Jansson, Leif; Mellander, Erik

Working Paper
Optimization under Nonlinear Constraints

IUI Working Paper, No. 70

Provided in Cooperation with:
Research Institute of Industrial Economics (IFN), Stockholm

Suggested Citation: Jansson, Leif; Mellander, Erik (1982) : Optimization under Nonlinear Constraints, IUI Working Paper, No. 70

This Version is available at:
http://hdl.handle.net/10419/95070

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
A list of Working Papers on the last pages

No. 70, 1982
Optimization under nonlinear constraints
by
Leif Jansson and Erik Mellander

October, 1982
OPTIMIZATION UNDER NONLINEAR CONSTRAINTS

Leif Jansson
The Ministry of Economic Affairs
103 33 Stockholm
Sweden

Erik Mellander
The Industrial Institute for Economic and Social Research
114 53 Stockholm
Sweden

In this paper a timesaving method is proposed for maximizing likelihood functions when the parameter space is subject to nonlinear constraints, expressible as second order polynomials. The suggested approach is especially attractive when dealing with systems with many parameters.

1. Introduction

In this note the implementation of second order polynomial constraints on a parameter matrix is given a simple algebraic form. First order partial derivatives of the constrained matrix are also given simple vector forms. The formulas presented are easily transformed into computer algorithms.

One area of special interest for the application of the above results is the maximization of the likelihood function of a system of simultaneous equations.
2. A maximum likelihood function

Consider a standard simultaneous equation system compactly written as

\[BY' + CZ' = AX' = E' \]

where \(A = (B|C) \) is the \(n,(n+m) \) parameter matrix, \(X' = (Y|Z)' \) is the \((n+m),T \) matrix of observations on the endogenous and predetermined variables and the columns of \(E' \), \(e_t (t=1,2,\ldots,T) \) are vectors of unobservable random disturbances. The errors are assumed to have a time independent multivariate normal distribution, \(e_t \text{ NID}(0,\Sigma) \).

If the variance-covariance matrix is unconstrained the log-likelihood function can be concentrated with respect to giving

\[L = k + T \log B - \frac{1}{2} T \log \det(AX'XA') \]

Koopmans and Hood (1953) where \(M \) denotes the determinant of matrix \(M \).

A common way of maximizing the log-likelihood function \(L \) is to use an iterative gradient search method where the derivatives are numerically calculated. This approach allows for a flexible specification of the equations and makes it easy to specify nonlinear restrictions, but the number of evaluations of the log-likelihood function is in each iteration proportional to the number of parameters to be estimated. Thus, with many parameters to estimate there can be considerable gains in computing time if the first order derivatives instead can be given a simple analytical form.
The derivative of L with respect to a free parameter i can be written as

$$\frac{L}{\theta_i} = \text{vec} \left(\frac{A}{\theta_i} \right)' \cdot \text{vec} \left((B^{-1}' | 0) - \phi \right)$$ \hspace{1cm} (2)$$

where $\phi = [AX'XA']^{-1} A(X'X)$

where $\text{vec} M$ denotes the column vector whose elements are the columns of M put on top of each other.

Much of the calculations to achieve the complicated matrix ϕ is done to get the likelihood value L. So when the derivative vector $\frac{\partial A}{\partial \theta_i}$ can be easily calculated also $\frac{\partial L}{\partial \theta_i}$ is given with little extra computation.

3. Calculations of derivatives

The restricted parameters a_{ij} of the matrix A can be expressed as functions of k unrestricted parameters θ_k. Second order polynomial restrictions on the parameters of the matrix A can then be written as

$$\text{vec}[A(\theta)] = R1 \cdot F1 + R2 \cdot F2 + d$$

where

$R1$ = the $[n(n+m), k]$ linear restriction matrix
$F1$ = the column vector containing the k free parameters
$R2$ = the $[n(n+m), k(k+1)/2]$ non-linear restriction matrix
\[F_2 = \text{the column vector of the } k(k+1)/2 \text{ possible different products of the } k \text{ free parameters} \]
\[\text{i.e. } F_2' = (\theta_1^2, \theta_1\theta_2, \theta_1\theta_k, \ldots, \theta_k^2) \]
\[d = \text{a column vector with } n(n+m) \text{ constants} \]

The first order derivatives of the linear part of the restricted parameters of the A' matrix with respect to \(\theta_i \) become

\[\frac{\partial}{\partial \theta_i} R_1 \cdot F_1 = R_1 \cdot \Delta l_i \]

where \(\Delta l \) is a column vector with elements \(\delta_j \), \(j = 1, \ldots, k \) and

\[\delta_j = \begin{cases} 0 & \text{if } j \neq i \\ 1 & \text{if } j = i \end{cases} \]

Thus, the first order derivatives of \(R_1 \cdot F_1 \) with respect to \(\theta_i \) are equal to the i:th column of the linear restriction matrix \(R_1 \).

