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Abstract

Evolutionary game theory studies the robustness of strategy pro-
files and sets of strategy profiles with respect to evolutionary forces
in games played repeatedly in large populations of boundedly rational
agents. The approach is macro oriented in the sense of focusing on the
strategy distribution in the interacting population(s). Some main fea-
tures of this approach are here outlined, and connections with learning
models and standard notions of game-theoretic rationality and equi-
librium are discussed. Some desiderata and results for robust long-run
predictions are considered. Doc: eea.tez.

1 Introduction

The usual rationalistic interpretation of non-cooperative game theory as-
sumes that the game is played exactly once by perfectly rational players.
The game, along with the players’ rationality and the predicted equilibrium,
is assumed to be common or mutual knowledge, see e.g. Tan and Werlang
(1988) and Aumann and Brandenburger (1995). By contrast, the evolution-
ary interpretation assumes that the game is played many times by boundedly
rational players who are randomly drawn from large populations and who
have little or no information about the game.

The hallmark of an evolutionary model is that it combines two processes:
one selection process that favor some varieties over others, and one process

*This essay was presented in the session ” Learning and evolution, where do we stand?”
at the European Economic Association Annual Congress in Toulouse, September 1, 1997.
I thank Maria Saez Marti for helpful comments.



that creates this variety, to be called the mutation process. In the applications
to be discussed here, the varieties in question are strategies in a game.! The
emphasis will be on the selection aspect, while mutations will be accounted
for only indirectly by way of stability analysis.

A class of selection dynamics is introduced in section 2. In section 3 these
dynamics are related to certain learning models. Connections with standard
notions of rationality and equilibrium in games are discussed in section 4,
and section 5 elaborates on desiderata and results for structurally robust
predictions in games. Section 6 concludes.

2 Selection Dynamics

Consider a finite n-player game. Imagine that there are n large popula-
tions, one for each of the n player positions in the game. Every now and
then n-tuples of individuals, one from each population, are randomly drawn
to play the game. All individuals play pure strategies. A population state
z = (21,...,2,) consists of n population distributions, one for each player
population, where each component z;;, of the i’th distribution x; 18 the frac-
tion of individuals in that population who play pure strategy h. Hence, a
population state z is formally identical with a mixed-strategy profile in the
game, and the population distribution z; is formally identical with a mixed
strategy for player position i. The set of mixed-strategy profiles in the game
is the Cartesian product of the mixed-strategy simplexes associated with the
player positions in the game - a polyhedron.

We describe the evolution of the population distribution z by way of a
system of (autonomous) ordinary differential equations of the form

Tin = gin(T) T , (1)

where g;n(z) is the growth rate of pure strategy h in population .2 Such
dynamics will be referred to as selection dynamics since pure strategies that
are not initially used will remain unused forever (zn(0) =0 = z4(t) =
0Vt > 0).

'The objects that are selected and mutated are whole strategies, not just the local
strategies at information sets (of an underlying extensive-form game) that are reached in
the play of the game. For an analysis of evolutionary processes of the latter type, see
Noldeke and Samuelson (1993).

2Such a system of ordinary differential equations have well-defined solutions if each
growth-rate function g; is Lipschitz continuous and keeps the sum Y, z;,9:1,(x) constantly
equal to zero, so that population shares always sum to one.



The focus will here be on three classes of such selection dynamics. The
first class are the payoff-positive dynamics, where all pure strategies that earn
above average have positive growth rates and all pure strategies that earn
below average have negative growth rates. The second class are the convez-
monotone dynamics, where a pure or mized strategy has a higher growth
rate than a pure strategy if the first earns a higher payoff than the second.
The third class are the weakly payoff-positive dynamics, where at least some
pure strategy that earns above average has a positive growth rate when such
a strategy exists. The convex monotone dynamics and the payoff positive
dynamics are both sub-classes of the weakly payoff-positive dynamics.

