), G (z) and F(s) define ~-finite (in fact, finite) measures on [O, ~) 
1 2 

(see Ash [3, pp. 9 and 103]). 

(Necessity) By contradiction. Suppose that (9) does not hold for some 

nonempty set S of values of s. Construct then a utility function ueM by 

using a distribution function F whose support is - Then (4) and (9) imply 

that E[u(x )] < E[u(x )], which contradiets the assumption that x 
1 2 1 -M-stochastically dominates x . 

2 
Q.E.D. 
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-to x by all mixed risk averse individuals, it is necessary and sufficient to 
2 

check that xl is preferred to x
2 

by all individuals having CARA utilities, 
-sw 

i. e., u(w) = 1 - e ,for all s :: O. Obviously, these individuals 

constitute a strict subset of the mixed risk averse individuals. The 

following example shows an application of Proposition 4.1: 

-EXAMPLE 4.1: Consider the random variables x taking the values 2 and 4 
1 

with probabilities 3/4 and 1/4 respectively, and x taking the values 1 and 3 
2 

with probabilities 1/4 and 3/4 respectively. In this case, the inequality 

(9) should be come 

2 4 3 -s 3z + z s z + 3z ,where z = e , for all s :: O , 

which in turn becomes (1 - Z)3 :: O, and this inequality holds since ze(O,11. 

Therefore, x M-stochastically dominates X. However, note that x does not 
121 

dominate x in the sense of second degree stochastic dominance. To see the 
2 

latter, consider the following concave utility: 

v(w) = { :.2 
for O s w s 3.2 

for w > 3.2 

Then E[v(x )1 = 2.3 and E[v(x )1 = 2.5 which proves that x cannot dominate 
1 2 1 

X in the sense of second degree stochastic dominance. 
2 

The next proposition provides an alternative characterization of 

M-stochastic dominance: 

PROPOSITION 4.2: Let G and G be the distribution functions of the 
1 2 

nonnegative random variables xl and x
2 

respectively. Then Xl 
M-stochastically dominates x

2 
iff 

for all real T > O, and n = l, 2, ... 

PROOF: Let us define ~(s) = P (s) - p (s), where P (s) is the Laplace 
211 

transform of the distribution function G
I

, i.e., P
1
(s) = f~e-szdGl(Z). 

o 

(lO) 

Therefore, (9) can be written as ~(s) :: O for all s :: O, so that the function 
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A(.) = Jooe-S·W(S)dS. for. > O, is alaplace transform if and on ly if (9) 
o 

holds. Theorem 2.1 tells us that A(.) is alaplace transform if and only if 

it is completely monotone. Observe also that 

J
OO -s. Joo -s. JOO -s. A(.) = e w(s)ds = e P2(S)ds - e P

1
(s)ds = 

o o o 

JOOJOOe-S(Z + ·)dS dC (z) _ JOOJOOe-S(Z + ·)dS dC (z) = 
2 1 o o o o 

r dC (z) -f dC (z) 
(11) 2 1 

(z + .) (z + .) o o 

where the third equality come s from substituting P (s), i = 1, 2, and 
l 

exchanging the order of integration, and the fourth equality is obtained 

from computing the inner Riemann integral. By successively differentiating 

(11), it follows that the condition of complete monotonicity of A(.) is 

equivalent to (10). Q. E.D. 

This proposition also allows us to look at a subset of M so as to verify 

the ordering implied by M-stochastic dominance. In this case, it is enough 

to verify the order relation for preferences represented by utility 

functions of the form u(w) = 1 

It can be checked that this family 

class of HARA utilities satisfying 

111 
b = 2' 3' 4"" 

1 , for all. > O and n = 1, 2, ... 

of utility 

- u' , (w) 
u' (w) = 

functions is equivalent to the 

1 b for all a > O and a + w 

5. Aggravation and Amelioration of Risks for Mixed Utilities. 

As we have already mentioned, Pratt and Zeckhauser [13] and Kimball [10] 

have characterized two nested subsets of utility functions exhibiting 

decreasing absolute risk aversion. A key element of those characterizations 

are the concepts of aggravation and amelioration of random variables (or 

risks). In this section we are interested in conditions for both mutual 

aggravation and amelioration of risks when agents are mixed risk averse. 

Assume that the random variables W, x and y are mutually independent, 

and consider the lottery consisting of receiving the random payoff w + x with 

probability 1/2 and the payoff w + y also with probability 1/2. Consider now 
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-a second lottery consisting of getting the random payoff w with probability 

1/2 and w + x + j with probability 1/2. ~e say that x and jaggravate each 

other iff the former lottery is preferred to the latter, i.e., iff 

- -Similarly, we say that the random variables x and y ameliorate each other 

iff the weak inequality in (12) is reversed. Therefore, the concept of 

aggravation (amelioration) of risks provides a particular, precise meaning to 

the notion of substitutability (complementarity) between risks. 

