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EREATIC BEHAVIOR IN ECONOMIC MODEIG*

Donald G. Baari

Department of Hathematics
Horthwestern University
Bvanston, Illinois 80208-2730

An intellectually attractive but potentially frustrating features of
sconomic theory iz that even seemingly simple models mey involve msthematically
complex behavior., Faradoxes abowwd, dynamical motion which intuitively should be
"simple” may be highly ervatic, and small changes in assumptions can lead to
radically different conclusions. On first glance, this complexity has to be
surprising. After all, much of economics iz based on concepts of ageregation and
optimization - concepts that might appear o introduce stability and
pradictability to conclusions of the resulting model. Yet, this need not be the
case. Why?

The purpose of these notes is to shed light on a major source for the
erratic consequences of economic models. I show that a basic and unifying
explanation can be developad by modifving certain ideas from the modern theory of

1

dynmamical syvstems that explain "chaos. But, instead of ewphssizing a technical
development, nv goal is to develop an intulitive approach so one can understand
when and why such unexpected behavior may occur. Therefors, many of the concepts
described here are introduced and illustrated with examples of voting and
atatistical paradoxes, problems with integer programming and allocation systems,
and the srratic dynamics associated with optimal growth and price adjustment
procedures.  The technical material is motivated with informal arguments based on
comron aexamples from daily life such as the action of a bouncing ball., In this
way 1 show why many of the unexpected outcomes from economics can be understood in
terms of the properties of the inverse imeges of certain mappings. As an
important corollary, I show that in any situation combining expansion and
recurrencs, one must anticipate the accompanying sconomic behavior to be erratic.

Situations that combine expanzion and recurrence are common to the social

* These are notes for lectures given at the Second International Workshop on
Dvmamics. The workshop was held in June, 1988, and hosted by the IUI in
Stockholm, Sweden. 1 thank the IUI and it dirvector, Gunar Eliasson, for their
many courtesies during my visit., This research was supported by NSF Grant IRI-
S803505 and by a 1988-89 Guggenbeim Fellowship.



Page 2

sciences. Of the two effects, recurrence iz the more familiar as it is evident in
husiness and other kinds of cyeles. FRecurrence effects are part of overlapping
generation models, optimal growth models, and on and on.  Un the other hand,
expansion effects may result from changes in discount rates, inflation and other
parameters. Expension and recurrence may arise as an unintended, bubt accompanying
consequeances of modelling. Whatever the ressons, one must expect expansion and
recurrence to be combined in many, if not most, models of economics and the other
social sciences. Consequently, we must anticipate the possibility that srratic,
unpredictable outconmes are fundamental and common to the social sciences.  "Order”
may not exist in the manner researchers from these arsas once believed.

Why should one believe that expansion and recurrence can cause highly
erratic outcomes?Y While the development is started in Section 2.3, some intuition
can be gained by considering the action of & bouncing ball. The motion of a ball
droppad to a flat surface is quite predictable. Indeed, with experience, aven a
child understands where a dropped ball will go. Much of athletics iz based on
this predictable action —— & basketball plaver can dribble the ball rapidly down
the ocourt without concentrating on the basketball; a tennis playver knows how to
adiust the racket to direct the tennis ball to & desired position.

The predictability of the ball’s motion iz lest should the surface be
curved. Here the ball may rebound off the surface into any one of many different
directions. This becomes a frustrating facht to anvone asttempting a game Qf termis
with a warped racket., To see what can ocour in the dynewmics, think of dropping a
ball on an inverted bowl. One way to get well behavior mobtion iz to drop the ball
with infinite precision directly over the top of the inverted bowl. The resulting
motion iz one where the ball bounces up and down along a fixed vertical lire over
the same point on the top of the bowl. However, if even the slightest error
occurs when the ball is dropped, the ball hits the curved surface and, quite
guickly, it bounces off of the bowl.

It iz the curvature of the bowl that crestes an expansion effect bebieen
the motion of the precise, theoretical orbit and the slightly altered, more
realistic orbit of the ball. It is this expansion effect that forces the
differance betwsen the twoe motions to become large even if the initial dropping
positions ave close to one another. Because this expansion effect forces all
nearby motlon away from the theorstical eguilibrium, the reference eguilibvrium

t

orbit is called wwwabie It is thizs dynamic causing the inzstability that allows



Page 3

one to argue that it is highly unlikely ever to obsasrve the theoretical sclution.

The instability argument only asserts that the expansion makes it uniikely
for the motion of a bouncing baell to mimic the theoreticelly admissible motion of
the ball bouncing forever over the top of the bowl. However, suppose that after
the ball bounces off the bowl, it retwrns. Any condition permitbing this to
happen iz a recurrence affect. For instance, the recurrence could occur because a
second inverted bowl iz placed next to the first ons. With two bowls, there are
two unstable regions. One can image how these two regions combine to provide an
interactive motion with one ancther. The ball could bounce on the first bowl
several times before it bounces off to hit the second bowl. HNow the ball could
bounice on this bowl several times before returning to the first bowl.

The two bowls admit many different scensrics. The ball may hit each bowl
onee before rebounding to hit the other bowl; it may hit each bowl zeveral times
refore rebounding to the originasl bowl: it may bounce off one of the howls to
rebound of f a third towl;, or it might bounee off of all the bowls to zome other
region., In other words, this combination of exparsion and recurrencs can Create a
complicated list of different kinds of highly erratic actions.

To review what causes the large number of possible dynamical scenarios,
note that the recursion effect permits the motion to return near a starting point.
The expansion effect introduces a large divergence in the behavior of twe motions
even though the initial points are near one another. With the continued expansion
that is aided by the recurvence of the motion, we have that orbits starbting near
sach other can end up baing radically different. Thus the combinabion of
recurrence and expansion can lsad to an erratic dynamic characterized by 1) a very
large number of possible scenarios created by the two (or nore) interacting
regions of instability, and 11) where small cheanges in starting positions can
change the motion from one scenario to a different one. These two properties are
basic basic to dynamical chaos. Morveover, the bouncing bell description
reazonably characterizes the mathematical explanation of this erratic behavior.
So, when expansion and recurrence are combined, we must expect a large number of
different kinds of outcones.

Az I zhow in Section 2, modifications of thizs story of the bouncing ball
aeyplain varicus puzzling phenomena ranging from price adjustment procedures to
varadoxes of allocation methods. Az it turns out, if one iz interested in

deriving properties of specified economic models, this tvpe of analysis is a
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wmaeful tool.  In fact, by considering the globsl vroperties of the dynamics,
additional information can be extracted from classical models that previcusly have
heen examinad only with an eguilibrium analysis. The global dynamics can provide
new insight into the sconomics of the systems,

On the other hand, the conclusion that economic models may admit many
different kinds of erratic outcomss runs against the basic objectives of a
normative approach to economic theory. Here, the objective may bhe to understand
how to control various Rinds of behaviors. For instance, can the srratic motion
of price adjustment procedures be tempered by using "speculation’ within a model?
Can convergence of a procedure be obtailned by involving the "history” of past

rformancs?  In Bection 3, I show how the zams Kind of mathematical technigues
can be used to analyze this kind of iszue.

For the most part, Sections 2 and 3 enmphasize erratic dynamical behavior,
and the illustrating examples only implicitly involve opbimdzation and
aggregation. To indicate how aggregation methods can lead to erratic behavior in
economic models, in Bection 4, I congider only the problems and paradoxes of
aggregation procedures. This discussion iz illustrated with voting and statistic
processas.  Here, a "paradox” iz an outcome that iz "unexpected” or
"vmanticipated.

To ses how my discussion of aggregation procedures is related to thes
dizcussion of dynamics, recall that most often in the literature, paradoxss are
analyzed in terms of =zpecific examples. For instance, a counter intulitive
elaction cutcoms may be described by specifving each voter s rankings of the
candidates; a surprizing statistical ocutcoms may be demonstrated in terms of a
spacific example. Howsver, this piscemsal approach does not indicate what other
kinds of outcomes can occur; 1t does not show how paradoxical outcomes from

s 2%

ifferent subject areas are related, and it does not indicate the mathemstical

jol

source of the unexpected outcomss. To address these concerns, in Section 4 a
different approach iz outlined to understand aggregation processes. This approach
iz based on discovering evervihing that possihiy can bappsa To realize this
goal, I modify those ideas from dynamical zystens which allows ons to start with
certain simple syvstems and then characterize, at least in a crude, qualitative
sense, everything that can occur. This thems, this goal of computing a listing,
or dictionary, i1z basic for ny analysis of aggregation processes.

in these notes 1 borrow heavily from the ideas developed in dvnamical
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systams. As 1 have already asserted, these notes do not constitute a short course
on dynamical systems; therve already exist several excellent texts on this topic
both at the entry level (e.g., Devansy {(1886)) as well az at s mathematically more
sophisticated level. Instead my gosl is to introduce with minimsl technical
argunments those central feabures that help us understand the surprising behavior
of dynamics and of aggregation procedures. My goal in discussing dvnamics is to
develop the reader’s intultion to understand and anticipate when the dynamics
azgociated with ecopomics can be highly ervatic. In aggregation procedures the
goal iz to understand the kinds of paradoxes that should be expectad.

To provide an unifyving theme for these notes, I use a central topic in
economics that is based bhoth on optimization and aggregation and that exhibits
both errvatic dynamics and surprising conzequences due be aggregation. This iz
tatonnement - the iterative procedure of how prices change according to the market
oressures of supply and demand.  However, while tatonnement serves as a motivating
evample throughout these notes, my main objective is to develop intuition why
certain kinds of mathematical complexitiss arise in economics - not just in the
tatormerent process.  Therefore, once zome of the basic consequences are
determined, I illustrate these ideas with several other examples. Moreover, as
true in Bection 4, whenever there is a simpler example to describe cerbtain

properties, I use the simpler model.

2. Tabommesent

The description of tatonnement for a pure exchange sconomy is well known,
particularly to economists. However to assist the reader unfamilisr with some of
the concepts, [ include a brief outline of the basic ideas in Appendix A, 1 now

turn to the notation and basic assumptions.
2.1 Fotation and the excess demand Ffunction
Azzume there arve ¢ » 2 commodities and a 2 2 agsnts in a simple exchangs

economy with a fixed amount of goods, where the initfal endosmpent of the ith agent

is represented by the vector w¢ = (wi,,..,wi.) € Be,, (R, is the pozitive orthant

h

of Re). Here, wi; represents the number of units of the jih commodity that are

held by the ith agent. Asszume that each agent’s preferences ave given by a
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smooth, concave utility function U;:Re, —-> R where all of the components of VU,
are positive. This assumption on YU, captures the notion that "more is better” in
the sense that if % > v (each component of v is bounded below by the corresponding
component of %), then U, (v} = U, (x).

