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1. INTRODUCTION

For many productive activities it is very difficult to define a relevant output
measure — and often practically impossible to implement it, once defined. In
particular, this is the case regarding the rapidly expanding service sector. Most
services have several quality and quantity dimensions, some of which are largely
unobservable. For instance, health care not only results in actual changes of
patients' health status. It also helps prevent future, potential illnesses. Obviously,
to quantify the latter effect is an almost hopeless task. ‘

The most severe output measurement problems are probably encountered in the
public sector. In the national accounts system, this has lead to the convention that
the value of a public service is set equal to the value of the resources used to
produce it. Volume measures are obtained by weighing the inputs by constant,
rather than current, prices. Accordingly, the volume of a particular service, g say.

in year t is defined as

QX t Xyt Xy

where x; is the amount used of input i, valued at constant prices.! This accounting
practice implies several strong assumptions about the productive performance of the
public sector, some of which do not seem to have been generally recognized.

First, it implies that the growth in total factor productivity, déﬁned as the
difference between the growth in real output and the growth of the cost share
weighted inputs according to, e.g., Jorgenson and Griliches (1967) will always be
equal to zero. Apart from almost certainly yielding an incorrect measure of the
productivity development in the public sector itself, this will also bias calculations
of aggregate growth (e.g. GDP), as soon as the size of the public sector changes.

Secondly, it means that the production in the public sector is assumed to be

! In some countries, e.g. the U.S., only labor input is considered.



efficient in the sense that there is no slack in the utilization of the various factors of
production — if such slack were to exist it would be possible to reduce the usage of
some of the inputs without reducing output but, according to the chosen method of
measurement, any such reduction would decrease the level of output. This is in
contrast not only with widely held beliefs but also with theoretical considerations
predicting lower efficiency in the public than in the private sector.

Thirdly, it can readily be seen that a proportionate increase in all inputs will
increase q by the same proportion, implying that constant returns to scale are
assumed. In view of the fact that diminishing average costs, i.e. increasing returns,
is an important motivation for public production, this is somewhat unfortunate.

Finally, the additive formulation amounts to assuming that all inputs are perfect
substitutes. However, given this technological property a cost-minimizing producer
would of course only use the cheapest input. Hence, it must be implicitly assumed
that public producers ignore the effects of relative prices on total costs. Although
this seems to agree quite well with common opinion it would be preferable to regard
it as an hypothesis to be tested rather than as a mainfained hypothesis.

In this theoretical paper we show that given (time series) input data, three of
these four issues, namely productivity growth, efficiency in production, and sensi-
tivity to changes in relative input prices, are amenable to econometric analysis even
in the absence of output measures. There is thus no need to arbitrarily determine
them a priori. Moreover, although we cannot explicitly study properties concer-
ning returns to scale, our approach allows for the possibility of variable returns.

Our results are completely general in the sense that they can be applied to any
production activity, i.e. not only to those in the public sector. Within the private
sector, the production of banking services is an example of an interesting object of
study. In the national accounts, value measures of the output in the banking sector
are obtained by adding the bank's service charges and the net proceeds from their

lending operations. To construct volume measures of output, various ad hoc



assumptions are made. In the Swedish national accounts, e.g., it is assumed that
the banking industry every year experiences a 2% increase in average labor
productivity.? Similar procedures are employed in other countries, too. Our
approach makes it possible to investigate the empirical validity of such assumptions.
In contrast to the method that we are going to propose, analyses of production
activities for which there are no reliable output measures traditionally have
| employed proxy variables, intended to mirror the unknown output. Attempts have
also been made to take several dimensions of output into account simultageously,
either by aggregating several proxies into an output indicator index or by modeling
production as multiple-output processes.3 Still, studies of this kind can always be
criticized for failing to account for such basically unobservable output dimensions as
the one exemplified in the first paragraph above. Since, by their very nature, such
characteristics cannot be explicitly incorporated into the analysis the only way to
escape this criticism is to find some method of avoiding the measurement of output
altogether, as we do in this paper. To our knowledge, the only previous attempt in
this vein is Hulten's (1984) study of productivity changes in the public sector.
Inspired by household production theory, Hulten models the whole economy as a
"household", maximizing a utility function in an aggregate private sector good,
directly available for consumption, and an aggregate public sector commodity,
which is produced by the community for internal consumption.¢ The production
process yi'elding the public sector cornmodity is assumed to exhibit constant returns

to scale. Productivity changes are further presumed to be Hicks-neutral and are

2 As far as we know, no empirical support exists for the particular choice of 2%. It
is interesting to note that in an attempt to measure avera%sélabor productivity in
American banks over the period 1927-1979, Rhoades and White (1984) could not
find any indication of growth in average labor productivity since the mid 1950's.

3 Concerning examples from the public sector and the banking industry, an
extensive bibliography is available from the authors on request.

4 Household production theory is of interest in this context as it makes it possible to
analyze a household's internal production of non-market commodities, although the
commodities produced generally are unmeasureable, just like the output of the
public sector.



modeled by means of an exponential time trend. Duality theory can then be used to
express the price of the public sector commodity in terms of the prices of the factors
of production and a time index. Hulten shows that this result in turn makes the
ratio of the "household" budget shares for the private and public sector outputs a
function of the price of the private sector good, the factor prices and the time index.
By means of this equation the rate of public sector productivity growth can be
estimated without an explicit measure of the public sector output.

In addition to the rather restrictive assumptions about the production technology
a serious problem with Hulten's approach is the maintained, and therefore untest-
able, hypothesis that the household/community analogue is indeed valid, which is
far from obvious. Our method is based only on standard neoclassical production
theory and, hence, can be applied to the public sector without any such assumption.
Moreover, in contrast to Hulten, we do not have to presume the availability of any
other information than input data for the particular production process studied.

Given only input data, production or profit functions are infeasible as instru-
ments of analysis, since in studies based on these the level of output is endogenously
determined. This leaves a cost function analysis, in which the output level is
treated as predetermined, as the only possibly practical alternative.5

Output predeterminacy alone will not make it possible to analyze the production
process by means of input data only. Both the cost function and the input demands
which can be derived from it will always be dependent upon the level of output.
However, if the production technology is homothetic, i.e if the proportions in which
the factors of production are employed are unaffected by the scale of operation, then

the shares of the various inputs in total cost will be independent of the output level.

5 The treatment of output as a predetermined variable does not necessarily imply
that the output decision is taken by someone else than the producer. It can be
justified even if the output level is set by the producer himself, provided that the
%»roblem of minimizing unit costs can be separated from the problem of choosing the
evel of output so as to maximize profits (or, in the context of public production,
some net benefits or welfare criterion). In fact, this independence condition is
fulfilled by the homothetic technologies that we will consider in this paper.



The input cost shares will thus be the endogenous variables in our analysis.

The property that the input cost shares of a homothetic technology are invariant
to the level of output has long been recognized in the econometrics literature. The
extent to which these cost shares can yield information about the production process
has not been thoroughly investigated, however. We perform such an investigation,
based on a homothetic cost function formulated in general terms.

