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Abstract. This paper provides deterministic approximation results for
stochastic processes that arise when ¯nite populations recurrently play ¯nite
games. The deterministic approximation is de¯ned in continuous time as a
system of ordinary di®erential equations of the type studied in evolutionary
game theory. We establish precise connections between the long-run behavior
of the stochastic process, for large populations, and its deterministic approxi-
mation. In particular, we show that if the deterministic solution through the
initial state of the stochastic process at some point in time enters a basin of
attraction, then the stochastic process will enter any given neighborhood of
that attractor within a ¯nite and deterministic time with a probability that ex-
ponentially approaches one as the population size goes to in¯nity. The process
will remain in this neighborhood for a random time that almost surely exceeds
an exponential function of the population size. During this time interval, the
process spends almost all time at a certain subset of the attractor, its so-called
Birkho® center. We sharpen this result in the special case of ergodic processes.
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1. Introduction
Many models in evolutionary game theory hypothesize an in¯nitely large population
of interacting agents, usually represented as a continuum, and describe the evolu-
tionary process as deterministic, in terms of a system of ordinary di®erential (or
di®erence) equations. These equations concern changes in population shares, one
for each pure strategy in the game, and the changes are viewed as averages over a
large number of individual strategy switches. Prime examples are di®erent versions
of the replicator dynamics. For a wide class of such dynamics it has been estab-
lished that dynamic (Lyapunov) stability implies Nash equilibrium, and that the
limit point to any convergent trajectory through any initial population state with
all pure strategies present is a Nash equilibrium.1 For a certain subclass it has been
shown that, even if the solution trajectory diverges, all iteratively strictly dominated
pure strategies nevertheless vanish asymptotically.2 Moreover, attractors that con-
tain essential components and strategically stable sets of Nash equilibria have been
identi¯ed for a class of such deterministic dynamics.3 An important question for the
relevance of these results, and for deterministic population models more generally, is
whether these dynamics are good approximations of stochastic population processes
that arise from individual strategy adaptation in ¯nite but large populations. The
present study addresses three versions of this question, each version corresponding to
a precise meaning of \good approximation." In the special case of ergodic processes,
we also provide asymptotic results for the stochastic process that go beyond those for
its deterministic approximation dynamics.

Technically, this is achieved by applying and extending mathematical results in
the theory for large stochastic deviations to a class of Markov chains that live in
compact polyhedra. We interpret these Markov chains as population processes in
¯nite games, where individuals are recurrently drawn from ¯nite populations to review
their strategy choice in the game. There is one population for each player position,
and all populations are of the same ¯nite size N . Each individual has a pure strategy
that he or she uses if called upon to play the game. At discrete times t = 0; ±; 2±; :::
exactly one individual is given the opportunity to change his or her strategy in the
light of some information about the current payo® to one or more pure strategies
in her player position. All individuals have the same probability of being drawn for
such a strategy review, and we assume statistical independence across populations
and over time.

The state of the population process is de¯ned as the vector of population shares
1See e.g. Bomze (1986), Nachbar (1990) and Weibull (1995).
2See e.g. Samuelson and Zhang (1992) and Hofbauer and Weibull (1996).
3See e.g. Swinkels (1993), Ritzberger and Weibull (1995) and Demichelis and Ritzberger (2001).
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associated with the pure strategies in the game. Hence, a population state is mathe-
matically equivalent to a mixed-strategy pro¯le, with all probabilities being multiples
of the factor 1=N . The state space is thus a ¯nite grid in the polyhedron of mixed-
strategy pro¯les, and a population share can only change by §1=N units at each
review opportunity. We set the time interval ± between successive strategy reviews
equal to 1=N , and study the limit as N ! 1. Hence, the expected time span be-
tween two successive strategy revision opportunities for any given individual is kept
constant as N is increased. The approximation results apply when the population
size N is large, and the approximation is de¯ned in terms of a system of ordinary
di®erential equations derived from the transition probabilities of the Markov chain -
the so-called mean-¯eld equations.4

We provide examples in which these di®erential equations are of the type studied in
evolutionary game theory. For example, di®erent versions of the replicator dynamic
can arise if strategy choices are based on imitation or smooth best replies. How-
ever, the stochastic processes here di®er qualitatively from those arising in stochastic
¯ctitious play.5 The latter processes have \decreasing gain" in the sense that the
magnitude of state transitions is decreasing over time. For in ¯ctitious play the state
is the vector of accumulated empirical frequencies of strategies used in all previous
rounds, and the change in these frequencies tend to zero over time. These processes
thus slow down over time. By contrast, the processes studied here have \constant
gain:" the e®ect on the state at each strategy revision is of equal magnitude (1=N)
all the time.

We establish precise connections between the long-run behavior of the stochastic
process and its deterministic approximation. In particular, we show that if the de-
terministic solution through the initial state of the stochastic process at some point
in time enters a basin of attraction, then the stochastic process will enter any given
neighborhood of the attractor inside its basin of attraction in a ¯nite and determin-
istic time, with a probability that exponentially approaches one as the population
size goes to in¯nity. The process will remain in this neighborhood for a random time
that exceeds an exponential function of the population size. During the random time
interval spent in the neighborhood, the process spends almost all time near a certain
subset of the attractor, the Birkho® center of the °ow restricted to the attractor. If

4In this respect, our approach is very close to that of BÄorgers and Sarin (1997). They study a
model of stochastic reinforcement learning where, like here, the size of jumps are reduced at the
same rate as the time rate of jumps is increased. However, their stochastic processes have continuum
state spaces and take jumps of unequal size, while our stochastic processes have discrete state spaces
and take jumps of equal size (1=N).

5See Fudenberg and Kreps (1993), Kaniovski and Young (1995), Fudenberg and Levine (1998),
and Benaim and Hirsch (1999b), or, for a more mathematical treatment, Benaim (1999).
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the process is ergodic, then it will eventually end up near the Birkho® center of a
generically unique attractor.

Our analysis proceeds in four steps, the ¯rst of which is a sharpening of fairly
well-known results that leads up to more novel results. The ¯rst approximation
result concerns the deviation of the stochastic process from the solution trajectory of
its mean-¯eld approximation dynamics during a given time interval. More exactly,
for any bounded time interval and ¯nite population size N , we provide an upper
bound on the probability that the stochastic population process will depart more
than a prescribed distance from the deterministic solution trajectory during that time
interval. This upper bound goes exponentially to zero as the population size goes to
in¯nity. In this part of the analysis, the time horizon is thus ¯xed and ¯nite, while the
population size is taken to plus in¯nity. Such \averaging theorems" are part of the
folklore in the literatures on random perturbations of dynamical systems.6 However,
the present result provides a sharp exponential estimate of the deviation probability,
based on martingale inequalities. It generalizes and sharpens results for games in
Boylan (1995), Binmore, Samuelson and Vaughn (1995), BÄorgers and Sarin (1997),
Binmore and Samuelson (1997), Corradi and Sarin (1999), and Sandholm (1999).

The second approximation result concerns the ¯rst exit time from sets. We show
that, for large population sizes N , the exit time from any neighborhood of the de-
terministic solution is probabilistically very large. More exactly, for any given time
t > 0, the exit time from any neighborhood of the closure of the forward orbit (i.e.
orbit from time zero on) through the initial state of the stochastic process exceeds t
for all but ¯nitely many population sizes N , with probability one. Consequently, the
exit time from the basin of attraction of an attractor in the deterministic dynamics is
large when the population is large. Moreover, we provide bounds for the probability
distribution of the exit time from certain neighborhoods of such attractors for large
but ¯nite populations.

The third approximation result concerns empirical visitation rates to sets, i.e., the
long-run time fraction that the stochastic process spends in a given set. Using this
random variable, we identify a certain set which has the property that the Markov
chain spends almost all time, in the long run, at the set. This set is called the
minimal center of attraction of the deterministic °ow. It contains all stationary
states and periodic orbits, and it is contained in the (more easily identi¯ed) Birkho®
center of the dynamics. We also provide results for conditional visitation rates, i.e.,
empirical visitation rates until the ¯rst exit time from a given neighborhood of the
set in question. Conditional visitation rates are actually highly relevant because of

6See e.g. Freidlin and Wentzell (1984), and, on stochastic approximation, see e.g. Du°o
(1996,1997), Kushner and Yin (1997) and Benaim (1998,1999).
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the possibility of meta-stability, i.e., the possibility (in the limit as N ! 1) of an
in¯nite expected exit time from a subset - for example a neighborhood of an attractor
- that the stochastic process with probability one eventually will leave.

In the ¯rst result, we ¯xed the time horizon and let the population go to in¯nity. In
results two and three, we ¯rst take the time horizon to in¯nity for a ¯xed population
size, and only thereafter do we take the population size to in¯nity, thereby studying
the asymptotic behavior of the stochastic process when the population is ¯xed but
large. Our results on exit times and visitation rates build on ideas in Freidlin and
Wentzell (1984) and Benaim (1998,1999), and are complementary to the asymptotic
results in Ellison (1993), Binmore, Samuelson and Vaughn (1995) and Binmore and
Samuelson (1997).7

We ¯nally study large deviations in the special case when the population process
is ergodic - and thus admits a unique invariant distribution over the state space.
Following Ellison (2000), we de¯ne the \radius" and \co-radius" of attractors of the
deterministic approximation °ow, and establish an asymptotic result for the support
of the invariant distribution for large ¯nite populations. The main di®erence is that
while Ellison keeps the population size ¯xed and changes the stochastic micro model
by taking the mutation rate to zero, we keep the stochastic micro model ¯xed and
take the population size to in¯nity. In keeping the mutation rate ¯xed in the limit,
we follow Binmore and Samuelson (1997) and Young (1998, Section 4.5).

The rest of the text is organized as follows. The studied class of Markov chains is
de¯ned in section 2 and the general approximation results are presented in section 3.
Section 4 discusses applications to a few micro models of boundedly rational strategy
choice. Section 5 provides asymptotic results for ergodic population processes and
applies these results to symmetric 2£ 2 games. Section 6 shows how the analysis can
be adapted to continuous-time Poisson processes. Mathematical proofs are given in
an appendix at the end of the paper.

2. A Class of Stochastic Processes
Consider a ¯nite n-player game with player roles (or \positions") i 2 I = f1; :::ng,
¯nite pure strategy sets Si = f1; :::;mig, set of pure-strategy pro¯les S = £iSi,
mixed-strategy simplices

¢(Si) =

(
xi 2 Rmi+ :

X

h2Si
xih = 1

)
, (1)

7For a discussion of the relation between the two iterated limits in question see also Gale, Bimore
and Samuelson (1995) and BÄorgers and Sarin (1997).
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and polyhedron ¤(S) = £i¢(Si) of mixed-strategy pro¯les x = (x1; :::; xn). The
polyhedron ¤(S) is thus a subset of RM , for M =

P
imi. For any player role i and

pure strategy h 2 Si, let ehi 2 ¢(Si) denote the corresponding unit vector - the mixed
strategy for player i that assigns unit probability to pure strategy h.