Assume that individuals have utility functions belonging to the class M, 

and that the risks to be evaluated are nonnegative. Let P (s), p (s) and 
w x 

p (s) denote the Laplace transforms of the distribution functions of w, x and 
y 

j, respectively. Since Proposition 4.1 identifies the M-stochastic dominance 

ordering with the ordering of Laplace transforms, it is easy to see that 

condition (12) holds for all ueM if and only if 

p (s) + p (s)·p (s)·p (s) ~ p (s)·p (s) + p (s)·p (s) , for all s ~ O. (13) 
w w x y w x w y 

Therefore, we have the following proposition obtained from just 

simplifying (13): 

- - -PROPOSITION 5.1: Assume that the risks w, x and y are independent, and 

that the risks w, w + x, w + j and w + x + y are nonnegative. Then the risks 

x and y aggravate each other for all mixed risk averse individuals if and 

only if 

[1 - P (s)][l - P (s)] ~ 0, for all s ~ O. ( 14) 
x y 

- -Therefore, the propert y of aggravation between x and y is independent of 

the characteristics of the (possibly random) initial wealth W. The next two 

examples illustrate the previous result: 

- -EXAMPLE 5.1.: Let w be nonrandom and equal to w > 0, x takes the values ° 
-and he(O, w) with the two values being equiprobable, and y takes the values 

-h, ° and h with probabilities 1/4, 1/2 and 1/4, respectively. It can be 

P (s) -__ 1 + z (l/z) + 2 + z -sh] shown that and P (s) = 4 ' where z = e e (0, 1 . 
x 2 y 

Therefore, 1 - P (s) 
x 

= 1 - z and 1 - P (s) = -2- y 

14 

(1 - Z)2 so that 
4z 



3 

[1 - P
x
(S))[l - Py(S)) = - (18~ z) ~ O, which proves that X and y ameliorate 

each other. The amelioration is strict if the utility functions are strictly 

concave since then < = sup{sIF(s) > O} > O and e-~h < 1. 

- - -EXAMPLE 5.2.: Let w = w > O, and both x and y take the values -h, O and h 

with probabilities 1/4, 1/2 and 1/4, respectively, where h e (O, w/2). Then 
4 

(1 - z) > some computations yield [1 - P (s)] [1 - P (s)J = - O, where 
x y 16z2 

-sh - -z = e e (O, 1]. Therefore, x and y aggravate each other. Again, strict 

concavity implies strict aggravation. 

The following corollary states sufficient conditions for either mutual 

aggravation or amelioration of risks: 

COROLLARY 5.1: Assume that the risks W, x and y are independent, and that 

the risks W, w + x, w + y and w + x + y are nonnegative. Assume also that 

individuals have mixed risk averse preferences. Then, 

(a) The risks - and - aggravate each other if they nonnegative. x y are 

(b) The risks - and - aggravate each other if E<X) ~ O and E<Y) o. x y ~ 

(c) The risks - and - ameliorate each other if E(x) ~ O and y is x y 

nonnega ti ve. 

- -PROOF: (a) If the random variables x and y take only nonnegative values 

then P (s) ~ 1 and P (s) ~ 1 for all s ~ O, which is sufficient for (14). 

(b: Since P (s) : f~ e-szdG (z), where G (z) is the distribution function 
x x x 

-~ 00 
of x, we have P (O) = l, P' (O) = -f zdG (z) - E(x) ~ o, and 

x x x 
-00 

~ 

P" (s) = f z2e-SZdG (z) ~ O for all s ~ O. Therefore P (s) is a function 
x x x 

-~ 

defined on [0,00) which is convex and that reaches its minimum at zero, so 

that P (s) ~ 1 for all s ~ O. Since the same holds for P (s), the condition 
x y 

(14) is always fulfilled. 

(c) By assumption, and as it follows from parts (a) and (b), P (s) ~ 1 
x 

and P (s) ~ 1. Therefore, [1 - P (s)][l - P (s)] ~ O, for all s ~ O Q.E.D. 
y x y 

Kimball [10] has in fact proved that part (b) holds for the larger class 
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of proper utility functions. Under the assumptions in (b), x and y are 

clearly undesirable and hence the risks x and y must aggravate each other for 

all u proper. We just repeat the result for mixed risk averse preferences 

because of the simplicity of its proof. 

Finally, it should be noticed that a random variable is undesirable for 

all mixed risk averse individuals if and only if it is loss-aggravating for 

all such individuals. It is straightforward to see that the necessary and 

sufficient condition for a risk x to be loss-aggravating (and undesirable) 

for all mixed utilities is that P (s) ~ 1 for all s ~ O. This implies, 
x 

according to (14), that two independent risks aggravate each other for all 

mixed utilities if and only if both of them are either loss-aggravating or 

loss-ameliorating for all such utilities. 

6. Absolute and Relative Risk Aversion of Mixed Utilities. 

Mixed utility functions have some features that facilitate the 

characterization of their indexes of absolute and relative risk aversion 

- u" (w) - wu' , (w) 
A(w) = u' (w) and R(w) = u' (w) , respectively. These indexes are 

crucial for the comparative statics of the simplest portfolio selection 

problem in which investors must allocate their wealth between ariskless 

asset and a riskyasset (or portfolio) having a positive risk premium. As 

Proposition 3.2 shows, A(w) is noninereasing for all mixed utilities and it 

is strictly decreasing when the support of F has at least two points (see 

Corollary 2.2). Therefore, a mixed risk averse investor increases the optimal 

amount invested in the riskyasset as her wealth increases (see Arrow [2]). 

It should also be noticed that, when the absolute risk aversion approaches 

infinit y (zero), the optimal amount invested in the riskyasset goes to zero 

(infinit y). On the other hand, the proportion of wealth invested in the 

riskyasset tends to zero (infinit y) as the relative risk aversion approaches 

infini ty (zero). 

Clearly, the nth order derivative at the orig in, un(O) = lim un(w), is 
w~o 

finite iff J~sn-ldF(S) <~. Moreover, u' (w) > O for all we[O,~) if and only 
o 

~ 

if J dF(s) > O. Finally, it is also straightforward to see that 
o 

lim u' (w) > O iff F(O) > O. 
w~ 
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The next proposition prov ides results concerning the behaviour of the two 

indexes of risk aversion at the origin. 