The paper unfolds as follows. In Section 2, some rather well known implications
of homotheticity are briefly stated, e.g. that it allows price and substitution
elasticities to be estimated by means of input data only. Estimation of the effects of
non-neutral technical change on input requirements, total costs, and on total factor
productivity is taken up in Section 3. In Section 4 we consider the fact that the
theoretical derivation of the input cost shares assumes that production costs are
minimized. We demonstrate how the dual representation can be generalized to
allow for the existence of technical inefficiency (overutilization of inputs) and
allocative inefficiency (inoptimal factor proportions), implying higher than
minimum costs. Moreover, we show how that the thus generalized system of cost
shares can be used to estimate the increases in total costs brought about by the
inefficiencies, as well as their effects on input utilization. As far as we know, the
fact that this is possible even when there are no data on output has not been
demonstrated earlier. Formulas for comparing price and substitution elasticities,
and the estimated effects of technical change, when there are inefficiencies in
production with the corresponding measures under cost minimization are also given.

Section 5 contains a brief summary of our findings.

2. SOME IMPLICATIONS OF HOMOTHETICITY

From now on, we assume that information is available about the quantities used



of the different factors of production and their respective prices, but that there are
no data on output. To simplify the discussion, we will in this section disregard
technical change and the possibility of inefficiencies in production. We will come
back to these issues in Sections 3 and 4. For the time being we thus assume a static
technology and cost-minimizing producers.

Let the minimum cost function be C = C(y,p), where y is the unknown output
(v > 0) and p denotes the vector of (strictly positive) input prices, p = (py,-.-\Pp)-$
The cost function must fulfill certain regularity conditions which, e.g., can be
formulated as in Diewert (1971, pp. 489-90). To be regular, C(y,p) should be non-
decreasing in both y and p, and be linearly homogeneous and concave in p. If these
conditions are all satisfied, the cost function will describe all economically relevant
aspects of the production technology. In addition, it will be assumed here that
C(y,p) is twice differentiable with respect to each of its arguments.

The producer's input demands can be derived by means of Shephard's lemma,

according to which:

g n=xp) R isin
1

Since the cost function is linearly homogeneous in p, it further holds — by Euler's

theorem — that:

n

4]
@) I pex(vp) = 5 oy Z4ER = clyp).

In accordance with (1) and (2), the input cost shares can be written

6 As pointed out to us by Rolf Fire, the results in the following are valid not only
for single output technologies, but for multiple output technologies as well. In
principle, the scalar y can thus be replaced by an m vector y = (yi1,....Ya) of
oufputs.



pi* xi(y,p)
(3) Sis—-i—"i'——-—‘, i=1,...n.
C(y.p)

In contrast to the input demands, the cost shares may be independent of the level
of output, y. This will be the case if the cost function is multiplicatively separable
in y and p. Shephard (1953, pp. 4547) has shown that the cost function has this
property if, and only if, the production technology is homothetic, implying that

(4) C(y.p) = fly)-g(p)

where fis 2 monotonically increasing function of y. By means of restrictions on fy)
the homothetic technology can be specialized into a homogeneous technology. In
particular, linear homogeneity, i.e. constant returns to scale, requires that f be
equal to the identity function. It can be shown that given an appropriate definition
of f{y), the function g(p) equals the cost of producing one unit of output, i.e. C(1,p).

It is the function g{p) that we will be interested in. However, separate identifi-
cation of Ry} and g{p) requires some kind of normalizing restriction — without such
a restriction (4) can always be alternatively expressed as C(y,p) = f(¥)-g(p) where
f(y) = k-fy), g(p) = k*-g(p), and k is an arbitrarily chosen constant.”

Given (4) the system of input cost shares becomes

a
B - %i .
(5) S, =S5(p) = s 1=1,..,n
&(p)

7 In applied work, where the elements of the vector p are often price indices rather
than (absolute) price levels, it is convenient to impose the normalizing restriction
that g(1) =1. This condition i8 most easily interpreted in the context of a
producer employing a constant returns technology in a competitive environment.
Under such circumstances g(p) will be equal to the price of output and the
constraint g(1) =1 merely ensures that the base-year for the output price index
will be equal to that of the input price indices. The constraint also has a natural
interpretation in a more general context; it will then have the effect of constructing
a unit cost index which can be consistently compared with the input price indices.



Specification of an explicit functional form for C, which has the properties (4) and
(2), thus makes it possible to estimate the system (5), and hence the function g(p),
without having to take the level of output into account. This obviously solves our
main problem, i.e. that of eliminating the unknown entity y from the analysis.

It is clear, however, that the system (5) cannot provide a full description of the
production technology as it does not yield complete information about the function
f(y).2 In contrast, the system (1) of input demands contains all the information
available in the original cost function, since the input demands multiplied by the
factor prices add up to C(y,p), as shown in (2). This difference in informational
content between the two systems is explained by the fact that whereas the system
(1) is of full rank (i.e. n) the rank of the system (5) of cost shares is only p-1, which
can easily be seen by noting that both sides of (5) sum identically to one. As a
consequence, one of the share equations will be dropped in the actual estimation.®
This, in turn, implies that if the functional form chosen for C is flezible symmetry
has to be imposed a priori to ascertain identification of the function g(p).

The information loss incurred by studying the system of input cost shares only
concerns the scaling properties of the technology, however. Factor substitution and
the price reponsiveness of input demands can still be analyzed. Using the results of
Uzawa (1962), the Allen partial elasticities of substitution [Allen (1959)] can be

expressed in terms of the input cost shares and the factor prices according to

c..°C

op; BPj d5; 1
9Cc_dC ap; ) SS;
3p; 9p;

8 Given an estimate g*(p) of g(p) an estimate of f{y) can be obtained by means
of the ratio p'x/g*(p) where p'x is observed total cost. The form of the function
f and the value of y cannot be inferred, however, except in the special case when
there are constant returns to scale, implying that f(y) =y.

9 If the estimation method is that of maximum likelihood and the stochastic
disturbance terms are additively appended to the share equations (5) the estimation
results will be invariant to the choice of the left out equation, cf. Barten (1969).



while the price elasticities can be calculated as

ox; p;

f 1

(7) ”ﬁ B e w2 Sj”ij .
j i

The homotheticity assumption can of course be questioned. In a static environ-
ment — i.e. in the absence of technical change ~ it implies that the cost-minimizing
input mix is determined by relative input prices only, which is often a restrictive
assumption. As a consequence, with constant relative prices the expansion pz‘n;h,
describing the optimal factor proportions at succesively higher output levels, will be
linear [cf. Fare (1974)]. This may not be consistent with the often noted tendency
to increase the capital intensity at larger scales of operation.10

Homotheticity bas also been decisively rejected in many studies of, e.g., the
manufacturing sector. However, it is easier to defend this assumption in the context
of service production than in the production of goods. The reason is, of course, that
services are more difficult to routinize, making the scope for automatization more
limited. Although this argument should be used with caution the homotheticity
assumption appears to be most applicable where it is most needed. i.e. in service
production where no reliable output measures are available. In the case of govern-
ment services, homotheticity may, moreover, reflect centralized decision making

which tends to treat establishments of different size — e.g. schools — all alike.!!

10 Changing the scale of operation generally takes some time, during which relative
input prices may change, too. Thus, an observed increase in the capital intensity
during an output expansion need not necessarily be inconsistent with homotheticity.

