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A Calibration Algorithm for Micro-simulation Models 

1. Introduction 

Thanks to the improvements in the information technologies, 

large scale micro-simulation models have been increasingly used 

in the last decades for economic analys is and policy 

simulations. A major problem of such complex models is the fact 

that the model specification is very complex and includes a 

large number of unknown parameters. Therefore even the 

modellers may have difficult time to understand the "structure" 

of their modeIs. Moreover, parameter values have to be usually 

guesstimated since it is usually not possible to get their 

econometric estimates due to the lack of necessary data. Thus, 

the "calibration" of large-scale micro simulation models is a 

problem that needs further research. 

This paper presents an algorithm based on random-search 

techniques for the use of "calibration" of large-scale micro-

simulation modeIs. This algorithm is currently being used for 

the calibration of the micro-to-macro Model Qf the .s.wedish 

gconomic .s.ystem, MOSES. The MOSES model focuses on the dynamic 

coordination of production and the adjustment of output to 

market price signals. The micro part of the model simulates the 

behavior of (initially) 225 firms or divisions. 154 of these 

firms are real firms/divisions that produce almost 30% of the 

Swedish industrial output. Data about real firms come from the 

Planning Surveys conducted by IUI and the Federation of Swedish 

Industries each year since 1976, and from firms I financial 

reports. The remaining 71 firms are synthetic: they make up the 
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difference between the micro and macro data.' Since the model 

is rat her complex l the reade r is referred to Eliasson (1977 and 

1985), Bergholm (1989), Albrecht et al. (1989), Taymaz (1991) 

and Albrecht et al. (1992) for the details. The bibliography 

in Albrecht et al. (1992) also includes the list of studies 

based on the MOSES model. 

2. Analyzing Modell s Structure: Calibration, Sensiti vi ty, 

Linearity 

A micro-simulation model consists of a large number of non-

linear equations that, given a set of parameters, convert a set 

of exogenous variables and the initial values of endogenous 

variables into series of endogoneous variables (see Figure 1) . 

Figure 1 Micro-simulation model 

Inputs Model Outputs 

yO 
Equations 

xO y t 
M ( . ) 

p 

Notation: Yo: endogenous variables vector at the base year 
x o: exogenous variables vector 
p: parameter vector 
Yt: endogenous variables at time t 
M{.): a set of model equations 

The modell i.e., the set of equations M(.), is so complex 

that even those who have the complete model code cannot foresee 

1) In another MOSES database, there are 504 firms of which 154 are real firms. The she of synthetic 
firms in this dataset is smaller that those mentioned above. 

2 



the impact of changes in initial conditions, {yo' Xc, p}, on 

output, {yt }, without simulating the model. The complexity of 

the model may also obscure understanding of the model, and its 

representation of economic relations. It is thus necessary to 

investigate in detail modells "structure" and properties. 

There are three major concerns in the analysis of modells 

structure: calibration, sensitivity, and symmetryjlinearity. 

Calibration is the method used in the "estimation" of parameter 

values in a predetermined set that "minimize" the difference 

between simulation results and some choosen controI variables 

observed for the calibration period. In other words, 

calibration is used to determine the values of a set of 

parameters2 that generate the best fit for series of endogenous 

variables. 

Although there are a large number of parameters in a 

micro-simulation model, many parameters have little effect on 

modells endogenous variables that are considered as 

"important". It is important to determine "key" parameters that 

have significant effects on certain endogenous variables. The 

calibration algorith could also be used to determine those 

influential parameters. 

Sensitivity analysis refers to the study of the effects 

of minor changes in initial conditions, {xo' Yo' p}, and 

stochastic factors on simulation results. It is normally 

preferred to have a "robust" model which is not very sensitive 

to minor changes in initial conditions. Otherwise, it may be 

2) There is computationally no difference between the parameters of the model and the exogenous 
variables. Therefore, hereafter, we use the term "parameter" in a broad sense including all variables 
whose values are constant during a simulation experiment. 
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difficult to evaluate simulation results because initial 

variables inevitably have a noise component. 3 

Finally, symmetry and linearity characteristics of the 

modells endogenous variables may be important. For this 

purpose, for example, Zellner and Peckls (1973) relative 

symmetry and linearity tests can be applied (see also Kuh, 

Neese and Hollinger, 1985: 110-113). Zellner-Peck tests are 

used 

to determine the extent to which induced changes in the 
modells endogenous variables are symmetric and/or linear. 
Symmetry is of interest for its own sake while finding of 
linearity of near-linearity may be useful in efforts to 
simplify the modells structure. Also, since the effects 
of both relatively small and large changes are reported, 
we gain information on both the local and global 
properties of the model. (Zellner and Peck, 1973: 152, 
quoted by Kuh, Neese, and Hollinger, 1985: 110) 

Although sensiti'\&:.ity and symmetry/linearity properties are 

also important, this paper deals only with the calibration 

problem. 