For each player role i there is a population of N individuals. Each individual is
at every moment in time associated with a pure strategy in her strategy set. An
individual in population i who is associated with pure strategy h 2 Si is called
an h-strategist. At times t 2 T = f0; ±; 2±; :::g, where ± = 1=N , and only then,
exactly one individual has the opportunity to change his or her pure strategy. This
individual is randomly drawn, with equal probability for all nN individuals, and
with statistical independence between successive draws.8 With this ¯xed relationship
between population size and period length, the expected time interval between two
successive draws of one and the same individual is n, independently of the population
sizeN .9 We will call the times t 2 T transition times - the only times when a transition
can take place.

The speci¯c models to be studied each de¯ne a Markov chain XN =
¡
XN (t)

¢
t2T

with ¯nite state space ¤N(S) in the polyhedron ¤(S) of mixed-strategy pro¯les.10

The state XN(t) at any time t 2 T speci¯es, for every player role i 2 I and pure
strategy h 2 Si, the share XNih(t) of h-strategists in population i. The only state
transitions that can occur are that one individual in one population changes pure
strategy. For every player role i and pair (h; k) of pure strategies for that role, there
exists a continuous function phik : ¤(S) ! [0; 1] such that phik(x) = 0 if xik = 0, and

phik(x) = Pr
·
XNi (t+

1
N

) = xi +
1
N

¡
ehi ¡ eki

¢
j XN(t) = x

¸
(2)

for all i 2 I, h; k 2 Si, N 2 N and x 2 ¤N(S): In other words: the conditional
probability that a k-strategist in population i will become a h strategist is continuous
in the current state. In particular, it is independent of calendar time t and population
size N .11 The corresponding transition probabilities are, for any v 2 RM ,

8The subsequent analysis is valid also if n individuals were simultaneously (and statistically
independently) drawn, one from each player population. The only di®erence is that the stochastic
process would be a factor n faster, and thus the vector ¯eld F a factor n stronger.

9There are N draws per time unit, and each time the probability that a particular individual is
drawn is one over the total population size, nN .

10The ¯nite set ¤N(S) is the subset (\grid") of points x in the polyhedron ¤(S) such that Nxih
is a non-negative integer for all i and h.

11This excludes, in particular, the possibility that individual behaviors change as the population
size changes, from, say, some form of best-reply behavior in small populations to some form of
imitation behavior in large populations.
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Pr
·
XN(t+

1
N

) = x+
1
N
v j XN(t) = x

¸
=

½
phik(x) if vi = ehi ¡ eki and vj = 0 8j 6= i
0 otherwise

(3)

2.1. The induced vector ¯eld. For any player role i 2 I and pure strategy
h 2 Si, the expected net increase in the subpopulation of h-strategists from one
transition time to the next, conditional upon the current state x, is

Fih(x) =
X

k 6=h
phik(x) ¡

X

k 6=h
pkih(x) . (4)

It follows from the probability speci¯cation above that Fih : ¤(S) ! R is bounded
and continuous, with

P
h Fih(x) ´ 0 and Fih(x) ¸ 0 if xih = 0.

Recall that the polyhedron ¤(S) is a subset of RM , where M =
P
imi. Let

m = M ¡ n, let E1 denote the m-dimensional hyperplane of RM which contains
¤(S), and let E0 be the parallel m-dimensional subspace, the tangent space of E1:

E1 =

(
x 2 RM :

X

h

xih = 1 8i
)

and E0 =

(
x 2 RM :

X

h

xih = 0 8i
)

.

(5)
We identify E1 and E0 with Rm, call this space E, and view the function F as a
mapping from E to E. This function is assumed to be bounded and locally Lipschitz
continuous.12 We will call F the vector ¯eld associated with the Markov chain XN .

Remark 1: In the special case of symmetric n-player games, an alternative setting
is that of a single population consisting of N individuals. The present machinery then
applies by letting the Markov chain XN have the ¯nite state space ¢N in the common
unit simplex ¢ of mixed strategies. The stateXN(t) 2 ¢N at any time t now speci¯es,
for each pure strategy h in the common pure-strategy set, the share of h-strategists
in the population. We use this setting in section 5.

3. Deterministic Approximation
We are interested in deterministic approximation of Markov chains XN in the class
de¯ned above, when the population sizeN is large, and thus the time interval ± = 1=N

12The function F is bounded and continuous on the polyhedron, by virtue of these properties
of the transition probabilities, and can hence be extended to the whole space E while preserving
these properties. We strengthen the continuity assumption by requiring local Lipschitz continuity.
A function F : E ! E has this property if for every compact subset C ½ E there exists a scalar ¸C
such that kF (x) ¡ F (y)k < ¸C kx ¡ yk for all x; y 2 C, where k¢k is a norm on E = Rm.
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between successive transition times is short. The key element for such approximation
is the vector ¯eld F : E ! E de¯ned above, which, for large populations and short
time intervals, gives the expected net increase in each population share during the
time interval, per time unit. (There are N transition times per time unit and N
individuals in each player population.) The associated mean-¯eld equations

_xih = Fih(x) 8i 2 I; h 2 Si; x 2 E (6)

together specify this limiting deterministic dynamic (a dot over a state variable de-
notes its time derivative). In force of the Picard-LindelÄof Theorem, the system (6) of
¯rst-order ordinary di®erential equations has a unique solution through every point x
in E. Moreover, as noted above, the sum of all population shares in each population
remains constant over time, and no population share can turn negative. Hence, the
system of equations (6) de¯nes a solution mapping » : R£¤(S) ! E that leaves each
mixed-strategy simplex ¢(Si), and hence also the polyhedron ¤(S) of mixed-strategy
pro¯les, forward invariant. In other words, the system of di®erential equations deter-
mines a solution for all times t 2 R, and if the initial state is in ¤(S), then also all
future states are in ¤(S).13 We will frequently call » the induced °ow.

We are now in a position to address the four questions in what precise sense, if
any, the induced °ow » approximates the Markov chain XN =

¡
XN(t)

¢
t2T when N is

large. As N changes, in general also the initial state XN(0) 2 ¤N(S) has to change,
since the ¯nite state space ¤N(S) ½ ¤(S) changes with N (all population shares are
multiples of 1=N). We will frequently write \XN(0) ! x" as a short-hand notation
for \for every positive integer N , XN(0) 2 ¤N(S), and XN (0) converges to x 2 ¤(S)
as N goes to plus in¯nity."

3.1. Trajectories over bounded time intervals. Our ¯rst result gives an exact
form to the heuristic \law of large numbers" that says that the stochastic population
process with high probability moves close to the associated deterministic population
°ow during any given bounded time interval, granted the population is large enough.
We measure the ¯t of the deterministic approximation over bounded time intervals
in terms of the interpolated continuous-time process X̂N de¯ned by piecewise a±ne
interpolation of the Markov chain XN .14

13More exactly: »(0; x) = x for all x, @
@t»ih(t; x) = Fih [»(t; x)] for all i, h, x and t, and »i(t; x) 2

¢(Si) for all i 2 I, x 2 ¤(S), and t > 0. The time domain of the solution mapping » can be taken
to be the whole real line in force of the compactness of ¤(S).

14The values of the interpolated process, at any time t 2 [n±; (n + 1) ±], are de¯ned by

X̂N(t) = XN(n±) +
t ¡ n±

±
£
XN((n + 1) ±) ¡ XN(n±)

¤



DETERMINISTIC APPROXIMATION OF STOCHASTIC EVOLUTION IN GAMES 9

In order to state this result more precisely, let jj ¢ jj1 denote the L1-norm on
E = Rm. Then jjX̂N(t) ¡ »(t; x)jj1 represents the deviation of the interpolated
Markov chain from the deterministic approximation solution » at time t, measured
as the largest deviation in any population share at time t:

jjX̂N(t) ¡ »(t; x)jj1 = max
i2I;h2Si

¯̄
¯X̂Nih(t) ¡ »ih(t; x)

¯̄
¯ . (7)

The stochastic variable

DN (T; x) = max
0·t·T

jjX̂N (t) ¡ »(t; x)jj1 (8)

is thus the maximal deviation in any population share during a bounded time in-
terval [0; T ].15 The proof of the following result is based on exponential martingale
inequalities, enabling an exponential upper bound:

Lemma 1. There exists a scalar c > 0 such that, for any " > 0, T > 0, and any N
large enough:

Pr
£
DN (T; x) ¸ " j XN(0) = x

¤
· 2me¡"

2cN ,

for all x 2 ¤N(S).

In other words: for a ¯xed game, vector ¯eld F , deviation ", and ¯nite time hori-
zon T , the probability of a larger deviation in any of the population shares is, for large
enough populations, bounded from above by an exponentially decreasing function of
the population size N . Consequently, for any given ¯nite time horizon, the determin-
istic population °ow », induced by the vector ¯eld F , uniformly approximates the
stochastic process over the time interval arbitrarily well, provided the population is
su±ciently large. This last claim is not a new result, however. Binmore, Samuelson
and Vaughn (1995) establish a version of this claim for a particular process in sym-
metric 2 £ 2 coordination games, see also Boylan (1995), BÄorgers and Sarin (1997),
Binmore and Samuelson (1997), Corradi and Sarin (1999) and Sandholm (1999). The
value added in lemma 1 is the exponential and hence summable (

P
N e

¡aN < +1)
bound, which allows us to go beyond earlier results by way of the Borel-Cantelli
lemma, see propositions 1-3.16

15It is immaterial whether one writes \max" or \sup" in this equation.
16The Borel-Cantelli lemma states that if a sequence hAnin2N of events An is such that the sum

of their probabilities is ¯nite,
P

n Pr (An) < +1, then the probability is zero that in¯nitely many
of them occur, Pr (lim supn!1 An) = 0.
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3.2. Exit times from sets. The results in this subsection concern exit times
from sets in the state space. They give alternative exact forms to the heuristic \law
of large numbers" that if the population is large, and the deterministic population °ow
remains forever in some subset of the state space, then also the stochastic process will
remain there for a very long time with a probability arbitrarily close to one, granted
the population is large enough.17

For any Borel set U ½ E, and given XN with XN (0) 2 U , the exit time from U
is the random variable

¿N(U) = inf
n
t ¸ 0 : X̂N(t) =2 U

o
. (9)

For any state x 2 ¤(S), let °(x) be the orbit of the deterministic °ow » through
x, the set of states y 2 ¤(S) such that y = »(t; x) for some t 2 R, and let °+(x) be
the forward orbit, the set of states y 2 ¤(S) such that y = »(t; x) for some t ¸ 0.
In other words, the orbit through a state x is the set of all states that have been
or will be reached, granted the state at time zero is x. The forward orbit is the
subset of these states that are reached from time zero on. Neither the orbit nor
the forward orbit need be closed sets. This is, for instance, the case if the solution
trajectory converges to a stationary state from some non-stationary state: it does
not reach the stationary state in ¯nite time. Hence, without moving far away from
the deterministic °ow the stochastic process may anyhow leave a neighborhood of
the forward orbit, since such a neighborhood need not contain a neighborhood of the
limit state in question.18 Therefore, we instead consider neighborhoods of the closure
°+(x) of the forward orbit through an initial state x. The stationary state in the
just mentioned example clearly belongs to the closure of the forward orbit, and any
neighborhood of this closure is also a neighborhood of the limit state.