PROPOSITION 6.1: Assume that u is a mixed utility characterized by a 
00 

distribution function F with J dF(s) > O. Then, 
o 

00 

(a) if J sdF(s) < 00, then lim A(w) < 00 and 1 im 
o w~o w~o 

00 

(b) if J sdF(s) is not finite, then lim A(w) = 
o w~o 

PROOF: Part (a) is obvious. 

R(w) = O. 

00. 

00 

For part (b), if J dF(s) < 00, then lim u' (w) is finite and lim u" (w) 
o w~o w~o 

00 

is unbounded so that 1 im A(w) = 00. If J dF(s) is not finite, then 
w~o o 

lim u' (w) 00 and lim u' , (w) Moreover, 1 is nonnegative and = = -00. A(w) 
w~o w~o 

. .. th t l' 1 . t lncreaslng ln w so a lm A(w) eX1S s. Therefore, Höpital's theorem 

1 
implies that lim A(w) 

w~o 

w~o 

= lim - u' (w) 
u' , (w) 

w~o 

- u(w) 
= lim u' (w) = O, 

w~o 

i. e. , lim A(w) = 00. 

w~o 

Q.E.D. 

The next two propositions characterize the behaviour of A(w) and R(w) for 

high values of w. We first state the following technical lemma: 

LEMMA 6.1: Assume that 

(a) fCXlI~(s)le-swdF(S) exists for all w ~ O, and 
o 

a 
(b) there exists a strictly positive real number c such that f dF(s) > O 

o 

and ~(a) > O, for all ae(O,c). 

Then there exists a positive real number Wo such that fOO~(S)e-SwdF(S) > O 
o 

for all w > w . o 

PROOF: See the Appendix. 
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PROPOSITION 6.2: Let u be a mixed utility characterized by a 
00 

distribution function F such that J dF(s) > O. Then lim A(w) = so' where 
o w~ 

s = inf{s!F(s) > O}. o 

PROOF: Since A(w) is nonnegative and decreasing, lim A(w) exists. Assume 
w~ 

a 
first that So = O so that J dF(s) > O for all a > O. We proceed by 

o 

contradiction and assume that c = lim A(w) > O. 
w~ 

- u" (w) 
Note that u' (w) ~ c or, 

00 

equivalently, cu' (w) + u" (w) s O, for all w > O. However, if J sdF(s) < 00 

o 

for all w ~ O, we can apply Lemma 6.1 to obtain that cu' (w) + u" (w) = 

Joo(C - s)e-swdF(s) > O for sufficiently high values of w, which constitutes a 
o 

contradiction. 
00 

It should be noticed that we can always assume that J sdF(s) < 00 since, 
o 

if not, we can consider instead the mixed utility function 

u(w) = u(w + b) - u(b), with b > O. The limit at infinit y of the absolute 

risk aversion of u(w) is the same as the one of u(w). Note that 

A JOO -sw ~ -sb u' '(w) = se dF(s), where dF(s) = e dF(s). 
o 

Hence, u" (O) = JooSdF(S) = 
o 

JOO -sb 
se dF(s) = u" (b) 

o 
< 00. 

Assume now that So > O. Then u' (w) = Joo e-swdF(s) = 
So 

JOOe-(t + So)w dF(t + So) = 
o 

00 . 

exp(-sow) u' (w), where u' (w) = J e-twdF(t + so), 
o 

- u" (w) Therefore, t = inf{t!F(t + s ) > O} = O, and then lim = O. Finally, 
o o w~ u' (w) 

compute the index of absolute risk aversion of u(w), 

A(w) = 
S exp(-s w) u' (w) - exp(-s w) u" (w) 

o o o 
-------------------------------------- = S -

exp(-s w) u' (w) o 
o 
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which implies that lim A(w) = s . 
o Q.E. D. 

In particular, lim A(w) = O when s = O, that is, the individual tends to 
o 

be absolutely risk neutral for high levels of wealth in this case. Moreover, 

if s > O then lim R(w) = 00 so that the fraction of wealth invested in the o 

riskyasset goes to zero as wealth tends to infinity. As we are going to 

show, the properties at the origin of the distribution function F are also 

crucial to make a richer description of the behaviour of the relative risk 

aversion index for high levels of wealth. 

DEFINITION 6.1: Let F be a distribution function satisfying F(s) > O 

for all s > O. The distribution function F is said to be of regular variation 

at the origin with exponent piff 

lim 
s~o 

F( ts) 
F(s) with O :S P < 00. 

LEMMA 6.2: Let ~(w) be alaplace transform of the distribution function 

F(s). If F varies regularly at the origin with exponent pe[O, co) and ws = l, 

then the ratio ~(w) 
F(s) converges to rep + 1) as w~ (or, equivalently, as s~), 

co 
where r(·) denotes the gamma function, i. e., r(x) = y e dy for x > O. J x-l-y 

o 

PROOF: It follows immediately from adapting the Tauberian Theorems 1 and 3 

in Section XIII.5 of Feller [5]. Q.E.D. 