11 It should be noted that there is no obvious conflict between centralized decision
making and cost minimization. If the central decisions take the form of require-
ments on the input mix, conditioned upon a given set of factor prices, they may
have precisely the effect of imposing a ﬁgmotheticity constraint on the production
possibilities facing the local producers. As long as the central decrees are optimally
adjusted to changes in the relative input prices, costs will be minimized, albeit
subject to a homotheticity restriction.
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3. TECHNICAL CHANGE AND TOTAL FACTOR PRODUCTIVITY

In accordance with common practice, we assume that technical change (of a
disembodied nature) can be modeled by means of a time index, ¢.12 The cost
function can then be formulated according to

(8) C= C(.Y»pat) = f(y)'g(p,t) )

i.e. the price function is augmented to include ¢ as an additional argument.13 14 The

system of equations to be estimated, i.e. the cost shares corresponding to (8), is now

Az (p,t
1"3“52(;9“2pi

(9) .= Spt)= ———, i=1,.n.
g(p.t)

We begin by considering the effect of technical change on the input requirements
and the cost shares. We will then use the connection between technical change and
total factor productivity to investigate what conclusions can be drawn about the

rate of total factor productivity growth.

3.1. Effects on input demands and input cost shares. By including the time

12 For examples, see, e.g., Parks (1971), Binswanger (1974), Berndt and Khaled
(1979), and Nadiri and Schankerman (1980).

13 In principle, it is conceivable that technical change might also affect the scalin
properties of the technology, in which case one would think that the function £-
should be dependent on t, too. However, in the context of a homothetic tech-
nology effects of technical change on returns to scale are equivalent to (Hicks-)
neutral technical change. Since neutral technical change can be — and will be —
considered within the framework of (8) there is thus no need to include t as an
argurnent in the scaling function f{-).

4 In the context of service production, demographic and/or socio-economic variables
are sometimes included as ar ts in the cost function, too; see, e.g., Hulten
gg&i) and Schwab and Zampelli (1987). The inclusion of such variables will not be

iscussed in this paper, however, since from a methodological point of view it is
analogous to modeling technical change.
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index, input demands are allowed to shift over time not only in response to changes
in relative factor prices but also because of exogenously determined technological
developments. These developments affect the input requirements over time and,
hence, also the input cost shares. In the following, we will use the letter r to
denote a relative time derivative. Accordingly, the rate of change in the usage of

factor i resulting from technical change can be written

_ axi()’spa»t) 1

Ty i=1,.,n.

! at x;(y,p.t) ’

Since in our case

(10) Xi(y,p,t) = f(y) . Qg.%i_tj , i=1,..n,

the rate of change in the demand for input x; can be expressed in terms of only the

input prices and the time index according to

. 2 -1 ’
(11) Ty, = 9 s tt . [%—Q} , i=1,..,n

Further, it can be shown that the relative effects of technical change on the cost
shares — i.e. the Binswanger (1974) measures of the biases in technical change — can

be expressed in terms of the effects on the input demands, in the following way

3S(p,t) o
(12) Ts. E : 1 = Ty, — ) Ser , i=1,.,n
i ot Si(p,t) i k=t k

The technically induced rate of change in the i'th cost share will thus be equal

to the difference between the rate of change in the demand for the i'th input and
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the corresponding cost-weighted average rate of change in demand, taken over all »
inputs. This implies that in order to determine the rsi's we must be able to
estimate the effects of technical change on each of the n inputs. However, due to
the linear dependence among the input cost share equations, the system (9) can
provide at most p-1 independent estimates of the input effects, i.e. rxi‘s.
Fortunately, either the condition that the cost function be linearly homogeneous in
the input prices, or the normalizing restriction required to separate g(p,t) from fy)
can be used to impose one restriction on the rxi‘s.iﬁ Hence, the maximum number of
rxi‘s to be estimated coincides with the maximum number that the system of cost
shares is capable of generating.

I r < 0 technical change is characterized as relatively factor isaving and if

S

o, > 0 it is said to be relatively factor iusing. We define technical change to be
1

non-neuiral when it is either relatively factor isaving or relatively factor iusing
for at least one i = 1,..,n, thereby indicating that it effects the relative
development of the input cost shares over time and, hence, also the factor
proportions xijxj, i#j U, instead, Tx, = Tx # 0 for all i, so that Ts; = 0 for
all i, then technical change is defined as neutral16 This can only happen if the

15 Which of these two alternatives that will apply depends on the specific functional
form chosen for the cost function. For instance, if the translog cost function of
Christensen, Jorgenson, and Lau (1973) is used, g{p,t) can be specified according to

g(p.t) = g(p)- exp[Z n(t- fpy)]

where the m's are unknown parameters. As g(p) is linearly homogeneous in p
the sum (7 + -+ + 7u) must equal zero to ascertain that g(p,t), too, is linearly
homogeneous in p. If, instead, the technology is the Generalized Leontief suggested
by Diewert (1971) technical change can e.g. be modeled as

g(p.t) = g(p) + T n(t-px)

in which case the normalizing restriction g(1,t) = g(1) =1 (cf. footnote 7) can be
used to impose the same constraint, i.e. that the 4's should sum to zero. In both
cases there will be only n-1 independent 74;'s to estimate.

16 Strictly, technical change is defined as neutral if the marginal rates of technical
substitution between each pair of inputs are not affected by it [Hicks (1932)].
Blackorby, Lovell, and Thursby (1976) have demonstrated, however, that if the
technology is homothetic Hick's definition is equivalent to the one given here.
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functipn £(p,t) is weakly separablein p and ¢, i.e.if g(:) can be expressed in
terms of two other functions, h and ¢ say, according to

(13) g(p.t) = h{¢(p).¢] .

Using the linear homogeneity of g{(p,t) in p, one can easily verify that given (13)
the system (9) degenerates to the system (5), implying that the cost shares are
invariant to neutral technical change.!’

Accordingly, to capture any effects of technical change it is necessary to specify
technical change as being non-neutral. This is no drawback as far as modeling is
concerned; neutral technical change is probably a very rare phenomenon. More-
over, in the present context there is also a theoretical argument for disregarding this
particular form of technical change: As shown by Sato (1980), the effects of neutral
technical change and the effects of returns to scale are not independently identifiable
when the technology is homothetic. Thus, even if we had had an output measure we

would not have been able to separate these two effects.18

3.2. Total factor productivity. The effects of technical change on the rate of total

17 This proves that (13) is a sufficient condition for technical change to be neutral.
To prove necessity, notice that neutrality requires the right hand side of }11) to be
equal for all i. Since we know that, in general, {6g(p,tg) dpi # [9g(p,t)/dp;] this
implies that the function g(p,t) must have the property that

TEE P gy, =1,

where £ is a (non—zero) function of p and t. To have this property the function
g{(p,t) must, however, be weakly separablein p and t. o