Combining lemma 1 with the Borel-Cantelli lemma, we obtain that, for any open
set U containing the closure of the forward orbit, and for any t > 0, the exit time
¿N(U) exceeds t for all but ¯nitely many N 2 N, with probability one.19 Hence,20

Proposition 1. Suppose U ½ E is open, °+(x) ½ U , and XN(0) ! x. Then
Pr

£
limN!1 ¿N(U) = +1

¤
= 1.

Proposition 1 can be applied to attractors of the deterministic °ow. The fol-
lowing result establish that every neigborhood of the attractor, within its basin of

17Ellison (1993) establish such a result, for an ergodic process, for exit times from neighborhoods
of strict Nash equilibria in recurrently played 2 £ 2-coordination games.

18A neighborhood of a set A is a set that contains an open set B that contains A.
19Here the exponential bound in lemma 1 is important since it is summable (

P
N e¡aN < +1).

20This and many subsequent results implicitly refer to a common probability space that can easily
be constructed.
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attraction, contains some neighborhood from which the exit time is with high prob-
ability very large when the populations are large. In this sense, attractors are good
predictors also for the stochastic process, granted it starts near them. Formally, a
non-empty compact set A ½ ¤(S) is an attractor of the deterministic °ow » if it is
invariant, °(x) ½ A for all x 2 A, and has a neighborhood U with the property that
limt!1 d [»(t; x); A] = 0 uniformly in x 2 U , where d(x;C) denotes the (Hausdor®)
distance between a point x and a closed set C. The basin of attraction of an attractor
A is the set

B(A) = fx 2 E : lim
t!1
d [»(t; x); A] = 0g .

Proposition 2. Let A ½ ¤(S) be an attractor of the °ow », let V ½ B(A) be any
neighborhood of A: Then there exists a neighborhood U ½ V of A with closure ¹U in
B(A), such that Pr

£
lim infN!1 ¿N(U) = +1

¤
= 1 if XN (0) 2 U .

Together with lemma 1, this implies that if the deterministic °ow through the
initial state of the stochastic process at some point in time enters the basin of attrac-
tion of some attractor, then the stochastic process will enter any given neighborhood
of that attractor within a ¯nite and deterministic time with a probability that expo-
nentially approaches one as the population size goes to in¯nity, and the process will
remain in this neighborhood for a random time which with probability one exceeds
any upper bound as the population size goes to in¯nity. In the appendix we establish
a more powerful and precise result (lemma 4) which gives exponential bounds on the
rate at which the exit time goes to in¯nity as the population size goes to in¯nity.

By contrast, if an invariant set A is not an attractor, then there exists some
outgoing deterministic solution orbit, from initial states near A. One can then show
that if the stochastic process starts near such an initial state, then it will depart in
¯nite time from any neighborhood of A, with probability one as the population size
is taken to in¯nity. More exactly, suppose A ½ ¤(S) is a compact invariant set under
», and let U be a neighborhood of A such that the complement to A in U contains
no invariant set. In other words, U is an isolating neighborhood of A. For any state
x 2 ¤(S), let ®(x) be the alpha-limit set of x, i.e., the set of states y 2 ¤(S) such
that limk!+1 »(tk; x) = y for some unbounded decreasing sequence of times tk < 0.
Let @U denote the boundary of the neighborhood U , and let U 0 be the subset of U
that consists of states x 2 U such that ®(x) 2 A and »(t; x) 2 @U for some t > 0.
In other words, U 0 consists of those states x in the neighborhood U that belong to
solution orbits which originate arbitrarily close to A in the distant past and which
reach the boundary of the neighborhood in ¯nite time. It is well-known that if A is
not an attractor, then U 0 is non-empty, see e.g. Conley (1978).



DETERMINISTIC APPROXIMATION OF STOCHASTIC EVOLUTION IN GAMES12

Proposition 3. Suppose A ½ ¤(S) is a compact invariant set with isolating neigh-
borhood U , and let U 0 be as de¯ned above. If A is not an attractor of », then U 0 6= ;,
and Pr

£
lim supN!1 ¿N(U) < +1

¤
= 1 if XN(0) ! x0 2 U 0:

Note the contrast with proposition 1, which states that the stochastic process, in
the limit as N goes to in¯nity, remains forever in a neighborhood of every forward
orbit - even if its limit is an unstable state.. How can these two results be reconciled?
The answer lies in the hypothesis concerning the initial state. Suppose x is a station-
ary but unstable state in the deterministic approximation dynamics. The forward
orbit is thus fxg, and proposition 1 says that if the initial states of the stochastic
processes XN converge to x, then the exit time from any neighborhood U of x is prob-
abilistically very large when the population is large, in the sense that it exceeds any
give time t for all but ¯nitely many N , with probability one. By contrast, proposition
3 says that the stochastic process almost surely will leave any such neighborhood U
in ¯nite time, granted the initial states of the stochastic processes XN converge to
some state x0 in the non-empty subset U 0 ½ U . Clearly x =2 U 0, and thus x0 lies at
some (possibly small but) ¯nite distance from the stationary state x. By de¯nition,
x 2 ®(x0), but it takes the deterministic °ow an in¯nite amount of time to reach x0
from x, and, by continuity, an arbitrarily long time to reach x0 from an initial state
that is arbitrarily close to x. However, starting at x0 6= x, the deterministic °ow
leaves U after a ¯nite time. The two results essentially say that the same holds for
the stochastic processes. The contrast is particularly stark in the special case when x
is a repellor. Then the above set U 0 is the whole set U except for one point, namely
x, so in this special case the conclusion in the above proposition can be strengthened
to the claim that if XN(0) ! x0 2 U , where x0 6= x, then the limit superior of the
sequence ¿N(U), as N ! 1, is almost surely ¯nite. By contrast, if x instead were an
asymptotically stable state, then proposition 1 would imply that if XN (0) ! x0 2 U ,
then ¿N (U) almost surely goes to in¯nity as N ! 1.

3.3. Visitation rates to sets. We next study how often, in the long-run, the
stochastic process visits a given set. Such time fractions are called empirical visitation
rates, and we here study both unconditional and conditional such rates.

First, for any Borel set U ½ E and time T , let V N(U; T ) be the fraction of
transition times that the Markov chain XN visits U in the time interval [0; T ], its
(empirical) visitation rate in U during that time interval:

V N(U; T ) =
1

jT(T )j
X

t2T(T )

1fXN (t)2Ug; (10)
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where T(T ) = T \ [0; T ] is the subset of the transition times that fall in the time
interval [0; T ], and where jT(T )j is the number of elements in T(T ). The stochastic
process XN de¯nes the random variable V N(U; T ), for any given time horizon T ,
\target" set U , and population size N .

The ¯rst result is stated in terms of the so-called minimal center of attraction of
the deterministic °ow ». This set, which we will denote M(»), contains all stationary
states and all periodic orbits of ». Formally, the minimal centre of attractionM(») ½
¤(S) of » is the closure of the union of the supports of Borel probability measures
that are invariant under ».21 The minimal center of attraction is a subset of the
so-called Birkho® center of the °ow. The Birkho® center essentially consists of those
states that, as initial states, are passed nearby in¯nitely many times in the future.
It is usually easier to ¯nd the Birkho® center than the minimal center of attraction,
and these two sets do not di®er much, if at all, in many applications. Formally, for
any state x 2 ¤(S), let !(x) ½ ¤(S) be its omega limit set, i.e., the set of states
y 2 ¤(S) such that limk!+1 »(tk; x) = y for some unbounded increasing sequence
of times tk > 0. The Birkho® centre B(») ½ ¤(S) of » is the closure of the set of
states x 2 ¤(S) such that x 2 !(x). By the Poincar¶e Recurrence Theorem (see, for
example, Ma~n¶e (1987)), M(») ½ B(»).

Proposition 4. Suppose XN (0) ! x. For any open set U ½ E containing M(»):

lim
N!1

h
lim inf

T!1
V N(U; T )

i
= 1 a.s.

In other words: for large populations the Markov chain almost surely spends al-
most all time, in the long run, at the minimal centre of attraction of the deterministic
°ow, and hence, a fortiori, at its Birkho® center.

In many applications, the minimal center of attraction has several disjoint com-
ponents. In order to get more predictive power, we accordingly focus on conditional
visitation rates, i.e., visitation rates that are conditional on the event that the stochas-
tic process remains in some pre-speci¯ed neighborhood of the component in question.
Suppose U is a Borel set, U ½ C ½ ¤(S), and XN (0) 2 C. The conditional visitation
rate in U with respect to the superset C is de¯ned as V N

£
U; ¿N (C)

¤
.22 In other

words, this is the visitation rate in U until the ¯rst exit from C. For any invariant
set A in the °ow », let »jA denote the restriction of » to A, and let M(»jA) denote

21A Borel probability measure ¹ is invariant under » if ¹(A(t)) = ¹(A) for any Borel set A and
time t, where A(t) = fy 2 ¤(S) : y = »(t; x) for some x 2 Ag is a Borel set by continuity of ».

22If the ¯rst exit time ¿N(C) is in¯nite we de¯ne V N
£
U; ¿N(C)

¤
as lim infT!1 V N(U; T ).
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the minimal center of attraction of the °ow »jA.23 Note that M(»jA) ½ M(») \ A.
Likewise, let B(»jA) ¾ M(»jA) denote the Birkho® center of the restricted °ow »jA.

We are now in a position to state our approximation result for conditional visi-
tation rates. The result concerns any open set U ½ C which contains the minimal
center of attraction of this restricted °ow. The claim is that if the process starts in
U , then its conditional visitation rate in U , during its stay in C, is almost surely one
as the population size N goes to plus in¯nity. In other words, as long as the process
remains in C, which is typically a very long time (see proposition 2), it spends almost
all time near the minimal center of attraction of the °ow restricted to the attractor
in question. A fortiori, it spends almost all time near the Birkho® center of the °ow
restricted to the attractor.

Proposition 5. Let A ½ ¤(S) be an attractor of » and let C ½ B(A) be a compact
neighborhood of A. If U ½ C is an open neighborhood of M(»jA) and XN(0) 2 U for
all N , then

lim
N!1

V N
£
U; ¿N(C)

¤
= 1 a.s.

Combined with lemma 1 and proposition 2, this result implies that, if the deter-
ministic solution through the initial state of the stochastic process at some point in
time enters a basin of attraction, then the stochastic process will not only enter any
given neighborhood of that attractor and remain there for a long time if the popula-
tion is large, but during this time interval, the process will actually spend almost all
time at a the minimal center of attraction of the °ow restricted to the attractor - a
subset of the attractor.

3.4. Meta-stability. Despite the above \positive" approximation results, it is not
excluded that the stochastic process eventually stays far away from its deterministic
approximation. In particular, even if the process starts in some basin of attraction
of the deterministic °ow it may with probability one eventually leave this basin and
remain outside forever - a phenomenon sometimes called meta stability. As the above
results show, the time until such an event occurs may be probabilistically so long,
for large populations, that this phenomenon is of little practical relevance. However,
this remains at least a logical possibility under certain circumstances, which we here
identify.