If the utility function u is mixed, then the marginal utility u' (w) is 

completely monotone and it is thus the Laplace transform of some distribution 

function F(s). Let us define the distribution function F
1

(s) = ~TdF(T) 
o 

whose Laplace transform 

Jco -sw 
-u" (w) = e sdF(s). 

o 

is equal to -u" (w) since dF (s) = sdF(s) and 
1 

LEMMA 6.3: Let F be a distribution function of regular variation at the 

origin with exponent pe[O, co). Then, 
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(a) F (s) also varies regularly at the origin with exponent p + l, and 
1 

F (s) 
1 

( b ) 1i m -s"""'F=-("""s-t")-
S-"70 

= p p-.;:-r' 

PROOF: See the Appendix. 

PROPOSITION 6.3: Let u(w) be a mixed utility function characterized by a 

distribution function F of regular variation at the origin with exponent 

pe[O,m). Then the relative risk aversion of u(w) converges to p as w tends 

to infini ty. 

PROOF: The regular variation of Fimplies that inf{sIF(s) > O} = O. As 

follows from Proposition 6.2, the absolute risk aversion of u tends to zero 

as W-7m. Moreover, Proposition 6.2 also tells us that, in order to find the 

limit of the relative risk aversion, we can first compute the limit of the 

absolute risk aversion as W-7m with WS = 1 (which means that s-70), and then 

multiply this limit by w. From Lemmas 6.2 and 6.3{a), and since u' (w) and 

-u" (w) are Laplace transforms of F(s) and F (s) respectively, it follows 
1 

that u' (w) - u" (w) 
F(s) converges to rep + 1), whereas F (s) converges to rep + 2) as 

1 

w tends to infinit y with ws = 1. 
- u" (w) 

Therefore, A(w) = u' (w) converges to 

F (s) rep + 2) F (s) 
1 which in turn converges to ps = L because 1 tends to F(s) rep + 1)' w F(s) 

ps as s goes to zero (see part (b) of Lemma 6.3) and 
rep + 2) = p + 1. p-.;:-r rep + 1) 

Hence, the result follows since R(w) = yA(w). Q.E.D. 

This last proposition allows us to conclude that, for high levels of 

wealth and small risks, mixed risk averse investors be have as if they have 

constant relative risk aversion provided the regular variation hypothesis 

holds. Therefore, if an investor must allocate her wealth between a risky 

and a riskiess asset, the wealth elasticity of her demand for the riskyasset 

would approach uni ty as her wealth tends to infinity. 

EXAMPLE 6.1: A simple illustration of the last proposition is the power 

utility function u(w) = Cw~ with O < ~ < 1. This function has a constant 

relative risk aversion index equal to 1-~ which clearly coincides with the 
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exponent of regular variation of its associated distribution function 

F () A l-c(' M 11' f . HARA' - u" (w) 1 . t 
5 = 5 . ore genera y, l U lS ,l. e., u' (w) = a + bw Wl h 

b > O, then the limit of the relative risk aversion as w~ is l/b, which is 

in turn equal to the exponent of regular variation of its corresponding gamma 

distribution. Obviously, the absolute risk aversion approaches zero as w~. 

EXAMPLE 6.2: As an example of strictly concave, mixed utility function 

with both absolute and relative risk aversion vanishing at infinit y, we can 

consider the utility function having the derivative u' (w) = exp (- _w_) 
1 + w ' 

which is completely monotone according to Corollary 2.1 and, therefore, af ter 

imposing the appropriate boundary condition, u(w) is mixed. Clearly, both 

the absolute risk aversion A(w) 1 and the relative risk aversion = 
(1 2 

+ w) 

R(w) w tend to zero as Moreover, lim u' (w) lie > O which = w~. = 
(1 2 + w) w~ 

means that the associated distribution function F satisfies F(O) > O. In 

fact, the density function associated with the utility of this example is 

tO k-l 
() -5 \' 5 

f 5 = e L k! rek) 
k=l • 

+ 5(5), where 0(5) is the Dirac delta function. 

Hence, . F( t5) 
its distribution function F satisfies 11m F(s) = 1 so that it varies 

5~O 

regularly at the origin with exponent p = O. Here, both the amount and the 

proportion of the optimal investment in riskyasset increases as wealth tends 

to infinit y .5 

EXAMPLE 6.3: Finally, as an example of mixed utility function with 

vanishing absolute risk aversion but unbounded limit of relative risk 

aversion, we can consider the utility function having the derivative 

u' (w) = exp(-wC(.) with C(.E(O,l). This derivative is clearly completely 

monotone (see Corollary 2.1). The utility u is characterized by a stable 

distribution F with parameter c(. (see Feller [5, Section XIII.6]) for which 

the assumption of Proposition 6.3 does not hold. Then A(w) = C(.WC(.-l and 

R(w) = C(.WC(. so that lim A(w) = O and lim R(w) = tO. Therefore, for the utility 

considered in this example, the amount invested in the riskyasset tends to 

infinit y as wealth increases without bound, whereas the fraction of wealth 

invested in the riskyasset goes to zero. 
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7. Portfolio Selection and Mixed Risk Aversion. 

In addition to the limit of relative risk aversion for low and high 

levels of wealth, it is also possible to provide some results about the 

global behaviour of this index which are relevant for the theory of 

investment. The following two examples illustrate the importance of relative 

risk aversion: 

EXAMPLE 7.1: Consider the typical saving problem faced by an individual 

who has a given wealth w today which he has to distribute between o 
consumption today c ~ O and consumption tomorrow c ~ O. He saves what is o 1 

not consumed today, and the investment yields a nonrandom return a > O per 

dollar saved. The individual maximizes the following additive separable 

utili ty: 

v(c ) + u (c ) , 
o 1 

with v'~ O, u'~ O, v"~ O, and u"~ O. It is weIl known that the optimal 

saving is locally increasing (decreasing) in the return a iff the relative 

risk aversion of u, evaluated at the optimal consumption, is less (greater) 

than uni ty. 