18 Sato's result has an important implication with respect to the interpretation of a
statistical comparison of the systems (9) and (5) — based, e.g., on a likelihood ratio
test. Obviously, such a comparison could always be formulated as a test of the null
hypothesis” Ho : "There has been no technical cban%e or technical change has been
(Hicks—)neutral." against the alternative H, : "Technical change has been non-
neutral’. However, Sato's conclusion makes it possible to strengthen and simplify
the null hypothesis to ¥, : “There has not been (any kind of) technical change."
and to reformulate the alternative to ¥, : "Technical change has occurred." since
from an operational point of view (H,, Hs) and (¥, %,) are equivalent.
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factor productivity can be analyzed by means of a general duality result derived by
Ohta (1974)19. Let #(x,t) denote the production function to which the cost function
(8) is dual. The primal rate of total factor productivity can then be defined

according to

What Ohta has shown is that the following dual relationship holds

(14) ry= (1o (eg) ™
where

- 0C(y,p,t 1
(15) re = SUGR )C(y,p,t)
and
(16) € = aC(pr't) y

cy~ Oy Cly,pt)’

The first factor in (14), the negative of the rate of total cost diminution, is the
dual representation of technical change. The second factor, the inverse of the

elasticity of total cost with respect to output, is the dual form of the rate of return

to scale. Returns to scale are increasing if eCy < 1, constant if ecy =1, and
decreasing if ecy > 1. It can be shown that for a homothetic technology eCy will

always be strictly positive, see e.g. Farsund (1975), a property which will prove
useful in the following.

In the present context (14) becomes20

19 Ohta's result is not limited to homothetic technolo gl% but can be applied to non-
homothetic technologies as well, see e.g. Berndt and Khaled (1979). Our presen-
tation in the following is closely related to the one given by Berndt and Khaled.

20 Since it can be shown that

_6gggt[ |
Te= 06 gZp,ti‘ Sk Xy
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Because of the occurrence of y in the last factor of (19), it is obvious that, in
general, the system (9) of input cost shares does not provide all the information
needed to calculate an estimate of the rate of total factor productivity. However,
since we know that ecy will be strictly positive the sign of (17) will be equal to the
sign of the first factor on the right hand side, i.e. the dual rate of technical change.
Accordingly, the question of whether total factor productivity is increasing or
decreasing can always be answered by means of the first factor in (17), which can be
obtained from the estimation of the system of cost shares.

If, further, the technology is homogeneous then the rate of return to scale will be

independent of the level of y and so the last factor in (17) will be equal to a

constant, instead of being a function of y. In that case

t t

2 2
v _Tc
t - t

1 1
Td) ¢

i.e. the relations between the rates of total factor productivity at two points in time,
t, and t,, will be equal to the corresponding relation between the rates of cost
diminution, making it possible to construct an index of total factor productivity
growth. In other words, T is determined up to a constant of proportionality. If,
finally, the technology is linearly homogeneous, i.e. characterized by constant

will be equal to unity and the negative of 7, will be

returns to scale, then e c

Cy
identical with the rate of change in total factor productivity.

4
The conclusions that can be drawn about productivity growth when only input

the computation of the dual rate of technical change, i.e. the first factor in (17),
does not require any extra effort; the sum on the right hand side of the last equality
will be necessary in the calculations of the Binswanger measures (12} of the biases in
technical change, tco.
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data are available will thus depend on how restrictive assumptions we are willing to
make concerning returns to scale. Thus, while the homotheticity assumption always
allows us to determine the sign of the productivity growth rate we need to assume
constant returns to scale to be able to obtain a complete characterization of the
growth in total factor productivity.

4. DEVIATIONS FROH COST MINIMIZATION

By definition, C{(y,p,t) denotes the smallest total cost attainable in time period
t for input vectors yielding at least the output y. If costs are not minimized,
estimation of the system (9) may yield biased estimates of the price and substi-
tution elasticities (6) and (7), and of the effects of technical change on the
production process. These considerations are of particular importance concerning
public sector applications, as there are theoretical arguments for questioning cost
minimization as the primary objective of public producers.2!

Deviations from minimum costs — which, of course, must always be positive — are
commonly taken to arise because of inefficient producer behavior, but there may be
other reasons as well.2 We will not try to discriminate between different sources of

inefficiency, however. Following the literature in this field, we will be content with

21 For a summary of these arguments, see Byrnes, Grosskopf, and Hayes (1986). It
is interesting to note, however, that the conclusion consistently reached in
theoretical analyses, namely that privately-owned firms should be more efficient,
and thus have lower costs than their public counterparts, has received rather weak
support from empirical, comparative, studies. Public enterprises are often found to
be no less efficient than private firms, see, e.g., Feigenbaum and Teeples (1983) and
Byrnes et al. (op. cit.) for studies of water utilities, Fare, Grosskopf and Logan
1985) and Atkinson and Halvorsen (1986) on electric utilities, and Register and
runing (1987) concerning hospital care. The last study may be critized for
employxn% a questionable output measure but that criticism does not apply to the
public utilities analyses where output measurement is relatively straightforward.

22 Another possible cause may be the existence of regulatory constraints, see, e.g.,
Atkinson and Halvorsen (1980, 1984, 1986). Moreover, if the exogenously given
demand is highly variable it may be impossible to avoid some slack in off
periods in order to be able to cope with the peaks, cf. Fuss and McFadden (1978).
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merely examining in what ways the ezistence of inefficiencies can be modeled and,
secondly, how their effects on total costs and input demands can be estimated. Also
in line with the literature, we will henceforth sometimes speak of the degree of
efficiency instead of inefficiency. The degree of efficiency should be interpreted here
as a (truncated) fractional measure such that a degree of efficiency in the open
interval ]0,1[ implies a certain amount of inefficiency, whereas a degree of efficiency
equal to one means (fully) efficient.

We have chosen to model inefficiency parametrically, which makes it possible to
implement our results with a wide variety of flexible functional forms. Two types of
inefficiency are considered: technical inefficiency, concerning overutilization of
inputs, and allocative or price inefficiency, referring to situations where the factor
proportions are inconsistent with cost minimization, given the relative input prices.

Among the various concepts of input efficiency we are thus not considering scale
inefficiency.?3 The reason is that, by construction, our approach does not permit any
analysis of scaling properties as the cost shares are invariant to the scale of
production. This means, however, that if production is not scale efficient this will
not introduce any bias in the conclusions that we actually are able draw by means of
the system of input cost shares. It should also be noted that from the perspective of
an individual producer, scale efficiency is not a well defined concept in the sense
that it is not always consistent with cost minimization. The potential inconsistency
arises when the level of output is exogenously given to the producer and the optimal

scale, y* say, i.e. the scale for which the dual scale elasticity (ecy)”1 is equal to

23 For a thorough discussion of the various concepts of productive efficiency, see
Fare, Grosskopf, and Lovell (1985). In addition to technical, allocative, and scale
efficiency they consider yet another input efficiency concept, namely that of
(absence of) congestion. However, congestion can only arise when the technology is
characterized by weak disposability of inputs (WDI), implying that an increase in
the utilization of some input(s) may in some cases decrease the amount of output.
Since free disposability of inputs (FDI) — increases in input can never decrease
output — is one of the regularity conditions which have to be fulfilled to ascertain a
dual representation of a production technology [cf., e.g., Diewert (1971)], WDI
technologies, and thus congestion, are of no interest in our context.



