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ABSTRACT. This paper examines equilibrium and stability in symmetric
two-player cheap-talk games. In particular, we characterize the set of neutrally
stable outcomes in finite cheap-talk 2 x 2 coordination games. This set is finite
and functionally independent of risk-dominance relations. As the number of
messages goes to infinity, this set expands to a countable limit set that has
exactly one cluster point, the Pareto efficient Nash equilibrium payoff. In con-
trast, the set of outcomes that are strategically stable for some finite message
set is shown to be dense in the interval spanned by the Nash equilibrium payoffs
of the game. We also show that the limit set of neutrally stable outcomes co-
incides with the set of neutrally stable outcomes for countably infinite message
sets. Doc: cheap5.tex
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1. INTRODUCTION

For some years now game theorists have looked for evolutionary criteria to select
among Nash equilibria. One strand of this literature strives to select among strict
Nash equilibria. The prototype game is then a 2 x 2 coordination game with two strict
Nash equilibria and one mixed Nash equilibrium. In this spirit Kandori Mailath and
Rob [7], Young [24], and Kandori and Rob [8] argue that certain stochastic dynam-
ics - that can be interpreted as processes of social evolution or learning - select the
risk dominant equilibrium.! Another strand of the literature instead strives to select
among the plethora of non-strict Nash equilibria that many games throw out. Re-
searchers then work with static evolutionary criteria such as neutral and evolutionary
stability or with such dynamic population models as the replicator dynamics. These
latter criteria cannot select among strict. equilibria, however. In 2 x 2 coordination
games, the only effect is to reject the mixed Nash equilibrium. However, Warneryd
[21], Robson [16], Matsui [11], Kim and Sobel [9], Bhaskar [3] and Schlag [17], [18] have
suggested that if we extend such coordination games to include a pre-play communi-
cation stage, then these evolutionary criteria can select among the strict equilibria of
the underlying game, usually in favour of the Pareto efficient equilibrium.

The present paper is a contribution to this latter line of research. The setting
is standard: there is a symmetric and finite two-player "base game” to be played
after a pre-play communication session. Communication takes the form of costlessly
and simultaneously sent messages, one from each player. These messages are selected
from a finite set of possible messages, and the sent messages are observed without
error by both players before they select a strategy in the base game. A pure strategy
in this "meta-game” is thus a message to send combined with a ”decision rule” that
prescribes a pure base-game strategy for every message received from the other player.
The main purpose of this study is to obtain a clearer picture of the cutting power
of the criterion of neutral stability in cheap talk games, in particular in comparison
with the criterion of strategic stability.

Neutral stability is the weakest static evolutionary refinement of the Nash equi-
librium concept, and strategic stability is among its most stringent rationalistic re-
finements. A mixed or pure meta-game strategy is neutrally stable (Maynard Smith
[12]) if it is a best reply to itself and, moreover, is a weakly better reply to all other
best replies than these are to themselves. By a neutrally stable outcome we mean a
payoff value that arises when some neutrally stable meta-game strategy meets itself.
Neutral stability is formally a slight weakening of the evolutionary stability criterion:
a strategy is evolutionarily stable if it is a best reply to itself and, moreover, is a

1Bergin and Lipman [1] show that this inference is sensitive to the assumptions made concerning
the relative magnitude of mutation rates.
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strictly better reply to all other best replies than these are to themselves (Maynard
Smith and Price [13]). Intuitively, neutral stability allows for the possibility of drift,
so that if there is a small shock to the population’s behavior, the outcome may change
slightly, and hence a series of such shocks may eventually trigger a motion far away
from the initial state. However, it may take a very long time before such a motion
begins, and in the mean-time the outcome may remain constant, so neutrally stable
outcomes may be highly relevant for medium-term predictions (see e.g. Binmore and
Samuelson [2] for a similar argument). In contrast, a set of Nash equilibria is strategi-
cally stable (Kohlberg and Mertens [10]) if it is minimal with respect to the property
of being robust against all small trembles in strategies. Strategic stability has been
shown to have a number of important implications from a rationalistic viewpoint (see
Kohlberg and Mertens [10] or van Damme [5]). A strategically stable outcome of a
cheap-talk game is here defined as a payoff that arises in some strategically stable set
of symmetric meta-game Nash equilibria.

The analysis presented here builds on a straight-forward characterization of sym-
metric Nash equilibria in symmetric two-player cheap-talk games with arbitrary mes-
sage sets. We show that the associated set of equilibrium payoffs increases with the
number of messages available towards a limit set that is dense in the symmetric con-
vex hull of Nash equilibrium payoffs in the base game. Moreover, for the special case
of 2 x 2 coordination games we show that any payoff value between the worst and best
Nash equilibrium payoffs can be approximated by a strategically stable meta-game
outcome when the message set is sufficiently large. In this sense, strategic stability
- albeit a stringent refinement of the Nash equilibrium concept - has virtually no
cutting power in such cheap-talk coordination games.

The picture is quite different for neutral stability. First, the set of neutrally
stable outcomes in a symmetric two-player base game need not be monotonically
increasing with the number of messages available. Nevertheless, the set of neutrally
stable outcomes converges to a limit set as the number of available messages tends to
infinity. In the case of a 2 x 2 coordination game we characterize the set of neutrally
stable meta-game outcomes for every finite message set. This set is finite and contains
both strict Nash equilibrium payoffs. Indeed, letting the number of messages increase
toward infinity, the set of neutrally stable outcomes converges to a countable limit set;
if one normalizes the payoffs in the coordination game so that the ”good” strict Nash
equilibrium payoff is 2 and that of the "bad” strict Nash equilibrium is 1, then this
limit set consists of the numbers 1, 1+ -;—, 1+ %, vy 14 "n—:-l-, 2. In other words, the set
of neutrally stable outcomes contains an infinite number of isolated points between
the "bad” and the ”good” Nash equilibrium outcomes. Neutral stability in this game
therefore gets rid of most of the strategically stable outcomes but at the same time
it does admit certain specific convex combinations of the extreme Nash equilibria.
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Furthermore, these results concerning the neutrally stable outcomes are independent
of risk-dominance properties of the underlying coordination game (payoffs off the
diagonal of the payoff matrix play no role). In this sense, neutral stability offers a
selection from the set of Nash equilibria which is distinct from those based on Pareto
dominance, risk dominance and strategic stability considerations, and which reflects
more directly the specific logic of evolution in games.?

The results reported above hold when the set of messages is finite. However, in
any natural language the set of possible statements is countably infinite. Hence, the
above (conventional) assumption that the message set be finite is not self-evident. Of
course, one may claim that in any real life interaction there is an upper finite bound
on the length of statements that can be made, and hence, since the numbers of signs
in any natural language is finite, the set of messages that are effectively available
is finite. However, such a finite upper bound may not be common knowledge to all
participants, and hence an infinite message set may be more appropriate. It is well
known from the repeated games literature that the equilibrium correspondence may
be ”discontinuous at infinity,” i.e., there may be a whole plethora of infinite-horizon
outcomes that have no counterpart in the long but finite horizon case (cf. the Folk
theorems). An important question for the present study thus is whether also the set
of neutrally stable outcomes in cheap talk games is discontinuous ”at infinity” in this
sense. It turns out that, at least in 2 x 2 coordination games, this is not the case:
The limit set of neutrally stable outcomes for large but finite message sets coincides
with the set of neutrally stable outcomes for any countably infinite message set.