EXAMPLE 7.2: Another context in which the relative risk aversion 

index plays a ~ey role is in the problem of portfolio selection with pure 

securities. Assume a two-period economy in which there are S states of the 

nature in the second period. The investor has to distribute her first period 

wealth w between first period consumption c ~ O and investment in S pure o o 
securities, indexed by i, which will finance second period consumption c ~ O 

1 

in each state. Security i has a return a > O if state i occurs and zero 
1 s 

otherwise. The probability of state i is ni > O with [nI = 1. 
1=1 

the wealth invested in security i. Therefore, the problem faced 

Let z be 
1 

by the 

investor is to choose the vector (z , ... ,z ) in order to maximize the 
1 s 

expected utility 
s 

v(c ) + \' n u(c ) , 
o L 1 l 

(15) 

i=l 

subject to 

(16) 
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and 

c = S z ~ O, 
i i i 

( 17) 

with v'~ O, u'~ O, v"~ O, and u"~ O. The following proposition prov ides 

the comparative statics of the optimal portfolio: 6 

• • PROPOSITION 7. l: Let (z , ...• z ) be a solution to the above portfolio 
1 s 

• • • ac 
o selection problem, then aa ~ 

az 
k 

O. aa ~ 
k 

az 
1 O and as ~ O for i ~ k if and only if 

• RCc ) = 
k 

• • - c u .. (c ) 
k k 

• u· (c ) 
k 

k 

• 
~ l. where c = w -

o o 

k 

* and ck = 
• a z 

k k 

PROOF: Substituting (16) and (17) in the objective function (15). we 

obtain the following first order condition characterizing an interior 

solution: 

* * v' (c ) = n a u' (c ) 
o i i 1 

i = 1, ... , S. 

Differentiating (18) with respect to a we obtain 
k 

• ac 
* o * v' , (c )-- = n u' (c ) + 
o as k k 

k 

and 
* ac 

. * o v" (c )-- = o aa 
k 

* az 
2 • k·· n S u' , (c )-- + n a z u' , (c ), 

k k k aa k k k k 
k 

* 
2 * aZ I n a u" (c )--

l l l aa for i ~ k . 
k 

for i = k, 

(18) 

(19) 

(20) 

2 * Divide both sides of (19) by n a u" (c) and divide also both sides of (20) 
k k k ' 

2 * by n a u" (c ), for i ~ k. Adding the resulting S equations yields 
1 1 l 

S * * • * 

[ ] 
ac u' (c ) + a z u' , (c ) 

v" (c*) \ __ 1 _____ 0_ = k k k k + 

° L n a2u" Cc*) aak a2u" (c*) 
1=1 l lik k 

S * * ac 

S * 

L~ 
1=1 

aa 
k 

Furthermore, (16) implies that L ~= aa 
k 

~ so that (21) becomes 
k 

1=1 

v" (c·) [ IS __ 1 ___ ]] aac
aok

* = _u_' _(C_:_)_+_c_>_'_'_(_c_:_)_ 
o n S2u ' , (c*) 2 , ( *) a u ' c 

1=1 l l i k k 

(21) 

(22) 

The term within square braekets of the LHS of (22) is positive, whereas the 
* 
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Be 
denominator of the RHS is negative. Hence, ~ s O iff the numerator of 

k • the RHS is negative, which in turn is clearly equivalent to have R(e ) s 1. 
k 

• • 
Moreover , (20) implies that s 19n [ ::: l = Slgn[ ::: l for j $ k and, on 

• Bz 
k the other hand, (16) implies that aB = 

• Bz 
l 

aB 
k 

s 

• 8z 
k 

O and aB ~ 
k 

• O iff R(e ) s L 
k 

k 

• Be o 
aB 

k 

• 

L~ 8e so that 
k 

l~k 

Q.E.D. 

Obviously, if S = l, Proposition 7.1 implies the standard result 

diseussed in Example 7.1. On the other hand, the previous Proposition 

generalizes the theorem of Mitchell [11] by allowing the investor to consume 

also in the first period of her life. 

The next two propositions characterize the behaviour of the relative risk 

aversion for a mixed utility function depending on the properties of the 

distribution function F(s). To this end, first define the function 

~(w) = wu' (w) and observe that, when u' (w) > O, R(w) s 1 if and only if 

~'(w) ~ O. 

PROPOSITION 7.2: Let u(w) be a mixed utility function characterized by the 
00 

distribution function F(s) with f dF(s) > O. Then, 
o 

and, 

(a) max R(w) > 1 if inf{sIF(s) > O} > O. 
we<o,oo) 

(b) lim R(w) < 1. 
w~o 

PROOF: (a) Let So $ inf{sIF(s) > O} so that 

00 

if f dF(s) < 
So 

00, we get lim ~(w) = O by taking the limit of both sides. 
w~ 

Since ~(w) > O for we(O,oo), the lat ter limit implies that ~'(w) has to become 

negative for sufficiently high values of w. 