Ifp= (»,..,p:} is the price vector, then the bhudget constraint is
2.1 (p,x) = (p,w), or (p,w ~ x) 20 for x € Re .
The budget nlane is where egquality is achieved. According to the sssunptions, the
ith agent’s demand is given by the point ¥ where the level set of the utility
function is tangent to the budget plane. Because of this tangency, it follows
that YU; () is a scalar multiple of p.

What agent 1 wants at prices p iz xi, what he has iz %, 30 the exvsss
demand vector, T (p) = xi-w, iz what he want to trade. If a coordinate of i (p)
iz negative, then the value indicates how much of this good the agent wants to
sell; if it iz positive, then the value indicates how much of this good the agent
wants to buy. Az this vector is in the budget plane, we have that
2 (p, ¢ (p)) = 0.

Whether the agent iz able to do this depends upon whether the cholces of

N

the obhar agents —— iz there a market for the goods? This leads to the definition
of the aggresufe swosss demand function

.3 e = Z T(p.

Hy virtue of Rouation 2.7, we have the important Walvas~ law which asserts that

N

Y

2.4 (p, Tlp) = 0

If the aggregate excess demand function, (), is zerc, then for each
comxiity the total of what people are will to sell equals what other people are
willing to buy; the markets clesr. BFubt if (p) ¥ 0, a new p needs to be adophbed.
The price adjustment vroblem is to figure out how to determine this new price.
Namely, if the current trice is o, then how should the new price, p¥, be
determined? Most obviocusly, such a process mast involve informstion about the
market place as provided by the sggregzste excess demand function =(p). Buab, whab
Eind of information is needed so that the process will lead to eguilibrium?
Second, 1t is unrealistic to expect an egquilibrium price to be attained
immediately. A more reasonable proposal is to create an iterative procedure; a
process whereby eventually the price iterates begin to converge to an equilibrium

orice,
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Ghimstion 1. Is there a price adjustment procedure that converges to a
Walrasian equilibria for any choice of a pure exchangs economy? If such a

procedure exists, what kind of information about the economy does it reguire?

As a first, natural procedure, one should consider fatonnsment.  This
adjustrent orocedure iz based on the ohservation that if & component of the vector
{p) iz positive, then this commodity is in greater demend. To reflect this fact,
the new price p¥ should meke that commodity more expensive by raising its price.
Thus, it is natural to let the market pressures determine the price adjustment
procedure by defining
2.5 p¥ = p + hr(p)
where h is some modifving positive scalar. Unfortunstely, az I show in the next
section, thizs dynamic need not work. It turns out that for certain economies, the
motion of the iteration process can becoms as erratic as one wishes., As I show,

“rhacs” can result even for sconomies with only two commodities!

Guestion 2. VWhy can erratic dynamical behavior arise from this price
adjustment procedure? What does "erratic dynamical behavior” mean? What are soms
of the basic properties? Do the underlyving reasons for this dynamic extend to

other economic systems?

This question, along with GQuestion 1, are the basic theme of the next two
sections. As it turns out, a basic source of the errvatic dvnamic behavior is ths
over ahundance of possible aggregate excess demand functions. Eszsentially, it
turns out that if one nesds a particular kind of asggregate excess demsnd function
to illustrate a particular type of dynamical behavior, then this excess demand
function exists. This remarkable fact is a corollary to the important
Sonnenschelin (1872), Mantel (1872), and Debreu (1874) Theorem. Loosely speaking,
thiz theorem asserts that

AF oewe choosess any continuous function fip) so that
i} (p, Ffipl)} = 0 for all p with all components positive, and
ii}) if p;, the price for the it2 commodity, has a sufficiently
small value, then £, {p} is positive (i.e., if the price is sufficiently

small, than the aggregate demand for that good will be positive)
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then for any € > U, there exists an sconomy so that ©ip) = fipl for

ip/ b2 €

In other words, if fip) satisfies Eg. 2.4 and indicates that a good is in
strong demand when the price is sufficiently low, then £ iz the sggregate excass

demand Function for soms sconomy.

thsstion 3. What iz the reason for the Somernschein - Mantel - Debreu

theoren? Iz thers an explanation that exbtends to other aggregation procedures?

Developing intuition for the answer to Guestion 3 forms the basis of
Section 4.

To determine the dynamical properties of tatormement, 1 use two standsyd
reductions. The first uses that fact that if p is replaced with any positive
scalar multiple of p, the same theoretical development leading to Ha. Z.4 holds.
Thiz statement holds because the principal role of p is to determine the normal
direction for the budget plans — thus only the direction Q/éﬁg matters, We use
this observation to assume that
2.8 Zp; = L.
it now follows that we only need to worry about the first o1 prices; the last
price is determined from Hg. 2.6. In other words, each p;, 1 = 1,..,2-1, can
assume any value in (G, 1) so long as
2.7 Ps = 1-(pj+..*p._ 1) > G

The next reduction involves eliminating the last term from the aggregate
axcess demand function. If the price p and the first o1 components of ©(p) are
known, then T, (p) is
2.8 T (0) = (2 py7; (1) /{1-(py+. . Fp g )t
This means thaet we only need to consider the first o1 components of p and of
z{(p}.

According to these two reductions, when ¢ = Z, then all we need are the
vaives of p = p; and T(p) = T, (p) where T(p) is positive for values of p
sufficiently close to zero and negative for values of p sufficiently close to
vnity. (Thiz reflects a tacit assumphbion that the commodities are desired: as the

price becomss arbitrarily small, the demand increases. )} Using the Sornenschein,
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Mantel, Debreu Theorem, it follows that any function satisfying these conditions
serves a3 an aggregste axcess demend function for soms economy. Thus, tatonnement
for ¢ = 2 iz given by
2.9 Pat1 = Pn * BE(py) = Ge (By)
where £(x) is any smooth fumction defined on [0,1] so that £(0) > 0 » £(1}.
{Because of the reductions, the price is one~dimensional. Therefore, the

subscript now corresponds to which iterate of this price iz being considered. )

2.2 The dewmics of fstonnement - stabiiity and instabiiity

The purpose of the iterative process is to find an egquilibriom point, b,
where £(p) = 0. At such a point the iterative process degenerates O Ppiy = Py
s0 the process stops.  Indeed, the processes stops and all fubuwre lterates agree
with p, if and only if f(p,) = 0. Consequently the equilibria are identified with
the points p where Ge (p) (= p + hf(p)} = p, thus the set of equilibria are given
by the intersection of the two lines v = G (p) and the diagonal y = p.  (See

t

Figure 1.}

What happens to those points that are not equilibria? The iterative
dynamic derives a new price, p,.; = G (p,), based on the current price p,. The
obvicus geometric description of locating this price on the graph of v = G (p) is
to start with the position of p, on the horizontal axis, and then passing a
vertical line x = p, through this point. The new price, p,,;., is the intersection
of this line with the graph y = G; (p).

The next price, p,.s, is determined in a similar fashion. This means we
need to find the location of p,,,; on the horizontal axis. To do this, use the
horizontal line v = p,,; and its intersection with the diagonal line y = p. By
definition, this intersection point has the coordinates (ph41,Phe1)s 50 & vertical
projection of this point determines location of p,,; on the horizontal axis. This
is the intersection of the line x = p,,,; with the x axis.

One more geometric description remains. Finding the price p,.; involves
using the vertical line x = p,,; twice. The first time iz to find the location of
the value p,,.; on the x-axis, and the second is to go from this point to the graph
v = Gp (p). @Quite obviously, nothing is lost by ignoring the vertical projection
as it iz a redundant action. 5o, the process 1s achieved by first taking a

vertical line passing through the price v = p, on the line y = p, and finding the
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intersection of this line with the graph ¥y = G(p). Next, pass a horizontal lins
through this intersection point, and find where the horizontal line intersects the

diagonal y = p; this determines the value of p,,;. The iterative process
continues. See Figure 1.

While the above provides a geometric description for the ibesration, it
does not indicate how the system can evolve., To start, there are some situations
where the dynamic is particularly well behaved. These are the situstions whereby
the various iterates cuickly become indistinguishable from an equilibriuvm point.
Une can view such behavior as being similar to the motion of & roliing ball inside
of a bowl. When the ball is at the bottom of the bowl, it remains there forever.
Thiz bottom position in the bowl corrvesponds to the eguilibrium position. If the
ball is slightly displaced, then the ball rolls back toward the bottom sguilibrium
position.

Bouilibrium points that enjov the above desirable characteristics are
called (asymptotically) stable. A stable equilibrium is displayved in Figure 1.a.
A charascteristic of these equilibria is that once some iterate iz sufficiently
close to it, then the next iterate is even closer. In other words, such an
equilibrium has the property of pulling near-by iterates into it. It is this
absorption, or contraction process, that creates the situation where, eventually,
one cannot distinguish between the equilibrium point and iterates of the dynamical
process. By use of caleulus, a sufficient condition for such eguilibrium points

can be found.

Proposition 1. If p¥ is an equilibrium point and if
2. 10 [Ge "(pHy] < 1
then pk is a stable point.

Conddition 2. 10 correspornds to a contraction, so Proposition 1 implies that

contractions about an eguilibrium should be identified with stability.

Cutline of the proof. According to iterative process, [Pney — p*§ =
[Ge (py) - p*| = |Gg(p,) — G; (PX)]| where the last term results from the equilibrium
condition that G; (p¥) = pk. We have from the mean value theorem of calculus that
§§ (Pn) - Gfigx}g = gG?’{p’}ggph - p’g for some choice of p” between p, and pk.
Thus
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2.11 [Bpey = PK| = (G (PP - 27
If [Gg"(p"}| < 1, then the assertion |pny; - P¥| < [P, - p¥| holds. However,
because |Gy "(p¥)| < 1, this condition follows from the continuity of G with p,
sufficiently close to pk.

{(To make this proof complete, Jjust nobte that there is a8 1 so that if
Ppe 1 15 sufficiently close to p¥, then gG’ip’}§< k. In turn, this estimste can e
used to show that [Phey — P¥[< Bi|p,-p |. Because ki > U as J -——> o

Pp+j —=> PK.)