The present study can be viewed as an extension of Wirneryd [21] from pure-
strategy analysis to mixed-strategy analysis and from finite message sets to (finite
and infinite) countable message sets. That paper appears to be the first to point
out implications of evolutionary stability properties for social efficiency in cheap-talk
coordination games. In particular, Warneryd showed that no pure meta-strategy
is evolutionarily stable if the base game is a 2 x 2 coordination game and there is
more than one message. Moreover, he showed that the only outcome compatible with
neutral stability in pure meta strategies is the Pareto efficient Nash equilibrium payoff
of the coordination game. In contrast, we here allow for mixed strategies, and show
that other neutrally and evolutionarily stable outcomes exist. Another related paper
is Warneryd [22], where it is shown that any convex combination of base-game Nash
equilibria can be approximated by some meta-game cheap-talk Nash equilibrium if the
messages space is sufficiently large.3 This result follows from the second claim in our

2The only cluster point of the set of neutrally stable outcomes is the Pareto dominant Nash
equilibrium outcome. As a result one may argue that our results at least weakly favor Pareto
dominance over risk dominance.

3 An observation similar to Warenryd's is also made in Kim and Sobel [9].
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proposition 2. A third related paper is Schlag [17], where it is shown that every finite
cheap-talk 2 x 2 coordination game has exactly one evolutionarily stable strategy,
and one outcome that is obtained for a whole set of neutrally stable strategies that
together constitute a so-called evolutionarily stable set, i.e., a set of neutrally stable
strategies, where each strategy earns a higher payoff against all nearby strategies
outside the set than these earn against themselves (Thomas [20]). When played
against itself, the unique evolutionarily strategy earns a payoff that lies between that
of the "bad” and "good” strict equilibria of the underlying coordination game, and
this payoff approaches the "good” payoff as the number of messages increases (see
Remark 5 in section 5 below).* All strategies in the evolutionarily stable set earn the
"good” payoff against each other.

The material is organized as follows. Definitions and preliminaries are given in
section 2, symmetric meta-game Nash equilibria are characterized in section 3, and
meta-game outcomes are analyzed in section 4. Section 5 characterizes the set of
neutrally stable outcomes in 2 X 2 coordination games. Section 6 extends the results
to countably infinite message sets, and section 7 concludes.

2. DEFINITIONS AND PRELIMINARIES

2.1. Symmetric Two-Player Games. The analysis in the present paper is fo-
cused on finite and symmetric two-player games in normal form. Let S = {1,2,...,n}
be the set of pure strategies (the same for both players). Accordingly, a mized strategy
is a point o on the (n — 1)-dimensional unit simplex A(S) = {c € R} : ¥;0; =1} in
R". The support of a mixed strategy o € A(S) is the subset C(o) = {i € S : 0; > 0}
of pure strategies which are assigned positive probabilities. The set of strategy profiles
will be denoted ©(S) = A(S) x A(S). This is a subset of R2".

Let a;; be the payoff to pure strategy ¢ when played against pure strategy j, and let
A be the associated k x k payoff matrix. Accordingly, the (expected) payoff of a mixed
strategy o when played against a mixed strategy p is u(o, ) = 0 - Ap = ¥;; oia4;;.
The payoff function u : R>® — R so defined is bi-linear, and the payoff to a pure
strategy i when played against a mixed strategy u is u(e’, i), where &' € A(S) is the
i'th unit vector in R®. A finite and symmetric 2-player normal-form game will be
summarized as a pair G = (S, u).

A best reply to a strategy p € A(S) is a strategy o € A(S) such that u(o, p) >
u(o’, u) Yo' € A(S). For each u € A(S), let B(u) C A(S) be its set of (mixed)
best replies. A Nash equilibrium is a pair (o,u) € ©(S) of mutually best replies;
o € f(p) and p € B(o). A Nash equilibrium (o, 1) is strict if each strategy is the
unique best reply to the other. A Nash equilibrium (o, u) € 6(S) is strictly perfect

4An example of this sort was given in Kim and Sobel [9].
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if it is robust to all small ”trembles” (Okada [14]).° A strictly perfect equilibrium is
strategically stable in the sense of Kohlberg and Mertens [10]. A Nash equilibrium
(o, ) is symmetric if 0 = p. By Kakutani’s Fixed Point Theorem, every finite and
symmetric game G = (5, u) has at least one symmetric Nash equilibrium. Let

ANE(S) = {o € A(S) : 0 € B(0)}. (1)

Likewise, let the subset of strict symmetric Nash equilibrium strategies be written
ANE*(9), ie., o0 € ANEH(S) if and only if B(o) = {c}.

A strategy o is evolutionarily stable if o € ANE(S) and, moreover, u(o,u) >
u(y, p) for all alternative best replies u to o. Likewise, a strategy o is neutrally stable
if 0 € ANE(S) and u(o, ) > u(u,p) for all alternative best replies u to o. Let
the subset of evolutionarily and neutrally stable strategies be denoted AP5(S) and
ANS5(8), respectively. We have

ANE+(8) ¢ APES(8) c ANSS(S) c ANE(S). (2)

2.2. Cheap Talk. Costless pre-play communication - ”cheap talk” - is modelled
in the usual fashion. A finite and symmetric two-player game G = (S,u) is to be
played. Before this, each player sends a message to the other player. This is done
simultaneously and without cost or possibility of error. Again costlessly and without
error they then observe each others messages and both players simultaneously choose
a strategy to play in G. We assume that the set M of possible messages is the same for
both players, and moreover, that this set is finite. The resulting interaction, including
the pre-play communication stage, thus (again) constitutes a finite and symmetric
two-player game G with pure-strategy set H and payoff function v, where both are
specified below. In order to distinguish the two games, we will refer to G = (S, u) as
the base game, and to G = (H,v) as the meta-game associated with G and M.

A pure strategy in G, a pure meta-strategy, is a message (to send) and a decision
rule specifying what pure strategy in G to play after each possible pair (m,m’) €
M? of sent messages. Without loss of generality one can assume that each player
conditions her choice of base-game strategy only on her opponent’s message (See
e.g. Weibull [23]). Hence, a decision rule can be formally represented as a function
f: M — S that to each message m' € M received from one’s opponent prescribes a

SFormally, for any positive perturbation vector § = (8},6%)ics such that M*(§) =
{o* € A(S) : 6%(3) > 6F for all i € S} is non-empty for k = 1,2, let G(6) be the two-player game
with strategy sets M'(§) and M2(6), and payoff functions u;(0?,0?) = u(a!,02) and uz(c?,02) =
u(0?,0?). A strategy profile (o},02) € ©(S) is strictly perfect if for every sequence of perturbations
6; — 0 there exists some accompanying sequence of strategy profiles (o},02) — (0!,0?) that are
Nash equilibria in the corresponding perturbed game G(6;).
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pure strategy ¢ = f(m') in G. Let F be the set of all such functions. Formally, a pure
meta-strategy thus is a pair (m, f) € M x F. We write h =(m, f) e M x F = H.

Since pre-play communication by assumption is costless, the payoff to any pure
meta-strategy h = (m, f) € H, when played against some pure meta-strategy k =
(m',g) € H, is a;; where i = f(m’) and j = g(m): Player 1 receives 2’s message m’
and thus plays pure strategy ¢ = f(m’) in G, while player 2 receives 1’s message m
and thus plays pure strategy j = g(m) in G. The payoff matrix of the meta-game G
may thus be represented by the |H| x |H| matrix A with entries o = a5 in each row
h € H and column k € H, where h = (m, f), k = (m/,g), i = f(m), and j = g(m').
The space of mized meta-strategies is the (|H| — 1)-dimensional unit simplex A(H) in
R, For any pair of such mixed strategies p,q € A(H), the payoff to meta-strategy
p when used against meta-strategy g, is

v(p,g) =p-Aq= D Dronkt, @)
hkeH
This defines the meta-game payoff function v : ©(H) — R. The set of (mixed) best
replies to any meta-strategy ¢ € A(H) will be denoted 57 (q) C A(H).