First, suppose the stochastic process has positive \switching" probabilities in the
following sense:

23For any invariant set A ½ ¤(S) under the °ow », one may unambiguously de¯ne the mapping
»jA : R £ A ! A by »jA(t; x) = »(t; x) for all t 2 R and x 2 A.
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[C1] 0 < xik < 1 ) phik(x) > 0 for some h 6= k.

In other words, if some, but not all, individuals in a player population i uses pure
strategy k, then it is possible that a k-strategist, if called upon to review his or her
strategy choice, abandons his or her current strategy k. This property is held by
many micro choice models of evolution and learning in games.

Secondly, suppose the stochastic process has zero probability of switching to a
currently unused strategy:

[C2] : xih = 0 ) phik(x) = 0 for all k 6= h.

Stochastic processes with this property arise from micro models based on strategy
choice by way of imitation - then no individual ever switches to a currently unused
strategy. Such a process evidently never leaves the boundary of the polyhedron ¤(S)
once this has been reached. Consequently, if both conditions [C1] and [C2] are met,
then the stochastic population process sooner or later hits one of the vertices of the
polyhedron of mixed-strategy pro¯les - a pure-strategy pro¯le - and remains there
forever. Since the state space is ¯nite, this happens with probability one, irrespective
of the initial state, and for any ¯nite size of the population:

Remark 2: If condition [C2] is met, then the Markov chain is not ergodic. If both
conditions [C1] and [C2] are met, then the chain reaches a vertex of the polyhedron
¤(S) in ¯nite time and remains there forever, with probability one.

4. Examples
We here brie°y consider applications to some micro models of boundedly rational
strategy choice in recurrently played games, models that have bee discussed in the
literature on evolution and learning in games. For this purpose, consider a ¯nite
game in normal form, with strategy sets as speci¯ed in section 2, and with payo®
functions ui : ¤(S) ! R derived as usual from some pure-strategy payo® functions
¼i : S ! R, for all player roles i 2 I.24 We assume that all individuals in the same
player population have the same preferences, given by these payo® functions.25 We
¯rst brie°y consider two imitation behaviors and thereafter two best-reply behaviors.

24Note that we analyze the game in terms of mixed strategies, even if the game is given in extensive
form.

25This assumption is standard in evolutionary game theory, and facilitates connections with stan-
dard solution concepts in non-cooperative game theory. An interesting avenue for future research is
to consider heterogeneous populations.
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4.1. Aspiration and random imitation. This ¯rst choice model formalizes the
decision rule \If you are dissatis¯ed with the current performance of your strategy,
imitate a randomly drawn individual in your own population." More exactly, if the
current strategy performs below some aspiration level, then, and only then, does the
reviewing individual switch to the strategy of a randomly drawn individual in her
own population (this strategy may happen to be the same as her own). This micro
model is discussed in Gale, Binmore and Samuelson (1995), BjÄornerstedt and Weibull
(1996) and Binmore and Samuelson (1997). This choice model induces a population
process in the class de¯ned in section 2, and it meets conditions [C1] and [C2]. Hence,
the induced population process eventually end up in some pure-strategy pro¯le and
remains there forever, with probability one. As pointed out above, however, this
may take an exceedingly long time, if the populations are large, and events of game-
theoretic relevance may happen in the mean-time.

It is easily shown that if the aspiration levels within each player population i are
statistically independent and uniformly distributed on an interval [ai(x); bi(x)] that
contains the range of the payo® function ¼i, then the resulting mean vector ¯eld is

Fih(x) =
1
n
ui

¡
ehi ; x¡i

¢
¡ ui(x)

bi(x) ¡ ai(x)
xih . (11)

In particular, if the aspiration distributions are state independent, ai(x) ´ ®i and
bi(x) ´ ¯i for some ®i < ¯i and for all i, then (11) is but a (player-speci¯c) time-
rescaling of the Taylor (1979) version of the replicator dynamics:

Fih(x) =
£
ui

¡
ehi ; x¡i

¢
¡ ui(x)

¤
xih=¸i , (12)

where ¸i = n (¯i ¡ ®i) > 0. If instead each aspiration level follows its population's
average payo® in such a way that ai(x) ´ ®iui(x) and bi(x) ´ ¯iui(x) for some
®i < ¯i (and all payo®s are positive), then ¸i = n (¯i ¡ ®i) ui(x) and we obtain a
(player-speci¯c) time-rescaling of the Maynard Smith (1982) version of the replicator
dynamics. In this case it is as if individuals aspire to a (random) multiple of the
current average payo® in their population, where the aspired multiple is uniformly
distributed on the interval [®i; ¯i].

In both cases, the qualitative behavior of the °ow has close connections with
standard concepts in non-cooperative game theory. For instance, it is well known
in the evolutionary game theory literature that every Lyapunov stable population
state constitutes a Nash equilibrium, the limit point to every convergent interior
solution trajectory is a Nash equilibrium, and, irrespective of whether ,such a solution
trajectory converges or diverges, all population shares associated with iteratively
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strictly dominated strategies converge to zero.26 Moreover, attractors that contain
strategically stable sets of Nash equilibria have been identi¯ed for these dynamics.27

The results in section 3 tell in what sense the underlying stochastic process does
likewise, when the populations are large.

Note the small amount of information needed for this choice model. In particular,
a strategy reviewing individual need not even know her own strategy set or payo®
function, nor any other aspect of the game, and no information is needed about the
population state. What is needed is knowledge of a randomly drawn individual's
pure strategy - which in an extensive-form game may mean that the randomly drawn
individual actually has to \tell" what his strategy is (what he would have done at
unreached information sets).

4.2. Aspiration and imitation of success. In this choice model, the strategy
reviewing individual compares the performance of her strategy with the performance
of the strategy of a randomly drawn individual in her own population. The individual
switches to the other individual's strategy if the realized payo® di®erence exceeds a
random threshold value. This threshold may be interpreted as a switching cost or
as an observational error ,or as emanating from idiosyncratic preference di®erences
between individuals in the same player population. Clearly also this choice models
generates a population process in the class de¯ned in section 2, and also in this case
are conditions [C1] and [C2] met.

If the threshold distributions are uniform, with a support [ai(x); bi(x)] that covers
the range of possible payo® di®erences between any two pure strategies in player role
i, then it is easily shown that the mean vector-¯eld is twice that in equation (11), and
hence one obtains the Taylor (1979) and Maynard Smith (1982) replicator dynamics
as special cases. This choice model also contains the \proportional imitation rule"
in Schlag (1998). Schlag shows that in his framework an optimal decision rule is to
switch to the strategy of the other individual if and only if the other individual's payo®
realization is better than yours, and to do so with a probability that is proportional
to the realized payo® di®erence. In the present framework, this corresponds to a
uniform threshold distribution with support [0; bi] , where bi exceeds the largest payo®
di®erence between strategies in player role i. In accordance with Schlag, we again
obtain a time-rescaled version of the Taylor (1979) replicator dynamics.28

26See Bomze (1986), Nachbar (1990), Samuelson and Zhang (1992), Weibull (1995), Hofbauer and
Weibull (1996).

27See Swinkels (1993), Ritzberger and Weibull (1995) and Demichelis and Ritzberger (2001).
28Likewise, it is easy to show that one obtains the Maynard Smith (1982) replicator dynamics if

all payo®s are positive and the upper bound of the threshold distribution is state-dependent and
proportional to the current population payo®, bi(x) = ¯iui(x) for some ¯i > 0.
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4.3. Perturbed best replies. In order to discuss best-reply behaviors, let the set
of pure best replies in player role i to any mixed-strategy pro¯le x be denoted ¯i (x).
Suppose, ¯rst, that the individual drawn for strategy review knows her payo® function
and observes the current population state, and with probability 1 ¡ " switches to a
pure best reply to this state, with equal (conditional) probability for all best replies,
and otherwise switches to some other pure strategy with the remaining probability
" ¸ 0. The induced vector ¯eld (4) then becomes

Fih(x) =

(
1¡"
j¯i(x)j ¡ xih if h 2 ¯i (x)

"
mi¡j¯i(x)j ¡ xih otherwise . (13)

Clearly this vector ¯eld is Lipschitz continuous almost everywhere, but has disconti-
nuities on the boundaries of the sets where the pure best-reply correspondences are
constant. Consequently, pure (" = 0) and perturbed (0 < " < 1) best-reply behaviors
generate population processes that fall outside the class analyzed here. (Indeed, much
of the present analysis is based on the assumption that the mean-¯eld is Lipschitz
continuous.) Approximation results for the stochastic processes generated by these
best-reply behaviors thus call for a generalization of the present analysis.

4.4. Smooth best replies. Suppose, ¯nally, that the reviewing individual makes
a noisy observation of the current average payo® to each pure strategy in her strat-
egy set, and chooses a pure strategy that has the highest observed value.29 More
precisely, an individual drawn from population i for strategy review observes, for
each pure strategy h 2 Si, the sum ui

¡
ehi ; x¡i

¢
+ "ih, where f"ihgh2Si are indepen-

dent and identically distributed according to the extreme-value distribution function
G ("ih · z) = exp [¡ exp (z=¾)], for ¾ > 0. As is well-known from the random-utility
discrete choice literature (see e.g. Anderson et al. (1992)), this leads to conditional
choice probabilities of the logit form. In the present context this boils down to

Fih(x) =
exp

£
ui

¡
ehi ; x¡i

¢
=¾

¤
P
k2Si exp

£
ui

¡
eki ; x¡i

¢
=¾

¤ ¡ xih . (14)

The induced Markov chain XN is ergodic. Moreover, as ¾ ! 0, this vector ¯eld
converges pointwise to the pure best-reply vector ¯eld.

5. Large deviations
For any player role i 2 I, pure strategies h; k 2 Si, let the \(i; k ! h)-switch" be the
vector v 2 E de¯ned by vi = ehi ¡ eki and vj = 0 for all j 6= i. Let V ½ E be the

29In a ¯nite population, the expected payo® to a strategy is the same as its average payo® when
played against all individuals in all other player populations. Such information is sometimes assumed,
see e.g. Kandori, Mailath and Rob (1993).
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(¯nite) set consisting of all such vectors v. For each vector v 2 V and x 2 ¤(S),
let ¹x (v) = phik(x). Hence, for each population state x, ¹x is a discrete probability
measure on E with support in V . Moreover, in view of equation (3), we have

¹x(v) = Pr
·
XN(t+

1
N

) = x+
1
N
v j XN(t) = x

¸
(15)

for all v 2 V and x 2 ¤(S). Observe that the mean value of ¹x is the vector ¯eld F
at x: X

v2V
v¹x(v) = F (x) . (16)

We will say that the family f¹x : x 2 ¤(S)g is non-degenerate if the probability
that a strategy reviewing individual switches to any other strategy is always positive.
Formally,

[C3] xik > 0 ) phik(x) > 0 for all h

This condition is more stringent than condition [C1], and it is incompatible with
condition [C2]. Condition [C3] clearly implies that XN is an irreducible and ape-
riodic Markov chain. In particular, for each N 2 N there exists a unique invariant
probability measure ¹N such that

lim
t!1

Pr
£
XN (t) 2 B

¤
= ¹N (B) = lim

T!1
V N (B; T ) (17)

for every Borel set B in ¤(S).
Moreover, for large N , the process spends almost all time near a particular at-

tractor of the deterministic °ow ». This attractor can be characterized in terms of
the game data and the micro model underlying the stochastic population process.
We achieve this characterization by relying on certain results for large deviations. In
the present model, the relevant large deviations are ¯nite sequences of many small
"jumps" (of size 1=N) that take the stochastic process out of one of the deterministic
°ow's basins of attraction and into another. In order to state this result, some more
terminology and notation is needed.