As in the proof of Proposition 6.2, we can safely assume that 
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00 J dF(s) < 00 since, if not, we can consider instead the mixed utility 
s o 

u(w) = u(w + b) - u(b), with b > O. The limit at infinit y of the function 

" 
~(w) 

A A JOOSW" = \.vu' (w) is the same as the one of ~(w), and u'(w) = e- dF(s), where 
o 

-sb JOO " Joo b = e dF(s). Therefore, u' (O) = dF(s) = e-s dF(s) = u' (b) < 00. 

o o 
dF(s) 

(b) Note that 

~' (w) = u' (w) + wu" (w) = JOOe-SWdF(S) - JOOwse-SWdF(S) , 
o o 

(23) 

00 

so that lim ~' (w) = J dF(s) > O. Q.E.D. 
w~o o 

PROPOSITION 7.3: Let u(w) be a mixed utility function characterized by a 

distribution function F(s) having a continuously differentiable density fes) 
00 

on (0,00) and such that J dF(s) > O. Then, 
o 

(a) R(w) s 1 for all w > O if fes) is monotonically decreasing. 

(b) max R(w) > 1 if lim f' (s) exists and is strictly positive. 
WE(O,oo) s~o 

PROOF: (a) Observe that (23) becomes 

JOO -sw Joo -sw 
~' (w) = e f(s)ds - we sf(s)ds. 

o o 
(24) 

rewritten as J:Sf(S)d(e-
SW

) which, af ter 

integrating by parts, becomes equal to _JOOe-sw[f(S) + sf' (s)]ds. 
o 

J
OO sw . 

The integral - we- sf(s)ds can be 
o 

Substituting in (24), we get ~' (w) = -Jooe-SWsf' (s)ds. Thus, part (a) 
o 

follows since ~' (w) ~ O for all w > O when f' (s) s O for all s > O. 

(b) If lim f' (s) > O then the function w~' (w) = -Jooswe-SWf' (s)ds becomes 
s~o o 

strictly negative for sufficiently high values of w. Hence, tak~ng into 

account that lim ~' (w) > O (see part (b) of Proposition 7.2), we conclude 
w~o 

that ~'(w) is not monotonic and thus max R(w) > 1. Q. E. D. 
WEIO,oo) 
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Part (a) of Proposition 7.3 implies that the comparative statics 

exercises in Examples 7.1 and 7.2 can be unambiguously signed when the 

density f is decreasing. According to part (b) of Proposition 7.2, the same 

result also holds for low levels of initial wealth and small returns. 

However, under the assumptions considered in the other parts of these 

Propositions, the signs of the comparative statics exercises remain ambiguous 

depending on both the level of initial wealth and the returns structure. 

The following famous example will illustrate the relationship between the 

properties of the density function f and the effects of mean-preserving 

spreads on portfolio choice: 

EXAMPLE 7.3: Consider a risk averse individual with initial wealth w to o 
be invested in a riskyasset A with random return R and a riskiess asset 

A 

with return R
f

. There is another asset B with a return Ra which is riskier 

than R according to the definition given by Rothschild and Stiglitz [14], 
A 

i.e., R dominates R in the sense of second degree stochastic dominance. If 
A a 

now the investor has to invest in riskyasset B and the riskiess asset, we 

want to know under which conditions the amount invested in riskyasset B is 

less than the amount invested in riskyasset A. This change in the portfolio 

composition would seem more natural than the opposite since Ra is obtained 

from subjecting R to a mean-preserving spread. Rothschild and Stiglitz [15] 
A 

gave the following set of sufficient conditions for having the natural 

result: the relative risk aversion is less than unity and increasing, and the 

absolute risk aversion is decreasing. 

The next proposition prov ides a different sufficient condition for mixed 

risk averse investors. 

PROPOSITION 7.4: Assume that an investor has a mixed utility function u 

characterized by a distribution function having a decreasing and continuously 

differentiable density on (O, 00). Assume also that her initial wealth is 

w > O, and that the random variables R and R are both nonnegative with 
o A a 

E(R ) > R > O. If R i~ riskier than R, then the amount invested in asset B 
A f a A 

is less than in asset A. 

PROOF: Let z be the optimal amount invested in riskyasset A. This 

amount z is positive be cause asset A has a positive risk premium. The 
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first order condition of the portfolio selection problem is 

E[u'(Rw + (R - R )z)(R - R)] = O 
ro A r A r (25) 

Since the LHS of (25) is decreasing in z, the optimal amount invested in 

asset B will be less than z if 

E[u' (R w + (R - R )z)(R - R )] ~ O . 
ro B r B r 

Since R is riskier than R , a sufficient condition for (26) is that the 
B A 

function v(x) = u' (R w + (x - R )z)(x - R
f

) is concave. Define 
r ° r 

w = R w + (x - R )z, so that 
r o r 

u' (R w + (x - R )z) (x - R ) 
f ° r r 

wu' (w) 
z 

al 

Recall that if ~(w) = wu' (w), then~' (w) = - J e-swsf' (s)ds. Moreover, 

° 

(26) 

al 

~" (w) = J e-sws 2 f' (s)ds ~ O because f' (s) ~ O for all s > O. Hence, wu~(w) 

° 
is concave in w. Furthermore, [Rr:o]u' (w) is convex in w since u' (w) is 

convex. This proves in turn the concavity of v(x). Q.E.D. 

Therefore, the assumptions of mixed risk aversion and decreasing 

differentiable density, which imply decreasing absolute risk aversion and 

R(w) ~ l, allow to dispense with the condition of increasing relative risk 

aversion in order to obtain the same natural conclusion in Example 7.3. Note 

in this respect that the condition ~" (w) = 2u" (w) + wu'" (w) ~ O, which 

appears in the proof of Proposition 7.4, is neither necessary nor sufficient 

for increasing relative risk aversion. 