3. SYMMETRIC META-GAME NASH EQUILIBRIA

It turns out to be analytically convenient to group the meta-strategies according to
message sent. For any meta-strategy p € A(H) and message m € M, let p(m) € [0, 1]
denote the probability that message m is sent in p.5 We say that message m is used in
pif p(m) > 0. Write M(p) C M for the subset of messages used in p. For any message
m used in p, let p™(m’) € A(S) be the mixed base-game strategy ”played” by message
m against any message m’ € M. More precisely, given p € A(H), m € M(p), and
m' € M, let p*(m’) be the conditional probability that p assigns to the pure base-
game strategy i € S against message m’, given that message m is sent.” In particular,
for any meta-strategy pair (p,q) € ©(H) in which m is used in p and m' is used in
g, the pair (p"‘(m’ ), g™ (m)) € O(S) constitutes the base-game strategy profile that
messages m and m’ play against each other. Using this notation one may decompose
the payoff v(p, q) to meta-strategy p against meta-strategy q as follows:

wpg)= Y Y pm)g(m)upm(m),q™ (m)] (4)

meM(p) m'eM(q)

6More precisely, p(m) is the sum of all pure-strategy probabilities p, where h = (m, f) for some
feF.
"Formally: p*(m') =Y ;.

im/

P(m,f)/p(m), where Fim: = {f € F : f(m') =1}.
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It is not difficult to show that a meta-strategy p is in Nash equilibrium with
itself, p € ANE(H), if and only if (i) all used messages play some base-game Nash
equilibrium against each other, and (ii) no message earns more than v(p, p).

Proposition 1. p € AN?(H) if and only if (i)-(ii) hold.
@) (p™(m"),p™ (m)) € ONE(S) V¥m,m’ € M(p)
(i) Lmvertn) P(m')u [p™(m'), p™ (m)] < v(p,p) Vm e M

Proof. First let p € A(H), and suppose (i) does not hold, i.e., p™(®/) ¢
I5} [p’h' (m)] for some m,m’ € M(p). Then some pure strategy ¢ € S in the support
of p™(m') € A(S) earns a suboptimal payoff. Let ¢ € A(H) be like p, except that
(m') € B [pﬁ" (m)] Then

u[g™(m),p™ (m)] = u [p"(m), p™ (m)]
for all m # m and all m/, as well as for m = m and all m’ # m/, and
uq™(®),p™ ()] > u [p" (), p™ ()] -

Since p(7h) > 0 this implies v(g,p) > v(p,p), by (4), so p ¢ ANP(H). Hence p €
ANE(H) = (i).
Second, let p € A(H), and suppose (ii) does not hold, i.e.,

> p(m)ufp™(m),p™ (m)] > v(p,p)
m'eM(p)
for some m € M. Let ¢ € A(H) be like p, except that g(m) = 1 (and thus ¢(m') =
0 for all m’ # m). Then v(g,p) > v(p,p) by (4), so p ¢ ANE(H). Hence p €
ANE(H) = (ii).
Third, assume (i) and (ii), and let ¢ € A(H). By (4), and using first (i), then (ii):

oigp) = Y am) Y p(m)ulgm(m),p (m)] <

meM(q) m/eM(p)

< X am) Y plmu[pm(m),p™ (m)] <

meM(q) m'eM(p)

< Y gq(m)v(p,p) = v(p,p).

meM(q)

Hence p € 8 (p), so (i)-(ii) = p € AME(H). End of proof.
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Remark I: By decomposition (4), the inequality in (ii) must be an equality for all
messages used in a symmetric Nash equilibrium. Hence, p € AN®(H) implies

> p(myu [p™(m'),p™ (m)] = v(p,p) Ym € M(p). (5)

m!'eM(p)

Remark 2 The meta-game G, viewed as an extensive-form game, has |M|* sub-
games, one for each pair of messages. Since each player moves exactly once in any
‘play of the meta-game, the behavior strategies are the same as the mixed strategies
in this game. Moreover, a behavior strategy profile in any finite extensive form game
is a Nash equilibrium if and only if it prescribes optimal play at each information set
on its path. Conditions (i) and (ii) are equivalent to this requirement: (i) requiring
that no deviation pays after the messages have been revealed, and (ii) requiring that
no deviation pays before the messages are revealed.

4. META-GAME OUTCOMES
4.1. Definitions. Let VV®(M) C R denote the set of symmetric meta-game Nash
equilibrium payoff outcomes when the message set is M:

VNE(M) = {x € R : z = v(p,p) for some p € ANE(H), for H= M x F}. (6)

Next, let CNE¥  R? denote the convex hull of the set of base-game Nash equilibrium
payoff vectors® Let UNF C R be the symmetric base-game payoff values in this
convex hull:

UNE = {z eR: (z,2) € CVF}. )

The set UNF is necessarily convex and compact, hence UNE = [z, %] for some
z < T. Moreover, for each of the end-points of this (perhaps degenerate) interval there
exists a base-game Nash equilibrium such that the end-point is the average of the two
players’ payoffs in that equilibrium. More precisely, there exist (o, u) € OV5(S) such
that 3[u(e, u) +u(y, o)) = z and (7, i) € OVE(S) such that L[u(F, B) + u(E, 7)) = 7.
Note also that the set UN® always contains the set of symmetric base-game Nash
equilibrium payoffs, and that the latter may be a proper subset in some games.?

A simple example of the latter possibility is the 2 x 2 "Hawk-Dove” game with
payoff matrix

8The conver hull of a set is the smallest convex set containing it. The set of base-game strategy
payoffs is the set of pairs (z,y) € R? such that (z,y) = (u(o, i), u(u, ) for some (o, p) € OVE(S).

9Formally, the symmetric base-game Nash equilibrium payoffs are the points z € R such that
z = u(0, o) for some o € ANE(S).
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01
A= ( 10 ) : (8)
Its unique symmetric Nash equilibrium is (¢*, 0*), where o* = (%, -é—) The associated
payoff is 3 to each player. However, the game also has two asymmetric (strict)
Nash equilibria, namely (e!,e?) and (e?,e!), both giving payoff 1 to each player.
Thus the set of symmetric Nash equilibrium payoffs is the singleton set {%}, while
UNE = [1,1].
In analogy with the above notation, let VESS(M) C R and VNS5(M) C R be the
sets of evolutionarily and neutrally stable meta-game payoff outcomes, respectively,
when the message set is M. By (2):

VESS(M) c VVSS(M) c VNE(M). (9)

4.2. Symmetric Nash Equilibrium Outcomes. We are now in a position to
establish some properties of the set VN®(M). First, by proposition 1, this set is a
subset of the base-game Nash equilibrium interval UN? = [z,7]. This being true
for any finite set M of messages, one may ask how the set VN®(M) depends on the
message set M; in particular, if it expands as M expands. It is clear from the definition
of the associated meta-game G that the dependence goes only through the cardinality
of M: Any two message sets M and M’ with the same number of elements define
meta-games that differ only in the labelling of messages. The question may thus be
re-phrased as how the set VVNZ(M) depends on the number |M| of messages. It turns
out that the set VVE(M) is non-decreasing in |M|, and that it converges towards a
limit set WNF that is dense in UNE. In this sense, every point in the interval UN® can
be approximated by the outcome in some symmetric meta-game Nash equilibrium.
Wirneryd [22] establishes that any payoff in UN® can be approximated by the payoff
to some symmetric meta-game Nash equilibrium if the message set is large enough.
This follows from (but does not imply) the second claim in the following result.