-18 -

unity, is greater than the exogenecusly given level of output, y. In that case an
adjustment towards scale efficiency can never decrease total costs, but may well
increase them, since C(y,p,t) is non-decreasing in y; cf. Section 2. In the following
we will take the perspective of the individual firm. Thus, we will consider a
producer which is both technically and allocatively efficient to be overall efficient
and identify minimum total costs with the total costs incurred in the context of the
so defined overall efficiency.

We will begin by discussing how the system (9) of cost-minimizing cost shares
can be generalized to take allocative inefficiency into account, given that the
production process is technically efficient. We then show that the resulting cost
shares are invariant with respect to the possible existence of radial technical
inefficiency, the technical inefficiency counterpart to neutral technical change.
Next, we demonstrate that it is possible to formulate a cost share system which
captures the combined effect of both allocative and technical inefficiency — but not
their separate effects. We establish, however, that under weak conditions the
information required for a decomposition of the combined effect is contained in the
first specification, i.e. the one allowing explicitly for allocative and implicitly for
radial technical inefficiency. Finally, we show how the computations of the price
and substitution elasticities are affected by deviations from cost minimization and,

similarly, how the various measures of technical change should be calculated.

4.1. Allocative inefficiency. As is well known, the first order conditions for cost
minimization require that the inputs be chosen such that the ratio of their marginal
productivity values, or shadow prices, be equal to the ratio of their {actual) prices.
Since the marginal rates of technical substitution are equal to the corresponding
ratios of marginal productivity values, this requirement can equivalently be

expressed as requiring equality between



-10 ~

d(x,t)/ox; w; P
— md —
w.

for all i# j, where, as before, ¥{:) denotes the production function to which the
cost function C(-) is dual, dy¥(X,t)/dx; denotes the partial derivative of ¢ with
respect to x; , evaluated at the (hypothetical) point X = (Xy,...,.X,), and w; is the
shadow price of input i. Using w, and p, to normalize, the production process
can be defined as allocatively efficient if w;/w, = p;/p, for i=1,..,n1.

A simple, yet quite powerful, specification by means of which deviations from
allocative efficiency can be studied is the following one, originally proposed by Lau
and Yotopoulos (1971) and introduced in a dual, time series context by Toda (1976,
1977).24 The shadow prices are assumed to be proportional to the factor prices

actually observed, the p;'s, according to
(18) Wi - Aipl N /\i >0 s i= 1,...,11 N

where A; is an (unknown) input-specific proportionality constant.2s

In this section, we are assuming that the production process is technically
efficient. Thus, the realized cost shares — as opposed to the cost minimizing shares —
can be derived as follows. First, notice that if the producer is technically efficient
his/her choice of input levels can be regarded as the result of minimizing total
shadow costs, Ek:W“x“ , with respect to the x's. Using (8) and (18), the
minimum total shadow costs can be expressed in terms of the actually observed

prices as

24 Toda considered only the two input case. The generalization to the n input case
which we use in the following is due to Atkinson and Halvorsen (1980, 1984).

25 1t is of course possible to conceive of other ways than (18) to model deviations
from allocative efficiency. An additive formulation of the type w; = p; + 6; ,
where 4; is an unknown parameter, can be found in Eakin and Kniesner (1988).
The specification (18) is, however, by far, the one most commonly used.



(19) C = C(yv.Aap:t) = f(y) - g(Aap:t) ,

where A4 denotes an n x n diagonal matrix with ii:th element equal to A;. It is
easily established that C(y,A4p,t) fulfills the regularity conditions cited in Section
2 when the input price vector is taken to be w = Agp and, thus, that for this price
vector it is a proper dual representation of some underlying production technology.
Application of Shephard's lemma to (19) yields the input levels which minimize

total shadow costs, the x;'s, according to

- . 0 _ .. B%E%dgztz :
(20) X5 = m = f(y) D; s i=1,..,n.

Using (20), the realized total cost, C’, can be written

n

o ) g ¢
(21) C'= % iy = 19) - 5, p Bipsld,

which differs from C in that the partial derivatives are weighted by the actual
input prices, the p,'s, rather than by the shadow prices, the w,'s. Concerning the
relationship between C" and C, their respective definitions imply that C” > C.
Equality holds only if A, =1 for k= 1,..,n, in which case C"=C=cC

The system of cost shares to be estimated will thus be

I i :
(22) S; = = — ’ i=1,...,n

However, as C is linearly homogeneous in the (A;p,)'s, its derivatives, (20), must

be homogeneous of degree zero in the same variables or, equivalently, in the A;'s.
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Accordingly, the cost shares (22) must be homogeneous of degree zero in the A;'s,
too. Therefore, the absolute values of the );'s cannot be obtained from estimation
of the system (22). This property is consistent with the fact that the first order
conditions for cost minimization only concern relative prices. The following

normalization rule can thus be imposed without loss of generality
(23) /\n =1,

cf., e.g., Atkinson and Halvorsen (1984).

Regarding the A;'s which are to be estimated (i.e. A,,...,A,.,) the positivity
constraints [cf. (18)] constitute a potential estimation problem. To ascertain that
the A;'s stay positive they can be defined in terms of a transformation function,
according to A; = ¢(y;) where pu; is an unrestricted parameter and ¢ a function
whose image is equal to the set of positive real numbers. For instance, ¢ might be
an exponential function as suggested by Lau (1978). Another example is the hyper-
bolic transformation proposed by Mellander and Jansson (1987), which has the
attractive property that it leaves the estimation practically unaffected as long as the
positivity constraints are not binding..

Testing allocative efficiency means testing the hypothesis that all the A;'s are
equal to unity, in which case (22) is identically equal to the system (9) of cost
minimizing shares. Fig. 1 can be used to illustrate the test in the two input case.
To be capable of illustrating both allocative and technical inefficiency the diagram
has been drawn in the space of input/output-coefficients. Thus, all points lying on

or to the northeast of the isoquant II' correspond to same volume of output.
Fig. 1.

The isocost shown by a solid line corresponds to the factor prices actually



observed, ie. p, and p,. Since we are here assuming that the producer is
technically efficient, production must be taking place somewhere along the isoquant
II'. The producer will minimize costs by operating at the point E. We assume,
however, that production is actually taking place at the point M. With the input
prices at the observed levels this point is obviously not allocatively efficient.
However, M would have been an allocatively efficient location if the isocost had
been given not by the solid but by the dotted line. The slope, a, of this latter
isocost equals the ratio of the shadow prices since, given that production occurs at
M, this is the relative price corresponding to cost minimization. The hypothesis to
be tested is thus whether the slope of the hypothetical isocost, a, is significantly
different from v, the slope of the actual isocost. In the two input case this simply
means testing if A; = 1 since, in accordance with (23), A\, =1 @ prion.

Farrell (1957) has suggested a scalar measure of the degree of price efficiency. In

terms of Fig. 1, Farrell's measure of allocative efficiency (AE) is defined as

(24) AE=YZ.

This ratio is equal to the relation between the costs which would have resulted at
the efficient point, E, (corresponding to OZ) and the total costs incurred at the

actual point of production, M. Thus, AE can be computed according to

(25) AE..-é-;_. .