At the other extreme from stable equilibria ave the wnstable sguilibrium
points, This is an squilibriuvm point where the dynamics forces iterates near the
eguilibrium amay from the equilibrium.  Such a dynamic is illustrated in Figure
ib. The importance of an unstable equilibrium is that it difficult to attain
because 1f the equilibrium iz not achieved precisely, then the dynamics moves away
from it. This is much like the rolling motion of a ball on the surface of an
inverted bowl. The squilibrium position for the ball is at the top. If the ball
is precizsely positioned, then it will remain there forever., However, with any
small dislocation, the ball will roll away from this (unstable) seguilibrium
positicn. Thus, for reasons similar to why not much physical significance is
accorded to this inverted bowl equilibrium position of a ball, one should view
with skepticizm the value of unstable equilibria in economic models.

A =light modification of the argument in the proof of Proposition 1 can be
used to find a sufficient condition for an equilibriumn o be unstable. HNamely, pk
iz unstable should
2.12 [Ge "(p¥)] > 1.

The only modification in the above argument is to change the ineguality for the
derivative. Thizs change forces the inequality [Pryy — PH| 2 Ipy — P¥| for p,
sufficiently close to pk.

The derivative condition 2. 12 indicates that there i= an expansion.
Therefors, an expansion about an equilibrium should be identifisd with the
instability of the point. Consider an f that defines a Gy as indicated in Figure
Z. For this choice of £, the eguilibrive in interval b is stable. Indsed,
becauge the slope of G at this point is nearly horizontal — so0 G, "(p) is nearly
zaro -— Froposition 1 applies. HNesr this equilibrium, the contraction effects are

strong. Indeed, by carrving out the geomstric process describaed at the start of
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this section near this eguilibrium, one sees how rapidly the iteratess converge to
the equilibrium  On the other hand, the equilibria in intervals a and ¢ ave
unstable. To see how this follows from Eg. Z.1Z, notice that the graph v = G (p)
passes through the disgonsl line v = p. For this to occur, the graph of G; (p)
mast be expanding faster than that of y = ». Thus, G "(p) > (p)7" = 1. Again, a
geowetric represermtation of the dynamics near these two eguilibriuvm points shows

that the dynamics rapidly diverges from equilibriuvm.

2.5 The erratic dyvnsmics of tatormemsnt.

The analysis of stable and unstable points provides only a local insight
into the behavicor of the dynamic processes. We want to know what happens on a
more global basis. The dideal situation, of course, is if one alwayvs selects a
starting point where the iterative process eventually converges to one of the
equilibria. Such an outcome may rvesult by an iterates landing precisely on an
vnstable equilibria (which is a rare ocowrrence), or landing sufficiently close to
a stable eguilibria so that the contraction dvnamics of stabilityv pull the
successive iterates closer to the equilibrium.  Bub, how common can such
successtul choices be made? Doss the predictable, convergent motion of stability
ressonably characterize the general situation? What else can happen?

Une way to characterize the set of points that eventually converge to an
equilibrivm is to study those points that never converge. To do this, let the
nonconvergent points be given bv the set
2.13 NC = {plif p is an initizal price, then the dynamic defined by Ea.
2.9 never converges to a zero of £}

One would hope that this set of points is "smell.”

To see the kind of set NU that can occur in the price dynamics, consider a
smooth function £ that defines a G; of the form given in Figure 2. The main
festures to note are that the four critical points marked by the dots define three
regions on the price interval, and they are labelled &, b, . The horizontal
dotted lines define the boundaries of these regions. HNamely, the upper horizontal
line intersects the yv=x diasgonal precisely above the last critical point, while
the lower horizontal line locates the left-most critical point. The feature which
underliies and simplifies our argument is that in each labelled interval, the graph

of G intersects both of the dotted lines. According to the Somnenschein, Mantel,
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Debreu Theorem, there exists economies that define such an £, The next statement

shows that for an £ of this kind, the set M need not be small.
Theorem 1. For an f of the type given by Figure 2, the set &0 is wncountable.

While this assertion is of interest, of greater importance for these notes
iz that I use the proof to show that the simple scheme given by HEg. Z.9 admits a
dynamic that iz as random as one wishes. To be more specific, first note that we
are interested only in the those orbits thet remain in the intervals &, b, and <.
Our goal iz to understand everything that can happen if such an orbit refuses to
converge to one of the eguilibria. Now, if p; is an initial iterate for such an
orbit, this value and the dynamics defines a sequence of prices
2. 14 {Pys Pos covs Prs ool
Une way to describe this sequence is to determine the precise value of esach
iterate p;. This is a difficult quantitative task! An alternative approach would
be to zacrifice precision by replacing sach iterate, B with the much more crude

information of which of the three intervals contains it. Namely, if p; € b, p, €

a, Py € ¢, ..., then the sequence given in Z.15 would be replaced by the sequences
of "addresses” {b, &, ¢, ...5I.

Let Ul{a,b,c}), the universal set, be the set of all sequences where the
entries are ong of the letters {a,b,c}. (This can be expressed as {a.,b,ci¥, where
N corresponds to the natural nmumbers {1...,n,..}.) As I indicated above, a
saquence of points defines a seguence in the wniversal set. My assertion is that
the dynamics of the tatonnement for an £ giving rise to Figure 2 can be so srvatic

that it may seem to be random.  This hehavior is specified in the next statemsnt.

Theorem 2. Iet f be a function that defines G as given in Figure £, and let 5 €
U{{a,b,c}}. There exists an initial iterate p;, so that the ktb iterate of p,, is
in bthe inberval derwbed by the BB zymbol in 8.

Theorem 2 means that it is possible to specify in advance the total future
of how the iterstes of some point will bounce through the marked intervals, and
there exists an initial point with this particular future. An immediste
implication of this theorem is that if the specified seguence of intervals is not

eventually constant, then the corresponding iterative processes never remain in
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any fixed interval. In turn, this means that the dyvnamic cannot converge to a zero
of £.  As there are an uncountable number of sequences from the universal set that
are not eventually constant, there must be an uncountable number of points where

t now follows that A contains an uncountable

food

the dynamics cannot converge.
manher of points, zo Theorem 1 is a consequence of Theorem 2.
The proof of Theorem 2 is fundamsyial for what else follows in these
notes. This is because the basic objective of the proof iz to characterize in &
gualitative sense everything thet can occur for this portion of the dynamics. To
develop some intuition for the proof, consider a related problem of pool. Un the
pool table there is a white cue ball along with a large number of balls each with
an identifying numbesr. To be successful at this game, one must hit the cue ball
in such a meomer that a "specified fubure” will occur. HNamely, once the cue ball
iz sebt in motion, it will hit some other ball where the struck ball now goes into
motion and hits a third ball, and the recoiling action continues wuntil motion
stops. The idea, of course, is to choose how to hit the cue ball so that the
subsequent motion does what one wants o have ccour. This desired fulure
orresponds to a listing of what ball hits what other ball., For ingstance, a
isbing (3,8,1.3,7.2,3,8) would mean that the cue ball hits the three-ball, the
Free-ball hits the six-ball, the six-ball hits the one-tall, the one~-ball hits

d

ot b

the three-ball, and so forth., (This listing should be identified with a seguence
from the universal setb. )

There are several ways to determine what tvpe of dynamic behavior is
mosaible.  One approach would be to select a target point on the cus ball and
carefully calculate what motion happens if the ball is hit there. This involves
calculating where the cue ball will go and which balls, if any, would be hit. If
the calculation of the orbit is a desired one, then that is the solution. If it
iz not a desired solution, then, in some fashion, a new target point needs to be
zelected and the solution associated with that point needs to be caloulated. I
call this process, which involves difficult computations and need not lead to
success, the "precizion computation” approach. Notice that this precision
computation approach is not that dizsimilar from standard techniques used in the
zocial sciencez, economics, and the vhysical sciences. A policy, an initial set
of data iz selected, and the consequencss are determined after considerabls
computations.

The game of pool is not plaved with the precision computation technigue. A
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more natural approach iz to first find a ftarsest region where ong should hit the
cue ball so that it will hit the three-ball. By doing this, at least partial
succsss will be attained; the motion realizes the first step of the specified
future., However, once the three-ball is set in motion, it is not clesr whether it
will go anywhere near the six-ball. So, to get the three-ball to hit the six
ball, one has to find a farget region on the three-ball. This iz the region where
if the cue ball hits the three-ball, then the three-ball will hit the six-ball.
Next, we uze this added information to refine where should hit the cue ball; the
refined targelt region is where to hit the cue ball so that the cue ball will hit
the target region on the three-ball. The process conbinues; it isn't sufficient
for the three-bhall to hit the six-ball; it must hit the six-ball in the
appropriate position so that the six—-ball will hit the one~ball. For this to
occuy, the appropriate target region is determined on the six-ball. This target
region defines a refined target region on the three-ball, which in turn defines a
refined targelt region on the cus ball. Thus, this natural procedure of creating
refined farget regions lsads to an iterated inverse image approsch of narrowing in
on the precize point where one should hit the cue ball., This simple, refined

targetting approach is central for all that iz discussed in these notes.

Proof of Theorem 2. 1 use an iterative, refined tarpetting argument to
characterize all of the points that share at lesst a finite part of the specified
future. Toward this end, let a sequence 5 of specified intervals be given.
Without loss of generality, assume that this sequence iz 5 = {b, a, <, ....}. Let
S, be the listing that specifies the first n terms in S; e.g., S, = {b, a} and 8,
= {b,a,ct, etc. With this nobtation, the set

2.15 Cy) = {p) for 1 €1 £ n-1, p; is the ith specified interval of 5,
n

g
3
[

and p, is i osure of the nth specified interval of 5.},

consists of all of the initial points that satisfy the first n steps. For

instance, C(83) = C({b, a, ¢}) = {p; | P, € b, 1, = G (py) € &, and py = G (0}
£ o2, where ¢f is the closure of the interval o},

To characterize the set C(5,), [ use the fact that when G; is restricted
to any of the marked intervals, its image includes all three intervals. (The

graph of G over each interval intersects both dotted lines. This special
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situation often is called the Markov property.) In particular, when G is
restricted to b, which is denoted by G¢ ,, then its image covers ac. Ubviously,
Cl{b, a}) = C(By) = G; p~t(a%). As G is a continuous function and as & is a
closed set, it follows that C(5;) is a non-empty closed subset of the interval b.

The set C(B,) is the initial target region for the interval b; it defines
the initial points in b where the next iterate hits the interval ac. However, the
second iterate of a point in C(5;) need not hit region c. Therefore, to refine
cur avgument, we need to define a targeh region in interval a; this is the set of
points in interval a for which the next iterate is in region o. Bo, for the same
reasons as used above, the target region in a, C{{a,cl) = Gy ;7 1(c®), is a non-
ampty, closed subset of the interval a, and it is the set of initial points in "a”
where the next imsge is in o=,

We want to refine the target region in b so that the next iterate not only
hits interval a, but it hits the target region C{{a,c}). &= C{{a,c}) iz a subset
of interval a, it follows that the refined target region in b, C(Bg) = G -
1@%;a”1{cc}}g is a subset of C(8,) in the interval b. Indeed, it is that subset
of initial iterates where p,, Py, and py follow the specified future. HMoreover,
by the continuity of G  and Gp ,, it follows that C(S;) is a non-empty closed
subset.