The non-linear part the derivatives becomes

\[\frac{\partial}{\partial \theta_i} R_2 \cdot F_2 = R_2 \cdot \Delta 2_i \]

where \(\Delta 2 \) is a column vector with element \(\eta_j \), \(j = 1, \ldots, k(k+1)/2 \) and

\[\eta_j = \begin{cases} 0 & \text{if } \theta_{j1} \text{ and } \theta_{j2} \neq \theta_i \\ \theta_{j1} & \text{if } \theta_{j2} = \theta_i \\ \theta_{j2} & \text{if } \theta_{j1} = \theta_i \\ 2 \theta_i & \text{if } \theta_{j1} = \theta_{j2} = \theta_i \end{cases} \]
Thus, the first order derivative of the non-linear part become linear combinations of the columns of R_2. The derivative of $R_2 \cdot F_2$ with respect to θ_i, for instance, can alternatively be written as

$$\frac{\partial (R_2 \cdot F_2)}{\partial \theta_i} = -2 \theta_i \cdot R_2 + \sum_{j \neq i} \theta_j \cdot R_{ij}$$

In practice the R_1, R_2 and d matrices will contain mostly zeros and it would be practically impossible to set them up as in the formulas. They can, however, easily be packed into a dense form by storing only the nonzero elements of the R_1 and R_2 matrix together with their destination in the A matrix and the position of the free variable parameters they are associated with.
Reference

WORKING PAPERS (Missing numbers indicate publication elsewhere)

1976

1. Corporate and Personal Taxation and the Growing Firm by Ulf Jakobsson

7. A Micro Macro Interactive Simulation Model of the Swedish Economy. Preliminary model specification by Gunnar Eliasson in collaboration with Gösta Olavi

8. Estimation and Analysis with a WDI Production Function by Göran Eriksson, Ulf Jakobsson and Leif Jansson

1977

11. A Comparative Study of Complete Systems of Demand Functions by N Anders Klevmarken

12. The Linear Expenditure System and Demand for Housing under Rent Control by Per Högberg and N Anders Klevmarken

14. Rates of Depreciation of Human Capital Due to Nonuse by Siv Gustafsson

15. Pay Differentials between Government and Private Sector Employees in Sweden by Siv Gustafsson

1979

20. A Putty-Clay Model of Demand Uncertainty and Investment by James W. Albrecht and Albert G. Hart

1980

25. On Unexplained Price Differences by Bo Axell

26. The West European Steel Industry - Structure and Competitiveness in Historical Perspective by Bo Carlsson

27. Crises, Inflation and Relative Prices in Sweden 1913-1977 by Märtha Josefsson and Johan Östergren
33. The Demand for Energy in Swedish Manufacturing
 by Joyce M. Dargay

34. Imperfect Information Equilibrium, Existence, Configuration
 and Stability
 by Bo Axell

1981

35. Value Added Tax: Experience in Sweden
 by Göran Normann

36. Energi, stabilitet och tillväxt i svensk ekonomi (Energy,
 Stability and Growth in the Swedish Economy)
 by Bengt-Christer Ysander

37. Picking Winners or Bailing out Losers? A study of the
 Swedish state holding company and its role in the new
 Swedish industrial policy
 by Gunnar Eliasson and Bengt-Christer Ysander

38. Utility in Local Government Budgeting
 by Bengt-Christer Ysander

40. Wage Earners Funds and Rational Expectations
 by Bo Axell

41. A Vintage Model for the Swedish Iron and Steel Industry
 by Leif Jansson

42. The Structure of the Isac Model
 by Leif Jansson, Tomas Nordström and Bengt-Christer Ysander

43. An Econometric Model of Local Government and Budgeting
 by Bengt-Christer Ysander

44. Local Authorities, Economic Stability and the Efficiency of
 Fiscal Policy
 by Tomas Nordström and Bengt-Christer Ysander

45. Growth, Exit and Entry of Firms
 by Göran Eriksson

47. Oil Prices and Economic Stability. The Macroeconomic
 Impact of Oil Price Shocks on the Swedish Economy
 by Bengt-Christer Ysander

48. An Examination of the Impact of Changes in the Prices of
 Fuels and Primary Metals on Nordic Countries Using a
 World Econometric Model
 by K. S. Sarma
50. Flexibility in Budget Policy. Changing Problems and Requirements of Public Budgeting
by A. Robinson and B.-C. Ysander

51. On Price Elasticities in Foreign Trade
by Eva Christina Horwitz

by Eva Christina Horwitz

53. Overshooting and Asymmetries in the Transmission of Foreign Price Shocks to the Swedish Economy
by Hans Genberg

54. Public Budgets in Sweden. A Brief Account of Budget Structure and Budgeting Procedure
by Bengt-Christer Ysander

55. Arbetsmarknad och strukturomvandling i de nordiska länderna
av Bertil Holmlund

56. Central Control of the Local Government Sector in Sweden
by Richard Murray

58. Industrial Subsidies in Sweden: Macro-economic Effects and an International Comparison
by Bo Carlsson

59. Longitudinal Lessons from the Panel Study of Income Dynamics
by Greg J. Duncan and James N. Morgan

1982

60. Stabilization and Growth Policy with Uncertain Oil Prices: Some Rules of Thumb
by Mark Sharefkin

61. Var står den nationalekonomiska centralteorin idag?
av Bo Axell

62. Missing Variables and Two-stage Least-squares Estimation from More than One Data Set
by N. Anders Klevmarken
63. General Search Market Equilibrium
by James W. Albrecht and Bo Axell

64. The Structure and Working of the Isac Model
by Leif Jansson, Thomas Nordström and Bengt-Christer Ysander

65. Comparative Advantage and Development Policy Twenty Years Later
by Anne O. Krueger

66. Electronics, Economic Growth and Employment - Revolution or Evolution
by Gunnar Eliasson

67. Computable Multi-Country Models of Production and Trade
by James M. Henderson

68. Payroll Taxes and Wage Inflation: The Swedish Experiences
by Bertil Holmlund

69. Relative Competitiveness of Foreign Subsidiary Operations of a Multinational Company 1962-77
by Anders Grufman

70. Optimization under nonlinear constraints
by Leif Jansson and Erik Mellander