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On Omitted Variable Bias and Measurement Error in Returns to
Schooling Estimates

Erik Mellander

November 13, 1997

Abstract. Lam and Schoeni (1993) consider a regression where earn-
ings are explained by schooling and ability. They assume that data on ability
are lacking and that schooling is measured with error. The estimate obtained
by regressing earnings on schooling thus contains both omitted variable bias,
which is positive, and measurement error bias, which is negative. Adding a
family background variable is claimed to: i) decrease the omitted variable bias
towards, but not below, zero and ii) decrease the measurement error bias even
further. This note claims that while ii) is true, even in the context of multiple
family background variables, i) is in general incorrect. The omitted variable
bias may decrease or increase in magnitude as well as change with respect to
sign. Conditions are provided under which i) holds. A simulation procedure is
suggested that will yield consistent estimates of the total bias and its compo-
nents, conditional upon values on the true return and the measurement error
variance.

1. Introduction

Many practitioners estimating the return to schooling have noted the tendency for
the return estimates to fall when, for want of "ability" measures, family background
variables are included in the earnings equation. Could this be a general property,
i.e. is it possible to demonstrate analytically that it holds under a large variety of
circumstances?
Lam and Schoeni (1993) claim that this is indeed the case, although this is not

the main point in their article. Their analysis is primarily empirical and reports on a
study of earnings and returns to education for a large sample of prime-aged Brazilian
males. By means of a model of assortative mating they motivate a large number of
family background variables, intended as proxies for ability in the earnings regression.
When the family background variables are included, the estimated returns to

schooling fall from around 18 percent to approximately 12 percent. In discussing
this ¯nding, Lam and Schoeni (henceforth LS) point out that if there is measure-
ment error in the schooling variable then this 6 percent reduction cannot be taken
to imply that traditional estimates of the return to schooling (excluding family back-
ground variables) are one-third omitted variable bias. Referring to Welch (1975) and
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Griliches (1977), they note that inclusion of variables that are correlated with a work-
er's schooling may increase the measurement error bias as well as reduce the omitted
variable bias. The addition of family background variables will thus not necessarily
generate estimates of the return to schooling that are closer to the true return than
the original estimates.
LS attempt to assess how much of the decrease in the estimated return to educa-

tion that can be attributed to increased measurement error bias. Their approach can
be described as follows. They ¯rst provide formulas for the asymptotic bias in the
estimated return to schooling, before and after the inclusion of a single family back-
ground variable in the earnings regression. In these equations, the total biases are
additively decomposed into omitted variable bias and measurement error bias, respec-
tively. LS claim, without proof, that "....under plausible assumptions ...." (op.cit.,
p. 719) i) the omitted variable bias is positive in both cases but smaller after the
inclusion of the family background variable and ii) the measurement error bias is
negative in both cases but larger in magnitude when the family background variable
is included. The addition of the family background variable is thus claimed to a®ect
the omitted variable bias and the measurement error bias in the same direction; both
changes lower the estimated return to schooling.
Secondly, they note that given knowledge about the true return to schooling and

the noise-to-signal-ratio, i.e. the variance of the measurement error in schooling
divided by the total variance in schooling, their analytical results imply that one
can numerically compute the measurement error bias. They use this ¯nding in a
simulation analysis to compute how much of the change in the estimated return to
schooling that can be attributed to a change in the measurement error bias. The
simulations are conducted both with a single family background variable and several
family background variables. That is to say, in the application they implicitly extend
their theoretical conclusions, drawn in the context of a single family background
variable, to the case with many family background variables.
The purpose of this note is threefold. The ¯rst purpose is to correct an error in

LS's theoretical analysis of the e®ects of including a single family background variable
in the earnings regression. In Section 2 it will be demonstrated that, in general, the
conclusion i) is incorrect. It is shown, however, that there are conditions under which
the claim i) is true. Finally, it is demonstrated that the formula suggested by LS
corresponds to a special case of these conditions. The implicit constraint upon which
LS's expression for the omitted variable bias is based is shown to be equivalent to
assuming that the correlation between schooling and the family background variable
disappears completely when one controls for ability.
The second purpose is to extend the theoretical analysis to an arbitrary number

(K) of family background variables. This is done in Section 3 where a general as-
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ymptotic bias equation is derived. It turns out that with respect to the measurement
error bias the result derived in the context of one family background variable holds
in the K¡ variable case, too. The indeterminacy of the omitted variable bias is
even larger in the general case than in the case with K = 1; the conditions which
ascertain that the omitted variable bias is reduced and unchanged in the one family
background variable case cannot readily be extended to the case when K ¸ 2. It is
shown, however, that there is a multivariate counterpart to LS' implicit constraint
which is quite useful.
The ¯nal purpose is to suggest an alternative to the simulation procedure em-

ployed by LS to study to what extent a change in the estimated return to schooling,
brought about by the inclusion of family background variables, is due to increased
measurement error bias. The LS procedure has the undesirable property that the
share of the change in the estimated return that they attribute to a change in the
measurement error bias can exceed 100 percent. It is shown that using the same
information as LS do one can avoid this troublesome feature and, moreover, obtain
more information about the biases in the returns to schooling estimates. Concluding
comments are given in Section 5.