First, for any T > 0, let C[0; T ] denote the set of continuous functions Ã : [0; T ] !
¤(S), functions that map times t in the bounded interval to mixed-strategy pro¯les
x = Ã(t). We will call such functions paths and endow this function space with
the topology of uniform convergence. For each mixed-strategy pro¯le x, let Cx[0; T ]
denote the subset of functions Ã 2 C [0; T ] with Ã(0) = x, i.e., paths \starting"
at state x. The basic approach in the theory of large deviations is to estimate the
probability that the interpolated stochastic process X̂N , with initial stateXN(0) ! x,
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follows any given path Ã 2 Cx[0; T ]. It turns out that this probability is of the order
of magnitude of exp [¡Ncx;T (Ã)], where cx;T (Ã) is a non-negative number, possibly
in¯nite, to be called the cost of the path Ã. In the present context, the cost of Ã is
de¯ned as follows:

cx;T (Ã) =

( R T
0 L

h
Ã(t); _Ã(t)

i
dt if Ã is absolutely continuous

+1 otherwise
(18)

where, for each state x 2 ¤(S) and \direction" v 2 E, L(x; v) is the so-called Cram¶er
transform of ¹x, de¯ned as follows:

L(x; v) = sup
u2E

"
hu; vi ¡ ln

ÃX

v2V
ehu;vi¹x(v)

!#
. (19)

While the numerical evaluation of the Cram¶er transform is complicated in general,
the function L is known to have the following qualitative features (see e.g. Benaim
(1998)):

[P1] For each x 2 ¤(S), v ! L(x; v) de¯nes a convex and non-negative
function,

[P2] L(x; v) = 0 i® v = F (x),

[P3] L(x; v) < 1 i® v 2 V (¹x), where V (¹x) is the convex hull of the
support of ¹x.30

In other words: given any initial state x, L(x; v) de¯nes an \instantaneous cost"
at x, associated with every direction v from x, a cost that is a convex function of
the direction, with minimum value zero in the direction of the vector ¯eld F of the
deterministic °ow. The \instantaneous costs" is in¯nite in those directions which
have zero probability in the population process XN (c.f. equation (3)). Equation
(18) simply de¯nes the cost cx;T (Ã) of a path Ã as the integral of the instantaneous
costs along the path. It follows from the mentioned properties that a path Ã from
any given state x has zero cost, cx;T (Ã) = 0, if and only if Ã is the solution to the
mean-¯eld equation (6) with initial condition Ã(0) = x: By contrast, if during some
subinterval of times t 2 [0; T ] the tangent vector _Ã (t) to the path Ã at t falls outside
V (¹Ã(t)), i.e. points in zero-probability directions for the population process, then the
path Ã has in¯nite cost.

30Formally, V (¹x) =
nP

v2V;¹x(v)>0 p(v)v : p(v) ¸ 0;
P

v2V;¹x(v)>0 p(v) = 1
o

.
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For any two sets A;B ½ ¤(S) we de¯ne the cost c(A;B) of going from A to B as
the least costly path from a point in A to a point in B:

c(A;B) = inffcx;T (Ã) : x 2 A; T > 0; Ã 2 Cx[0; T ]; Ã(T ) 2 Bg . (20)

Let A be an attractor of the °ow », with basin of attraction B(A). Following
Ellison (2000), we de¯ne the radius of A as the lowest cost of going fromA to anywhere
outside its basin of attraction:

R(A) = c [A;¤(S)nB(A)] . (21)

Hence, the radius is a measure of the \cost of escaping" from the attractor. Likewise,
the co-radius of an attractor is de¯ned as the highest cost to the attractor from
anywhere outside its basin of attraction:

CR(A) = sup
x=2B(A)

c(fxg; A).

Evidently, CR(A) = supx=2B(A) c [fxg; B(A)]. The following proposition establishes
that if the deterministic °ow has an attractor A which it is costlier to leave than
to reach, then, for su±ciently large populations, the stochastic population process
will spend virtually all time near that attractor, in fact near its minimal center of
attraction. This result is similar to Theorem 1 in Ellison (2000). The main di®erence
is that while Ellison keeps the population size ¯xed and changes the underlying micro
model by taking the mutation rate to zero, we keep the underlying micro model ¯xed
and take the population to in¯nity.

Proposition 6. Let A be an attractor of », and suppose U ½ ¤(S) is an open
neighborhood of M(»jA) ½ A: If R(A) > CR(A), then

(a) limN!1 limT!1 V N (U; T ) = 1 a.s
(b) limN!1 limT!1Pr

£
XN (T ) 2 U

¤
= 1.

In other words, if the radius exceeds the co-radius of an attractor A of the deter-
ministic °ow, then the asymptotic visitation rate to any neighborhood of the minimal
center of attraction in A is arbitrarily close to 1, granted the population size is large
enough. And likewise for the asymptotic probability that the process will be in such
a neighborhood. Since this result cannot hold simultaneously for two disjoint attrac-
tors, an implication of the result is that the inequality R(A) > CR(A) can hold for at
most one minimal attractor (attractor that does not contain another attractor). Since
equality between the radius and co-radius of an attractor is \unlikely" for non-trivial
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population processes in non-trivial games, we note that this proposition provides a
strong generic selection criterium: a unique minimal attractor will be selected.

The numerical evaluation of the radius and co-radius of a given attractor is in
general di±cult, including computationally demanding applications of variational cal-
culus. A challenging line of future research is thus to provide numerical estimates
of these quantities. For work in this direction, the following proposition, which fol-
lows directly from Theorem 4.3 in Freidlin and Wentzell (1988), may be useful. Let
H : E2 ! R be de¯ned by the second term in the de¯nition (19) of the Cram¶er
transform,

H (x; u) = ln

"X

v2V
ehu;vi¹x (v)

#
. (22)

Proposition 7. Let A be an attractor of ». Suppose g is a real-valued and continuous
function de¯ned on B(A), such that g vanishes on A but is positive and continuously
di®erentiable outside A, with rg(x) 6= 0 and H [x;rg(x)] = 0 for all such x. Then
g(x) = c (A; fxg) for all x 2 B (A), and thus

R(A) = inf
x2@B(A)

g(x)

We illustrate this approach by way of an application to symmetric 2 £ 2 coordi-
nation games.

5.1. Symmetric 2£ 2 games. In order to simplify the analysis, we assume that
the two player roles are indistinguishable to the individuals, so these cannot condi-
tion their strategy choice on their player role and we accordingly assume that the
individuals are drawn from a single population of size N - an common assumption in
evolutionary game theory and in some models of social learning.

In this setting, let x 2 ¢ = [0; 1] denote the population share of A-strategists, and
let ¢N be the ¯nite state space f0; 1=N; 2=N; :::; 1g ½ ¢ of the associated Markov
chain XN . For all x 2 X, let ®(x) be the probability that a B-strategist becomes an
A-strategist, ®(x) = pAB(x), and ¯(x) the probability that an A-strategist becomes
a B-strategist, ¯(x) = pBA(x). In particular, ®(1) = ¯(0) = 0. We assume that the
functions ® and ¯ are continuous and satisfy the non-degeneracy condition [C3]. It
follows that ®(x) is positive for all x < 1, and that ¯(x) is positive for all x > 0.
Consequently, the mean-¯eld F (x) = ®(x) ¡ ¯(x) is continuous and inward-pointing
at the boundaries of the state space ¢.

Moreover, operational expressions for the quantities de¯ned above may be ob-
tained via proposition 7. For this purpose, de¯ne the function W : (0; 1) ! R by
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W (x) =
Z 1=2

x
[ln®(y) ¡ ln¯(y)] dy . (23)

ClearlyW is continuous. Moreover, this function is a strict Lyapunov function for the
dynamics induced by F in the sense thatW decreases strictly over time along any non-
stationary solution trajectory of the induced dynamics (6).31 Hence, the °ow \runs
downhill" on the graph of W . Consider any state xo such that fxog is an attractor of
the deterministic °ow. Its basin of attraction is an interval, the end-points of which
we denote x¡o and x+o . Hence, the closure of its basin of attraction is the interval
[x¡o ; x+o ] ½ ¢. It is left to the reader to verify that the equation g(x) = W (x)¡W (xo)
de¯nes a function g : [x¡o ; x+o ] ! R with the properties asserted in proposition 7. The
following result uses this observation in order to enable computation of the radius and
co-radius in terms of the function W . Let ¢w ½ ¢ be the non-empty and compact
set where W , and hence also g, achieves its global minimum value:32

¢w = argmin
x2¢
W (x) . (24)

Proposition 8. Suppose fxog ½ ¢ is an attractor of F . Then c(fxog ; fxg) =
W (x) ¡W (xo) for all x 2 [x¡o ; x+o ]. In particular,

R(xo) = minfW (x+o ) ¡W (xo);W (x¡o ) ¡W (xo)g:

Moreover, for any neighborhood U of ¢w:

lim
N!1

h
lim inf
T!1

V N(U; T )
i
= 1 a:s:

lim
N!1

³
lim
T!1

£
PrXN(T ) 2 U

¤´
= 1:

5.2. Example. Suppose that all individuals almost always behave as in the choice
model in subsection 4.1. More exactly, a randomly chosen individual is called for
strategy review each time period. With probability 1 ¡ ", for some small " > 0,
this individual observes the payo® in one play of her strategy against a randomly
drawn individual, and compares this payo® realization with her aspiration level. If
the payo® realization falls short of her aspiration level, then she imitates a randomly

31To see this, note that _W (x) = ¡F (x) ln [®(x)=¯(x)], and hence the sign of _W (x) is the opposite
of to that of F (x).

32A necessary condition for W to be minimized at a point x 2 (0; 1) is W 0(x) = 0, which is
equivalent with ®(x) = ¯(x).
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chosen individual, just as in section 4.1.33 However, with the remaining probability "
she makes no payo® observation but instead tosses a fair coin in order to decide which
strategy to use. This slight modi¯cation - if " > 0 is small - renders the non-ergodic
population process ergodic. Its mean vector-¯eld F" is close to the (single-population)
replicator vector ¯eld F = F0 (see section 4.1), and it converges uniformly to this
vector ¯eld as "! 0.

Let the payo® bi-matrix be

A B
A a; a c; d
B d; c b; b

(25)

with all payo®s in the closed unit interval. Suppose the aspiration level is uniformly
distributed on the unit interval. Let ®"(x) and ¯"(x) denote the associated proba-
bilities of changing pure strategy, as de¯ned above, and let W" be the corresponding
\energy" function, as de¯ned in equation (23), given " > 0.