In general, the idea is the same. At each stage of the refined targetting
approach, it follows that C(5,) is a closed subset of interval b, and that C(5,,()
is a closed subset of C(5,). Therefore, this construction defines the sequence of
nonenpty, nested, closed sets
2.18 bDCE,) DCE D ... DCE) D ...

By definition, the set C(3,) consists of all of the initial iterates where the
dvnamics of tatonnement obey the first n steps of the specified seguence.
Therefore, any point that lies in all of the sets of the sequence of Hg. 2.13 has
the regquired property. Such pointz exist. This is because a countable
intersection of compact, nested sets is nonempty.

Hotice that the above construction holds for any specified sequence of
intervals. If a sequence does not permit the trajectory to remain in any one
interval, then the associated points are nonconverging. Because there arve an
uncountable number of sequences of this type, A contains an uncountable number of

points., This completes the proof of both theorems.
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2 4 IHotiommries and mopsrties of the motion

I

The refined targetting svgument used in Bection 2.3 is the key to 'chaos.

It is interesting to note that an important step in understanding this srratic

dynamic is a willingness to sacrifice a precize description of the dynamics —— a
statement about the precise location of each iterste —— by replacing it with a

ssemingly more crude, qualitative description where only the interval that

&

pode

contains sach iterate is identified. The surprising payoff from this tradecff
that now we are able to determine the qualitative behavior of an uncountable
number of orbits. Indeed, in many situations, wsing this kind of approach permits
one to characterize the gqualitative behavior of evervthing that possibly can
coour!  Morsover, this apoproach provides new information about the dynamics of the
system, 50 1t is worth pausing to better understand these connsctions betwesen the
dyvnamics of tatonnemsnt and the cholce of sequence of intervals.

Az described just prior to the statement of Theorem 2, each seguence of
iterates —— each orbit as given by 2. 14 — can be identified with a seguence from
U{{a,b,c}). Let this identification process be given by the mepping h.  As sach
initial iterate defines a unigue seguence, h iz a mepping from I, the wnion of the
three intervals a, b, and ¢, to the universal set U({a.b,ct). Thus, h takes a
point from I, an initial iterate, and azsigns to the point & sequence of letters
where the 1ith letter identifies the interval containing the ith iterated. It is
reasonable to call each such sequence a word  The imsge set of b contains all
possible words that identify the orbits of G;, so this image set is called the
dictionary defined by Gy, D(Gg). With this notation, Theorem 2 asserts that for
an £ of the kind considered, D(G:) = U{{a,b,c}}, the dictionary equals the
universal set.

The concept of a dictionary is similar o the "tree struchures” often used
in economics to depict evervthing that can occur. A comyon example comes from
game theory where the different oubcomes are listed according to different
combinations of the players’ strategies. In other words, the tres specifises
avervthing that can happen in the game. The main differsnce iz that in the
dyvnamics, there are an uncountable number of listings of "evervthing that can
ocour. © Consequently the dictionary does not admit a simple, graphical

reprasentation. Indeed, a loose interpretation of chacs is that the dictionary ——
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the qualitative listing of evervthing that can occur — admits an uncountable
number of different possibilities.

There is a natural dynamic, the shift map, that is defined on a seguence
from D(Gg). This mepping, T, takes a seguence, deletes the first entry, and the
image is the resulting sequence. For example, T{{ib,a,c.d,...}} = {a,c,4,...}.
The interest in this mapping is that it corresponds to what happens in the
iterative dynamics. To see this, note that the sequence {p,,Py,P3.P4,-.- 7t
describes the trajectory for the initial iterate p,. However, if one started with
point p, as the initial iterate, then the only difference in the trajectory is
that the point p; is not included —— the new trajectory is {Ps,Ps ,Pgs--. -
Moreover, if h(p,) = 5, then the sequence assigned to hip,) must be the shifted
sequence T(8)., This observation admits the representation
2.17 h(G (p}) = Thip))
which, in the literature, often is described by asserting that the mappings in the

following diagram commute.

41

Py

A dictionary need not agree with the universal set. Inbuition supporting
thiszs statement comes from the motivating pool oy billiard ball example. For
instance, one can conceive of initial configurations of the pool balls where a
specified listing of a future is impossible. To see this consider the seguence
(3,1,5,2,7,...), and determine the target region on the one~ball zo it can hit the
five-ball. Suppose the balls have an initial positioning where the three-ball can
naver hit this target region on the one-ball; e.g., it may be that the target
region on the one-ball iz on the side opposite of where the three-ball can strike.
If so, then this particular fubure never can occur. Using the notation of the

proof of Theorem 2, this means that certain of the iterated inverse images of the
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target regions lead to empty sets.

From this argument, the reason the dictionary for the G; map (Figure 2) is
the undversal set becomes clear, t is because the imege set of the mapping G,
when restricted to any of the three intervals, is the union of all three
intervals, so all possible locations of target regions can be reached., By
modifying the ressoning of the pool table example, it becomes clear that should G
not have such a property, then it may be that some of the target regions camnot be
reached. As with the pool balls, this assertion means that inverse imsge of such
a target region under G is empty, so certain words cannot be in the dictiomary of
Ge. A more complicated situation is where only certain portions of various targst
regions are accessible. This raises the possibility that some further refinement
dus to the characterization of a target region on some other ball, is not
attainable. For instance, it may be possible for the ons-ball to strike the five
ball, but not in a manner so that the five-ball strikes the twe-bell. On the
other hand, it may be that the secwence (3,7,5.,2,7,..) is admissible.

To further illustrate how the ideas of motion on the pool table carry over
to the motion of iterative dynamics, consider an f of the tvpe given in Figure 3.
Here the image of Gy , covers a and b, but not ¢, G; , covers all three intervals,
and Gy , covers only b and ¢, but it misses a. Because of these properties, Gy .-
Li{c} is an empty set. This means that the kind of arsurent used to prove Theorem
Z2 fails should 5 be any sequence that allows the letter ¢ to follow the letber a.
A similar observation precludes the possibility of any sequence in the dictionary
of Gy from having the letter a follow the letter ¢. It now is simple to
characterize the dictionary D(Gp}; it contains all sequences where the letter a
never follows ¢ and ¢ never follows a.

More complicated dictionaries can ocour. For instance, suppose the £ in
Figure 3 is replaced with one that allows the image of G%}a to extend partly into
ragion ¢. Now, depending on the megnitude of this extension, the dictionary may
admit some words where ¢ follows a. However, not all words of this kind would be
admitted. For instance, it may be that Ge o~1(a) happens to lie in that part of
interval ¢ which is ocutside of the image of Ge »- If so, then sequences that
admit orderings of the form ..,a,c,a,... would not be admitted in the dictionary.

The determination of the dictionary is the intuitive spproach - follow
the iterates of the critical points of the mepping G: to determine what kinds of

iterated, inverse imsges arve non-enpty. Therefore, as f changes its geomstric
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properties, rew words may enter or former words may be dropped from the dictionary
of the iterstive process. Also, it is obviocus that in the above examples, three
intervals weve selected only for illustrative purposes. Any number of intervals,
determined by the critical point properties of Gy, can be used.

Sensitivity to initial conditions and Cantor sets

There ave other conseguence of the argument used in the proof of Theorem
2.  An important charscteristic of the erratic behsvior denonstrated above is that
starting points can be zelected arbiltrarily close to one ancther where their
subseguent trajectories are radically different; nearhy starting points can have
significantly different futures, Such an assertion finds intultion from the
billisrd ball example. I the cue ball iz hit precisely at a specified point,
then the desired outcoms may ocour.  But, if the cue ball is not hit precisely at
this point, then the resulting behavior can differ radically from the intended
one.  This sensitivity of the fubure of the pool halls to where the cue ball is
hit defines the radical difference betwesn the game played by a competent player
and mine.

To see mathematically why this assertion about sensitivity to initial
conditions holds for Gy, notice that there are infinite number of different ways
one can extend the partial sequence 5, into a full sequence. OUne extension, of
course, remains true to the original seguence 5, bubt many other sequences can be
defined just by changing any number of the letters after the nth entry. Indeed,
there are an uncountable number of different sequences that extend 5,. Each
extension of 5, defines a unique subset of C(5,); if two extensions, S~ and 8",
differ by even one symbol, then C(87) and C(8") are disjoint subsets of C{5,).
Therefore, contained in C(5,) are an uncountable number of disjoint sets, each of
which leads to a different future. BSo, nearby points in C(38,) can be chosen so
that they have as radically differvent futures as desired.

The above argument is predicated upon there being sequences 5 so that the
points in C(5,) are close to one another for some value of n. But, the same
argument shows that there are many choices. For example, the uncountable number
of sequences starting with the symbol b all define disjoint sets that lie in the
bounded interval b, Thus, most of these sets, CS), must have measure zero.
Consequently, for any such segquence, 3, there is an n so that the points in {each
component of ) C(8,) are close to one another. The above assertion of

unpredictability now holds.
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A third observation based on the construction of Section 2.3 is that
regions of stability and instabhiiity can be intertwined in complicated ways. To

74
£

ses why this assertion is 50, recall that the mapping from Figure 2 admits &

region of stability in interval b. Now, consider any sequence 5,.;. OUne way to
extend 5,.; to 5, is to let the next symbol be b. By the construction of the
refined targetting approach, easch point in b has an iterated pre-imesge in the set
C(5,). This means that there is an open set of points in C(5,) (and C{5,.,)) so
that on the nth iterate esach is mapped to the stabllity region. Rt once an
iterate is in this region of stability, all future iterates tend to the
equilibriuwn point.  On the other hand, there are many other ways to complete the
sequence 5,.,, and for each of these possibilities there are points in C(5,.,)
with this specified future. Thus C(5, ), which may be a small set, contains both

7
ie)

points that become eventually stable and points with a highly errvatic future.
find just those points with a nor-convergent dynamic, one would sxclude the open
set of points of eventual stability. Thus, for all choices of 5, ,, an open set,
corresponding to the stable region in b, must be removed from C(5,.;). The

resulting set is called a Cantor set.