2. The Case with One Family Background Variable

LS's starting point is the following equation, giving the "true" relation between in-
come, Y , schooling, S, and unobserved "ability", A, for the ith individual

Yi = ¯0 + ¯sSi + ¯aAi + ui , where ¯s , ¯a > 0; (1)

and ui is a random disturbance with zero mean and constant variance.
1 For simplicity,

the individual observations will be treated as random draws from one and the same
underlying population. The ui are thus viewed as realizations of the random variable
u, characterized by E (u) = 0 and V ar (u) = ¾2u .

2 In addition, they assume that the
schooling variable is measured with error, such that observed schooling, S¤, can be

1This is LS's equation (1), except that the subindex h for "husband" has been suppressed. Also,
LS do not explicitly state the positivity constraints on ¯s and ¯a in connection with their equation
(1). They consistently use these restrictions in their discussion about omitted variable bias and
measurement error bias, however.

2The individual observations could equivalently be regarded as corresponding to independent but
identical distributions. The disadvantage of this formulation is that the stochastic assumption has
to be written in the following, lengthier, way

E (ui) = 0; E (uiuj) =

½
¾2

u if j = i
0 if j 6= i

for all i.
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expressed according to
S¤i = Si + wi , (2)

where w represents pure measurement error uncorrelated with S, i.e. E (w) = 0,
V ar(w) = ¾2w , and Cov(S;w) = 0: Finally, LS implicitly take w to be uncorre-
lated with A and u, as well, and both u and w to be uncorrelated with the family
background variable, F . Collecting all these zero covariances we have

Cov (w; S) = Cov (w;A) = Cov (w; u) = Cov(w; F ) = Cov(u; F ) = 0: (3)

LS ¯rst consider the case when Y is simply regressed on S¤ - i.e. when the
unobserved ability variable is disregarded and the measurement error in schooling
ignored . The probability limit of the estimated return to education is then given by3

plim ^̄S = ¯s ¡ ¯s¸+ ¯a ^̄AS (1¡ ¸) , (4)

where ¸ is the noise-to-signal ratio, i.e.

¸ ´ V ar (w)

V ar (S¤)
, 0 · ¸ < 1, (5)

and ^̄AS is the coe±cient from a hypothetical regression of true ability on true school-
ing:

^̄
AS ´ Cov (A; S)

V ar (S)
, ^̄

AS > 0. (6)

The second term on the RHS of (4) is the measurement error bias and the third
term is the omitted variable bias. It can be seen that the measurement error bias
is negative and increasing in magnitude with the variance of the measurement error.
Since we are assuming, like LS, that schooling and ability are positively correlated so
that ^̄AS > 0 the omitted variable bias is positive. It should be noted that, in general,
one cannot rule out the possibility that the measurement error bias dominates the
omitted variable bias, in which case the total bias is negative.
Given (4), LS consider how the probability limit of the estimate ^̄S is a®ected if

a measure of family background, F , is added to the regression. Their result for this
case contains an error, however. The correct expression is provided in Proposition 1.
LS's equation is considered immediately after the proposition. Three corollaries to
Proposition 1 are then given. The last of these provides an interpretation between
the general result in Proposition 1 and the equation suggested by LS.

3Equation (4) is equal to LS's equation (7), which they give without proof. Since the result can
be obtained as a special case of Proposition 1 below the proof is omitted here as well.
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Proposition 1. Given (1), (2), and (3), OLS regression of Y on S¤ and a family
background measure, F , yields an estimate of ¯s whose probability limit is given by

plim ^̄S¢F = ¯s ¡ ¯s
¸

1¡R2S¤F
+ ¯a ^̄AS (1¡ ¸)

³
1¡ µ ¢ ½2AF ¢S¤

´
(7)

where ¸ and ^̄AS are de¯ned by (5) and (6), respectively. Further, R
2
S¤F (< 1) is

the squared correlation of S¤ and F; and ½2AF ¢S¤ is the squared partial correlation of
ability and the family background measure when one controls for schooling, i.e.

½2AF ¢S¤ =

0
@ ½AF ¡ ½AS¤ ¢ ½S¤Fq

1¡ ½2AS¤
q
1¡ ½2S¤F

1
A
2

;

while µ is de¯ned according to

µ =
(½S¤F =½AS¤)¡ ½AS¤ ¢ ½S¤F

½AF ¡ ½AS¤ ¢ ½S¤F
; ½AF ¡ ½AS¤ ¢ ½S¤F 6= 0 ,

where ½S¤F , ½AS¤ , and ½AF denote bivariate correlations.

Proof. See Appendix.

The equation provided by LS [eq. (8) in their paper] is

plim ^̄S¢F = ¯s ¡ ¯s
¸

1¡R2S¤¢F
+ ¯a ^̄AS (1¡ ¸)

³
1¡ ½2AF ¢S¤

´
:

This equation di®ers from equation (7) with respect to the ¯nal term, i.e. the ex-
pression for the omitted variable bias. More speci¯cally, the last parenthesis reads
(1¡ ½2AF ¢S¤) instead of (1¡ µ ¢ ½2AF ¢S¤) in (7). Since ½2AF ¢S¤ 2 [0; 1] by construction,
and ½2AF ¢S¤ 2]0; 1[ by assumption, LS's formulation implies the omitted variable bias
invariably decreases towards zero upon the inclusion of a family background variable.
Corollary 2 shows, however, that the omitted variable bias may well increase, thus
driving the estimate of ¯s upward, rather than downward. Furthermore, Corollary
2 demonstrates that the inclusion of the family background variable may change the
sign of the omitted variable bias. This possibility was, for obvious reasons, overlooked
by LS.
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Corollary 2. If schooling and the family background variable are correlated, i.e. if
R2S¤F > 0; then the inclusion of the family background variable unambiguously in-
creases the measurement error bias, compared to when no family background variable
is included. If R2S¤F = 0 the measurement error bias will be unchanged. The e®ect
on the omitted variable bias cannot be determined a priori with respect either to
magnitude or to sign. This is true also in the absence of measurement error.