Proposition 2. For any base game G and message sets M and M* with |M| < |M*|,
VNE(M) c VNE(M*) c UNE. For any base game G and sequence of messages sets
My, with | M| — oo as k — oo, the limit set WNE = Ngen Upsik VVE(M,,) exists and
is a dense subset of UNFE,

Proof. We prove these two claims in three steps. First we show VNEB(M) C
UNE, for any finite set M. Second, we show VNE(M) c VNE(M*) for any pair of sets
M C M* where |[M| = k and |[M*| = k+1. These two steps together establish the first
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claim in the proposition. Third, we construct an infinite sequence VNZ(M,), with
each | M| = k, such that the associated limit set W™* is dense in UN®. Existence of
the limit follows from the first claim in the proposition, combined with the fact that
UVNE is compact. It also follows from the first claim that the same limit set W%
obtains from any sequence of messages sets Mj, with [M]| — oo.

Step 1: By proposition 1 all message pairs (m,m') € M? play some base-game
Nash equilibrium (o, ) € OVE(S) (symmetric if m = m’). By (4) v(p,p) is a convex
combination of such base-game payoffs. In case m # m’, the weight in the convex
combination is p(m)p(m’) both to the payoff u(p™(m’), p™ (m)) and to the ”opposing”
payoff u(p™ (m),p™(m’)). Thus, the whole convex combination is symmetric, and
thus VNE(M) c UNE. ’

Step 2: Assume M = {1,...,k} c M* = {1,...,k,k+ 1}, and v(p,p) € VNE(M).
Let H* = M* x F. Without loss of generality assume k € M (p). We now construct a
meta-strategy ¢ € A(H*) that mimics p and that treats message k+1 just like message
k. More precisely, for all m < k let g(m) = p(m) (and thus g(k + 1) = 0). Moreover,
for all m,m’ < k, let ¢g™(m') = p™(m'). For all m < k, let ¢™(k + 1) = p™(k),
and for all m’ < k let ¢**'(m') = pF(m'). Let ¢**'(k + 1) = pF(k). It follows
from this construction that, in meta-strategy g, all used message pairs play base-
game Nash equilibria, indeed the same as in p, that every used message earns payoff
v*(g,9) = v(p, p), and no message in M* earns more. By proposition 1, g € AN?(H*).

Step 3: We can construct a meta strategy p € ANE(H) with payoff v(p, p) arbi-
trarily close to any given point z in UNF = [z, 7] by letting the messages set M be
sufficiently large. Recall that the set AN(S) is non-empty, take any o° € ANE(S),
and let 2° = u(0°,0°). Any = € UNF belongs to at least one of the two sub-intervals
[z,2°] and [z°,Z]. Assume z € [z°,%]. To any such point z there exists a A € [0,1]
such that z = Az® + (1 — A)Z. Moreover, for any € > 0 there exist positive integers
t and k such that ¢t is even, k > t+ 1, and A = t/k € [0,1] is within distance e
from A. Now let there be k messages in M and place all messages around a circle.
Let p € A(H) be such that p(m) = ; for all m € M, each message m € M plays
o° € A(S) against itself, & € A(S) against its /2 nearest “clockwise” neighbor mes-
sages on the circle, 7 € A(S) against its t/2 nearest “counter-clockwise” neighbor
messages, and o° against all other messages. Then all messages are used in p, all
message pairs play base-game Nash equilibria, and all messages earn the same payoff.
Thus p € ANP(H) by proposition 1. Moreover,

o(p,p) = £ [3u(, ) + Su(,3) + (£ ~ hu(o®, 0°)] = ha* + (1~ N}z

For t and k sufficiently large, v(p, p) is arbitrarily close to .
The case z € [z,z°] can be treated in the same way. End of proof.
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4.3. Neutrally Stable Qutcomes. Propositions 2 and the inclusion chain (9)
together imply that the set VVS5(M), for any finite set M of messages, is a subset of
the base-game Nash equilibrium interval UN? = [z,Z]. Like in the case of symmetric
Nash equilibrium payoffs, one may ask how the set VN55(M) depends on the message
set M; in particular, if it expands as | M| increases, and if it has a limit, as | M| — oo,
and whether that limit is dense in UVE. While this was shown above to be true for
VNE(M), VNSS(M) does not expand monotonically with [M| in all games.

A simple counter-example against monotonicity of VNS5(M) in |M| is the ” Hawk-
Dove” game with payoff matrix (8) above. It is well-known, and easily verified,
that its unique mixed Nash equilibrium strategy ¢* is evolutionarily stable. Hence,
VESS(M) = VNSS(M) = {% when |[M| = 1. However, one can show that 1 ¢
VNSS(M) whenever [M| > 1. Take the case of two messages. In order to obtain
payoff % in such a meta-game, it is necessary, by proposition 1, that all four message
pairs play (o*,0*). But such a meta-strategy p is vulnerable to invasion by the mutant
strategy q that sends both messages with equal probability, lets each message play
o™ against itself, one message play pure strategy 1 against the other, and the other
message play pure strategy 2 against the first. This meta-strategy is certainly a best
reply to q. However, v(q,q) = 2 > v(p,q) = ;. Hence p ¢ ANSS(H). It turns out
that the reason for this phenomenon of V¥55(M) not being non-decreasing in |M| is
that the base-game ESS ¢* is a minimax strategy in the base game - the logic is here
similar to that in the Folk theorems.

For any finite and symmetric two-player game let z,,,, € R be its minimax value,
ie.,

mm‘m -

nin, aren&agg)u(a, 1)- (10)
Lemma 1. For any base game G and message sets M and M* with |M| < |M*|:
(a) If = € VN35(M) and T > Zynpn , then z € VNSS(M*)
(b) Iffl?mm ¢ VNSS(M), then Tram ¢ VNSS(M*)

Proof.  For (a), assume z € V¥55(M) and z > z.m. Let p € ANSS(H)
have v(p,p) = z. It is sufficient to consider the case M = {1,...,k} and M* =
{1,...,k,k+ 1}. Let gmm be a minimax strategy in G. Thus u(o, ftymm) < Zmm for all
o € A(H). Let H* be the set of pure strategies in the meta-game G* associated with
message set M*. Let ¢ € A(H*) agree with p on H, have message k + 1 unused and
play fimm against it. Formally, for all m < k let g(m) = p(m) (thus g(k + 1) = 0).
For all m,m’ < k, let ¢™(m’) = p™(m'). For all m < k, let ¢™(k + 1) = fsmm, and
for all m' € M* let ¢**(m’) = ppmm. It follows from this construction that, in meta-
strategy g, all used message pairs play the same base-game Nash equilibria as in p,
that every used message earns payoff v*(g,¢) = v(p, p), and no message in M* earns
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more. By proposition 1, ¢ € ANF(H*). Since p € ANS5(H): v(p',p') < v(p,p’) for all
7' € B¥(p). Now suppose ¢’ € 7" (g). Then the support of ¢ is a subset of H, since
message k + 1 is minimaxed in q. Let p’ € A(H) be the restriction of ¢’ to H. Then
P € B%(p) and so v(p',p) < v(p,p). But v(¢',¢') = v(p',p') and v(q,¢') = v(p,p),
which shows that ¢ € ANSS(H*).