2.5 From abuse to the apportionment of Congressional seats

The erratic, chactic dvnamic of tatomnement illustrated in Section 2.3 is
based on only the gross geometric properties of the graph of Gy. Indeed, all I
used was an ilterated inverse imsge argument to capture the idea of refined
targetting. Conseguently, any iterative process that admits a graph of the
indicated kind nust be accompanied by errvatic dvaamic behavior. To get a better
idea of when such dynamics ocour, note that the key element of the srguent is an
expansion effect; for the process given by Figure Z, when G, is restricted to an
interval, the image of G; covered all three intervals. Indeed, without an
expansion effect, one would not have any wild movement at all. EHecause of the
sxpansion effect; G expands each interval by stretching it to cover all, or parts
of the specified intervals, so a mixing of the locations of the iterates becomess
pozsible.

Expansion, by itsself, doss not permit erratic dynamics to occur. Hor
example, if G, were monotonic, then the expansion effects would only move the

iterates in on direction. Buch monotone behavicor does not contain any of the
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surprisingly erratic beshavior indicated above. Thus., the other element leading to

this behavior iz recurrence. Should expansion and recurrence be combined, there
is reason to believe that some version of the above iterative dynamics would hold.
A word of caution, the combination of these two characteristics does not imply
chacs ocours; it only asserts that the appropriate conditions that could cause
such motion are there. Thus, one should interpret the coexistence of exparsion
and recurrence as a eryratic motion alert.” (The actual sxistence of such motion
requires a complete argument. )

For any process combining these effects of expansion and recurrence, one
should investigate the possibility of chactic motion. One wayv these two
characteristics are combined is wnen a graph of the iterative process is multi-
modal, az in Figures 2 and 3. Actually, as already suggested by the inverted bowl
description, one only nesds two regions to oresate recurrence. From thisz fact, it
should be clear that such processes are common in economics. Indeed, many journal
articles studyving eguilibrium effect of various economic processes are based on
graphs of the which have all of the appropriste properties. For any such
situation, the equilibrium analyvsis provides only a small portion of the total
story! A more conplete analysis requires considering the dynamics.,

It now should be clear that "srratic beshavior” should be considered the
norm, not the unusual situation. Also, we can understand the effects of minor
changes in assumpbions. A minor change in economic assumptions can lead to a
different "graph” of an iterative process., In turn, this can lead o
gignificantly different dictionaries and dynamical behavior.

There iz a potential "dark side” where this abundance of behaviors
introduces the potential of "abuse.” For instance, because zo many different
kinds of outcomss are possible, one can select among them to Jjustify whatever one
wants. Howsver, we now understand that one orbit, one scenavio, does not indicats
the behavior of a syvstem; & more complete, global analysis is reguired.

Another kind of potential abuse of these technicues is to "htry to explain

i

everyvthing. " For instance, once one has mastered the simple idsas associated with
the dyvnamics of chaos and erratic behavior, it is fairly straightforward to adjust
the properties of a graph zo that the dynamics mimics t observed data. In no
way doss this mean that the created model explains the dats; it Jjust means that
out of the meny dynamical choices, by sbarting with data, a model has been crested

o "£it the data. " The test of a model is not that it can be adiusted to fit past
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data, but that 1t can predict and explain future behavicor., For instance, it
probably is possible to modify one of the above figures so that, with an
appropriate initial condition, the resulting dynamic mimics the performance of the
stock market, some other "random' index, or another event over the past vear.
However, this fit does not mean that the graph explains the stock market; a test
is that very few people would trust its ability to forecast enough to invest
money. Nevertheless, 1t is ressonably certain that papers will appear in the
iiterature that are based on such a date fitting approach and which claim to
explain evervthing imsginable. Hecause of the "remarksble fit to data,” the model
may be advanced as an Texplanation” of how the stock market, the economy, the
firm, and various other organizations behasve., Thiz is had economics and bad
thematics.

The refined targetting argument of Section 2.3 showing how recurrence and
expansion can occour together is based on a simple iterated inverse image argument.
This argument iz not restricted to mappings from the line to the line; it holds
equally well for mappings from the plane to the plane, from Bn to Rn, for set
valued mappings, and on and on.  Indeed, all one needs is the concept of the
inverse images and a condition to allow the the intersection of nested, decreasing
sats to be norn-empty. This is of particulsr inportence to economics and the social
seiences because meny of the models depend upon corrsspondences (i.e., set valued
mappings) with various continuity properties. The sams ideas used in Section 2.3
apply here.

BElsewhere (Saari, 1985) 1 have described how these ideas of expansion and
recurrence combine in such models as opbimal growth and nmessages svstens
azzociated with incentive problems. To conclude this section, I offer a new kind
of example. The issue, raised in the US Constitution, reguires the number of
congressmen assigned to each state to depend on the fraction of the total US
population residing in that state. As 2 simple illustration, suppose there are

only three states where the population figures are given below.



State Pooulation Fraction

A 4520 0. 4520

B 4120 0.4120

C 3gn _G.oassn
Total 10,000 1. 660G

The problem can be demonstrated when the house gize is 25, Here state A
is entitled to 11.3 representatives, B to 10.3 representative, and C to 3.4
representatives.  This difficulty, where esch state is entitled to a fractional
portion of a representative, iz the general situstion. The question is to

determine what kind of "rounding off" procedure should be applisd.

15
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{me approach, which hss been assoclated with Alexander Hamilto

4

first assign each state its integer value. This leads to A receiving 11
representatives, B receiving 10 representatives, and C recelving 3
representatives. The total number of representatives alrsady assigned is 24; to
reach the total of 28 representatives, one seat is to be assigned to some state.
The Hamilton assigrment procedure is the obvious one; just look at the fractional
parts of the precise fipure for each state, and then "round up” for that state
with the largest fractionzl part. Here, state C has the largest fractional part
of 0.4, so, according to this rule, C receives the extras representative. Thisz is

given in the following table.

House size = 256

State Hxaot Bep  Integer Frac Part Aosignwent
A 11.3 i1 0.3 11+ 0= 31
B 10.3 10 0.3 0+ 0= 10
C 2.4 3 0.4 3+ 1 =4
Total 25 24 1.0 25

—

The Hamilton process, which was used in the USA for about a century,
combinss both expansion and recurrence. To see this, note that if pd is the
fraction of the total population in the jth state, i = 1,..,n, then the exactht

apportionment for a house size of h is hp = hipi,..,pr). How, twe different
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population figures give rise to two different choices of p, say pand . The
difference in the exact assignments is hip-p’), 2 vector that most cleariy expands
as the value of h grows.

To see where recurrence ariszes, nobice that the assignment procedurs only
concerns the fractional part of each allocation. Thus, the fractiomal part grows

From 0 to 1, and when it reaches unity, it starts over again at 0. Thiz means

that the important part of the assigowent process —— the check on the fractional
part —— combines an expension and a recurvence affect. Conseqguently ons should

anticipate the procedure to exhibit syrratic behavior.
To see what can heppen, return to the above example for h = Z8. IHecause
the house now has one more representative, it is interesting to wonder which stabe

receives this extrs representative. Here the table is

House size = 726

State Exach repr. Integer Part Frac Part Final Bszign
A 11.752 11 0.752 i1+ 1 = 12
B 10,712 10 0.712 W+ 1= 11
C 3,536 3 0.538 2+ 0= 53

Total o6 24 2. 000 28

-

In other words, the erratic effects of expansion and recurvence manifest

thenselves by reducing the representation for state O while increasing the

i
representation for 4 and B, An extra representative gained or lost changes power

within Congress, so this paradox is not Just a point of curicsity. The example
given above is not an isolated one; as [ show in (Saari, 1878), if there are more
than two states, then almost all populastion figuves will, for some choice of h,
have an effect of this sort. Morveover, such problems have occurred in practice.
It was first observed when an increase in the house size of the USA Congress would
have caused the state of Alabame to lose representation -—— thus this kind of
outcoms is called an "Alabams paradox. ' After Alabama, the same problem affected
other small states. Indeed, this erratic behavior is the reason the USA Consress
has 435 representatives. Hased on the population figures for 1810, Congress set
the new size of Congress at a figure that would aveid this pavadox.  This number

was 433, A mest each was reseryved for each of the territoriss of Arizona and New
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Mexico, which brings the total to 435, {(For more details, ses Balinski and Young,

It is natural to wonder whether this allocation paradox can be avoided by
using different assignment procedures. For example, start with h = 1 and allocate
this first seat to the "most deserving” state. By induction, with h = n, assums
that the n seats are assigned. When the hrnuse size increased to h = ntl the extra
seat is assigned to the "most deserving state. Such an approach avoids the
Alzbams paradox, and this philosophy is widely used today where the differences
reside in the adopted measure of "most deserving. " HNeverthelesss, vhatever method
is adopted, the basic underlying system of "rounding off" remsins subjected to the
combined effects of expansion and recurrence. So, while there ave assignment
procedures that avoid the Alabamas parsdox, one might wonder whether a different
kind of erratic behavicr emerges. The answer is ves. If there are at lesast 4

states, then it may be that we round up or down by "too much.” HNamely, if the

exact apportionment is 12.7, then a state is entitled either to 12 or 13

b

spresentatives, By using the above "house monotone” methods to avoid the Alsbams
paradox, therse are situations where one rowxls elther down or up by twor 1i.e., the
actual apportionment either is 11 or 14. This happens in practice, and the French
elections are a good source of examples.

Az explained in Sasari, 1878, it is possible to avoid these paradoxes, but

5

to do so, one must look to the fubure.” In other words, it turns oub that with
snough states any continuous procedure based on present and past allocations will
have some kind of paradox. However, a procedure based on "future allocations” can

avold some of the difficultiss.

3. Control of economic systens

The ideas of chaos and ervatic ehavior are important theoretical tools to
understand what can hapren in economic theory. However, an important normative
issue is to understand how the various different solutions can be controlled to
allow only "desired cutecomes.” If the goal for a process, such as tetormmement, is
to converge to a certain oubtcoms, then one must find ways of seliminating the
contrary, erratic oubcomes. Bub, what kind of models are required? What kind of
information is needed? As [ indicate next, the sams kind of giobsl approach can

e used to address such issues. I demonstrate the ideas here with tatonnsment.



It was shown in Section 2.3 that tatonnement can lead to chaos, even in
simple two good trading societies. he issue now becomss to find some kind of
price adiustment procedure that converges to an eguilibrivm.  This procedurs
should be based on the market pressures as reflected by the aggregate excess
demand function. Now, trying to develop a proosdure can be a complicated issue in
theory. This direct apprcoach is complicated by the lack of guildance about what

% 4

Zind of information such a procedure needs 50 it can be succsssful. Therefors,

foord

adopt a different approach.
The approach I use is much in the spirit of Arrow’s Theorem from social

choice.  In social choice, one doss not atbempt to find a social choice function

o

satisfying Arrow’s axioms because we know that such s procedurs doss not exist.
use much the zame philosophy. I specify certain basic properties for a large
class of adjustment procedures, and the goal iz to determine whether any
adjustment procedure from this class can achieve convergence. 1If not, then any
procedure based on such properties iz doomed for failure. In this way, guidance
iz obtained to determine what kinds of procedures can, or cammob work.