Proof. The ¯rst part of the corollary follows trivially from the facts that, by con-
struction, R2S¤F 2 [0; 1] and, by assumption, R2S¤F < 1: The second part is easily
established by means of examples; cf. Table 1.

Table 1: The e®ect on omitted variable bias from including a family background
variable in the earnings equation: four examples.

(½S¤F ; ½AF ; ½AS¤) µ (1¡ µ ¢ ½2AF ¢S¤) Omitted variable bias

(0:4; 0:3; 0:5) 6:000 0:905 decreases
(0:5 ; 0:2; 0:6) ¡5:333 1:111 increases
(0:7; 0:7; 0:4) 3:500 ¡0:441 changes sign, decreases in abs. value
(0:7 ; 0:8; 0:3) 3:599 ¡1:699 changes sign, increases in abs. value

The examples in Table 1 clearly demonstrate that virtually anything can happen
to the omitted variable bias when the family background variable is included in the
earnings equation. Finally, as shown in the table, the e®ects on the omitted variable
bias are manifested in the factor (1¡ µ ¢ ½2AF ¢S¤) ; they are independent of the factor
(1¡ ¸), i.e. the extent of measurement error. Q.E.D.

It is rather di±cult to argue that the example given by row 2 in Table 1 is
implausible. Yet it has the e®ect of increasing the omitted variable bias, thus driving
the estimate of ¯s upward, contrary to the claim in LS. Also, LS did not consider the
possibility that the change in the omitted variable bias may lower the estimate of ¯s
through an alteration in sign, from positive to negative. As indicated by rows 3 and
4 in Table 1, examples of such cases are not hard to construct.4

4In studying Table 1, the careful reader might ask if there isn't a connection between the three
bivariate correlations in the ¯rst column and, if so, has this connection been taken into consideration?
The answer is yes, on both questions. The fact that ½2

AF ¢S¤ 2 [0; 1] does indeed impose constraints
on its bivariate components. The latter have accordingly been chosen such that they are consistent
with the property ½2

AF ¢S¤ 2 [0; 1].
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In Corollary 3 we discuss a special case of the general situation considered in
Corollary 2. A constraint on µ is provided which ascertains that the omitted variable
bias stays positive and is reduced towards zero, i.e. the situation exempli¯ed by row
1 in Table 1. A condition is also given which is necessary, but not su±cient, for this
constraint to be satis¯ed.

Corollary 3. If, and only if, 0 < µ · 1=½2AF ¢S¤ then the positive omitted variable
bias will remain positive and be reduced towards zero when the family background
variable is added to the earnings equation. A necessary, but not su±cient, condition
for these inequalities to hold is that sign (½AF ) = sign (½S¤F ) .

Proof. That the constraint implies that the omitted variable is reduced while staying
positive follows directly from the fact that the change in the bias is determined by
(1¡µ ¢½2AF ¢S¤) where ½2AF ¢S¤ 2 ]0; 1] . For values on µ above ½2AF ¢S¤ the omitted variable
bias changes sign. For µ = 0 the omitted variable bias is una®ected and thus not
reduced. For µ < 0 the omitted variable biases increases.
To prove the necessary condition, ¯rst consider the case when ½S¤F > 0 . In

this case the numerator of µ is unambiguously positive; cf. the de¯nition of µ in
Proposition 1 and remember that ½AS¤ = ½AS 2 ]0; 1[ , by assumption. A neces-
sary requirement for µ to be positive, which in turn is necessary for µ to belong to
]0; 1=½2AF ¢S¤] , is thus that the denominator of µ is positive, too. This requires ½AF > 0 .
But it may be that 0 < ½AF < ½AS¤ ¢ ½S¤F in which case µ < 0 . Hence, for ½S¤F > 0
the condition ½AF > 0 is necessary but not su±cient for the omitted variable bias to
remain positive and be reduced towards zero. In a perfectly analogous way it can be
shown that if ½S¤F < 0 then ½AF < 0 is a necessary but not su±cient condition for
maintaining the omitted variable bias positive and decreasing it towards zero. The
case ½S¤F = 0 can be disregarded because it implies µ = 0 . Putting the results for
the cases ½S¤F > 0 and ½S¤F < 0 together one obtains the necessary and condition
stated in the corollary. Q.E.D.

In Corollary 4 we proceed to a special case of the special case characterized in
Corollary 3, namely when µ = 1, the constraint implicitly imposed by LS. Corollary
4 provides an interpretation of this constraint, in terms of the correlation between
schooling and family background, conditional on ability.

Corollary 4. If the correlation between schooling and family background is equal to
zero when ability is controlled for, i.e. if ½S¤F ¢A = 0 , then µ = 1. This is a su±cient,
but not necessary, condition for the positive omitted variable bias to decrease towards
zero when one family background variable is included in the earnings regression.
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Proof. Note that, by de¯nition,

½S¤F ¢A =
½S¤F ¡ ½AS¤ ¢ ½AFq
1¡ ½2AS¤

q
1¡ ½2AF

. (8)

Accordingly, if ½S¤F ¢A = 0 then (½S¤F =½AS¤) = ½AF and, consequently, µ = 1: Given
that µ = 1, the second part of the corollary follows immediately from Corollary
2. Q.E.D.