For (b), assume Z.m ¢ VVS(M) and zmm € VNS5(M?*), for M = {1,...,k} and
M* ={1,..,k,k+1}. Let p € ANSS(H*) have v(p,p) = ZTum- By proposition 1
all messages used in p play some base-game minimax Nash equilibrium against all
used messages. Suppose some message is unused in p. Without loss of generality
let m = k + 1 be such. Then the restriction of p to H belongs to ANSS(H), a
contradiction. Suppose instead that all messages are used in p. Then all message
pairs play some base-game minimax Nash equilibrium. Let p' € A(H*) be like p,
except that /(1) = 1 (p’ only uses message m = 1). Then q € 87" (p) = ¢ € 7 (p')
= v(q,q9) < v(p,q) = v(¢',q), so p’ € ANS5(H*). But only message m = 1 is used
in p/, and so the restriction of p’ to H belongs to ANS5(H), a contradiction. End of
proof.

Remark 8: This proof does not work for evolutionary stability. For suppose in
the proof of (a) above that p € APSS(H), and let ¢ € A(H*) be defined as in that
proof. Suppose ¢ € 877 (q), ¢ # q. Then the support of ¢ is a subset of H, since
message k+1 is minimaxed in ¢. (But ¢’ may well differ from ¢ at the unused message
m =k +1.) Thus v(¢’,¢') = v(q,¢'), which shows that g ¢ AFSS(H*).

Proposition 3. For any base game G and sequence of messages sets My, with |My| —
o0 as k — oo, the limit set WN5S = Mien Upsk VVSS(M,,) exists and is a non-empty
subsets of UNE,

Proof.  The claim in the proposition follow readily from the above lemma.
First note that the sets VNS5(My) N (Tmm,Z], for & = 1,2,..., are increasing in
k by Lemma 1(a). Since each such set is a subset of the compact set UNE, the
associated limit set XV55 = Nien (VN SS(M) N (a:mm,‘f]) exists, and is a subset of
UNE_ If, for some k, Tmm ¢ VVSS(M;), then WNSS = XNSS by (b). Otherwise,
WNSS = XNSS y{zmm} C UNE. End of proof.

It follows immediately that if =, ¢ UNZ, which is indeed the case in many
games, then the set VVS(M) is in fact non-decreasing in |M|:

Corollary 1. For any base game G such that T, ¢ UN®, and any message sets M
and M* with |M| < |M*|: VNSS(M) c VNSS(M*).

Remark 4: In the Hawk-Dove game (8) with |M| = 1 and |M*| = 2 we have
Tmm = 3 € UNE, 2 € VVS5(M) and 2 ¢ VNS5 (M),
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5. 2 x 2 COORDINATION GAMES
We here focus on the special case of symmetric 2 x 2 games with payoff matrix

A=<‘C‘ 2) (11)

for some a > ¢, d > b. We will call such games coordination games, and it is
well-known that their set of evolutionarily stable strategies consists of the two pure
strategies, and, moreover, that their unique mixed Nash equilibrium strategy is not
neutrally stable: AVS5(S) = AESS(8) = {e!,e?}.

Consider any game G with payoff matrix as in (11), where a < d, i.e., a is the
"bad” and d the ”good” strict Nash equilibrium payoff . Let this be the base game
in a cheap-talk game G with finite message set M. Observe that, irrespective of each
player always receives the same payoff as the other player, both in the base game and
in the meta game.

By proposition 2 the set VVZ(M) of symmetric meta-game Nash equilibrium
outcomes, for any finite message set M, is a subset of the set UN? = [z,7]. In

a coordination game with payoff matrix (11), z = 2% is the mixed-strategy base-

game Nash equilibrium payoff and Z is the ” good”aJsrgrict Nash equilibrium payoff
d.1° By (2), also all neutrally and evolutionarily stable meta-game payoff outcomes,
respectively, belong to the interval UN? = [z,%]. A point x € UN® will be called a
neutrally (evolutionardy) stable cheap-talk outcome for the coordination game with
payoff matrix (11) if there exists some finite message set M and associated meta-game
strategy p that is neutrally (evolutionarily) stable in the meta-game, and that has
v(p,p) = z. We will give a complete characterization of these sets: it turns out that
they coincide, and that this set is infinite but countable, consisting of points between
a and d, including these, and having d as its unique cluster point. Hence, all but one
of the neutrally (and likewise evolutionarily) stable outcomes are isolated points, the
unique exception being the Pareto efficient outcome.

This result is in stark contrast with the corresponding result for the set of strate-
gically stable cheap-talk outcomes. These are defined as the points z € UN¥ for which
there exists some finite message set M and associated meta-game strategy p such
that (p,p) is a strategically stable Nash equilibrium in the meta-game with payoff
v(p,p) = z. It turns out that this is a dense subset of UV,

As a first step towards our characterization of the set of neutrally stable meta-
game outcomes, we show that neutral (and hence also evolutionary) stability in the
meta game requires that all present messages play pure strategies against each other.

10Note that the "bad” strict Nash equilibrium payoff a is a point in the interior of the interval
UNE,
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Consequently, neutrally stable meta-game outcomes belong to the sub-interval [a,d] C
UNE,

We will say that a message m € M(p) is nice to a message m' € M in p € A(H)
if m plays the "good” strict Nash equilibrium against m’: p™(m') = e2. We establish
that if some used message is nice to itself, then every used messages is nice to all used
messages. Consequently, the payoff is then maximal.

Lemma 2. Suppose p € ANSS(H).
(i) If m,m' € M(p), then p™(m') = p™ (m) € {e!, €2},
(i) If p™(m) = €? for some m € M(p), then v(p,p) = d.

Proof. (i) By proposition 1 it suffices to show that m and m’ do not play
the mixed base-game Nash equilibrium with each other. Suppose they would. Then
let ¢ € A(H) be like p, except for ¢™(m') = ¢™ (m) = €*. Then q € B¥(p), and

v(g,9) = d > v(p,p), so p ¢ ANSS(H).
- (ii) Suppose m € M(p), p™(m) = e? and v(p,p) < d. Let ¢ € A(H) be such that
g(m) =1 and ¢™(m") = p™(m") for all m" € M. Then ¢ € B*(p), and v(q,q) = d.
However, v(p,q) = p(m)d, where p(m) < 1 since v(p,p) < d. Thus v(q,q) > v(p, q),
and hence p ¢ ANS5(H). End of proof.

For any meta strategy p and message m, let N(m,p) C M be the subset of
messages that are nice to m in p:

N(m,p) = {m' € M : m’ nice to m in p}. (12)

We call a subset M’ C M(p) polite in p € A(H) if every message in M’ plays the
"good” strict Nash equilibrium strategy e? against all other messages in M’ and the
"bad” strict Nash equilibrium strategy e® against itself. A meta-strategy p € A(H)
is said to be in politeness class n if some non-empty subset of messages M’ C M with
|[M’| = n is polite in p, and no larger subset of M is polite in p. The next result
establishes a lower bound on the neutrally stable meta-game outcomes in terms of
politeness classes. The higher politeness class, the higher is this lower bound.