To illustrate, suppose we are interested in finding a procedure of the
Torm
3.1 Bae1 = Pn + ME(D,),E (B0)).

The mechanism is determined by the cholce of the function M. For instesnce, if M
does not depernd upon the second variable, then the mechamism only depends upon the
market pressures (£{p)), not upon the change in market pressurss (£ {(p). If
Mla, v} = hua, then the earlier process of tatonnement is recovered.

As stated, instead of specifyving M, nyv goal is to determine minimsl
vroperties an acceptable M should possess.  With an emphasis on "minimsl
properties,’ a larger zet of processes is admitted. Of course, any selected M
will have more specialized properties than the minimel list, bub its behavior will
e as described below.

in the minimal listing of properties, we want M to be 1) defined over a
set (0, Lx(B\V) where V is a set of points and where the imsge iz in (0,1). Hany

choices of M may be defined over all values of the second variable (£7), but

others, like M = -u/v may not be defined at certain points, such as v = (.
{Notice that M = ~uw/v iz Newbon's method for finding a zero of a function. ) 5o,

by admitting the possibility of M needing a set V, a larger class of mechanisms is

allowad. Second, we reguire that where M is defined, 1i) M is C1 (i.e., the
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first partial derivatives of M are continuous). Finally, we want the process to
stop at an eguilibrium ©(p) = 0, and only at an eguilibrium.  This assumes the

form that iii) Miu,v) = 0 if and only if o = 0.

The properties 1,1i,111 are sufficiently relaved to admit models of
speculation (based, say, on the values of £7{(p}), on models of tatonnement whers
the value of the modifving parameter h is selected in an appropriate fashion based
on, say, bthe values of £{p) and £ (p), and so forth. Thus, this class seems to be

- . -

sufficiently large so that there should be at lesst one process wherse convergence

o

3

always occurs. Unfortunately, this is not the case.

Theoram 3. For any choice of M satisfying the conditions 1), i1}, and 131}, there
exizts an open set of econowmies, O, so that if £ € ¢, then there is an open set of
initial iterstes for which the dynawic in Hogo 3.1 doss nob converge to a zero of
£.

The theorem asserts that the conclusion holds for open ssts of economiss
and starting positions. Thus this nonconvergence behavior is robust. This means
that even if sxamples or starting positions deponstrating the conclusions of the
theorem are perturbed, the modified example has the same kind of non-convergence
property.  Conseguently, it follows from the thecorem that any economic theory
hased on point information of the indicated type will not ensure convergence.

What kind of information is required to attain conwvergence? It is natural
to inguire whether added information based on the past iterates and higher order
derivatives will succeed. After all, one might develop a model of speculation
hazed on the behavicor of the last s iterates of the excess demand function. BSuch
an expanded modelling requires only a slight change in our basic assumptions. 5o,
let 5 e the nunbsr of iterates, k be the number of derivatives. Let ivy M be a

5

o where ¥V is the finite union of smooth lower

fo

Cl mapping from (0, 1sx(BR\Y} to (0,
dimensional menifolds. Asswme thet v Mixi,. ... x5~ = 0 if and only if xi = 0.
The dynamic defined by process M is given by
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Thus, if &8 = k= 1, the Ea. 3.2 becomes Hg. 3.1, One might expect that using all

of this added information, a convergent procedure can be developed. This is not
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Theorem 4. Let s, k be given positive integers. I M is a process sabisfving iv)
and vy, then there exists an open sebt of ecopomies, Q, so that if £ € &, then
there is an open set of initial prices sweh thet the dynamic given by Hg. 3.2

never converses to a zero of

It follows now, as before, that any finlte amount of information of the
above kind does not suffice for convergence. This meanz that robust examples can
e found to frustrate any price adjustment theoryv based on this kind of point
information. However, one might hope that even though the system refuses to
converge, mavbe the dynamic stays close enough B0 a zero that it suffices for
practical purposes. This is not the case. As indicated in the proof, the motion
can e bounded away from the equilibria.

The problem of non-convergence remains. Moreover, this same issus, for

.

v geveral models involving message

]
9]

much the same mathematical reasons, ocours

«

syvastems, incentives, stc. Therefor85 the issue is fundamental, and one must Tind

o
i

what can be done about it. Theorem 4 asserts that no theory based on finite point
information will succeed. Conseguently a succsssful theory must use more global
kinds of informstion. This iz the theme of Saari and Willisms (18988) where we
show one way to achieve convergence is to use several differvent choleces of
mechanisms.  The basic idea can be described in terms of an analogy with social
choice.

Une way to avold the consequences of Arvow’s Theorem is to impose a
restriction on the domain —— to define s social choice function satisfying
specified proverties for certain sets of profiles. Bo, different sets of profiles

)

are associated with different choice functions. This suggests an approach to
circumvent Arrow s theorem. bBuppose it is possible to divide ths space of all
orofiles into several different sets with the following property. Hach profile is
in at lsast one set, and for each set of profiles there is a socizal choice
procedure that satisfies the gg%g‘fieé vroperties. This means that several

-

procedures are developed. To decide which procedure is the appropriate one, we
need some orude information to determine how to assign a specific profile to an
ppropriste class of profiles. This assignment 1z eguivalent to selecting the
appropriate choice function. It is the choice function that gives the refined

information about the selected alternative.
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The same aporoach is used in Sasri and Williams (1888). The spasce of
sconomies is divided into {a finite number of) different sets. Over each setb,
there is a locally convergent mechanism  The "global information” concerns which
set an econony belongs to.  Unee the global information is lsarned, then

adjustment mechanism is selected to find the refined information about the

5o ¢ L

equilibrivm.  In other words, we now know that the goal of finding a universal
mechanism cannot be realized. What can be realized iz the siightly modified gosl

of finding a finite set of mechanisms that then cover most sconomies.  Upon

b
o
ey
;.m.(i
o
G
o
Wm

on, thiszs approach seems nabtural. For example, consider price adjustment
procedures.  Why shouldn™t we expect that different procedurss ave requirved for
different circumstances? Why shouldn’t one version work in Brazil, & second one
in Western Burope, and a third in medieval times? This iz suggested by the
theoretical implications in the reference (Baari and Williams).

In Basri and Williars, 1t i= showmn that a finite number of sets of
conomies can be defined. But, in this reference it is not shown how to do so
efficiently. In other words, what kind of information is required and how should

it be used in this division process remains an open gusstion. Our theorem only
specifiss the conditions under which such an approach works. It does not indicate
how to take a specific model and divide the space of economies into the different

sets. Chen (1888) has sowe interssting results in this direction for priced

9]

adjustment procedures. His charscterization is in terms of the proverties of the

ubility functions.

Of interest to these notes, the proof of Theorem 4 relies on concepts of
stability and on modifications of the more global, geometric wroof discussed
earliier.

Oubliine of the proof of Theorem 3. The proof of this theorem is given in

o

Saari (18985, 1887a) based on ideas from Baari and Ureniko {iﬁéé}. The basic ideas
are described here. The idea of the proof is to use the notions of stability
given in Sechtion 2.2,

The function M is the adjustment process; 1t determines how much iz added
or subtracted from the price p,. Find two sets of values (ui,vi) so that
3.3 0 ¢ Miul,vil) = - M{u,vg) < 1/2.
That such points can be found involves an argument. The first part of the

tois

ooter

argument requives showing that M must have different signs. Unce
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established that M has both signs, an intermediate value argument using the
continuity of M near a zero can be used bo show that the values of {(uwi,vd) can be
found. To show that M has both signs, note that if M has only one sign, then the

adiustrent of prices is only in one direction. To show that such an M satisfies

the procedure must move the prices further away from the single price squilibriuvm.

iy

If £(py) = ul, £7(py) = vi, then p, ~ p; = M@ul,vl). Belect any value for

“

Py, and define p, as above. Now, by choosing £(py,) = v, £7(p,) = v&, we have

ey

that the next iterate, py is given by py - by = M{uWg,v2) = ~M{ul,vl) = -(py — Py).
This means that py = p; and that the dynamic forms a periodic orbit bouncing
between the values of p;, and py. It follows from the Sognéxsch&iﬁ5 Mantel, Debreu
theorem that such an £ can be found.

This argument establishes that there are two initial points that refuse to
converge to a zero of f because they form a pericd two orbit. HNotice that there
is considerable freedom in choosing this period two orbit; freedom that can be
used to bound the orbit a fixed distance from the equilibrium. This freedom comss
from the flexibility in the choice of the p, s based on the choice of the values
of wl and the valus of M.

What remains is to show that £ can be zselected so that the lack of
convergence holds for an open set of initial iterstes. This is done by using
stability. Let G(p) = p + M({£(p),f (p)). With the above choice of £, we have
that G(p;) = py and Glpy) = p;. Thus, G (py)) = GGE)) = Glpy) = p;.  (Likewise
& {(py) = py.) This means that p; and py are fixed points for the composed mapping
Gz. If these equilibria of G2 are stable, then it follows that all nearby points
contract toward p;. For the mapping G, this means that these orbits would

approach the periodic orbit of py and py. In other words, after sufficient number

&

of iterates, one could not distinguish the orbits sterting from an open set of

nearby points with the periodic orbit.

To obtain the stability, it fol

!..MJ
2
41
Q}
o
=
.
%ﬁi
%
]
[
C»su
Q
o
pmi.
ek
]
oF
ng)
ot
i
k
Py ﬁz
0Q
0]
i

S
3]

find conditions so that [(G(p;)) | < 1. According to the chain rule, (G2 (p,)
G (Gp )G (py) = G (py)G (py). Thus, the conclusion holds if it can be shown
2

3

owever, G'{§§} = 1+ M(ui,vi)vi +

b
h
5
T
it
=

.
o

that gG'{pj}g <
?%{aé§vé}f”{§5}3 where M, denotes the partial derivative with respect to the kth

variable., The only free variable is the value of f”{pg}, 20 choose these values s0
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that the derivative condition on G is satisfied. Again, for any such choice, the
Sorrenschein, Mantel, Debreu Theorem assures us thabt an econonmy exists with these

vroperties. This completes the outline of the oroof.