In summary, the above results show that LS draw too strong conclusions about
how the probability limit of the estimated return to schooling is a®ected when a
family background variable is used as a proxy for "ability" and the schooling variable
is subject to measurement error. They claim that the positive omitted variable bias
and the negative measurement error bias, which together make up the total bias, are
unchanged with respect to sign but decrease and increase in magnitude, respectively.
As shown by Corollary 2 the claim is correct only with respect to the measurement
error bias. The omitted variable bias may change sign and/or increase in magnitude.
Accordingly, contrary to what LS maintain the inclusion of the family background
variable can increase the probability limit of the estimated return to schooling.

3. The General Case

In this section the number of family background variables will be taken to be equal
to K (K ¸ 1) : The K-variable counterpart to Proposition 1 is given by the following
proposition.

Proposition 5. Given (1), (2), and (3), OLS regression of Y on S¤ and a K £ 1
vector F of family background variables yields an estimate of ¯s whose probability
limit is given by

plim ^̄S¢F = ¯s ¡ ¯s ¢ ¸
1¡R2

S¤F

+ ¯a ^̄AS
(1¡¸)
1¡R2

S¤F

·
1¡ PK

j=1

½AFj
½AS¤

p
V ar(Fj)p
V ar(S¤)

plim (®̂j)
¸

where ¸ and ^̄AS are de¯ned by (5) and (6), respectively, and ®̂j is the OLS estimate
of the coe±cient for Fj in the linear regression of S

¤ on F.

Proof. See Appendix.
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There are several features of Proposition 2 that are worth noting. The ¯rst and most
important is that the result for the measurement error bias in the case with one
family background variable extends to the case with an arbitrary number of family
background variables. Inclusion of family background variables as proxies for ability
in a wage equation where schooling is measured with error will always increase the
negative measurement error bias, thus driving the estimate of ¯s downward.
The second interesting property is that, just like the measurement error bias, the

omitted variable bias is inversely related to 1 ¡R2S¤F . That is to say, the larger the
part of the variance in S¤ explained by the family background variables the higher is
the probability that the omitted variable bias increases, compared to the case when
family background variables are disregarded. However, this tendency is balanced by
the sum within brackets. For example, if the coe±cients in the regression of S¤ on
F are all positive and if ability is negatively correlated with the family background
variables then the sum will be positive, as ½AS¤ > 0 by assumption. This will create
a downward pressure on the omitted variable bias. In general, it is impossible to say
anything about the relative weights of these opposing forces.
To illustrate how di±cult it is to say anything a priori about how the omitted

variable bias is a®ected in the general case, it is instructive to consider the caseK = 2.
This is done in Example 1, below. The example also enables a simple, albeit non-
stringent, demonstration of the equivalence between Proposition 1 and Proposition 2
when K = 1.

Example 6. The omitted variable bias for K = 2:

By means of standard results, the probability limits of the coe±cients in the regression
of S¤ on F1 and F2 can be expressed as

plim (®̂1) =
(½S¤F1 ¡ ½F1F2 ¢ ½S¤F2)³

1¡ ½2F1F2
´

q
V ar (S¤)

q
V ar (F1)

and

plim (®̂2) =
(½S¤F2 ¡ ½F1F2 ¢ ½S¤F1)³

1¡ ½2F1F2
´

q
V ar (S¤)

q
V ar (F2)

.

By Proposition 2, the omitted variable bias thus equals

¯a ^̄AS
(1¡ ¸)
1¡R2S¤F

8
<
:1¡

2
4½AF1 (½S¤F1 ¡ ½F1F2 ¢ ½S¤F2) + ½AF2 (½S¤F2 ¡ ½F1F2 ¢ ½S¤F1)

½AS¤ ¢
³
1¡ ½2F1F2

´

3
5

9
=
; :

Concentrating on the ratio within brackets we see that the denominator is unam-
biguously positive, as ½AS¤ 2]0; 1[, by assumption. A necessary, but not su±cient,
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requirement to create a downward pressure on the omitted variable bias is thus that
the numerator is positive, too. However, the sign of the numerator depends to a
large extent on the signs and relative magnitudes of ½AF1 and ½AF2 , both of which
are unknown and can lie anywhere in the closed interval [-1,1].

Example 1 enables us to check that Proposition 1 and Proposition 2 yield the
same results for K = 1. To this end, set ½F1F2 = ½S¤F2 = ½AF2 = 0 and remember
that, for K = 1, R2S¤F is equal to ½

2
S¤F1. This reduces the expression for the omitted

variable bias in Example 1 to

¯a ^̄AS (1¡ ¸)£ 1

1¡ ½2S¤F1

Ã
1¡ ½AF1 ¢ ½S¤F1

½AS¤

!
.

By means of Table 1 it can be seen that numerical evaluation of the factor after "£ "
yields the same result as evaluation of (1¡ µ ¢ ½2AF ¢S¤) which demonstrates that (for
the examples in the table) the two propositions are equivalent.
We next give a corollary which is a multivariate extension of Corollary 3.