We then have

½
®"(x) = (1 ¡ ") (1 ¡ x) [x(1 ¡ d) + (1 ¡ x) (1 ¡ b)] x+ " (1 ¡ x) =2
¯"(x) = (1 ¡ ") x [x (1 ¡ a) + (1 ¡ x) (1 ¡ c)] (1 ¡ x) + "x=2 (26)

Let W0 : [0; 1] ! R be de¯ned by

W0(x) =
Z 1=2

x
[ln r(y) ¡ ln l(y)] dy , (27)

where
½
r(x) = x(1 ¡ d) + (1 ¡ x) (1 ¡ b)
l(x) = x (1 ¡ a) + (1 ¡ x) (1 ¡ c) (28)

Hence, as " is taken to zero, W" converges point-wise to W0 on the interior of the
state space.

We focus on a one-dimensional parametric family of these 2 £ 2 coordination
games. Suppose, more speci¯cally, that a = 1, b = 1=2, c = 0 and d = ¸ 2 [0; 1).
Hence, the payo® matrix from the viewpoint of the row player is now

µ
1 0
¸ 1=2

¶

33Since there is only one population in this example, we need to include the reviewing individual
as a possibility, both as the \random opponent" for the payo® observation, and as the individual to
imitate. For large N , this should have negligeable e®ect on the process.
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For each ¸ 2 ¤ = [0; 1), the associated coordination game has three Nash equilibria,
all symmetric, and they correspond to the population states

xA = 1, xM =
1

3 ¡ 2¸
and xB = 0. (29)

The equilibrium
¡
xA; xA

¢
, in which both players play pure strategy A, gives the max-

imal payo® to each player, and is thus Pareto dominant, irrespective of ¸. This
equilibrium is also (strictly) risk-dominant if ¸ < 1=2, while the other strict equilib-
rium,

¡
xB; xB

¢
, in which both players play B, is (strictly) risk-dominant if ¸ > 1=2.34

For su±ciently small " > 0, the vector ¯eld F" admits three stationary states, xB" ,
xM" and xA" , all in ¢ = [0; 1], and these are close to xB, xM and xA, respectively.
Both xB" and xA" are attractors, while xM" is a repellor. For " = 0, this is a well-know
property of the (single population) replicator dynamics.

The following lemma, in combination with proposition 8, shows that the long-
term behavior of the Markov chain, for small " > 0, is determined by the di®erence
between the boundary values of the limiting \energy" function W0:

Lemma 2. lim"!0
£
W"(xA" ) ¡W"(xB" )

¤
=W0(1) ¡W0(0) .

By de¯nition,

W0(1) ¡W0(0) = ¡
Z 1

0
[ln r(y) ¡ ln l(y)]dy =

v(¸)
2¸¡ 1

,

where v(¸) = 2(¸ ¡ 1) ln (1 ¡ ¸) ¡ ln 2.35 The function v : [0; 1) ! R is continuous
and strictly concave with v(1=2) = 0 = v (¸o), for some ¸o > 1=2 (¸o ¼ 0:75). Hence,
W0(1) > W0(0) for all ¸ < 1=2, while W0(1) ¡W0(0) has the same sign as v(¸) for
all ¸ > 1=2. The parameter space ¤ can thus be written as the closure of the union
of the open subintervals, (0; 1=2), (1=2; ¸o), and (¸o; 1), where v is positive on the
second and negative on the two others.

We are now in a position to state the result for this parametric family of coordi-
nation games. We will say that the equilibrium (A;A) is selected (respectively (B;B)
is selected) if for all " > 0 small enough, xA" (respectively xB" ) W" : [0; 1] ! R achieves
its global minimum at xA" (respectively xB" ). In force of proposition 8, the stochastic
process XN will, for all large population sizes N almost surely spend almost all time
near the selected equilibrium. As a consequence of the preceding observations we
have established:

34The equilibrium (A;A) is (strictly) risk dominant (Harsanyi and Selten, 1988) if A is a best
reply to x = (1=2; 1=2), or, equivalently, if xM · 1=2 (xM < 1=2).

35Essentially the same integral appears in Corollary 1 in Binmore and Samuelson (1997).
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Proposition 9. There exists ¹" > 0 such that for all " 2 (0; ¹"):
a) ¸ < 1=2 ) (A;A) is risk dominant and selected.
b) 1=2 < ¸ < ¸o ) (B;B) is risk dominant and selected.
c) ¸ > ¸o ) (B;B) is risk dominant but (A;A) is selected.

This result was also obtained in Binmore and Samuelson (1997), while Young
(1998, section 4.1) derives a closely related, but slightly di®erent result. Young con-
siders a single population playing a symmetric 2£2 coordination game, and studies an
adaptive process like ours. The only di®erence is that instead of assuming imitation,
he assumes myopic optimization. He ¯nds that the invariant measure is concentrated
at a population state close to the risk dominant equilibrium state for all su±ciently
large population sizes. His result is thus in accordance with conclusions (a) and (b),
but disagrees with conclusion (c); he selects the risk-dominant equilibrium (B;B)
even in that range of the parameter space. The explanation lies in the di®erence in
the assumed (noise-free) micro behaviors: in a population state near any one of the
extreme states, a strategy-reviewing myopic optimizer chooses the corresponding pure
strategy with probability one, while an individual driven by aspiration-cum-imitation,
as here, may choose the other strategy. In the present choice model, this probabil-
ity is much higher in a population state where virtually everyone plays B than in a
population state where virtually everyone plays A. The reason is that the probability
of dissatisfaction with the current best reply is much higher near the Pareto-inferior
equilibrium (B;B) than near the Pareto-superior equilibrium (A;A).36 This bias in
favor of Pareto dominance, emanating from the assumption that the aspiration dis-
tribution is state independent, outweighs the larger basin of attraction for (B;B) for
¸-values in the mid-range, ¸ 2 (1=2; ¸o). As phrased by Binmore and Samuelson
(1997): the basin of attraction to (A;A) is smaller but "deeper."

6. Poisson clocks
The stochastic processes studied in this paper have exactly one individual drawn for
strategy review at distinct deterministic times, separated by a ¯xed time interval of
length ± = 1=N . It would be more natural to assume that these review times instead
are random. Is the analysis robust in this respect? The canonical continuous-time
model of random \arrival times" is that of a Poisson process. It is not di±cult to
verify that all the qualitative results obtained in this paper remain valid if we replace

36In population states near x = 1, the probability that an A-strategist will become a B strategist is
x (1 ¡ x)2, while in states near x = 0 the probability that a B-strategist will become an A-strategist
is (1 ¡ x) (1=2 ¡ ¸x ¡ x=2)x. Hence, if ¢x denotes the distance from the respective end-state, then
the ratio between these two probabilities is ¢x= (1=2 ¡ ¸¢x ¡ ¢x=2) ! 0 as ¢x ! 0. Consequently,
it is much more di±cult for the stochastic process to \go against the mean ¯eld" near the state x = 1
than near the state x = 0.
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the discrete-time process XN by a continuous-time process Y N whose transition times
are generated by a Poisson process with constant intensity. More exactly, we may
replace the Markov chain XN by any Markov process Y N such that, at any time
t 2 R and for small ¿ > 0,

Pr
µ
Y N(t+ ¿ ) = x+

1
N
v j Y N(t) = x

¶
= N¹x(v)¿ + o(¿) , (30)

where ¹x(v) is the discrete probability measure de¯ned in section 5.
Assume, for instance, that each individual has a \Poisson clock," with constant

intensity 1=n, all clocks being statistically independent. Each time an individual's
clock \rings," the individual reviews her strategy choice as described above. To see
that this results in an equation of the above form, suppose that each individual ´,
where ´ 2 M = f1; 2; :::; nNg, reviews her strategy choice at random times 0 =
T0(´) < T1(´) < T2(´) < :::,: where the random variables Tk(´)¡ Tk¡1(´), for ´ 2 M
and k 2 N, are i.i.d. exponentially distributed with mean value n. When an individual
´ in any population i 2 I is given the choice to revise her strategy choice, she switches
from her current strategy k 2 Si to strategy h 2 Sh with some conditional probability
qhik(x). Thus,

Pr
·
Y Ni (t+ ¿ ) = x+

1
N

(ehi ¡ eki ) j Y N(t) = x
¸
= N

xik
n
qhik(x)¿ + o(¿ ) (31)

We explain in the appendix how lemma 1 can be adapted to such a continuous-
time process, while proofs of the other results are left to the reader.

7. Appendix
Let ¸ be the Lipschitz constant of F on the compact set ¤(S) ½ E, with respect to
the L1-norm, let k¢k2 denote the L2-norm, and let kFk2 be the maximum of kF (x)k2
on ¤(S).37

Let Uk, for k 2 N, be the di®erence between the step taken by the Markov chain
XN between periods n and n+ 1, per time unit, and the vector ¯eld at the state:

Un =
1
±

£
XN((n+ 1)±) ¡XN (n±)

¤
¡ F (XN (n±)) , (32)

where ± = 1=N is the length of a period. Let Fk; k 2 N denote the sigma-¯eld
generated by

©
XN (0); : : : ; XN(k±)

ª
. The following result, giving an upper bound on

the di®erence Uk, turns out to be useful for the proof of lemma 1:
37The function F : E ! E being locally Lipschitz continuous, its Lipschitz constant on the

compact set ¤(S) is Lip(F ) = ¸¤(S), see footnote 5.
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Lemma 3. Let ¡ = (
p
2 + kFk2)2. For any µ 2 Rm :

E(ehµ;UkijFk) · e¡jjµjj22=2

Proof: By de¯nition of Uk it is easy to verify that

jjUkjj2 · max
i;h;k

jjehi ¡ eki jj2 + kFk2 =
p
¡ (33)

Let g(t) = logE(ethµ;UkijFk). The function g : R ! R is convex and satis¯es g(0) =
g0(0) = 0, g00(t) · jjµjj22¡: Therefore g(1) · jjµjj22¡=2. End of proof.

7.1. Proof of lemma 1. Let U : R+ ! E be the map de¯ned by U(t) = Uk
for k± · t < (k + 1)±. Likewise, let ¹XN be the continuous-time (right-continuous)
step process generated by the Markov chain XN : ¹XN(t) is de¯ned for all t 2 R+ by
¹XN (t) = XN(k±) for k± · t < (k + 1)±. Suppose that XN(0) = x 2 ¤(S). Then

X̂N (t) ¡ x =
Z t

0

£
F ( ¹XN(s)) + U(s)

¤
ds (34)

=
Z t

0

h
F (X̂N(s)) + F ( ¹XN(s)) ¡ F (X̂N(s)) + U(s)

i
ds .