4. Parsdowes awd agegregation procedures

By definition, a paradox is a surorising, unsexpected outcoms, so it can be
viewsd az bheing an “erratic outcome” of a particular system One important,
certbral tool of the social sciences where such oubcomss ocour with great freguency
iz in sggregation procedures. As such, one might wondsr whether certain classes
of sggregation "paradowes” can be understood by wsing the iterated inverse image
methods developed in Section 2. They can.

To illustrate, consider an election with the three candidates (a,b,a).
Suppose a plurality election is held to determine who should be awarded the one
tenure track position in a deparitment, and suppose that the oubtcore is arbre.  (In
other words, a wins, b comes in second place, and ¢ loses.) Newt suppose that o
withdraws from consideration, leaving only the candidates {(a,b). It seems clear
that since ¢ was the bothom ranked candidate, nothing importasnt has changed; a
should still be declared the winner., Or, should she? Could it be that the
sincere election outcoms iz bra? Suppose it iz b that withdraws from the elechion
process,  Could it be that the sincere election oubtcome now ranks crxa? In

b

general, to understand the possible relationships among the election outcomss, one
might wants to mimic what was done in dynamical systems by determining everyvithing
that can occwr. 1 outline how this is done.

To start, consider how one would determine whether the outcome zrbre and
bra could be a sincere consequence of voting., The standard approsch used in the
literature is to creste an example illustrating this effect. Ususlly such
sxamples are crested by trial ard error. One starts with a listing of a certain
number of vobters that have various kinds of ranking, and then determines whether
the ocutcoms is the desived one.  If so. we are done: if nob, then we need to
modify the example and try again., This is the "precision computatbion” approach

described sarlier. Instead of using this technically difficult approach, I use a

version of the iterated inverse image approach used for the dynamics.

i



The domsin is the space of all listings of voter preferences. With the
three candidates {a, b, ¢}, there are 3ix types of voters, where a voter type is
termined by how the voter ranks the three candidates. In the following listing,

% denotes the number of vobters that are of the jtbh type.

xt asbro wh c>bra
P ararb x5 brora
%3 cra>p b brarc

ow, an election can occour for any set of two or three candidates., The
four possibilities are B = {(a,b,c}, 82 = {a,b), 2% = (a,c}, and 54 = (b,c}. If

the tally of an election iz expressed in vector format then the telly of a

4. 1. 51 (1 + %2, 5 + x6, % + x4}

Hers, the Ffirst coordinate, xl + 32, represents the tally for a, the second for b,

1 +

and the third for o. Indeed, in the tallies given for any set, let the component
be determined in the order the candidates appear in the definition of the set.

.

Trus, the majority vobte tally for 5 is

4.2. or (il + 2 4+ x3, xt + b+ ¥E)
4.3 s (%% + 32 + %8, £ + ywd + x5)
4.4, o4 (i + x5 + 2B, w2 + x84+ x4}

e

The idea is the following., BStart with the complete indifference po
where xJ = n for all choices of j. This causes a tie slection for each of the
four sets. Nexbt, write down some listing of the election rankings for which one

s < 4 3 ©

wants an example. To find a profile that realizes the specified election outcoms,

one just modifies —— add to or subbtract from -- the coordinates of the Qemplete

71

indifference point. To illustrate, suppose the desired exsmple is {a> bra,
cra, orbr. (This is the most difficult case. ) To obtain the ranking for | i; I
need to

4. 5a. add values e, f so (¥l + x2) =2 Znt e, and ¥ + 8 = Zn + £. To obtain

the arbre ranking of 51, we need
4.5.b s > f.
This choice is a partial characterization of the domain (the space of profiles),

or the target region, which leads to a>bro.
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Hext, turn to the ranking b > a, which is governsed by (4.2). As asserted,
the choices already made bo obtain the ranking asbre should be thought of as part
of the inverse image of this ranking. These cholces change (4.2) to (Zn + e + x8,

x4 + 2Zn + £). PBecause we are keeping the value x8 + x% fixed at Zn (for 81 ), let

¥ = n - gand ¥ = n+ g Therefore, to obtain the bra ranking for 52, we need

4.8. e - g< g, ored f+ Zg.
These choices csrveugmﬁé the zecond step of the iterated inverse imsge; I find
the intersection of the inverse image of arbre and of boa.

Now turn to the ranking o>a; this defines a target region for 83, The
expression for 88, (3), becomes (Un + e + %6, Zn + x5). To make the sscond
coordinate larger, while respecting ocur earlier cholce of 6 + %6 = Zn + £ {zses
4.5}, choose ¥8 = n - h  This gives 3n+ & - h, 3n + £ + h}, so the restriction
on h is
4.7, e < £+ 2h
These restrictions correspornd to a partial characterization of the inverse imsge
of the first three rankings.

The last ranking defines the target region of ¢ » b, which is given by the

o

Zn + £, x4+ Zny. To makes

-+

coordinates of (4.4). Cur choices change this to (1
the second component larvger than the first, Jjust give all of the increment of & to
£

%% . This makes the coordinsbtes (3n + £, 3n + ). 4z e>f. we got the ranking o>b.

In summary, any choice of x1 = n, x@ = nt e, 33 = n ~g, ¥ = o+ g, ¥ =

<

n+f+h and ¥ = n - h has the desired election cutcome. The only restrictions
the four perturbation terms are that they arve all positive, none larger than n,

and that

4.8 f<e<«f+2Zg, ande < £+ 2Zh

These conditions can be viewsd as describing a portion of the intersections of the

e

inverse imsges of the four rankings., It is trivial, now, to find meny different

4

examples that yvisld this listing of election rankings. As an illustration, if

% —

it
grhenzexZ, £ = 1, we gt the axample (xb,x2,x8 28,35 38 = (2,4,0,4,5,0).

Examples illustrating many other kinds of paradoxss can be constructed in
a similar mammer. (For a genersl description, sees (Saari, 1888, 1887b).) 4s an
exanple from statistics, consider the decision problem of choosing one of two

urns, 17 or 117, that contain red and blue marbles. Once an uwrn is selected, then

a marble iz chosen at random A red marble means the plaver wins a new car) a
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blue means the player gets the bill for the car, bub no car. Now, with the added
information Pr(RII7)y » Pr(RIII7) (the probability of gethbing a red from urn 17 iz
greater than the probability of getting & red from II7), the decision is obvicus -
- choose wrn I7.  Next, suppose that a second seb of urns, 17 and 117, is given
with the similar information PriRIIYY » FPr(RIII"). With either seb of wns the
answer iz the same, choose the first urn. The aggregation problem arisses when the
contents of "good” uwrnzs 17 and 1T are emptied into wrmn I, while those of the "bhad”
vrns LU oand 117 are empbied into urn 11, Which urn is better, 1 or 117 The zame
approach described above can be used to show that there are situstions where

either outcome occurs. (An example where Pr(R!I) < Pr(RIIIY is if the contents of

Here, the

e

first four urns are, regpeeﬁiﬁ%lyg (@.24%, (2,6, (3.8), and (11,24).

TR

first component of a tuple is the number of red marbles while the second is the

total number of marbles in an wn. )

The above description creating the voting paradox uses nothing more than
£

the iterated, inverse image avgument of Section 2 where the target regions are

3

defined by the specified rankings of the different sets. A nabtural qusstion is
whether this approach can provide a listing of everything that can occur., 1t can.

To indicate the kind of results that are possible, assume there are n2d candidates
given by the set {c;,...,c,}. From this set of candidates, Zn different subsets
can he defined. Howesver, one of these subsets iz the empby set, and n of them
consist of only one candidate. This means that there are Zn-{np+l) subssts of
candidates where it makes sense to hold an election. As above, list these subsebs

e

in some ordsr as Sy,... .50 (p4qy-

Each of these sets can be ranked in many different ways. So, let R,

:

consist of all poszible rankings of the candidates of Sﬁ, For instance, if 5, =
{a,b}, then Eé = {a>b, bra, a=b}. If Sé consists of 3 candidates, th&n,ﬁi has 13

.

wre is no tie bebween candidates, 8 are

ot g

rankings — 31 = 6 are rankings where ©

h

rankings where there 1s & tis betwsen two of the candidates, and the last one is
the ranking where a1l three candidstes ave tied. Following the lead of Section 2,
let Un = Ryx. .. x84y be the universal sef. In other words, an element of Un

is a listing of rankings; there is precizely one ranking for each subset of
cardidates. Moreover, sll possible listings of rankings of this kind are in the

universal set.
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A profile is a listing of how many voters rank the candidates in a
particular manner. For example, in the three candidate selection discussed above,
a profile, b, is any listing of {(xi,...,x8) where xi is a norrnegabive integer.
For n candidstes, there are n! wayvs the candidates can be listed (withoub ties).
Thus a profile becomes a vector p o (xi,..,x0!) where xi i3 a non-negative integer
that denctes the number of voters that have the jth ranking of the candidates.

For a given profile p, lat ﬁsip} e the slsction ranking for the set of

by

carpiidates Sj, Thus, if £(p) = (£, (p},.. 0 L1y (p)y, then f£(p) iz a listing o

3
raﬁkiggs where there iz one ranking for each set of candidates. This means that
fipy € Un; 1t iz the listing of the plurslity election rankings associated with
the profile b
To determine everyvihing that can ocour, we follow the lead of Section 2.3
to define a dictionary. The dictionary, as for dynamics, is the listing of
evervithing that can ocour for the specified system —— here the system is plurality

voting., Therefore, call the set

T

4.9 Dn = {f(p) Un | pis a profile}
the dictionary for plursiity voting. In this description of a dictionary, the
profile » plays the role of the initial iterate in the price adjustment process.
The precise election tallies for each set of candidates play the role of the
subsequent iterates of the adjustment process. The listing of election rankings,
fip), playvs the role of the sequence of addresses for the iterates of the
adjustment process,

Az I is s subset of Un, one wants to learn whether it is a large subset,

or a small subset. The answesr is given in the next statement.

Theorem 5. For any value of 23, In = {n,

This theorem, which is proved and generalized to all positional voting
methods in Saari (198%a,b), asserts that anvihing can happen in sincere election
rankings., Because of this theorem, we now know that one can write down any

radox, any listing of election rankings, and there exiszsts z profile zo that the
designed listing actually occurs! This means that the listing of voting paradoxes

“ :

found in the literature (which were determined by what I call the "precision
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computation approach’) does not @%&ﬁ)hegin,ta sugFest the complexity and the
wealth of what can occur. Conversely, as this theorem specifies everything that
can happen, it includes all possible paradoxes. As such, it eliminates a
lucrative source of potential papers based on creating "still another interssting

paradox. ' For instance, because 1B has over 1060 entries, many lifetime caveers

ity election sxamples

E.m.J

could be based strictly on constructing 6 candidate plura
The proof of this theorem iz beyvond the scope of these notes, but the
hasic idea is the one used throughout. It is the more global, iterated inverse
image approach. As with the introductoryv example, one uses the ranking for easch
subset as a "target region”. Starting with the inverse image of £, the set of
profiles that achieve the first step of the fubture is determined. Next, a

-

refinement iz determired. This iz the refinement of this subset of profiles that
i

permits the target region for the second subset of candidates to be realized.