Corollary 7. For K ¸ 2 assume that the correlations between schooling and all the
family background variables are zero when ability is controlled for, i.e. ½S¤Fj ¢A = 0
for j = 1; ::::; K. Then

L ´
KX

j=1

½S¤Fj ¢
q
V ar (Fj)q
V ar (S¤)

plim (®̂j)

8
><
>:

> 0 is a necessary, but not su±cient,

¸ R2S¤F is a su±cient, but not necessary,

condition for the omitted variable bias to decrease when two or more family back-
ground variables are included in the earnings equation. The omitted variable bias may
decrease below zero under both the necessary and the su±cient conditions. However,
given either of these conditions,

³
1=

p
L

´
> ½AS¤ is both necessary and su±cient for

the omitted variable bias to decrease towards but not below zero.

Proof. If ½S¤Fj ¢A = 0 for j = 1; ::::;K then ½AFj = ½S¤Fj=½AS¤, by (8). Thus

¡
KX

j=1

½AFj
½AS¤

q
V ar (Fj)q
V ar (S¤)

plim (®̂j) = ¡ 1

½2AS¤

KX

j=1

½S¤Fj ¢
q
V ar (Fj)q
V ar (S¤)

plim (®̂j) .

Using the de¯nition of L and Proposition 2 it is clear that the omitted variable bias
will only decrease if

1¡ 1

½2AS¤
¢ L < 1¡R2S¤F , L

R2S¤F
> ½2AS¤ ,
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from which both the necessary and the su±cient conditions follow immediately be-
cause ½2AS¤ 2]0; 1[ . Given that L is positive, the omitted variable bias will decrease
and stay positive only if

L <
1

½2AS¤
, 1p

L
> ½AS¤ .

This proves the last claim. Q.E.D.

Corollary 4 shows that the property that Corollary 3 cannot be readily extended
to the multivariate case. With the given additional conditions, the omitted variable
bias is certain to decrease, however. A nice feature is that these additional conditions
can easily be checked; it is straightforward to compute L by means of the data that
are assumed to be available. Moreover, the corollary provides an upper limit on the
unknown correlation between schooling and ability, i.e. ½AS¤ , which ascertains that
the omitted variable bias both decreases and stays positive.
Finally, we consider what the results imply for the e®ects on the total bias. As

we have seen, the probability limit of the estimated return to schooling may not
necessarily decrease when family background variables are added to the earnings
equation.5 Moreover, as noted in Section 2, it cannot be taken for granted that the
total bias is positive before the family background variables are included. In trying
to assess what happens to the total bias when the family background variables are
added to the regression we thus have four di®erent possibilities to consider, cf. Table
2.6

Table 2: The e®ect on the total bias from including family background variables,
as a function of the initial total bias and the change in the estimated return

Initial total bias > 0 Initial total bias < 0

plim
³
^̄
S¢F ¡ ¯s

´
< 0 ? Total bias " (in abs. value)

plim
³
^̄
S¢F ¡ ¯s

´
> 0 Total bias " ?

The reason for the question marks in the diagonal entries in the table is the
possibility of "over-shooting" { i.e. a change in the estimated return in the right

5Admittedly, this section contains no proof or example showing that for K ¸ 2 the omitted
variable bias may actually increase so much that plim ^̄

S¢F > plim ^̄
S . In Section 2 it has been shown

to be a real possibility in the case K = 1, however, and that allowing for several family background
variables would eliminate this possibility seems rather far-fetched. Given data on schooling and
family background variables one could compute examples similar to those in Table 1.

6For simplicity, Table 2 abstracts from the theoretically possible but in practice highly unlikely
situations where the initial bias and/or the change in the parameter estimates are exactly zero.
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direction but by a too large amount. Thus, the only cases that can be unambiguously
characterized are those where the inclusion of family background variables leave the
researcher worse o® than if he/she had disregarded this information. This a quite
discouraging result, of course.

4. Simulating the bias in the estimated returns

What, then, are the implications for the simulation procedure suggested by LS? As
the above results show, to compute the share of the change in the estimated return
that is attributable to changed measurement error is in general not justi¯ed. The
change in the measurement error may be larger than the change in the estimated
return, thus invalidating the share interpretation.
However, if we condition upon ¯s and ¸ , as LS do in their simulations, we can

actually generate much more information than they do, without adding any further
assumptions. Speci¯cally, consistent estimates can be constructed of both the to-
tal bias and the omitted variable bias, before and after the inclusion of the family
background variables.
Denote the total bias by TB . For a given value of ¯s the consistent estimates of

the total biases are given by
dTBS

¯̄
¯
¯s
= ^̄

S ¡ ¯s (9)

and
dTBS¢F

¯̄
¯
¯s
= ^̄

S¢F ¡ ¯s . (10)

From (9) and (10) it is clear that the change in the estimated returns considered by
LS equals the change in the total biases. However, the di®erence dTBS¢F ¡dTBS =
^̄
S¢F¡ ^̄S does not give any information about whether the family background variable
has brought the estimated return closer to the (presumed) true return, ¯s.
Next, denote the measurement error bias by MEB . Conditional upon ¯s and ¸ ,

exact measures of the measurement error biases are given by

MEBS j¯s;¸ = ¯s¸ (11)

and

MEBS¢Fj¯s;¸ = ¯s
¸

1¡R2S¤F
: (12)

Finally, denote the omitted variable bias by OVB . Using (4) and (7), consistent
estimates of the omitted variable biases are simply obtained according to

dOVBS
¯̄
¯
¯s;¸

= dTBS
¯̄
¯
¯s

¡ MEBSj¯s;¸ (13)
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and
dOVBS¢F

¯̄
¯
¯s;¸

= dTBS¢F
¯̄
¯
¯s

¡ MEBS¢Fj¯s;¸ . (14)

The formulas (9) { (14) are always applicable, irrespective of how the family
background variable a®ects the omitted variable bias.