Since »(t; x) ¡ x =
R t
0 F (»(s; x))ds, we obtain

jjX̂N(t) ¡ »(t; x)jj1 · ¸
·Z t

0
(jjX̂N(s) ¡ »(s; x)jj1)ds+ 2±T

¸
+ª(T ) , (35)

where

ª(T ) = max
0·t·T

jj
Z t

0
U(s)dsjj1 . (36)

GrÄonwall's inequality implies

DN(T; x) = max
0·t·T

jjX̂N(t) ¡ »(t; x)jj1 · [ª(T ) + 2±¸T ] e¸T . (37)

Thus, for ± · "
4¸T e

¡¸T ,

Pr
£
DN(T; x) ¸ "

¤
· Pr

h
ª(T ) ¸ "

2
e¡¸T

i
: (38)

Our next goal is to estimate the probability on the right-hand side. For k 2 N, let

Zk(µ) = exp

Ã
k¡1X

i=0

hµ; ±Uii ¡ ¡
2
k±2jjµjj22

!
. (39)
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According to lemma 3, (Zk(µ))k2N is a supermartingale. Thus, for any ¯ > 0

Pr

"
max
0·k·n

hµ;
n¡1X

i=0

±Uii ¸ ¯
#

· Pr
·
max
0·k·n

Zk(µ) ¸ exp
µ
¯ ¡ ¡

2
jjµjj22n±2

¶¸

· exp
µ
¡
2
jjµjj22n±2 ¡ ¯

¶
. (40)

Let u1; : : : ; um be the canonical basis of E = Rm, " > 0, and u = §ui for some i.
Set ¯ = "2=(¡n±2) and µ = (¯=")u. Then

Pr

"
max
0·k·n

hu;
k¡1X

i=0

±Uii ¸ "
#

= Pr

"
max
0·k·n

hµ;
k¡1X

i=0

±Uii ¸ ¯
#

(41)

· exp(
¡"2
2¡n±2

) .

It follows that
Pr [ª(T ) ¸ "] · 2m exp

µ ¡"2
2±¡T

¶
. (42)

Therefore,

Pr
h
ª(T ) ¸ "

2
e¡¸T

i
· 2m exp

µ
¡"2 e

¡2¸T

8±¡T

¶
, (43)

and the claimed inequality follows, with

c =
e¡2¸T

8T
qp

2 + kFk22
. (44)

7.2. Proof of proposition 1. Let C = ¤(S)nU , a compact subset of ¤(S),
disjoint from °+(x). Set " = d(C; °+(x)), where d (¢; ¢) is the Hausdor® metric, and
let t > 0. By continuity of the °ow » there exists a positive integer N o such that for
all N > No

sup
0·s·t

jj»
£
s;XN(0)

¤
¡ »(s; x)jj < "=2 . (45)

Then f¿N(U) · tg ½ fDN
£
t;XN (0)

¤
¸ "=2g, for all N > N o. Thus, by lemma 1:

1X

N=No
Pr

£
¿N (U) · t

¤
· 2m

1X

N=No
e¡"

2cN=4 <1 . (46)

Hence by the Borel-Cantelli Lemma, the event f¿N (U) · t for in¯nitely many Ng
has zero probability.
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7.3. Proof of proposition 2. Proposition 2 follows immediately from claim (c)
of the following result. Claim (a) is used in the proof of claims (b) and (c), as well
as in the proof of proposition 5.

Lemma 4. Let A ½ ¤(S) be an attractor for the °ow », let C ½ B(A) be compact,
and suppose XN(0) 2 C for all N: Then there exists an open neighborhood U of
A [ C with closure ¹U in B(A), and a scalar ® > 0, such that (with m =M ¡ n)

(a) Pr
£
¿N(U) · t

¤
· 2m (t+ 1) e¡®N 8t ¸ 0; N 2 N

(b) E
£
¿N(U)

¤
¸ 1

4me
®N ¡ 1 8N 2 N,

(c) lim infN!1
£ 1
N ln ¿N (U)

¤
¸ ® a.s.

Proof: Since A is an attractor, it is possible to ¯nd an open neighborhood U of
A [ C, having compact closure ¹U ½ B(A), such that

»(t; U) ½ U ½ U ½ B(A) (47)

for all t > 0. Now ¯x " > 0 small enough so that

N"(»(1; U)) ½ U ½ N"(U) ½ B(A) (48)

where N"(U) denotes the "-neighborhood of the set U . Let t be a positive integer,
and let

DNt = sup
0·k·t¡1

DN(1; X̂N(k)): (49)

For N large enough, X̂N(0) 2 U: Therefore, DNt < " implies ¿N (U) > t: Hence

Pr
£
¿N(U) · t

¤
· Pr(DNt ¸ ")

·
t¡1X

k=0

Pr
h
DN(1; X̂N(k)) ¸ "

i
=
t¡1X

k=0

E
³
Pr

h
DN(1; X̂N (k)) ¸ "jX̂N (k)

i´

· 2mt exp
£
¡"2cN

¤
, (50)

where the last inequality follows from lemma 1. If t 2 R+, then

Pr
£
¿N(U) · t

¤
· Pr

£
¿N(U) · btc + 1

¤
· 2m(t+ 1) exp

£
¡"2cN

¤
, (51)

where btc is the largest integer not exceeding t. This proves assertion (a), for ® = "2c.
To prove assertion (b) from (a), we use the fact that

E
£
¿N(U)

¤
=

Z 1

0
Pr

¡
¿N (U) > t

¢
dt ¸

Z 1

0
max f0; 1 ¡ a(t+ 1)g dt , (52)
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where a = 2m exp [¡®N ]. Therefore,

E
£
¿N(U)

¤
¸

Z 1¡a
a

0
[1 ¡ a(t+ 1)] dt =

(1 ¡ a)2
2a

¸ 1
2a

¡ 1 , (53)

which gives (b).
Turning to assertion (c), ¯nally, let ¯ > 0. From assertion (a) we obtain, for N

su±ciently large,

Pr
¡
¿N(U) · exp [(®¡ ¯)N ]

¢
· 4m exp (¡¯N) (54)

or, equivalently,

Pr
·
1
N

log ¿N(U) · ®¡ ¯
¸

· 4m exp (¡¯N) (55)

Hence, by the Borel-Cantelli Lemma,

lim inf
N!1

·
1
N

log ¿N (U)
¸

¸ ®¡ ¯ a.s. (56)

Since this inequality holds for all ¯ > 0, it also holds for ¯ = 0.

7.4. Proof of proposition 3. Let U" be an "-neighborhood of U . For " > 0
small enough, every point in U 0 leaves U". More exactly, for all x0 2 U 0 there exists a
time T > 0 such that »(T; x0) 2 @U". Hence, for XN (0) = x0, ¿N (U) = +1 implies
DN (T; x0) ¸ ". By lemma 1, this gives

Pr
£
¿N (U) = +1

¤
· 2me¡"

2cN , (57)

and the claim follows by the Borel-Cantelli lemma.

7.5. Proof of proposition 4. By continuity of pkih the Markov chain XN is
Feller.38 Let C ½ E be a compact set disjoint from M(»). Since ¤(S) is compact,
the sequence of probability measures


V N(¢; k±)

®
k2N is relatively compact, in the

topology of weak convergence. By a standard result for Markov chains, every limit
point of


V N(¢; k±)

®
k2N is almost surely an invariant measure of the chainXN (see e.g.

38The process XN is said to be Feller if for all continuous functions f : ¤(S) ! R, the following
function P (f) : ¤(S) ! R is continuous:

[P (f)] (x) = E
£
f

¡
XN(±)

¢
j XN(0) = x

¤
.
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lemma 1.IV.21 in Du°o (1996)). In other words, some subsequence of the sequence
V N(¢; k±)

®
k2N converges weakly to some invariant measure ¹N .39 Let ¹N be such

a measure. Our averaging result, lemma 1, implies that also the limit points of
the sequence (¹N)N2N are invariant probability measures under the °ow » (see e.g.
Benaim (1998, Corollary 3.2)). For any x 2 ¤(S), let d(x; C) be the (Hausdor®)
distance from x to the set C. For any " > 0, let f" : ¤(S) ! R be de¯ned by
f"(x) = max f0; 1 ¡ d(x; C)="g. Clearly f" is continuous with f"(x) = 1 if x 2 C and
f"(x) = 0 if d(x; C) ¸ ". Let hNkik2N be an unbounded increasing sequence such that
the associated subsequence h¹Nkik2N converges weakly, and

lim
k!1

¹Nk(C) = lim sup
N!1

¹N(C) . (58)

Then
lim
k!1

¹Nk(C) · lim
k!1

Z
f"(x)¹Nk(dx) =

Z
f"(x)¹(dx) . (59)

where ¹ is a probability measure that is invariant under ». Since C \M(») = ;,R
f"(x)¹(dx) = 0 for " > 0 small enough. Therefore, lim supN!1 ¹N(C) = 0, and

thus limN!1 ¹N(C) = 0 . Since this holds for any invariant measure ¹N to which
some subsequence of


V N(¢; k±)

®
k2N converges weakly, we have

lim
N!1

·
lim sup

t!1
V N(C; t)

¸
= 0 a.s. (60)

Hence, if U ½ E is an open set containingM(»), then C = (s U)\¤(S) is a compact
set disjoint from M(»), and the claimed result holds.

7.6. Proof of proposition 5. For all N 2 N, let TN = ¿N(C) and aN = N
in proposition 10 below. Then condition (61) is met, and, by lemma 4 (a), so is
condition (62).

Proposition 10. Let

TN

®
be a sequence of nonnegative ¯nite random variables.

Assume that there exists a (deterministic) sequence haNi of positive real numbers
such that (61) and (62) below hold. Then the limit points of V N(¢; TN), in the weak*
topology, are almost surely invariant probability measure of »:

39Let P denote the space of (Borel) probability measures on ¤(S). For ¹ 2 P and f : ¤(S) ! R
in L1(¹) write ¹(f) =

R
fd¹ . A sequence h¹ni of such measures is said to converge weakly to ¹ if

limn!1 ¹n(f) = ¹(f) for every continuous function f : ¤(S) ! R. The space P endowed with this
topology is a compact metric space.
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lim
N!1

aN
logN

= +1: (61)

X

N

Pr
¡
TN · taN

¢
< +1 for all t ¸ 0 (62)

Hence, every limit point of

V N

£
¢; ¿N (C)

¤®
N is a measure ¹ which is invariant under

» and whose support is contained in the set C in the statement of proposition 5:
The support of a »-invariant measure being an invariant set, ¹ is supported by A:
Let U be an open neighborhood of M(»jA): It follows that every limit point ¹ of
V N

£
¢; ¿N (C)

¤®
N satis¯es ¹(U) = 1: This implies the claim in proposition 5 (for

details, see the last argument in the above proof of proposition 4). It thus remains
to prove proposition 10. The key step for this is the following lemma.

Let f : ¤(S) ! R be a Lipschitz continuous function with max-norm not exceed-
ing one; jjf jj = supx2¤(S) jjf(x)jj · 1. Let Lip(f) be its Lipschitz constant. It is
convenient to here write the °ow » in the form »t(x) = »(t; x).