6%%!\52} t)
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The denominator in the last equality is equal to the denominator of the realized cost
shares (22} and, thus, can be directly obtained from the estimation of that system.
The numerator is also easy to obtain; due to the linear homogeneity of g(Aqp,t)

and g(p,t) in Agp and p, respectively, it holds that



(26) 8(p) = I, (vpy)- fpeet) |Ad_.I

where I, is the identity matrix of order n. Thus, g(p,t) can be computed simply
by setting all the A,'s in the denominator of (25) equal to one. Notice that changes
in the relative input prices and in the time index will cause AE to vary over time,
yielding estimates of the degree of allocative efficiency for each point of observation.

From (25) it is clear that once AE has been computed we can easily estimate
the relative increase in total costs caused by the misallocation of inputs, in spite of
the fact that we have no measure of output. The relative increase (C'— C)/C is
simply equal to (1 — AE)/AE. Finaliy, for later reference, we note that the cost-

minimizing input demands can be expressed in terms of the X;'s, according to

(27) X; = X; -

4.2. Allocative and technical inefficiency We now relax the assumption of
technical efficiency. In general terms, a producer is defined as technically inefficient
if, at a given level of production, he/she can reduce the utilization of any input and
still produce the same amount of output. In Fig. 1 above, technical inefficiency is
illustrated by the point B, which cannot be technically efficient as it is not on the
efficient production surface II'.

Farrell (op. cit.) has proposed a simple measure of the degree of technical
efficiency (TE). In terms of the diagram, it is defined as

OB

(28) TE= OM

A convenient interpretation of this measure is obtained by considering the difference



1 — TE which, by definition, belongs to the open interval ]0,1]. For the given level
of output, 1— TE shows the potential relative decrease in the input utilization,
when the factor proportions are held constant, i.e. when the relative reduction is
constrained to be the same for all inputs. Since TE is defined relative to the factor
ray through the origin and the observed point it is a radial measure of technical
efficiency. Like the Farrell measure of allocative efficiency (AE), TE can also be
expressed in terms of total costs. The ratio OM/OB is equal to the total costs
associated with the technically efficient (but allocatively inefficient) point M,
divided by the total costs incurred at B, the point actually observed. If we denote

the actually observed total costs by C% then

i

QU

(29) TE

In Farrell's original formulation TE was defined in the context of a constant
returns technology. However, radial measures of technical inefficiency can be
applied to homothetic technologies, too.

An appealing property of the technical efficiency measure TE is that it does not
affect the Farrell measure of the degree of allocative efficiency, AE. This is easily
seen in Fig. 1. Different degrees of technical efficiency correspond to different
locations on the dashed ray through the origin, on or above the isoquant II'. But
for all these points the degree of allocative efficiency is the same, namely OZ/OM.
This means that degrees of allocative and technical efficiency can be independently

computed. The degree of overall efficiency (OE) is simply given by

C
ce’

i

(30) OE = TE x AE

where the last equality follows from (25) and (29).



Unfortunately, it is not possible to estimate TE directly by means of the system
of cost shares. The reason is that the radial specification of technical inefficiency is
input neutral and, hence, like neutral technical change, has no effect on the input
cost shares. This is easy to show formally, as follows. Let x| denote the actually
observed usage of input i. We may then define x° in terms of the technically
efficient (but allocatively inefficient) input demands given by (20). In order to be

consistent with (28) the definition must have the following form

(31) x3=(1+¢-%, (20, i=1..n

where ( represents the common degree of overutilization, implying that
(32) TE=(1+¢)?.

However, in analogy with (21), the total costs corresponding to (31) are

(33) = k‘; pxg=(1+ ¢)-CF.

Together with (31), (33) implies that the actual cost shares, defined according to
S‘i’ = piox‘i‘/ C®, are equal to the cost shares prevailing in tﬁe context of allocative
inefficiency only, ie S5 = §] for i=1,.,n. It should be noticed that this result
implies that, in addition to allocative inefficiency, the system (22) also implicitly
allows for possible radial technical inefficiency.26

However, to be able to take technical inefficiency ezplicitly into account we have

to let it affect the input usage in a non-radial fashion, i.e. allow the degree of

26 Since the system (9) of input cost shares is a special case of the system (22), this
invariance property implies that in the presence of radial technical inefficiency
estimation of the system (9) is still valid, and will yield unbiased estimates, in spite
of the fact that the assumption of cost minimization is violated.



overutilization to vary among the inputs.?” To this end we will derive a system of
input cost shares which takes the combined effects of technical and allocative
inefficiency, i.e. overall inefficiency, into account and which includes the system (22)
as a special case.

Unfortunately, in the system of cost shares allowing for overall inefficiency it is
not possible to separate allocative from technical inefficiency in an unambiguous
way. The reason is that the introduction of input-specific degrees of overutilization
removes the independence between the measures of technical and allocative effi-
ciency, which is characteristic of the Farrell scheme, cf. Kopp (1981).28 Provided,
however, that we make the assumption that the production technology satisfies
strong free disposability of inputs (SFDI) the system allowing for overall inefficiency
can be combined with the system (22) to yield a Farrell decomposition of the overall
inefficiency in accordance with (25) and (29). SFDI implies that when production is
taking place at a technically efficient point an increase in the utilization of some
input(s) will always result in some, however small, increase in output. As noted by
Kopp (op. cit.), most of the functional forms employed in econometric production
studies satisfy SFDI. Among them are the CES and the translog; cf. Fare and
Lovell (1978) and Kopp and Diewert (1982), respectively.2® The condition of SFDI
ascertains that a given degree of overall efficiency can always be equivaléntly
decomposed into either non-radial technical inefficiency and allocative inefficiency

or radial technical inefﬁcienéy and allocative inefficiency (although the measures of

27 Non-radial specifications of technical inefficiency have been considered by Fire
(1975) and by Fare and Lovell (1978).

28 This property does not seem to have been generally recognized in the literature.
For instance, in the empirical application of a model allowing for both allocative
and non-radial technical inefficiency, Lovell and Sickles (1983) use an estimation
method which treats these two types of inefficiency as if they were independent.

29 Notice that the condition of SFDI is slightly more restrictive than that of free
disposability of inputs (FDI), which is fulfilled by all technologies which have a dual
representation (cf{.) footnote 23?. An example of a flexible functional form which
does not satisfy SFDI globally is the Generalized Leontief. In particular, its
special case the (ordinary) Leontief technology fails SFDI everywhere.



allocative inefficiency will differ in the two cases).

In our context there is an additional complication: while a non-radial speci-
fication of technical inefficiency implies that there are n different degrees of
overutilization to estimate — one for each input — the system of input cost shares
can only provide us with n-1 independent estimates, as the share system is of rank
o-1. Due t0 the interdependence between the measures of non-radial technical
inefficiency and allocative inefficiency we can always set the overutilization of an

arbitrarily chosen input equal to zero, however. To see this, consider Fig. 2.
Fig. 2.