5. Concluding comments

Using previous work by Lam and Schoeni (1993) as the starting point, the intention of
this note has been to shed further light on how the common practice of using family
background variables as proxies for ability a®ects the bias in returns to schooling
estimates, when the measure of schooling is subject to random error. The bias can
then be additively, but not independently, decomposed into omitted variable bias,
arising because of the lacking ability measure, and measurement error bias, due to
the random error in schooling.
Lam and Schoeni (LS) conduct their theoretical analysis for the case with one

family background only and implicitly assume that it can be extended to the case
with several family background variables. This study has ¯rst examined whether LS
results hold true in the one variable case and then considered the generalization to
the case with an arbitrary number of variables. The results are partly discouraging
and partly reassuring.
The discouraging result is that the analysis of how the omitted variable bias is

a®ected seems to be considerably more complicated than claimed by LS. LS main-
tained that i) the omitted variable bias is always positive and bounded from below
by zero and ii) is driven towards its lower bound when family background variables
are introduced in the earnings equation. This has been shown to be true only under
special conditions in the one variable case and under even more restrictive conditions
in the case with several family background variables. In general, whereas the omitted
variable bias is positive in the absence of the family background variables, including
the family background variables in the wage equation may reduce the omitted vari-
able bias below zero, i.e. alter its sign. Alternatively, the bias may increase, rather
than decrease. Moreover, if the bias changes sign it is impossible on a priori grounds
to determine whether it is reduced in the sense of becoming smaller in absolute value.
The reassuring result concerns the measurement error bias. LS claimed that

this bias in the estimated return to schooling is invariably negative and increases in
magnitude with the inclusion of family background variables in the earnings equation.
This quite strong claim has been shown to be true not only in the case with one
family background variable but in the general case as well. Speci¯cally, the downward
pressure on the estimated return increases monotonically with the number of family
background variables.
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A somewhat surprising ¯nding is that, qualitatively, the interdependence between
the two types of biases studied does not matter very much for the results. The
existence of measurement error a®ects the level of the omitted variable bias { larger
measurement error implies smaller omitted variable bias { but it has nothing to do
with whether the omitted variable bias increases or changes sign when the family
background variables are introduced. These possibilities are intrinsic to the omitted
variable bias and thus do exist even if schooling is measured without error.
Given the results for omitted variable bias and the measurement error bias, what

can be said about their sum, i.e. the total bias? It has been shown that a priori very
little can be said, indeed. In general, we cannot be certain whether the total bias
is negative or positive before the introduction of the family background variables.
Moreover, the estimated return to schooling may either decrease or increase. This
yields four di®erent outcomes and of these the only ones that can be unambiguously
characterized are those where the total bias is larger after the inclusion of the back-
ground variables than before. This happens when the initial total bias is positive and
the estimated return increases or when the initial bias is negative and the estimated
return decreases. In the other cases, i.e. when the initial bias and the change in the
estimated return have di®erent signs, the total bias may decrease but it may also
increase (in absolute value). The latter case may arise because of "over-shooting",
i.e. a change in the right direction but by a too large amount.
Faced with the di±culties to establish analytical results it is natural to turn

to simulations. LS employed a simulation procedure to determine the share of the
change in the estimated return that can be attributed to increased measurement
error bias. The present analysis shows that LS's approach is not justi¯ed in general,
because the change in the measurement error bias can exceed the change in the total
bias. However, it is demonstrated that with minor alterations LS's procedure can
still be applied. Conditional on given values on the true return to schooling and the
measurement error variance, consistent estimates can be obtained of the levels of the
total bias and its components, before and after the introduction of family background
variables.
The analysis has been based on a very stylized "true" earnings equation; earnings

are explained by schooling and ability. The question thus arises if a richer speci-
¯cation would yield qualitatively di®erent results. Including control variables like
age, sex, etc. probably merely adds only algebra and no content. However, if family
background were to have not only an indirect e®ect on earnings, as in the present
model, but a direct e®ect as well the picture might change. Another issue that should
be considered in future research is the practical importance of the analytical results
derived here. Simulations on the LS data set could perhaps provide an answer to this
question.
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A. Appendix: Proofs of Propositions

Proof of Proposition 1. Denote mean sums of squares and cross-products according
to

qs¤s¤ =
1

N

NX

i=1

³
S¤i ¡ ¹S¤

´2
and qs¤f =

1

N

NX

i=1

³
S¤i ¡ ¹S¤

´ ³
Fi ¡ ¹F

´
.

Then, by standard results for regressions involving two regressors and in accordance
with well-known properties of probability limits,

plim ^̄
S¢F =

plim (qff ) plim (qs¤y)¡ plim (qs¤f ) plim (qfy)

plim (qs¤s¤) plim (qff )¡ [plim (qs¤f )]2
.