Lemma 5. Let

TN

®
be a sequence of nonnegative ¯nite random variables with the

properties assumed in proposition 10. For all t ¸ 0:

lim
N!1

1
TN

Z TN

0

h
f(X̂N (s)) ¡ f ± »t(X̂N(s))

i
ds = 0 a:s:

Proof: Fix t > 0. For every positive integer k set

Wk =
Z (k+1)t

kt

h
f(X̂N (s+ t)) ¡ f ± »t(X̂N (s))

i
ds (63)

and set KN =
§
TN=t

¨
¡ 1 where dxe is the integer part of a real number x. With

this notation,
1
TN

Z TN

0

h
f(X̂N (s)) ¡ f ± »t(X̂N(s))

i
ds =

1
TN

Z TN

0

h
f(X̂N(s)) ¡ f(X̂N(t+ s)

i
ds+

KNX

k=0

Wk+
Z TN

dTN=tet

h
f(X̂N(s+ t)) ¡ f ± »t(X̂N(s)

i
ds

· 1
TN

(2t+
KNX

k=0

Wk + 2t) (64)
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By the Borel-Cantelli lemma, TN ! +1 almost surely. Therefore, it su±ces to prove
that

lim
N!1

1
TN

KNX

k=0

Wk = 0 a:s: (65)

To save on notation, we write Gs = FdNse where we recall that Fn is the sigma-¯eld
generated by fXN(0); : : : ;XN(n=N)g. Let Vk = E(WkjGkt) and Uk = Wk ¡ Vk . We
then have

Vk =
Z (k+1)t

kt
E

h
E

³
f

h
X̂N (s + t)

i
¡ f ± »t

h
X̂N(s)

i
jGs

´
jGkt

i
ds (66)

and, according to lemma 1,

E
³
f

h
X̂N(s+ t)

i
¡ f ± »t

h
X̂N(s)

i
jGs

´
· Lip(f) ¢ E

³
DN

h
t; X̂N (s)

i
jGs

´

· Lip(f)
h
E

³
DN

h
t; X̂N (s)

i
¢ 1fDN [t;X̂N (s)]¸"gjGs

´
+ "

i

· Lip(f)
£
2mj¤(S)j exp

¡
¡"2cN

¢
+ "

¤
(67)

where j¤(S)j is the diameter of ¤(S): (The largest distance between any two points
in ¤(S).) It then follows that

1
TN

j
KNX

k=0

Vkj · 1
t
Lip(f)

¡
2mj¤(S)j exp

£
¡"2cN

¤
+ "

¢
: (68)

Since " > 0 is arbitrary, this implies that

lim
N!1

1
TN

KNX

k=0

Vk = 0 (69)

with probability one. It remains to prove that

lim
N!1

1
TN

KNX

k=0

Uk = 0 a:s: (70)

By de¯nition, Uk is measurable with respect to G(k+1)t and satis¯es E(UkjGkt) = 0.
Observe also that

jUk+1j · jWkj + jVkj · 4t . (71)
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Therefore, exactly as in the proof of inequality (42) in the proof of lemma 1, we obtain

Pr

Ã
1
n

j
n¡1X

i=0

Uij ¸ "
!

· 2 exp
·¡"2n
2¡(t)

¸
, (72)

where ¡(t) = (4t)2: From this estimate, we deduce that for all integers m

Pr

0
@j 1
KN

KNX

k=0

Ukj ¸ "

1
A · Pr(KN · m) +

X

n>m

Pr

Ã
j 1
n

nX

k=0

Ukj ¸ "
!

· Pr(KN · m)+
X

n>m

exp
·¡"2n
2¡(t)

¸
· Pr

£
TN · t(m+ 2)

¤
+O

µ
exp

·¡"2m
2¡(t)

¸¶
: (73)

Now choose m = daN + 2e. Our assumptions on TN and aN imply that

+1X

N=1

Pr

0
@j 1
TN

KNX

k=0

Ukj ¸ "

1
A < +1 (74)

and we obtain the conclusion by the Borel-Cantelli lemma. End of proof.

To conclude the proof of proposition 5 we ¯nally use the fact that the space P
of probability measures on ¤(S) is separable in the topology of weak* convergence.
More precisely, there exists a countable family of Lipschitz continuous functions fi :
¤(S) ! R, for i 2 N, with jjfijj · 1, such that for every sequence h¹ni of probability
measures ¹n on ¤(S), ¹n ! ¹ in the weak* topology if and only if

lim
n!1

¹n(fi) = ¹(fi) (75)

for all i 2 N:
According to the above lemma, the event

i;t =
n

lim
N!1

jV N(fi; TN) ¡ V N(fi ± »t; TN )j = 0
o

(76)

has probability one, where V N(fi; TN) is the integral of fi with respect to the measure
V N(¢; TN ) de¯ned in equation (10). Therefore also the intersection of these events,
the set

0 =
\

i2N;t2Q+

i;t , (77)

has probability one. On 0 every limit point ¹ of V N(¢; TN) satis¯es ¹(fi) = ¹(fi ±»t)
for all i 2 N and t 2 Q+ Therefore ¹(fi) = ¹(fi ± »t) for all i 2 N and t 2 R+.
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7.7. Proof of proposition 6. Since the chain is irreducible and aperiodic,

¹N (U) = lim
T!1

V N (U; T ) = lim
T!1

Pr
£
XN (T ) 2 U

¤
. (78)

It is thus su±cient to prove that limN!1 ¹N (U) = 1. The proof follows the lines
of Benaim (1998) and Benaim and Hirsch (1999a), so we only give a sketch. Let
D = R (A)¡CR (A) > 0. For all " 2 (0; D) we can ¯nd disjoint neighborhoods V1 of
¤ (S) nB (A) and V2 of A such that for all x in V1 and y in V2:

c (fxg ; V1) ¡ c (fyg ; V2) ¸ D ¡ " > 0 . (79)

Let Y N denote the induced chain on V = V1 [ V2 whose transition probabilities are
de¯ned by

~PNy (U) = Pr
£
Y N (t+ 1=N) 2 U j Y N (t) = y

¤
= Pr

£
XN

¡
TN

¢
2 U j XN (0) = y

¤
,

(80)
where

TN = inf
©
t 2 T : t > 0 : XN (t) 2 V

ª
(81)

and U is any Borel subset of V .
Using (79), it can easily be shown that for some ± > ´ > 0 with ± ¡ ´ ¼ D ¡ ",

and some ® (N) 2 T:

lim inf
N!1

1
N

ln ~PNx
¡
Y N [® (N)] 2 V2

¢
¸ ¡´ (82)

uniformly in x 2 V1, and

lim sup
N!1

1
N

ln ~PNy
¡
Y N [® (N)] 2 V1

¢
¸ ¡± (83)

uniformly in y 2 V2.
The end of the proof is classical: For i 6= j 2 f1; 2g de¯ne

mNij =
1

~¹N (Vi)

Z

Vj

~PNz
¡
Y N [® (N)] 2 Vj

¢
~¹N (dz) , (84)

where ~¹N (¢) = ¹N (¢) =¹N (V ). By invariance of ¹N , the vector
¡
~¹N (V1) ; ~¹N (V2)

¢

satis¯es

mN21~¹
N (V2) = mN12~¹

N (V1) . (85)

Thus,
~¹N (V1) =~¹N (V2) · Ce(´¡±)N (86)

for some constant C.



DETERMINISTIC APPROXIMATION OF STOCHASTIC EVOLUTION IN GAMES37

7.8. Proof of proposition 8. By [C1], XN admits a unique invariant probability
measure ¹N with support in XN : It is characterized by the system of equations

¹N(k=N)®(k=N) = ¹N [(k + 1)=N ] ¯ [(k + 1)=N ] for k = 0; : : : ; N ¡ 1:

Hence
¹N(k=N) = ¦N¡1k=0

®(k=N)
¯ [(k + 1)=N ]

¹N(0):

Assume kN=N!x and pN=N!y: Then

lim
N!1

1
N

ln[
¹N (kN=N)
¹N(pN=N)

] = W (y) ¡W (x) .

This proves that ¹N (U)!1 at an exponential rate, as N!1: We now use the same
argument as in the proof of proposition 4, namely, the fact that from every subse-
quence of


V N(:; k±)

®
k2N we can extract a convergent subsequence with limit ¹N : The

Markov chain is aperiodic and irreducible, hence ergodic. Thus

lim
T!1

Pr
£
XN (T ) 2 U

¤
= ¹N(U) = lim

T!1
V N(U; T )

7.9. Proof of lemma 2.

W ("; xA" ) ¡W ("; xB" ) = ¡
Z xA"

xB"

ln
·
®(u)
¯(u)

¸
du¡

Z xA"

xB"

ln
·
h(u; ")
h(1 ¡ u; ")

¸
du:

The ¯rst integral converging to W (1) ¡W (0) as "!0. It hence su±ces to prove
that the second integral goes to zero. Set

f("; u) = ln
·
h(u; ")
h(1 ¡ u; ")

¸
= ln

·
1 +

"
(1 ¡ u)(1 ¡ ")

¸
¡ ln

·
1 +

"
u(1 ¡ ")

¸
:

For all 1 > ´ > 0, f("; u)!0 uniformly on [´; 1 ¡ ´] as "!0. Hence
Z 1¡´

´
f("; u)du!0 .

For all x0" · u · ´ and " < 1=2

jf("; u)j · ln [1 + O(")] + ln
£
1 + 2"=x0"

¤
:

By an application of the implicit function theorem, "!x0" is a smooth function whose
derivative at the origin is given by

r(0)
r(0) ¡ l(0) =

1 ¡ b
b¡ c 6= 0:
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Therefore "!"=x0" is a bounded continuous function. Hence
Z ´

x0"

f("; u)du = O
¡
j´ ¡ x0"j

¢

Similarly, Z x1"

1¡´
f("; u)du = O

£
j´ ¡ (1 ¡ x1")j

¤
:

Thus for every ´ > 0

lim sup
"!0

j
Z x1"

x0"

(("; u)duj · O(´) ,

establishing the claim of the lemma.

7.10. Proof of lemma 1 for Poisson processes. Here is how lemma 1 can be
proved for the continuous time process Y N in section 5. Let LN denote the in¯nites-
imal generator of Y N . That is

LN(f)(x) = lim
t!0

E
£
Y N(t)jY N(0) = x

¤
¡ f(x)

t
de¯ned for every real valued continuous function on ¤(S): Then

LN (f)(x) = N
X

v2V

µ
f(x+

1
N
v) ¡ f(x)

¶
¹x(v)

Let f : E ! R be the map de¯ned by f(y) =< µ; y¡ x >. By standard results in
the theory of Markov processes, the process

f(Y N(t)) exp
·
¡

Z t

0

LN (f)(Y N(t))
f(Y N(t))

dt
¸

is a martingale. Set g(u) = eu ¡ u+ 1: Then

LN(f)(y)
f(y)

=< F (y); µ > +N
X

v2V
g(

1
N
< v; µ >)¹y(v)

From this expression it is not hard to deduce that

LN(f)(y)
f(y)

¡ < F (y); µ >· 1
N

¡ kµk22
for some constant ¡. This makes the process

Z(t) = exp < µ; Y N (t) ¡ x¡
Z t

0
F (Y N (t))dt¡ t 1

N
¡ kµk22 >

a supermartingale, and we conclude as in the proof of lemma 1.
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