= to demonstrate that the

,ﬂh

This continues. The technical part of the proof |

refined targeltiing approach leads to a non-empty intersection of profiles for any
listing in Un.  Thus, this aporoach becomess most similar to that of Section 2

Iy -

fferences in the proofs for aggregation procedures and

"y

cre are some di

P

the dynamics given earlier. As these differences admit intuition aboub when an
ageregation process admites "paradoxes,” I illustrate some of the basic ideas with

the above statistical decision problem.  For the four vems I, II7, IV, IIV, lst

bl

Xy, X5, ¥, X4 denote, respectively, the fraction of red marbles in the wmn. To

determine Efgﬁgiz and Pr(®1I11), we need to know the fraction of all marbles in

each urn, so let d;, dy, dy, and d; denote these values. Thus, according to
Bayes ™ rule, Pr(RiI) = (xydy + x3dy)/(d; + dy) and PrRIII) = (xdy + x,d,)/(0dy +
dg ).

Let Fix,d) = (¥; - %, % — %, Pr(RiL) - Pr(RiII)). As the sign o
component determines which wrn is preferred, the universal set, U, consists of al

s

three~tuples where an entry is one of {+, 0, -}. There are Z7 such tuples in L

-

bl

Hotice that F can be viewsd as being a mapping from a seven dimsnsional space (the

Ty

3 define 4 degrees of freedom while the éj“s define 3 degrees), to R3. EHach

p
Qw?“

symbol from U defines which orthant {or portion of a coordinate plane) contalins
the precise value of F.

With the above representation, the dictionary for ¥ can be compubed. This
is because the ranking 0 = {(0.0,0) iz a boundary point for each of the other

regions. HNow suppose an interior point g can be found in the domsin where Flg) =
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0. If the Jacobian of F at g has maximal rank, then ¥ takes an open set about a
and maps it o an open set ¥V about . Bub V has to meet all of the regions of H2.
Conseguently, the dictionary of ¥ agrees with the universal set; all ocutcomes are
voszible.  Indsed, bhecause the dommin still is larvger dimemsional than the rangs,
one might expect that even more pavadoxical btehavior can occur. This is correcth.

The main point of this argument is that the Jacobian of F replaces the
geometric considerations of Bection 2. HWith little thought, it becomss clesr that
the rank condition reflects a heterogeneity of the domain. Az the domain most
often models the space of profiles or preferences of the voters, we see that the
heterogeneity can admit all possible kinds of paradoxes. This argument, based on
the Jacobian of ¥, is described in greater detail in (Basri, 1887b, 18988) with
extensions to discrete mappings (such as Arrow’s Theorem) in (Basri, 188%c).

It appears that this approach of refined targetting, of the iterated
inverse image, will provide much deeper insights into the behavior of aggregation
procadures.  Indeed, as a concluding comment, 1 argue that the SBomnenschein,
Mantel, Debreu Theorem can be interpreted in thizs mamner. In the setting of
tatonnemsnt, each person’s "input” is given by his initial allocation and wvhbility
function., The oubput is the aggregated excess demand Hunction.  Thus, the natural
guestion iz to determine everything that can occur.

The program is first to find a universal space. Here Un is the space of

that satisfy Walrasz ™ law for n commodities (whi

o 2

all functions £ ch is derived in

the following aprendix}. The mapping, £, starts with the agents ™ initisl
endowments and ubtility functions as inputs and has the aggregate excess demand
function as the ocutput. Therefore, the dictionary Db iz the subset of Un which
cortains all possible images of £, As trus all through these notes, the issus is
to determine Do, The Bormmenschein, Mantel, Debreu Theorem ssserts that with some
technical conditions, In = Un: a staterment that the reader has leayned can be a
common conclusion for many different processes.  As true with dynamics and voting,
thiz assertion means that there is an infinite complexity in the listing of the
outcones.

With hindsight, one should expect this result characterizing the excess
demand function. After all, this sggregation procedure has an infinite
dimensional domain Just for each agent. While there is only a finite degrees of
& 1

freedom in selecting the initial endowmsnt, there is & infinite dimensional

funotion space worth of cholices for the concave ubility functions., The
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sggregation process has o mep thiz oroduct of function spaces to the smaller

space of demand functions, so one should expsct the p@gsibiiity of a conclusion of

s

this sort. Moreover, oroofs of the Bomnenschein, Mantel, Debreu Theorem, such as
the one given in Debreu, are, at least conceptually, much the same as the basic
ideas used here. In Sechion 2.3, we started with an arbitrary word from the

e, , an arbitrary listing determining the fubture iterates of the

Z’“‘ -

universal set (1.

tatonnenent process), and we showed that there exists an initial iterabe leading

to this fubure., Debreu starts with an arbitrary element of Un — a function
satisfying Walras Law —- and he shows there exists an initial point (choices of

agents ~ initial allocations and ubility functions) that gives rise to this excess

demand function.

Appendix:  Tabomnemsnt

o

To start the descripbtion of tatormement, assume there ave ¢ = Z

a simple exchange economy. The individual

Bk
[

commodities with a = 2 agents

holdings, or initisl emndomments of the ith agent are representsd by a point w2 =

(wiy,..,wi.}. Here, mjr@x@@mmtk=mm%§®xgﬁﬁaaf%%éﬁhcmmﬁi that
ars held by the ith aggent. The object is to determine under what circumstances
would agent 1 be willing fo exchange goods to obtain a more preferred holding, or

commodity bundle, from Re,. Such a change requires agent 1 to prefer the new
commodity bundle to the old one, s0 we need to impose an ordering — a preferencs
elationship ~ on the points in Re,.

While there is a nstursl ordering of points on the line, there does not
exist a natural cordering for points in a higher dimensional space. Instead, there
are an infinite number of different approasches. Therefore, such a preference

=

ordering mist be adopted for each sgent. A standard way to do this iz to borrow

the ordering from the real line by assuming an agent’s preferences are determined
by a "utility function” Uj:Re, --> R, where larger values of U; (x) imply a higher

2 %

utility or desirability. The level sets of U, determine an indiff

i

o

YENCe
elationship; agent 1 is indifferent among commodity bundles on a level set.
Standard simplifying assumptions are that U, is a smooth (i.e., it is
differentiable), concave function where all of the components of VU, are positive.
This last assumption on VU, captures the notion that "more is better” in the sense

that if x> ¥ (i.e., if each conponent of ¥ is bounded below by the corrvesponding
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& ¥

component of x), then y is preferred to x because U, () 2 U, (x).

1

Assume there iz a Tixed amount of goods in this economy where nothing is

0

crsumed or produced.  Thus, the only way the ith zgent can obtain a more
referred commodity bundle is to trade with the other agents, This trading
reguires sach agent to impose a relative weighting on his holdings to determine
how much of certain goods he "1l trade away in order to obtain more of other goods.
Of course, this weighting depends on what is available from the other agents;
i.e., it depends upon the relative weights adopted by the other agents. A way i<
coordinate this weighting among the agents is to impose a universal one in terms

+ P

of prices. A price is given by a vector p = (py,..,p.) where Py is the price of
one unit of the jth commodity. With the prices, the worth or value to the ith
agent of the initial endowment w is given by the scalar product
(p,wi) = Z; pywty.
The optimization problem facing agent 1 is to get the best affordable
eal. Thus,the budeset constraint regquires him to consider only

~ e

bundles, z € B2, , for which
p,x) £ (pywt), or (p,w ~ x) £ 0. The budget plape is where equality

/"m

iz achieved.

The budget vlane has a particularly simple representation; it is the
unique plane passing through the point wi with p as a normal vector. Therefore,
the affordable commodity bundles at price p are those on or below this plans,
{See Figure 4.) The ith sgent’s optimization problem of choosing his most
vreferred, affordable commodity bundle iz to choose the bundle that maximizes his
utility function subject to the budget constraint. Now, elther by using

+

elementary calculus and Lagrange multiplier techniques, or by using simpls

geometry as indiceted in Fipure 4, it follows that this maximum point, 22, is

e

where the level set of the ubility function is tangent to the budgst plane.
Because of this tangency, it follows that VU, (%) is a scalar multiple of b

What agent 1 wants abt prices o is x, what he has is w, so the axoess
demand vector, i {p) = xi-w, is what he wants to trade. If & coordinate of o (p)
iz negative, then the value indicates how much of thiz good ths agent wants to
zell; if it is positive, then the valus indicates how much of this good the agent
wants to buy.  According to the optimization schems, this vector iz in the budgst

plane, so, by definition of the plane, i {p) iz orthogonal to the normal vector p

e
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Namely,
(p, (@) = 0.

Whether the agent iz able to do this depends upon whether the choices of
the other agents -~ 1is there a market for the goods? The obvious way to answer
this guestion is to sum the individual excess demands, ot (p) to determine whether
the total is zero {(i.e., whether the markets will clesr). This leads to the
definition of the aggregale sxcess demand function

ey = Z T(p.

Z

-

The object is to find the price, or wiversal weighting, so that ©ip = 0. By
virtue of Hguation 2.3, we have the important Walras ™ law which asserts that for
all choices of b,

(p, =lp)) = 0.

As a final observation, note that all of the above holds if p is replaced
ith fggz. One reason is that p determines & weighting, bub only the relative
welght

'f:)

bing betwesn the commoditiss is needed. This is reflected by the role p
plays in the definition of the budget plans; p is a normal vector. However, any

sealar multiple of p also serves as a normal vector. This fact is used to reduce

]
in
ﬁ
{i?
I

This scaling of p has occurred in practice. For instance, Brazil is one
of the countries that during the 18807s was subjected to an incredible high rate
of inflation. As one of the less serious consequences, the Brazilisn currency
tecame severely devalued in Jjust a short time. This change in the value of ths
currency created a practical problem people would do everyday business, like
huyving groceries, with bills having a lavgs number of zercs. In response, in 1984
the government just instructed the people to ignore a certain number of the zeros

:

Thus, the decree that a 10,000 cuzaro bill from now on will be

a5

in & bill

- & g

1.
considered a 10 cuzade bill corresponds to using a scalsr multiple of
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