The most widely used selection dynamics in evolutionary game theory is
the replicator dynamics, first developed by Taylor and Jonker (1978) for the
case of a single population playing a symmetric two-player game. Extensions
to the case of n populations playing an n-player game were developed by
Taylor (1979) and Maynard Smith (1982). The following version is due to
Taylor (1979):3

B = [wilel, o) — ui(w)] 2, (2)

Here u;(z) denotes the (expected) payoff to player position ¢ when strategy
profile z is played, and u;(el, z_;) is the (expected) payoff to pure strategy h
when played in position i of the game against strategy profile z. In population
terms, u;(e?, z_;) is the payoff to individuals in population i who play pure
strategy h, and u,(z) is the average payoff in that population. Hence the
population growth rate of each pure strategy is here proportional to its payoff
advantage - the difference between its payoff and the average payoff in its
player population. Clearly the replicator dynamics belongs to all three classes
of selection dynamics described above.

3 Learning Models and Selection Dynamics

One can divide learning models into three broad categories, belief-based
learning, reinforcement (or stimulus-response) learning, and learning by im-
itation. It has recently been shown that the replicator dynamics and certain
other weakly payoff-positive selection dynamics can be viewed as approxima-
tions for learning models in the last two categories.

3In Maynard Smith (1982) the right-hand side is divided by the average payoff, u;(x),
which is then presumed to be positive.



3.1 Individual learning by reinforcement

A model used in the psychology literature on learning is the so-called rein-
forcement model due to Bush and Mosteller (1951). Borgers and Sarin (1997)
analyze Cross’ (1973) version of Bush’s and Mosteller’s (1951) model. Borg-
ers and Sarin consider two players who repeatedly play a finite two-player
game. The players use mixed strategies and after every round each player
adjusts her choice probabilities according to her realized payoff. Borgers and
Sarin show that if the number n of rounds played before any given finite time
t is increased, and the reinforcement feed-back from payoffs to choice prob-
abilities is made accordingly smoother, then in the limit, as n — oo, their
stochastic process places unit probability on the state that the replicator
dynamics would have reached at time ¢.*

3.2 Social learning by imitation

Gale, Binmore and Samuelson (1995) provide a simple model of social learn-
ing in large populations of individuals playing pure strategies. Each indi-
vidual maintains an aspiration level concerning the payoff to be earned in
the game. At discrete times a small population share of individuals, drawn
at random, compare their current payoffs with their aspiration levels. If
an individual’s realized payoff falls below her aspiration level then she imi-
tates a randomly drawn individual in her player population. It follows that
if the population distribution of aspiration levels is rectangular over some
interval containing all possible payoff values, then the probability for imita-
tion is linearly decreasing in the expected payoff to the individual’s current
strategy. Based on this observation, the authors show that this process is
approximated by the replicator dynamics over bounded time intervals as the
number of rounds per time unit is increased and the population share of
reviewing individuals is accordingly decreased.

Alternatively, one may view individual strategy adaptation as a stochas-
tic process in continuous time. Suppose that every now and then each in-
dividual in every player population gets an impulse to revise her strategy
choice. If these impulses arrive according to statistically independent Pois-
son processes, then the aggregate process is also a Poisson process. For
large populations one may approximate the aggregate process by determin-
istic flows. Bjornerstedt and Weibull (1996) study a number of such models,
where revising individuals imitate other individuals in their own player popu-

4This does not imply, however, that the asymptotic behaviors of the stochastic and
deterministic processes coincide. Indeed, Borgers and Sarin show that, unlike the replicator
dynamics, their stochastic process is eventually absorbed in a pure-strategy profile.



lation, and show that a number of weakly payoff-positive selection dynamics,
including the replicator dynamics, may be so derived.

Schlag (1997) analyses the question what imitation rules an individual
should choose, when she now and then has the opportunity to imitate an-
other individual in the same player position but is otherwise constrained by
severe restrictions on information and memory. He finds that if the individual
wants a learning rule that is payoff increasing in all stationary environments,
then the individual should always imitate (not experiment) when changing
strategy. Moreover, she should only imitate individuals whose payoff re-
alizations are better than her own, and do this with a probability that is
proportional to this payoff difference. Schlag shows that for large popula-
tions the induced stochastic process can be approximated by (a discrete-time
version of) the replicator dynamics.