3. A Calibration Algorithm 

The model can be thought of as a system of equations containing 

an r-element parameter vector, p, such that a vector of initial 

and exogenous variables, z, produces a v-element vector of 

endogenous controI variables yS 4 

3) As mentioned by Kuh, Neese and Hollinger (1985: 18, fn 2), U[ilf a particular model has low 
parameter sensitivity for endogenous variables of interest, then the Lucas critique -that parameters 
ch ange in response to stochastic behavior of variables of concern to individual agents- will have less 
potential practical importance. Conversely, if significant policy parameters induce large responses, the 
potential importance of Lucas's observations will be all the greater. Even more to the point, parameters 
though to be endogenous should be treated that way from the outset. U 

4) Note that M(.) is a stochastic function of p due some stochastic variables in the model. Hence, 
the yS is distributed by mean ysmean and standard deviation q • If a short time period is used for the 
cal ibration procedure, (fy can be assumed to be very zero since ~he stochastic variances in the model have 
significant effects only in the long run. 
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yS = M {Pi Z} 

Our purpose is to estimate the parameter vector, P, that 

makes the simulated controI variables, yS, as close to their 

real values, yr, as possible. If the standard weighted sum-of-

squared-errors criterion is used, then the objective function 

is 

where S is the predetermined parameter space, T the time period 

for calibration, and W a diagonal weighing matrix. It is 

assumed that the parameter set S contains the global minimum 

in its interior. 

In addition to the weighted sum-of-squared-errors 

criterion, absolute and maximum distance criteria may be used. 

These criteria are defined as follows. 

Maximum absolute distance, da(p) = EtEr lYtS - y/I 'w 

Maximum distance, dm (p) = max { max ( lYtS - ytrl) i t E T} 

If the model could mimi c exactly the real world, and the 

actual values of the exogenous variables could be same as those 

used in the model, than the minimum distance value, d min would 

be equal to zero. Since this is not the case, dmin > o. 

Recall that there are many non-linear and non-smooth 

funct ions in the model. M ( . ) and, consequentl y, d (p) are 

functions of very complex systems of non-linear functions. It 

is very difficult, if possible, to search the minimum distance 
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value by conventionaI optimization methods (for conventionaI 

optimization methods, see Fletcher, 1987). The d(p) function 

may have many local minima and it is typically a function of 

large number of parameters. 5 Thus the minimum of the d (p) 

function can only be searched by random search methods since, 

as Brooks (1958) stated, the number of experiments in these 

methods does not depend on the number of parameters and they 

are not usually restricted by the nature of the distance 

surface. 6 

Finding the "minimum" of the distance function is only one 

aspect of the calibration process. The model needs to be robust 

in the neighborhood of the selected parameter vector pC, i.e., 

small variations in parameter values should not have 

significant effect on system propeties. In other words, 

I d(p} - d(p+ö) $ E 

where ö is an r-element vector of variations, and E a small 

positive number. 

Finally, the model's long-run properties generated by the 

parameter vector pC should be "reasonable". Hence we seek to 

establish convergence to a small region surrounding (in some 

sense) the candidates for the global minimum. The optimality 

region then is defined by 

5) In the case of HOSES model, more than 60 parameters. But the nunber of parameters may be much 
higher than that number. 

6) These methods were first proposed by Anderson (1953). For same recent studies, see Sol is and Wets 
(1981), Boender et al. (1982), and references therein. 
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So = { p I p € S, d(p) < dmin + € } 

where € is a small positive number. 

In other words, 

1. the parameter vector pC does not need to be global 

minimum of the distance function but d(pC) should be a local 

minimum "close" enough to dmin i 

2 . the model should be robust at the neighborhood of 

3. the long-run properties of pC should be satisfactory. 

To determine the parameter vector pC a simple two-stage 

calibration procedure can be designed as follows. 