Lemma 3. Suppose p € ANS5(H) is of politeness class n. Then v(p,p) > La +
(1-1)d

Proof. Let ® # M’ C M be polite in p € ANF(H), with |M’| = n. Let
q € A(H) be such that g(m) = L for all m € M’, and g™(m') = p™(m/) for all
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m,m’ € M'. Then

e = ¢ X 5 plm e, (m)]
meMlmlleM(p)
= ;]; > v(p,p) = v(p,p),
meM’'

so ¢ € B¥(p). Moreover, v(¢,q) = a + (1 — %) d, and v(p,q) = v(p,p). Hence
p & ANSS(H) if v(p,p) < La+ (1 - %) d. To see that v(p, q) = v(p, p), first note that

wpg) = Y plm) Y sufpm),p(m)] =

meM(p) m'eM!
= 3 am) X sulprom),p(m)]
meM’ m'eM’
+ 3 pm) X Zulpm),p(m)]
mg M m'eM’
= S pm)fat -1+ Y plm) X ulp(m),pmm)].
meM’ mg¢M’ m'eM’

In the last equality we have used the fact that ¢ mimics p on M’ C M(p) (for the first
term) and the fact that p there lets all message pairs play symmetric base-game (for
the second term). Reversing the order of summation in the second term, and using
Remark 1, we obtain

v(p,g) = 3, p(m)v(q,q)+i- > Y pm)u[p™ (m),pm(m)] =
meM’ m/eM' mgM'

= ) p(m)‘v(q,q)+% > (v(p,p)— > p(mu [p""(m),p"‘(m’)]) =

meM’ m'eM' meM’

= vpp)+ ¥ pm(ad) —~ 3 (p(m)a+[L - p(m)]d) =

meM’ meM’
= v(p,p) +v(q,q) —v(q,9) = v(p, p).

End of proof.

For any non-empty subset M’ C M of messages and meta-strategy p € A(H), let
Pr(M’ | p) be the probability that a message from M’ is sent in p.
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Lemma 4. For any 9 # M' C M and p € A(H):

Pr [ﬂmeM:N(m,p) I p] 2 E Pr {N(ma p) I P] - ‘M,l +1. (13)
meM’
Proof. For any probability measure p on a set X with k > 1 y-measurable
subsets B;: p[~ N;B;] < ¥; 1 (~ B;). Equivalently,

pln:Bi] > 1— EM(N B)y=1-k+ Z.U'(Bi)'
End of proof.

Lemma 5. Suppose v(p,p) < d and p € ANE(H) is of politeness class n. Then
v(p,p) < La+ (1 -~ %) d.

Proof. Let M’ C M be polite in p, with |M’| = n. Since no M” C M with
[M"| > n is polite in p, no m” ¢ M’ is nice to all m' € M’. Since v(p,p) < d, no
m’ € M’ is nice to itself, by Lemma 2. Hence NmearrN(m/,p) = @. Moreover, by
Proposition 1 each m € M(p) earns payoff a + Pr{N(m,p)] (d — a) = v(p,p). Since
M’ C M(p) this equation holds for all m’ € M’. An application of lemma 4 to the
set M’ gives

0 > nv(pa p) —4a
d—a
which is equivalent to the claimed inequality. End of proof.

—-n+1,

Lemma 6.

(14)

YNSS(Af) {a’a—l-d a+2d a+(|M|——1)d’d}

2 ' 3 |M|
Proof. Every p € ANS5(H) is either of politeness class n for some integer
n € [1,|M]] or else v(p,p) = d. Lemmas 3 and 5 give (14). End of proof.

The following proposition establishes that the inclusion in lemma 6 in fact is an
equality. This result thus characterizes the sets of neutrally stable outcomes in all
finite cheap-talk extensions of 2 x 2 coordination games.

Proposition 4.

(15)

VNSS(M):__{a’a-Fd a+2d a+(lM|*—1)d,d}

2 °73 T M|
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Proof. Let n = |M|. By lemmas 1 and 6 it is sufficient to show e_ﬂ':‘_—llé €
VNSS(M). We will in fact establish 3'—45(’;——"—114 € VESS(M). For this purpose, let
p(m) = 1 and p™(m) = e! for each m € M, and p™(m') = p™(m) = €’ for all
m,m' € M with m’ # m. Then v(p,p) = 2a + (1 — L)d. To see that p € AFS5(H),
first note that ¢ € H(p) = ¢™(m') = p™(m) = p™(m') for all m € M(q) and
m' € M(p) = M. Since ¢ and p let all message pairs play symmetric and pure
base-game strategy profiles against each other, the off-diagonal elements b and ¢ in
the payoff matrix A are never used, and so we may assume without loss of generality
that b = ¢. Thus G is doubly symmetric, and consequently for any ¢ € B%(p) we
have v(p,q) = v(q,p) = v(p,p). It thus suffices to show that v(q,q) < v(p,p) for all

q € B¥(p), ¢ # p. By (4),

v(g,q) = >, q(m)|a+(d—a) Y  g(m)

meM(q) m'eM(g)\m

a+(d-a) >, gm)[l—gm)=d—-(d—a) Y ¢’ (m).

meM(q) meM(q)

Thus v(g,q) is maximal when ¥, ¢°(m) is minimal. This sum is minimal pre-
cisely when M (q) is maximal and all g(m) are equally large, i.e., when M(q) =
and g(m) = 1 = p(m) for all m € M.1! In sum, q € A (p) = v(q, q) < v(p,p) with
equality only when q = p. Hence p € APS(H). End of proof.

The set QV5Sof neutrally stable cheap-talk outcome for the coordination game with
payoff matrix (11) is defined (as indicated above) as the set of points z € UNF for
which there exists some finite message set M and associated meta-game strategy p
that is neutrally stable in the meta-game and that has payoff v(p,p) = z. Formally,
QNS5 = Ups ainie VVSS(M). Likewise, let Q755 = Uy gie VESS (M). Tt follows from
the above proposition, together with the observation in its proof that Eﬂ%%—lﬁ

VESS(M), that the sets of neutrally and evolutionary cheap-talk outcomes coincide:

ONSS = OFSS — {ﬁ—g—%———l—)—f—i : for some n € N} U {d}.

Remark 5: The finding above that '-’—"Zﬂl%j-lll)ii € VESS(M) is consistent with

Schlag’s [17] result that this is the payoff to the unique evolutionarily stable strategy.

First fix M(q) = M'. The program to minimize the sum y°_ .., ¢*(m), subject to the constramt
that all g(m), for m € M, are non-negative and sum to one, has the unique solution g(m) = %
for all m € M’, where k = |M ’|. Geometrically, this is equivalent to finding the point in the umt
simplex in R* that is closest to the origin. The minimum value, for M(gq) = M’ fixed, is thus L.
Hence, k should be chosen as large as possible, i.e., M' = M.
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He also shows that the Pareto efficient outcome d is obtained in an evolutionarily
stable set (Thomas [20]). Clearly the difference between his and our results derive
from the difference between neutral and evolutionary stability. (For more on this, see
Section 7.)

Remark 6: The fact that the set of neutrally stable outcomes in 2 x 2 coordination
games always includes the Pareto efficient point does not mean that this holds for all
games. In fact, there are games in which a unique Pareto dominant (but non-strict)
Nash equilibrium is unstable. An example is given by the following payoff matrix:

1 2-a 0 —v
0 1 2—a —v
2—a 0 1 —y
-y - -r B

A= (16)

where o € (0,1), B € (0,1 — §) and v > 0. The three first rows and columns to-
gether constitute a generalized ” Rock-Scissors-Paper” game which has a unique Nash
equilibrium, and in this equilibrium both players randomize uniformly over the three
strategies and each player obtains the payoff 1 — §. It is well-known that this equi-
librium is unstable in the replicator dynamics (see e.g. Hofbauer and Sigmund [6] or
Weibull [23]). For non-negative values of v, this ”Rock-Scissors-Paper equilibrium”
remains a Nash equilibrium in the full game. However, the full game has two more
Nash equilibria, each of which is symmetric. One is the strict equilibrium in which
both players use only strategy 4, resulting in payoff 3 to both players - by hypothesis
a lower payoff than in the ”Rock-Scissors-Paper equilibrium.” The third Nash equi-
librium is completely mixed and its payoff can be made arbitrarily low by choosing
v sufficiently large. However, the unique Pareto-dominant Nash equilibrium, giv-
ing payoff 1 — ¢ to each player, is not Lyapunov stable in a cheap-talk extension this
game, for any finite message set. For if p € AN®(H) has v(p, p) = 1—$, then all used
messages earn the same payoff and all active message pairs play the “Rock-Papers-
Scissors equilibrium.” When such a message meets itself, the situation is exactly the
same as in the absence of communication, and so the associated sub-population state
is dynamically unstable in the replicator dynamics. It follows that p is not neutrally
stable, since neutral stability implies Lyapunov stability in the replicator dynamics
(Thomas [20], Bomze and Weibull [4]).