To evaluate this expression, ¯rst note that

plim (qff) = V ar (F ) . (A.1)

Next, by (2) and (3),

plim (qs¤s¤) = V ar (S
¤) = V ar (S) + V ar (w) . (A.2)

plim (qs¤f ) = Cov (S
¤; F ) = Cov (S; F ) (A.3)

Further, by (1)and (3)

plim (qfy) = ¯sCov (S; F ) + ¯aCov (A;F ) = ¯sCov (S
¤; F ) + ¯aCov (A;F ) ; (A.4)

where the last equality follows from (A.3). Finally, by (1) - (3)

plim (qs¤y) = ¯sV ar (S) + ¯aCov (A; S
¤) = ¯sV ar (S) + ¯aCov (A; S) . (A.5)

Collecting results and rearranging we get

plim ^̄
S¢F =

¯s
n
V ar (S)V ar (F )¡ [Cov (S¤; F )]2

o

V ar (S¤)V ar (F )¡ [Cov (S¤; F )]2

+
¯a [V ar (F )Cov (A; S)¡ Cov (S¤; F )Cov (A;F )]

V ar (S¤) V ar (F )¡ [Cov (S¤; F )]2 : (A.6)
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To simplify the ¯rst term in (A.6), ¯rst substitute [V ar (S¤)¡ V ar (w)] for V ar (S),
then divide the numerator and the denominator by [V ar (S¤)V ar (F )] ; and, ¯nally,
use (5). This yields

¯s
n
V ar (S)V ar (F )¡ [Cov (S¤; F )]2

o

V ar (S¤)V ar (F )¡ [Cov (S¤; F )]2 = ¯s ¡ ¯s
¸

1¡ ½2S¤F
. (A.7)

To rewrite the second term in (A.6) ¯rst divide the numerator and the denominator
by [V ar (S¤)V ar (F )] and note that, by (2)

Cov (A; S)

V ar (S¤)
= ^̄

AS (1¡ ¸) ; (A.8)

where ^̄AS and ¸ are de¯ned by (6) and (5); respectively. This yields

¯a [V ar (F )Cov (A; S)¡Cov (S¤; F )Cov (A;F )]
V ar (S¤)V ar (F )¡ [Cov (S¤; F )]2

= ¯a ^̄AS (1¡ ¸) ¢ ³ (A.9)

where

³ ´
1¡ ½2S¤F Cov(A;F )V ar(S¤)

Cov(S¤;F )¢Cov(A;S)
1¡ ½2S¤F

. (A.10)

Using the equality Cov (A; S) = Cov (A;S¤) and rearranging one can rewrite ³ ac-
cording to

³ = 1¡
½2S¤F

½AF ¡ ½S¤F ¢ ½AS¤
½S¤F ¢ ½AS¤
1¡ ½2S¤F

. (A.11)

It remains to prove that the second term on the RHS of (A.11) is equal to the
product µ ¢½2AF ¢S¤. Multiplication of the numerator and the denominator by (1¡ ½2AS¤)
yields

½2S¤F
½AF ¡ ½S¤F ¢ ½AS¤
½S¤F ¢ ½AS¤
1¡ ½2S¤F

=
[(½S¤F=½AS¤) ¡ ½S¤F ¢ ½AS¤] (½AF ¡ ½S¤F ¢ ½AS¤)

(1¡ ½2S¤F ) (1¡ ½2AS¤)

= µ ¢ ½2AF ¢S¤;

where µ and ½2AF ¢S¤ are de¯ned in Proposition 1. Now, substitute this equality in
(A.11) and, subsequently, (A.11) in (A.9). The resulting expression and (A.7) can
then be used in (A.6). Finally, to get (7), note that in the case with only one family
background variable ½2S¤F = R

2
S¤F . Q.E.D.
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Proof of Proposition 2. Let the (K + 1) square matrix Qxx be de¯ned as

Qxx =

0
BBB@

qs¤s¤ qs¤f
(1£ 1) (1£K)
qfs¤ Q®

(K £ 1) (K £K)

1
CCCA

where

qs¤s¤ =
1

N

NX

i=1

³
S¤i ¡ ¹S¤

´2
;

and the typical elements of the vector qfs¤
³
= q

0
s¤f

´
and the matrix Q® are

qfs¤ =
³
qfjs¤

´
=

"
1

N

NX

i=1

³
Fij ¡ ¹Fj

´ ³
S¤i ¡ ¹S¤

´#
;

and

Q® =
³
qfkfj

´
=

"
1

N

NX

i=1

³
Fik ¡ ¹Fk

´ ³
Fij ¡ ¹Fj

´#
;

respectively. Similarly, denote by qxy the (K + 1)£ 1 vector whose ¯rst element is

qs¤y =
1

N

NX

i=1

³
S¤i ¡ ¹S¤

´ ³
Yi ¡ ¹Y

´

and whose following elements are

qfjy =
1

N

NX

i=1

³
Fij ¡ ¹Fj

´ ³
Yi ¡ ¹Y

´
; j = 1; :::K:

The OLS estimate of ¯s is given by the ¯rst element of (K + 1) vector

Q¡1
xxqxy =

1

det (Qxx)
adj (Qxx) qxy . (A.12)

where

adj (Qxx) =

0
BBBB@

Cs¤s¤ Cf1s¤ ¢ ¢ ¢ CfKs¤
Cf1s¤ Cf1f1 ¢ ¢ ¢ Cf1fK
...

...
. . .