Stage 1. Global search 

At this stage n number of parameter vectors are randomly 

drawn from the parameter space, S, and the distance values for 

each parameter vector are found by simulation. The number of 
I 

experiments is determined by two criteria. / 

1. n ~ log(l-s)/log(l-b) where b is a predetermined 

proportion of the parameter space that contains parameter 

combinations having lower distance values (Sb)' and s is the 

probability of at least one experiment ehoosen from the 

parameter sub-space Sb. For example, if we want to get at least 

one parameter vector drawn from the lowest 5% of the parameter 

space with 99% probability, then 

n ~ log(1-.99)/log(l-.05) = 90. 

2. The cumulative distance distribution (CDD) of the 

sequence of experiments with randomly seleeted parameter 
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vectors will converge to the population distribution as n ~ 00. 

Thus n can be ehoosen so that additional experiments do not 

change the CDD to a significant extent. 

By global search with n random parameter vectors, we can 

get information about 

l. the global minimum, 

2. the shape of the distance surface, and 

3. influential parameters. 

There are a number of techniques, generaly based on de 

Haan I s (198l) analysis of order statistics, for determining the 

confidence interval for the global minimum. (For an application 

of this method, see VeaIl, 1990.) Suppose 

dmin = min { d (p) I p € S} exists. Using a random sample 

pn from a uniform distribution over S, a 

confidence interval at the p significance level for dmin (under 

mild conditions on d(.}7) can be constructed as follows. 

{ dm, y1 } 

where dm= [y1_ (y2_ y1) lp -1/a_l] I y1, y2 I ••• I yn is the order 

d (pn) I that is, y1 s y2 s .. , 

integer numbers depending on n such that k(n) ~ 00 and k(n)/n 

~ O as n ~ 00. Note that y1 tends to dmin almost sure ly as n ~ 

00, and dm is a monotone decreasing function of p such that dm 

~ - 00 as p ~ l. 

This confidence interval can be used for testing the 

7) For the conditions on d(.), see de Haan (1981) and Boenden et al. (1982). 
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hypothesis that any given minimum is global. Since our purpose 

is only to find a parameter vector in the optimality region, 

the confidence interval can be used to assess the II closeness II 

of the distance value found at Stage 2 to the global minimum. 8 

The CDD obtained in this stage gives an idea about the 

shape of the distance surface. A relatively smooth curve at low 

values may show that the model is not sensitive to small 

variations in parameter values (see Figure 2) . 

Influential parameters can also be determined at this 

stage. Recall that parameter values are chosen randomly so that 

they are independent ly distributed across experiments. Ignoring 

joint effects, we can estimate the distance values as an 

approximate function of each parameter separately . For example, 

regression analysis may be employed by using linear, quadratic 

and cubic functions of "'parameters as explanatory variables. F-

statistic of the regression may show the significance of that 

parameter. 

Stage 2. Local search 

Local search is based on a method of random IIhill-

climbing" from an initial point. Direction of the next move is 

determined randomly. If the distance value decreases at the 

randomly selected direction, parameter values are changed 

accordingly. Otherwise, a new random direction is seleeted. 

This process is repeated until no further improvement in the 

distance value is obtained in a predetermined number of trials. 

8) There are some techniques to estimate the value of gLobal minimun. See, for exaq:>Le, Smith 
(1987) • 
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The algorithm we use is rather simple and can be 

summarized as follows. 

Step o. 

Pick po € S, set k=nf=ns=O, fix JLmin' JL-1' mf, ms, sr, si, 

con 

Step l. 

Set 

Step 2. 

k : iteration number 
pk : parameter vector for k th iteration 
S : parameter space 
nf number of failures 
ns number of successes 
JLk "diameter" of random search space (step size). 

pk is the center point. 
JL On : minimum diameter 
m~ : number of failures before step size reduction 
ms number of successes before step size increase 
sr : step size reduction factor 
si : step size increase factor 
con : convergence criterion 

'" 

[ JLk_<s~ if nf~mf 
f.1.k = JLk-1 Sl if ns~ms 

f.1.k 

Stop if f.1.k :s;; f.1.min . Set pC = pk. 
Otherwise set pk+1 = ran (pk + f.1.k) where ran ( .) is a 

random vector on the "circle" defined by its 
center pk and diameter JLk' 

Set pk+1 = [ 
p~1 if d(p~1}<d(pk}/1+con, set ns=ns+1, 

k=k+1, nf=O 
pk otherwise, set ns=O, nf=nf+1, k=k+1 

Return to Step l. 

There are two alternatives for the initial parameter 

vector, po: l} the parameter vector found at Stage 1 that has 

the lowest distance value, and 2} the parameter vector that is 
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currently being used in the model. We prefer to use the second 

alternative because some of the parameters currently used may 

incorporate our a priori information about their values. 