The set Q550f strategically stable cheap-talk outcomes is defined as the set of points
z € UNF for which there exists some finite message set M and associated strategically
stable set of meta-game strategy pairs (p,p) € OV¥(H) with payoff v(p,p) = z. The
following result establishes that any payoff z in the interval UNF can be approximated
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by some strategically stable Nash cheap-talk outcome. In fact, it is shown that = can
be approximated by the payoff to a strategically stable singleton set:

Proposition 5. Q%5 is dense in UNE.

Proof. For every z € [z,%] and € > O there exist positive integers k and n,
with k even and n > k, such that y = Az + (1 — \)Z, for A = k/n, is within distance
¢ from z. Let |M| = n, and let p € A(H) have p(m) = 1/n for all m € M. Order
all messages in a ring, and let each message play the base-game Nash equilibrium
strategy o* to its k/2 nearest neighbors on each side, and let it play e* to all other
messages, and to itself. Then all messages play base-game Nash equilibria with each
other, and all messages earn the same payoff

v(p,p) = [kz + (n — k)Z] /n = Az + (1 — N)Z.

It follows from proposition 1 that p € ANE(H).

To see that (p,p) € O(H) is strictly perfect, let § = (6},6%)nen be such that
Pk(6) = {p €EA(H):pp>6forallhe H} is non-empty for k¥ = 1,2, and let G(6)
be the associated (possibly asymmetric) two-player perturbed meta-game with strat-
egy sets P'(6) and P?(6). For § sufficiently small this game has a Nash equilibrium
(p',p') arbitrarily close to (p,p). Let p'(m) = p(m) = 1/n for all m € M and let each
message play the base-game Nash equilibrium strategy o* to its k/2 nearest neighbors
on each side, and let it place maximal probability on the decision rule that assigns the
pure base-game strategy e® to all other messages, and to itself. Since e? € ANF+(S),
7' is a best reply to itself in the perturbed meta-game G(6), granted the vector § > 0
is sufficiently small. End of proof.

Remark 7: The argument of the above proof can be used, mutatis mutandis, to
establish that the meta-strategy p in the proof of proposition 5 is strictly perfect.!?

6. INFINITE MESSAGE SETS
In any natural language the set of possible statements is infinite and countable. Hence,
the above assumption that the message set M be finite is not as innocent as it
may look. It is well known from the repeated games literature that the equilibrium
correspondence may be discontinuous (more precisely lack lower hemi-continuity)
"at infinity,” i.e., as one moves from a finite but arbitrarily distant time horizon
to an infinite time horizon. In that context, the limit of finite horizon equilibrium

12This observation may be compared with van Damme’s [5] general result that if a mixed strategy o
in a finite and symmetric two-player game is evolutionarily stable, then (o, o) is a proper equilibrium.
The somewhat stronger conclusion drawn here is due to the special structure of coordination games.
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outcomes always constitute equilibrium outcomes also in the infinite horizon case
(the equilibrium correspondence is upper hemi-continuous) but there may be a whole
plethora of infinite horizon outcomes that have no counterpart in the finite but distant
horizon case. An important question for the present analysis thus is whether the
relevant solution correspondences for cheap talk games are continuous ”at infinity,”
i.e., as one moves from a finite but arbitrarily large message set to an infinite message
set.

For the purpose of investigating this question, we now assume M = N, and re-
examine all results established above for finite message sets. The first question that
arises is how to define payoffs and solution concepts when M, and hence also the
pure-strategy set H of the meta game G, is infinite. Since the base-game G is finite
and thus has bounded payoffs, all methods easily generalize. First, payoffs may still
be defined as in equation (11) since the set of numbers oy, for b, k € H, is bounded.
Consequently, the definitions of Nash equilibrium, evolutionary and neutral stability
etc. may be extended to an infinitely countable message set. (Existence of Nash
equilibria is no longer guaranteed, however.) The decomposition formula (4) still
holds, and the proof of proposition 1 applies.

We focus on neutrally stable outcomes in the special case of 2 x 2 coordination
games. Inspection of the proofs of lemmas 2 through 5 reveals that these are valid for
any countable set M, positive integer n, and finite subset M’ C M. The counterpart
to Proposition 4 is

Proposition 6. VNS5(N) =QNSS,

Proof.  We show (a) V¥55(N) C QV55, (b) d € VVSS(N) and (c) 2Hn=lM ¢
VNSS(N) for all n € N.

(a) In view of the fact that lemmas 2-5 can be generalized as claimed above, it is
sufficient to show that if p € VV55(N) is not of politeness class n, for any n € N, then
v(p,p) = d. Thus suppose p € VVS5(N) is not of politeness class n for any positive
integer n. Then either (al) there exists no used message that plays e! against itself,
or (a2) there exist an infinite set M’ C M(p) of used messages that play e? against
each other and e! against themselves.

In case (al) all used messages play e? against themselves, by lemma 2. If there
is only one used message, then v(p,p) = d. If there is more than one used message
and v(p,p) < d, then some pair (m,m’) of used messages, m # m’, play e' against
each other. But then p ¢ V¥55(N) since an alternative best reply to p then is the
meta strategy ¢ € A(H) that lets all message pairs play like in p, but uses only, say,
message m. Clearly v(g,q) = d > v(p,q) = v(g,p) = v(p, p).

In case (a2), suppose v(p,p) < d. Then v(p,p) < M for some n € N. But
then p ¢ VNSS(N), since there exist alternative best replies to p that earn more
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against themselves than p earns against them. For instance, let ¢ € A(H) have all
message pairs play against each other like they do in p, but let ¢ use only, say, n+ 1
of the infinitely many messages in M(p), with equal probability for all. Formally,
let M(q) C M(p), |M(q)] = n+1 and ¢(m) = 35 for all m € M(q). Clearly

v(g,q) = & > =He=ld 5 4 (p p) = v(q,p) = v(p, q).

(b) It is easily verified that if p € A(H) lets all message pairs play (e?, €2), then
v(p,p) = d and p € ANSS(H).

(c) Let n € N, M’ = {1,...,n}, and let all pairs of messages from M’ play as in
the proof of proposition 4, while the remaining (unused) messages behave just like
message m = n, and are treated exactly like that message by all messages. Let all
messages be used, and let the first n—1 messages be used with probabilities, p(m) = =.
This will turn out to define a neutrally stable strategy with payoff ﬁ%gé. Formally,
let p € A(H) be defined as follows: p(m) = % for m < n, and p(m) > 0 for all m € N.
(Hence 3,5, p(m) = -rl;) Let each of the n— 1 first messages play e? against all other
messages, and el against itself. Let each message m > n play e? against all of the
n — 1 first messages, and otherwise . Then

) = (1=7) [po+ (1-3) ]+ 2 [per (1-2)
1 1

- ~a+(1-32)a
n n

All messages are used in p, all message pairs play (pure strategy) base-game Nash
equilibria, and it is easily verified that every message earns v(p,p). Hence, p €
ANE(H) by proposition 1.