The isoquant and the points B, M, and E have been reproduced from Fig. 1.
We now make the thought experiment that the producer operating at the point B
moves to the efficient point, E. This movement, illustrated by the solid arrow, can
be considered as the sum of two vectors, representing movements towards technical
and allocative efficiency, respectively. ln principle, the sum can be decomposed in
an infinite number of ways. The vector corresponding to the adjustment towards
technical efficiency must, however, result in a point on the boldly drawn part of the
isoquant whose endpoints coincide with the points M'and M'' . This is so because,
by definition, technical inefficiency corresponds to overutilization of inputs. The
movement to 2 technically efficient point thus cannot involve an increase in the use
of any input. Of the infinitely many admissible decompositions of the sum, two are
shown in the figure.

The dashed vectors illustrate the special case in which the adjustment towards
technical efficiency is radial, i.e. when (31) holds. The adjustment yielding
technical efficiency is represented by the vector from B to M, whereas the other
vector is equivalent to the movement from M to E, i.e. the movement for

allocative efficiency. Of the dotted vectors the one pointing due south, to M/,



corresponds to a non-radial adjustment towards technical efficiency where the
amount of x, is held constant while decreasing the use of x,. By elimination, the
other vector must then show the movement yielding allocative efficiency.

Another possible alternative would be to use M'' as the reference point for
technical efficiency. Due to the interdependence between non-radial technical
inefficiency and price inefficiency it is always possible to decompose the overall
inefficiency (i.e. the solid arrow) in such a way that the adjustment towards
technical efficiency results in either of the points M' and M', corresponding to
zero overutilization of x, and x,, respectively. The effect of choosing M'"' instead
of M' is just that it yields another decomposition of overall efficiency into
allocative and technical components.

Obviously, if the overutilization of one of the inputs can be set equal to zero in
the two input case then, a fortiori, it must be possible to impose this constraint in
the context of n inputs, too. We now proceed to derive a system of input cost
shares allowing for both allocative inefficiency and non-radial technical inefficiency.
We begin by assuming that the actual input demands (31) can be equivalently

represented according to

(34) X% = f(y)*ég%-‘ml +1(y)-6, 620 i=1,.0.
iPi

The last term on the right hand side (RHS) represents the excessive usage of input
i. For simplicity, the §'s are here taken to be parametrical constants.3 The
excessive input usage is thus assumed to vary between the inputs and to change

with the scale of operation; in the context of a constant returns to scale technology

30 As parameters, the &;'s may not be identified for all kinds of functional forms.
However, regarding, e.g., the CES and translog functional forms, which we know
satisfy SFDI, identification is always possible.



the (input-specific) overutilization is proportional to the level of output.3! In
accordance with the above discussion one of the §;'s can be set equal to zero, e.g.

(35) 6, =0.

Notice that, in general, the first term on the RHS of (34) is not equal to X;,
given by (20). The "." on the matrix Ay indicates that the &'s will affect the
estimated shadow prices and, hence, also the estimated degree of allocated
efficiency, as shown above. Only if all the §'s are equal to zero will the matrices
Ay and Ag be equal. The partial derivative dg(Aap,t)/& A;p;) may thus be either
greater or smaller than the partial derivative dg(Aqp,t)/d(A;p;) which, together
with f(y), determines X;, according to (20). This means that in addition to being

non-negative the é;'s must also fulfill the condition

(36) 5 > %8Aapt) Oe(hapt) -y
HA;p;) &A;p;)

for all price vectors and and all values on t, in order to ensure that the inequalities
x$> %, i=1,..,n, always hold. As (35) will have the consequence that the RHS of
the inequality (36) will always be negative for i = n (cf. Figure 2) these constraints
actually are of concern only with respect to the n-1 first inputs.

The specification (34) is just one among several possible ways to account for non-
neutral technical inefficiency. We have chosen this particular specification for two
reasons: it is simple and, in contrast to related specifications used by, e.g., Lovell
and Sickles (1983), it leads to input cost shares which are independent of y.

Up to a constant of integration, the cost function corresponding to (34) is

31 It should be noticed that since the overutilization is measured in the same units
as the the left hand side variables in (36) technical inefficiency is not radial even if
all the §;'s are equal in magnitude.
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(37) € = C(ydapt,8) = {(y)-[e(hap,t) + 6'Map],

where the prime in the last term denotes transpogition. It is straightforward to
show that for the price vector W = A4p the cost function C is regular. Thus, C
can safely be considered to be the dual representation of some production technology
and the application of Shephard's lemma to (37), yielding (34), is justified. The
total costs actually observed are not given by (37), however. In accordance with the

definition given in (33) the total costs actually observed can be expressed as

(38) C* = f(y) - Ep.{éﬂ—%&ﬂw}.
ke HAypy) ‘

If all the &,'s are equal to zero (and, hence, A, = A, for k = 1,...,n) then (38)
reduces to (21), the total cost realized in the context of allocative inefficiency only.

Given (34) and (38) the observed input costs shares can be written

In the estimation of (39), the Xi's should be subjected to the same constraints as
the those imposed on the A;'s in the estimation of the system (22).32 Concerning the
6;'s the non-negativity restrictions in (34) pose no problem; they can be
implemented by means of the same method as the one employed to ensure positive
values on the A;'s and the :\i's. The inequality constraints (36) are more difficult

to impose, however. The simplest way to proceed is probably to ignore them in a

32 For clarity, it should be pointed out that “estimation of (22)" 1is equivalent to
"estimation of (39) subject to the constraint that 8 =0 for i=1,..,0". We use
the former expression for the obvious reasons that it is shorter and simpler.
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first round estimation. Should a comparison with the estimates obtained in the
estimation of (22) reveal that any of the §'s violate (36) for some observations on
the input price vector and the time index, the lower bound for these parameters can
be raised according to §; > §; + 5, where §, is the first round estimate and &; a
suitably chosen positive number. It is not certain that the second-round estimates
will satisfy (36) at all observations either but the inequalities can always be made to
hold by repeating the procedure; the lower bounds of the §;'s may be increased
from zero to the highest value obtained for the partial derivative 3g(A4p,t)/ ¥ A;p;)
in the estimation of the system (22).33

When both the systems (22) and (39) have been estimated a likelihood ratio test
can be performed of the null hypothesis H,: 6; = 0, i = 1,..,0. The test of H
corresponds to a weak test of technical efficiency — the test is weak in the sense that
the system under the null, i.e. (22), is consistent both with technical efficiency and
radial technical inefficiency. Rejection of H, implies, however, that the production
process cannot be technically efficient.

At first, rejection of the hypothesis that all the 4;'s are equal to zero might
seem as an implausible outcome. If the two decompositions of overall inefficiency,
involving radial and non-radial technical inefficiency, respectively, are indeed
equivalent, then why should the latter be preferred to the former ? However, this
objection fails to recognize that the fact that there exists alternative decompositions
of overall inefficiency which are mathematically equivalent does not imply that these
alternatives are also statistically equivalent, in the sense of providing equally good
fit to data. Rather, one would expect the more richly parameterized alternative to
be preferred to the more parsimonious one. Hence, if the production process is
technically inefficient, rejection of iio should”be more likely than acceptance.