Moreover, these parameters determined during the development 

of the model usually have "reasonable" long-run properties. 

Finally the long-run properties of the selected vector, 

pC, should be tested . If it generates nonstable , chaotic 

results af ter the calibration period, we need to make another 

search. The sensitivity of the model is easy to check since at 

least nf number of experiments are done already in the 

neighborhood of pC during the local search. 

4. Calibration of the MOSES model 

Before beginning the description of the calibration of the 

MOSES model, let I s specify some notations. prnax, pmin and po are 

the vectors of maximum, minimum, and initial parameter values, 

respecti vely. 9 [prnax, pmin] defines the parameter space. Jl-1 is 

the initial step size vector. There are 75 parameters to be 

calibrated. Rates of interest, annual growth rates of 

manufacturing output, prices and employment, and GDP growth 

were used as controI variables. (For details , see Taymaz, 

1991. ) 

To determine the cumulative distance distribution, 92 

experiments were run by ehoosing parameters randomly within the 

range [prnax,pmin]. The eDDs for the first 46 and 92 experiments 

are shown in Figure 2. There is not any significant change in 

9) Strictly speaking, same of the elements of these vectors are not parameters, but exogenous 
variables (the rate of change of the exogenous technological level, etc.). Since there are 
computationally no difference between parameters and those exogenous variables, we simply use the term 
"parameter" to define both. 
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the frequeney distribution from 46 to 92 experiments. Note that 

at least one parameter vector of those 92 experiments is to be 

drawn from the lowest 5% of the parameter spaee with 99% 

probability. Figure 2 reveals that the landscape defined by the 

distanee values has a relatively flat surfaee. The distanee 

value is within the range of .00258-.0100 in almost 40% of 

experiments. By using de Haan I s equation with k=int (n1!2) , we 

found the eonfidenee interval at the 10% signifieanee level as 

{ .00206-0.00258} .10 

At this stage, a number of regression analyses were 

performed to approximate the relations between distanee and 

parameter values. Note that parameters were chosen randomly so 

that they are independent ly distributed aeross experiment. 

Thus, we can regress the distanee values as a funetion of eaeh 

parameter separate ly to get unbiased estimates of the effeets 

of parameters. First, second and third order funetions, i.e., 

linear, quadratic, and eubie funetions of parameters were used 

in regression analysis. The MAXDP (maximum allowable ehange in 

priees in one iteration) has the highest eoeffieient of 

determination. The MAXDP parameter explains about 20% of the 

variation in the distanee values as shown in the following 

regression estimation of the eubie funetion of the MAXDP 

parameter. The importanee of this parameter refleets the 

relevanee of adjustments meehanisms in the model. 

10) The "confidence intervaL" found from the initiaL 46 experiments is very cLose to this one: 
{.00213-.00258). The intervaL is also quite insensitive to the formulae of the variabLe k. The vaLue of 
~ is within the range .00200-.00215 for k E [9,92]. 
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di =.015 -3. 46*MAXDP i +49lo 23*MAXDP/-14810. 21*MAXDP i
3+€ i 

(3.10) (-1.65) (2.06) (-lo95) 
R2 = 20.65, Number of observations = 92 

Having estimated the minimum possible distance value, a 

local random search was performed. The distance value for po 

was found .00337. Note that this distance value is close to our 

confidence interval. It is within the best 15% of the parameter 

space. The first random search around the po vector had a 

distance value of .00283. Since it is less than d(po)/(l+con) 

where convergence criterion, con, is 1%, p1 was set to that 

parameter vector. 

The local search process proceeded as defined in the 

preceding section. The minimum distance value by the local 

search, the pC vector, was found to be 0.00207 at the 81th 

experiment. 2 O more experiments were made around the pC vector. 

None of those experiments produced lower distance values. (The 

step size, ~, was not decreased in those searches around the 

pC vector because it was already decreased twice during the 

previous searches.) 

The long-run properties of of this parameter set was 

checked by running the model for 20 years. Since results seem 

to be reasonable, we use pC as the calibration vector. 

5. Conclusions 

In this research paper, the procedure used for the calibration 

of a large-scale, micro-to-macro simulation model, the MOSES, 

is summarized. The calibration procedure is rather simple, and 

seems to be effective. The complete process described here took 

about 20 hours of the CPU time. Since the model is installed 
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in a PC computer and the calibration process needs almost no 

user interaction, it can be done in a day with almost no 

additional cost. 
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Figure 2 Cumulative distance distributions 
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