...
CfKs¤ Cf1fK ¢ ¢ ¢ CfKfK

1
CCCCA
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is the transpose of the matrix of cofactors of Qxx : Thus, Cs¤s¤ = det (Q® ) and,
e.g., Cf3s¤ is (¡1) times the determinant of the matrix obtained by deleting the ¯rst
column and the fourth row of Qxx: Accordingly,

plim ^̄S¢F =
plim (qs¤y) ¢ plim (Cs¤s¤) +

PK
j=1 plim

³
qfjy

´
plim

³
Cfjs¤

´

plim [det (Qxx)]
:

To simplify this expression ¯rst use (A:5), (A.2), and (A:4) to get

plim ^̄S¢F = ¯s
[V ar(S¤)¡V ar(w)] plim(Cs¤s¤)+

PK

j=1
Cov(S¤;Fj) plim

³
Cfjs¤

´

plim[det(Qxx)]

+ ¯a
Cov(A;S)¢plim(Cs¤s¤)+

PK

j=1
Cov(A;Fj) plim

³
Cfjs¤

´

plim[det(Qxx)]
:

(A.13)

We now further simplify the two terms in (A.13) in turn.
Concerning the ¯rst term in (A.13), note that in accordance with the rules for

Laplace expansions of determinants

V ar (S¤) plim (Cs¤s¤) +
KX

j=1

Cov (S¤; Fj) plim
³
Cfjs¤

´
= plim [det (Qxx)] : (A.14)

Thus, by (A.14), (5), and (A.12)

¯s
[V ar(S¤)¡V ar(w)] plim(Cs¤s¤)+

PK

j=1
Cov(S¤;Fj) plim

³
Cfjs¤

´

plim[det(Qxx)]
= ¯s ¡ ¯s¸V ar (S¤) plim

³
Q¡1s¤s¤

´

(A.15)
where Q¡1s¤s¤ denotes the ¯rst element in the ¯rst row of Q

¡1
xx , i.e.

Q¡1s¤s¤ = Cs¤s¤= det (Qxx) = det (Q®) =det (Qxx) . (A.16)

It remains to show that V ar (S¤) plim
³
Q¡1s¤s¤

´
= (1¡R2S¤¢F)¡1. Using (A.14) and the

rules for the plim operator we get

V ar (S¤) plim
³
Q¡1s¤s¤

´
=

2
6641¡

PK
j=1 Cov (S

¤; Fj) plim
· ¡Cfjs¤
det(Q® )

¸

V ar (S¤)

3
775

¡1

. (A.17)

As the (asymptotic) R2S¤¢F can be written

R2S¤¢F =

PK
j=1Cov (S

¤; Fj) plim ®̂j
V ar (S¤)

, (A.18)
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where ®̂j denotes the OLS estimate of the jth slope coe±cient in the regression of
S¤ on F [cf. Maddala (1977, p. 107)], the ¯nal step amounts to demonstrating thath
¡Cfjs¤=det (Q® )

i
= ®̂j . To this end, write the minor of the element qs¤fj in Qxx as

det
³
Ms¤fj

´
and denote by ªj the matrix obtained by replacing the jth column of

Q® by the column vector qfs¤. Then

¡Cfjs¤
det(Q® )

=
¡
h
(¡1)(j+1)+1 det

³
Ms¤fj

´i

det(Q® )
=

¡[(¡1)(j+1)+1(¡1)j¡1 det(ªj)]
det(Q® )

= det(ªj)

det(Q® )
= ®̂j .

(A.19)

The ¯rst equality follows directly from the de¯nition of the cofactor Cfjs¤ . The
second equality is due to the fact that ªj can be obtained by (j ¡ 1) interchanges
of the columns in Ms¤fj , each of which results in the associated determinant being

multiplied by (¡1). The third equality follows because (¡1)2(j+1) = 1 8 j. The ¯nal
equality is just an application of Cramer's rule to the system Q® ^® = qfs¤ .
To rewrite the second term in (A.13) ¯rst use (A.8), (A.16), and the equality

V ar (S¤) plim
³
Q¡1s¤s¤

´
=

³
1¡R2S¤¢F

´¡1

implied by (A.17) { (A.19) to get

¯a
Cov (A; S) ¢ plim (Cs¤s¤) +

PK
j=1Cov (A;Fj) plim

³
Cfjs¤

´

plim [det (Qxx)]
= ¯a ^̄AS

(1¡ ¸)
1¡R2S¤F

[1 + ©]

(A.20)
The variable © is given by

© =
KX

j=1

Cov (A;Fj)

Cov (A; S¤)

plim
h
Cfjs¤=det (Qxx)

i

plim
³
Q¡1s¤s¤

´ = ¡
KX

j=1

Cov (A;Fj)

Cov (A; S¤)
plim

" ¡Cfjs¤
det (Q®)

#

(A.21)
where Cov (A;S) = Cov (A; S¤) has been used to obtain the ¯rst equality. To get the
second equality, (A.16) has been employed and the sign of Cfjs¤ has been changed,
whereupon the whole expression has been multiplied by ¡1. By (A.19), the term
within brackets is equal to ®̂j . Finally, some straightforward manipulations yield

Cov (A;Fj)

Cov (A; S¤)
=
½AFj
½AS¤

q
V ar (Fj)q
V ar (S¤)

. (A.22)
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Collecting results we thus have

© = ¡
KX

j=1

½AFj
½AS¤

q
V ar (Fj)q
V ar (S¤)

plim (®̂j ) . (A.23)

Substitution of (A.23) in (A.20) yields the omitted variable bias term in Proposition
2. This completes the proof. Q.E.D.