In order to show that p € ANSS(H), first note that ¢ € 8% (p) implies that ¢™(m’) =
p™ (m) = p™(m’) for all m € M(q) and m’ € N. Since ¢ and p let all "active” mes-
sage pairs play symmetric and pure base-game strategy profiles against each other,
the off-diagonal elements b and c in the payoff matrix A are never used, and so we
may assume without loss of generality that b = ¢. Thus G is doubly symmetric,
and consequently for any ¢ € 87 (p) we have v(p,q) = v(q,p) = v(p,p). It thus
suffices to show that v(q,q) < v(p,p) for all ¢ € 8% (p). Assume q € ¥ (p), and let

Q = Zmzn q(m) By (4),
v(g,q) = Y. q(m)(ag(m)+d[1—q(m)])+ >_ q(m)(aQ +d[1 - Q])

m<n m>n

= (a—d) ) ¢FMm)+(1-Q)d+aQ*+dQ(1-Q).

m<n

We now investigate the maximum value of v(q,q) for ¢ € 87 (p). Proceed just as
in the proof of proposition 4: for any q € 5 (p), with accompanying sum Q, the sum
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of squares, 3.« ¢°(m), is minimized (subject to the constraint that these g(m)’s
add up to 1 — @) if and only if g(m) = 1;?_-01‘ for all m < n. Given this, we have

Wgd) =d-([d-a) [+ —1-Q)].

This is a parabola in Q with unique maximum at Q = 1 . Hence, ¢(m) = % for all

m < n, and thus v(g, q) is maximized for ¢ = p. Consequently, p € ANSS(H). End
of proof. '

It is not difficult to show that the situation is radically different for evolutionarily
stable outcomes: there simply does not exist any evolutionarily stable strategy when
the message set is infinite:

Proposition 7. VF5(N) = §.

Proof. Suppose p € A¥SS(H). If p does not have full support, then alternative
best replies to p exist that differ only at unused messages, and such alternative best
replies earn just as much against themselves as p earns against them. Hence, it is
necessary that p have full support. But then all message pairs must play (e?, €2), and
there are lots of alternative best replies to p that earn just as much against themselves
as p earns against them. For instance, let ¢ use only one message and have all message
pairs play (e?,e?). End of proof.

7. CONCLUDING COMMENTS

An alternative approach to formally study stability with respect to evolutionary forces
is to set up an explicitly dynamic model of some evolutionary selection process and
then look for outcomes that are stable in that dynamics. One well-studied evolution-
ary dynamics is the so-called replicator dynamics (Taylor and Jonker [19]). One then
imagines a large population of pure-strategists who are randomly matched to play
the game in question, here a cheap-talk game. A mixed strategy represents a pop-
ulation state, with probabilities interpreted as population shares of pure strategists.
The payoff v(p, p) of a meta-strategy p when playing against itself then is the average
payoff in population state p.

It has been shown that evolutionary stability implies asymptotic stability (Taylor
and Jonker [19]), and that neutral stability implies Lyapunov stability (Thomas [20],
Bomze and Weibull [4]), in the replicator dynamics. Hence, the above analysis of
finite cheap talk 2 x 2 coordination games implies that each payoff in the finite set
VNSS(M) is the average payoff in some Lyapunov stable population state in the
replicator dynamics, as applied to a cheap-talk coordination game with message set
M. Hence, if the population state happens to be such a state, then no small shock




Neutrally Stable Outcomes in Cheap Talk Games® 24

can bring it to move far away. Indeed, the payoff may remain unchanged under a wide
range of small and moderate shocks. In the very long run one should expect that the
population state, if subject to an infinite sequence of small random shocks, should
end up in some asymptotically stable set of population states. Evolutionarily stable
sets, studied in the context of 2 x 2 coordination games by Schlag ([17], [18]), indeed
have this property. However, for many economics applications the medium term”
may be more relevant for predictive purposes than the ”very long run” (Binmore and
Samuelson [2]). For such applications our results may serve as a guide to what is
going to happen.

REFERENCES
[1] Bergin, J. and B. L. Lipman (1995), ”Evolution with state-dependent muta-
tions”, mimeo. Economics Department, Queen’s University.

[2] Binmore, K. and L. Samuelson (1994), “Evolutionary drift”, European Economic
Review 38, 859-867.

(3] Bhaskar V. (1991), ”Noisy comminucation and the evolution of cooperation”,
mimeo. Delhi School of Economics.

[4] Bomze I. and J. Weibull (1995), ” Does neutral stability imply Lyapunov stabil-
ity?”, Games and Economic Behavior 11, 173-192.

[5] van Damme E. (1987), Stability and Perfection of Nash Equilibria, Springer
Verlag, Berlin.

(6] Hofbauer J. and K. Sigmund (1988), The Theory of Evolution and Dynamical
Systems. Cambridge, Cambridge University Press.

[7] Kandori, M., G. Mailath, and R. Rob (1993), ”Learning, mutation, and long-run
equilibria in games”, Econometrica 61, 29-56.

[8] Kandori M. and R. Rob (1995), ”Evolution of equilibria in the long run: A
general theory and applications”, Journal of Economic Theory 65:2, 383-414.

[9] Kim Y.-G. and J. Sobel (1991), “An evolutionary approach to pre-play commu-
nication”, mimeo, University of Iowa and University of California at San Diego.

[10] Kohlberg E. and J.-F. Mertens (1986), ”On the strategic stability of equilibria”,
Econometrica 54, 1003-1037.



Neutrally Stable Outcomes in Cheap Talk Games® 25

[11] Matsui A. (1992), ”Cheap talk and cooperation in society”, Journal of Economic
Theory 54, 245-258.

[12] Maynard Smith, J., Evolution and the Theory of Games, Oxford Universtiy
Press, 1982.

[13] Maynard Smith, J. and G.R. Price (1973), " The logic of animal conflict”, Nature
246, 15-18. .

[14] Okada A. (1981), "On stability of perfect equilibrium points”, International
Journal of Game Theory 10, 67-73.

[15] Ritzberger K. and J. Weibull (1995), ”Evolutionary selection in normal-form
games”, Econometrica 63, 1371-1399.

[16] Robson A.J. (1990), “Efficiency in evolutionary games: Darwin, Nash and the
secret handshake, Journal of Theoretical Biology 144, 379-396.

[17] Schlag K. (1993), ”Cheap talk and evolutionary dynamics”, Bonn University
Economics Disc. Paper B-242.

[18] Schlag K. (1994), ”When does evolution lead to efficiency in communication
games”, Bonn University, Economics Department, Disc. paper B-299.

[19] Taylor P. and L. Jonker (1978), "Evolutionary stable strategies and game dy-
namics”, Mathematical Biosciences 40, 145-156.

[20] Thomas B. (1985), ”On evolutionarily stable sets”, Journal of Mathematical
Biology 22, 105-115.

[21] Warneryd K. (1991), “Evolutionary stability in unanimity games with cheap
talk”, Economics Letters 36, 375-378.

[22] Warneryd K. (1992), ”Communication, correlation, and symmetry in bargain-
ing”, Economics Letters 39, 295-300.

[23] Weibull J., Evolutionary Game Theory, MIT Press, Cambridge (USA), 1995.

[24] Young, P. (1993), ”Evolution of conventions”, Econometrica 61, 57-84.