4 Rationality and Equilibrium
4.1 Rationality

A basic rationality postulate in non-cooperative game theory is that players
never use pure strategies that are strictly dominated. This postulate requires
no knowledge of other players’ preferences or behavior. A more stringent ra-
tionality postulate is that players never use pure strategies that are iteratively
strictly dominated. In addition, this postulate requires that all players know
each others payoffs, that they know that they know each others payoffs, etc.
up to a finite level of mutual knowledge (see e.g. Tan and Werlang (1988)).

Hofbauer and Weibull (1996) show that if initially all pure strategies in the
game are present in the player populations, then all iteratively strictly dom-
mated pure strategies vanish over time in any (finite) n-player game and in
any convez-monotone dynamics. Moreover, we show that convex monotonic-
ity is essentially necessary for the elimination of iteratively strictly dominated
pure strategies in all such games. The first of these two results generalizes
results in Akin (1980) and Samuelson and Zhang (1992). Cabrales (1996)
develops a stochastic version of the replicator dynamics and provides condi-
tions under which iteratively strictly dominated strategies still get wiped out
in the long run.

In sum: in a certain class of selection dynamics individuals will in the
long run behave as if they were rational and as if this rationality were mutual
knowledge. Strictly dominated strategies may survive forever in other types
of selection dynamics.



4.2 Nash equilibrium

It is easily verified that every Nash equilibrium, viewed as a population state,
constitutes a stationary state in the replicator dynamics. Moreover, not all
stationary states are Nash equilibria. However, it turns out that all sta-
tionary states which are not Nash equilibria are dynamically unstable. The
stability criterion used here is that of Lyapunov stability, essentially requiring
that no small perturbation of the population state can lead it away.® This
result is due to Bomze (1986), and can be shown to hold for any weakly
payoff-positive dynamics in any (finite) n-player game: Every Lyapunov sta-
ble population state in any such dynamics constitutes a Nash equilibrium
(Weibull (1995)). Hence, if we require Lyapunov stability, then we in fact
ask for a refinement of the Nash equilibrium concept. In comparison with
standard non-cooperative refinements, such as "trembling hand” perfection,
it turns out that Lyapunov stability in the replicator dynamics has more cut-
ting power against mixed-strategy Nash equilibria, less cutting power against
weakly dominated strategies, and more cutting power in cheap-talk games.

In sum: in any dynamically stable population state, in a fairly wide class
of selection dynamics, individuals behave as if they expected this population
state and played optimally given this expectation.

5 Robust Long-Run Predictions

Lyapunov stability is relevant for predictions in the medium-run but may be
insufficient for robust long-run predictions: if a predicted population state z
is slightly perturbed, then the dynamics should not only not lead the state
away, but it should carry it back toward the predicted state .5 Otherwise
a sequence of small shocks can add up over time and eventually initiate a
motion far away from the predicted state z. Second, a robust prediction
should not be too sensitive to the dynamics - “nearby” dynamics (vector
fields) should have nearby predictions - a robustness property that Lyapunov
stability does not have. Finally, it seems desirable that predictions be valid
for a whole range of potentially relevant dynamics, including the (Taylor and
Maynard Smith n-population versions of the) replicator dynamics. After all,
we do not know what is the "right” dynamics, but we do know that the
replicator dynamics is an approximation of a variety of empirically relevant
learning processes.

SFormally: A state z is Lyapunov stable if every neighborhood B of z contains a
neighborhood A of z such that if the initial state is in A, then all future states are in B.
8t can of course not reach z in finite time, though.