8. Conclusion and Extensions. 

In this paper we have analyzed the class of mixed utility functions, that 

is, utility functions whose first derivatives are Laplace transforms. One of 

the most interesting properties of such utilitres is that the characteristlcs 

of the associated distribution functions allow to extract information about 

their measures of risk aversion. Moreover, we have shown that the concepts 

of stochistic dominance and aggravation of risks become more operative when 

they are applied to this set of utilities. 
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The concept of mixed risk aversion has also interesting computational 

implications. Since a distribution function can be approximated by a step 

function. the construction of algorithms to solve portfollo problems for 

mixed utilities is enormously simplified. Those algorithms should deal with 

functions of the type u(w) = \ a exp(-s w) which can be easlly handled. L 1 1 
1 

As Cass and Stiglitz [4] have shown, the HARA utilities are the ones for 

which two-fund monetary separation holds for all distributions of the vector 

of risky returns. Since the utilities belonging to the class HARA are mixed, 

an interesting subject of further research would be to consider the class of 

mixed utilities. and restrict appropriately the set of return distributions 

so as to obtain separation theorems for this large~ family of utilities. We 

believe that such theorems should exploit the relationship between the 

distribution of returns and the distribution characterizing the mixed 

utility. 

Another possible extension of our work would be to refine even more the 

set of utility functions. An immediate restriction would be to consider the 

family of utilities whose first derivatives are Laplace transforms of 

infinitely divisible distribution functions. 7 A utility function u(w) 

belonging to this family has a first derivative which can be written as 

u' (w) = exp(-~(w». where ~ has a completely monotone first derivative. 

Hence. an immediate consequence is that the absolute risk aversion of u is 

completely monotone. We leave the analysis of such a propert y for future 

research. 
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Appendix 

PROOF OF LEMMA 3.1: (Necessity) For n = 1 the assumption implies that 

u(w) + u(w + 2h) ~ 2u(w + h) so that u is concave and thus continuous on 

(O,~). Therefore, the function ~ (w) is continuous with respect to a and w, 
a 

and 6n~ (w) is continuous with respect a, w and h. Consider the set DcR2 

h a 

such that D = {(a,h)ER2
1 a = kh, where k is a positive integer}. Then 

k-l k-l 
~ (w) = ~ (w) = \ 61u(w + ih) and 6n~ (w) = \ 6

h

n
+

1
u(w + ih). Since 

a kh L h h a L 
1=0 1=0 

n n+ 1 . (-1) 6 u(w + lh) ~ O, the result then follows from the denseness of the set 
h 

D on R2 and the continuity of both u(w) and 6n~ (w). 
h a . 

(Sufficiency) Make a = h and obtain 6n~ (W) = 6n
+

1u(w). 
h h h 

Q.E.D. 

PROOF OF LEMMA 3.2: (Necessity) Since u(w) is mixed, there exists a 

distribution function F(s) for which (4) holds. Define the distribution 

function F,(s) such that dF,(s) = [1 -s·-ShjdF(S). Using the fact that 

~ (w) = u(w + h) - u(w), it is easy to check that ~ (w) = J~e-SWdF (s). 
h h o h 

Therefore, we conclude that ~ (w) is completely monotone from Theorem 2.1. 
h 

(Sufficiency) If ~ (w) is completely monotone, then there exists a 
h 

distribution function Fh(s) such that ~h(w) = J~e-SWdFh(S). Define the 
o 

distribution function F(s) satisfying dF(s) - [1 s hjdF (s). -s h e 
Our next 

goal is to prove that F(s) is independent of h. To this end, first note that 

~ (w) = u(w + h + a) - u(w) = [u(w + h + a) - u(w + h)] + 
h+a 

[u(w + h) - u(w)] = ~ (w + h) + ~ (w). Therefore, since alaplace transform 
a h 

is uniquely determined by its associated distribution function, we have 

The 

h. 

-sh dF (s) = e dF (s) + dF (s), for all h > O and a > O. 
h+a a h 

solution dF (s) of the measure equation (27) is clearly increasing in 
h 

(27) 

For a = h (27) becomes dF (s) = (1 + e-sh)dF (s), whereas for a = 2h it 
2h h 
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becomes dF
3h

(S) = e-ShdF
2h

(S) + dFh(s) = (1 + e-sh + e-2Sh)dF
h

(S). Hence, by 

induction we get dFnh(s) = (ntle-kSh)dFh(S). 
k=O 

Taking the limit as n tends to 

infinit y yields lim dF (s) = [ 1 _Sh]dFh (sj. Therefore, lim dF (s) is 
a a 

a~ 1 - e a~ 

fini te for all s > O. This proves that both [1 1 h]dF (sj and -s h e 

dF(sJ = [1 Se_Sh]dFh(SJ are independent of h. 

co co 1 -sh 
Finally, notice that u(h) = ~ (O) = f dF (s) = f - e dF(s). 

h h s o o 

f
CO dF(s) JCO[ 1] [ 

Moreover, 1 ----s-- = 1 1 _ e-sh dFh(S) ~ 1 < co, where the 

co co 

last inequality follows because f dFh(s) ~ f dFh(s) 
1 o 

= ~ (O) = u(h) < co. 
h 

Therefore, Theorem 2.2 tells us that u(w) displays mixed risk aversion. 

Q.E.D. 