The estimated versions of the systems (22) and (39), yield an estimate of TE

33 These possible adjustments of the lower bounds only concern &,...,055. As
remarked above, for i = n the constraint (36) will be fulfilled automatically, on
account of the restriction (35).
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(40) TE = —; . ,
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of. (29). Like the Farrell measure of the degree of allocative efficiency, (25), TE
varies over time in response to changes in the relative input prices and the time
index. Furthermore, (32) shows that (, the common degree of overutilization

corresponding to neutral technical inefficiency, is given by
(41) ¢ = ((Aaphapt) = == 1.
TE

Thus, ( is not a constant but a function. determined by the input prices and the
time index. Given the estimate of (, the input utilization in the context of only
allocative inefficiency, i.e. the X;'s, can be computed by dividing the actually
observed input usage x?, i=1,.,n0, by (14 ¢); cf. (31).3¢ Finally, by inserting
the so obtained estimates into (27) we obtain estimates of the cost-minimizing input
demands, too. Hence, it is possible to compare the input usage actually observed
with the cost-minimizing levels of utilization and to compute the minimum total

. n . .
costs, i.e. C= Ek P, in spite of the presumed lack of output measure.

3¢ Comparison of (34) and (20) shows that, in principle, the X; can also be
obtained as

% = x{ - [og(Rap,t)/ & Xips) + 6] - [3g(Aap,t)/ & Nips)] , i=1,..n.
However, due to random errors this procedure may violate the condition that ii/x‘i’
be equal for all i, in which case it is inconsistent with the definition of neutral
technical inefficiency. While this method and the one advocated in the text are

equivalent in expectation, the latter method has the advantage of avoiding this
potential inconsistency problem.



4.3. Computation of price and substitution elasticities, and effects of technical
change. To enable comparisons between the price and substitution elasticities
prevailing under cost-minimization, i.e. (6) and (7), and those corresponding to the
input utilization actually observed, we show here how the latter elasticities should
be computed. Likewise, we consider the effects of technical change corresponding to
the x¥ i=1,.n

We first derive the elasticities of substitution. These should be defined in terms
of the cost function from which the x] have been derived. As x% = 8C/&1;p;),
i=1,..,n, this means that the cost function (37) should be used. In order to obtain
a formula for the actual elasticities which is analogous to (6) we need the input cost

shares which are minimum for this cost function. Denoting these by S; we obtain

(:\ipi)' .66 (;,P,){M + 5;}
) & - HA;py) _ Aip;i) J
) ¢ g(hep,t) + §'Agp

1 -

i = 1,..n. To compute the numerator of §i we simply multiply the estimated
numerator of S? by :\i ; cf. (39). And, as usual, the denominator is equal to the
sum of the numerators. In analogy with (6), the actual elasticities, which we denote

by afj, can be expressed in terms of the §i's, according to

cx x5

H ax;pp)) S5S;

Because of the proportionality between the shadow prices and the input prices

actually observed the price elasticities can be obtained as follows

xip; oy (A;p)
(44) My = — = —— —-=50% ,
3Pj X3 a()‘jpj) Xj 1




where the first equality is due to the chain rule and the second equality follows by
analogy with (7); this analogy is justified because the (A;p;)'s are the prices for
which the cost function (37) is defined.

Concerning technical change, its effects on input utilization are given by

ax%(y,Agp,t
(45) o ZHAPY
! at x;(yAqp;t)

=ﬁmmeﬂfzﬂw.
&A;p;)ot | &A;p;)

Regarding the effects on total costs, two aspects are relevant. On the one hand, it is
of interest to consider the influence that technical change has had on the total costs

actually observed, i.e.

H

a_8C* 1 _ S 0.a
(46) TC '—57-65—]‘?1 Sk Txi.
On the other hand, from the producer's point of view it is relevant to compute the
effects of technical change on the total cost function (37), as (37) is the dual
representation of the production technology (under the false perception that the
input price vector is given by w = Agp rather than p). This means that in the

aggregation of the rgi‘s the §i‘s should be used as weights according to

(47)

~y¢
e

|
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Like 7. [defined by (15)] 7, has a dual interpretation: — 7, is the rate of

technical change in the production function to which (37) is dual. No dual



interpretation is possible with respect to 74, however, since C® is not a regular
cost function. Finally, by analogy with (12), the relative changes in S? and §;
brought about by technical change are equal to r:i - ¢ and r:i -7
respectively.

5. SUMMARY AND CONCLUSIONS

What can you learn about a production process for which no output measures are
available 7 This is the question we have tried to answer with the help of duality
theory. Our results show that the possibilities to characterize production by means
of input data only are indeed much greater than could be expected intuitively.

The fundamental property upon which we base our analysis, i.e. the fact that for
a homothetic technology the input cost shares can be completely specified without
any ioformation about output, was implicit already in Shephard (1953). The
importance of this result for applied production theory seems not to have been
recognized, however, which is surprising considering the tremendous growth that has
occured since then in the production of services, where the output measurement
problems are especially severe. It is significant that Hulten's (1984) study of
productivity change in the public sector, which is the only previous attempt to
characterize a production process econoxnetiically without explicit measures of the
price or quantity of output, did not escape the output measurement problem by
considering the input cost shares. Instead, Hulten chose to regard communities as
generalized households, thereby making it possible to apply the analytical apparatus
of the household production model to the production of public services.

In contrast to Hulten's framework, our method can be applied to any production
activity. Moreover, our analysis goes beyond Hulten's in that it is not limited to

the issue of estimating productivity growth. We show that given a homothetic



technology, knowledge of input prices and input cost shares makes it possible to
estimate elasticities of substitution and factor demand, analyze productivity effects
of technical change, and study (deviations from) efficiency in production. Although
the homotheticity assumption might be oo restrictive in the context of goods
production we argue that is is more easily motivated in the production of services,
primarily because of the limited possibilities to routinize services.

Concerning the relationship between technical change and productivity growth,
we show that the relative effects of technical change on total costs always can be
estimated but that these correspond to estimates of the dual rate of growth in total
factor productivity (TFP) only if constant returns to scale are assumed, as in
Hulten's study. If, instead, homogeneity of degree r # 1 is assumed the rate of
growth in TFP can be estimated up to an initial condition or bench-mark value,
while homotheticity allows only the sign of the TFP growth rates to be determined.

We also demonstrate how possible deviations from cost minimization can be
taken into account parametrically. Here, we make use of the fact that for a large
class of technologies overall inefficiency can be decomposed either into independent
measures of neutral technical inefficiency and allocative inefficiency according to
Farrell (1957), or into two interdependent measures of non-neutral technical
inefficiency and allocative inefficiency.35 Since the input cost shares are invariant
with respect to neutral technical inefficiency, the Farrell decomposition results in a
share system which can take allocative inefficiency explicitly into account but which
only allows for (meutral) technical inefficiency implicitly, making it impossible to
quantify the latter. The second decomposition, on the other hand, yields a system
of cost shares by means of which overall inefficiency can be measured but which
cannot separate clearly between technical and allocative inefficiency. We show,

however, that by estimating {wo share systems, one for each decomposition, Farrell

3% The measures of allocative inefficiency will, of course, differ between the two
alternative decompositions.
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measures of technical, allocative, and overall inefficiency can be obtained.
Moreover, the increases in total costs brought about by the inefficiencies can be
estimated as well as the cost-minimizing input demands, in spite of the presumed

lack of output data.
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Fig. 1. Farrell measures of allocative, technical, and overall efficiency.
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Fig. 2. Equivalent decompositions of overall efficiency.