The first two desiderata are met if we require asymptotic rather than Lya-
punov stability, i.e., the further stability property that the dynamics should
bring the population state back after any sufficiently small perturbation.” In
view of the third desideratum we are thus lead to a search for mixed-strategy
profiles which, as population states, are asymptotically stable in some rele-
vant class of selection dynamics containing the replicator dynamics. However,
it turns out that many games of economic interest have no strategy profile
with this property: a population state is asymptotically stable in the Taylor
n-population replicator dynamics if and only if it constitutes a strict Nash
equilibrium. In order to obtain robustness we are hence forced to sacrifice
precision and look for asymptotically stable sets of mixed-strategy profiles.®

One mathematically simple class of sets of mixed-strategy profiles are the
faces of the polyhedron of mixed-strategy profiles. A face X is a product
set of mixed-strategy profiles where each component set X; consists of all
mixed strategies with support in some subset of the pure strategies available
to player position . Recall that the pure-strategy best-reply correspondence
assigns to each strategy profile x and to each player position ¢ its set 5;(z)
of best pure-strategy replies to z. Likewise, the pure-strategy better-reply
correspondence assigns to each strategy profile z and to each player position
i its set y;(z) of weakly better pure replies, i.e., all pure strategies that do
not earn less than average in their player population against z. In particular,
if the strategy profile z is a strict Nash equilibrium then it is a pure-strategy
profile, and, as a singleton face, contains its best and better replies. More
generally: a face X is said to be closed under best (better) replies if it contains
all its pure best (better) replies (Basu and Weibull (1991), Ritzberger and
Weibull (1995)).

The relevance of closure under better replies for evolutionary dynamics
is that if a face X has this property then it is asymptotically stable in all
payoff positive selection dynamics, and conversely, if a face X is asymptoti-
cally stable in some payoff-positive dynamics, then it is closed under better
replies. Faces that are closed under weakly better replies are thus robust
long-run predictors for all payoff positive selection dynamics. Indeed such
faces are asymptotically stable in any selection dynamics that assigns nega-
tive growth rates to pure strategies that earn below average in their player
position - a property held by all convex monotone selection dynamics. More-
over, any face that is closed under best replies (and all faces that are closed
under better replies are such) contains a strategically stable set in the sense

A state z (or closed set X of states) is asymptotically stable if it is Lyapunov stable
and is contained in an open set C such that the solution through any initial state in C
converges to z (or to X).

8The following discussion is based to a large extent on Ritzberger and Weibull (1995).
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of Kohlberg and Mertens (1986).° Thus there is a set-inclusive connection
between asymptotically stable faces and powerful refinements of the Nash
equilibrium concept.

It may here be noted that there is also a connection with the stochas-
tic evolutionary models discussed in the companion paper by Young (1997).
With evolution in discrete time, a finite population and best-reply selection
against samples from finite records of past play, Young establishes conver-
gence with probability one to some minimal face closed under best replies
(related results are obtained in Hurkens (1995) and Sanchirico (1996)).

The following equations define a one-dimensional parametric family of
convex-monotone selection dynamics that range from the replicator dynamics
to the best-reply dynamics:

Zip €XP [aui(e?, :c_,)]

Zip =

- 3
2k Tik €XP [aui(ef,x_i)} Tih (3)

Here o > 0 is a parameter that determines how strongly the best replies are
selected for. As ¢ — oo, interior solution orbits converge to those of the
best-reply dynamics, and as ¢ — 0 the solution orbits converge to those of
the replicator dynamics (see Hofbauer and Weibull (1996)). Since every face
X that is closed under better replies is asymptotically stable in any convex-
monotone dynamics, such faces are robust predictors also for dynamics of the
form (3). Moreover, these dynamics are formally similar to the smooth best-
reply dynamics in equation (?) in Fudenberg and Levine (1997). Potential
connections between the long-run properties of these two classes of dynamics
remain to be analyzed.

6 Concluding comments

Theoretical research on processes of evolution and learning in games may
now have reached a point where an integration of diverse approaches is within
reach. Moreover, researchers may soon be able to confront theoretical dy-
namic models with evidence from the laboratories of experimental game the-
orists. In some years’ time this may provide game theory with an empirical
basis on which to build dynamic models of evolution and learning in games.

YA strategically stable set in the sense of Kohlberg and Mertens (1986) is a minimal set
of Nash equilibria with the property that if players "tremble” slightly, the so perturbed
game has at least one nearby Nash equilibrium.
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