PROOF OF LEMMA 6.1: We have that 

CO co 

f 
-sw f I I -sw -cw ~(s)e dF(s) ~ ~(s) e dF(s) s He for all w > O, where 

c c 

CO 

H =f 1~(slldF(s) is finite by assumption (al. Moreover, there exists a 
c 

c 

f 
(c-s)w positive real number w > O such that ~(s)e dF(s) > H for all w > o o 

as follows from assumption (b). Therefore, fC~(S)e-$WdF(S) > He-cw , and 
o 

f
CO -$W f C -$W fco ~w hence ~(s)e dF(s) = ~(s)e dF(s) + ~(s)e dF(s) > O for all 
o o c 

w, o 

Q.E.D. 

F (ts) 
1 

PROOF OF LEMMA 6.3: (a) Note that lim F (s) 
s~o 1 

30 

= 



ts ts Jts F(T) J TdF(T) tsF(ts) - J F(T)dT tF(ts) _ sF(s) dT 
o o F(s) o 

lim --------- = lim ------------------- = lim ----------------------, (28) 
s~o r>TdF(T) s~o sF(s) _ r>F(T)dT s~o 1 _ r> F(T) dT L L L sF(s) o o o 

where the first equality in (28) follows from integrating by parts, and the 

second from dividing both numerator and denominator by sF(s). The limit of 

the first term in the last numerator of (28) is equal to t P+
1 as dietated by 

the regular variation of F. Moreover, 

1 · Jts F(T) dl' Jt F(ns) Jt t P
+

1 

lm sF(s) T = lm F(s) dn = nPdn = + 1 
s~o o s~o o o p 

(29) 

where the first equality is obtained by making the change of variable T = ns. 

For the second equality, it should be noticed that the regular variation of F 

allows us to apply the Lebesgue convergence theorem. The last equality 

follows from just performing the Riemann integral. 

Concerning the denominator of (28), we obtain in a similar fashion 

1 · r>F(T) d 
lm L sF(s) T 

s~o o 

Af ter substituting (29) and (30) into (28), we get 

t P+ 1 t P+ 1 

-

(30) 

F (ts) 
lim 1 p + 1 

F (s) = = t P+
1

, which proves the regular variation at 
s~o 1 

1 
1 - P + 1 

the origin with exponent p + 1 of F (s). 
1 

(b) Note that 

F (s) 
1 

1i m -s""'F=-(T""s'""':)'­
s~o 

s J TdF(T) 

1 
. o = l m -s-F=->"'( s....,)~­

s~o 

. r> F(T) = 1 - 11m J~ sF(s) dT , 
s~o o 

where the last equality comes from integrating by parts. Furthermore, 

(31) 

. r> F(T) 1 
11m J~ sF(s) dT = --;-r' as shown in (30). 
s~o o p 

Substituting in (31), we get the 

desired conclusion. Q.E.D. 
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Tosses ODD LOTTERlES EVEN LOTTER lES 

Probabil it ies 1/2 1/2 1 
n = 1 Payoffs O h O 

Probabilities 1/2 1/2 3/4 1/4 
n = 2 Payoffs O h O 2h 

n = 3 
Probabilities 1/2 3/8 1/8 5/8 3/8 

Payoffs O h 3h O 2h 

n = 4 
Probabil it ies 1/2 1/4 1/4 9/16 3/8 1/16 

Payoffs O h 3h O 2h 4h 

S 
Probabi 1i ties 1/2 5/32 5/16 1/32 17/32 5/16 5/32 

n = 
Payoffs O h 3h 5h O 2h 4h 

Probabil ities 1/2 3/32 5/16 3/32 33/64 15/64 15/64 1/64 
n = 6 Payoffs O h 3h 5h O 2h 4h 6h 

... 

TABLE I: Probabilities and payoffs of odd and even lotteries 
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Footnotes 

1 In a more recent paper, Gollier and Prat t [7] have also introduced the 

class of risk vulnerable utility functions, which are the ones for which every 

undesirable risk is aggravated byevery independent, unfair risk. Obviously, 

since an unfair risk is undesirable, a proper utility is risk vulnerable. On 

the other hand, risk vulnerability implies decreasing absolute risk aversion. 

2 Cass and 5tiglitz [4] proved that two-fund monetary separation holds 

in an economy populated by investors having those RARA utilities with a 

common parameter b. Note that we are excluding from our analysis the concave 

quadratic utility functions, which belong to the HARA class but they do not 

display decreasing absolute risk aversion since b = -1. 

3 A risk x is undesirable iff E[u(w + x)] s E[u(w)] for all random 

background wealth w. A risk x is loss-aggravating iff E[u' (w + x)] ~ 

E[u' (w)] for all w. The definitions of desirable and loss-ameliorating risks 

are obtained by just reversing the weak inequalities in the previous 

definitions. 

4 Pratt and Zeckhauser [13] have also shown that a utility function 

with a completely monotone first derivative is proper. Proper utilities are 

those for which every two independent, undesirable risks are mutually 

aggravated. Kimball [lOJ shows in turn that standardness implies properness. 

5 A trivial example satisfying A(w) = R(w) = O for all w ~ O is given by 

the linear, mixed utility u(w) = Cw whose associated density function is the 

Dirac delta function o(s), i.e., F(s) = C for all s ~ O. 

6 Obviously, when financial markets are complete, the returns a and the 
• 1 

amounts z invested in each pure security (i = 1, ... ,S) can be derived from 
1 

both the returns and the optimal portfolio of the existing (not necessarily 

pure) securities. 

7 A distribution function is infinitely divisible iff, for every natural 

number n, it can be represented as the distribution of the sum of n 

independent random variables having a common distribution. For instance, the 

gamma distribution is infinitely divisible. 
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