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Abstrad 

Nash's [16] "mass action" interpretation of his equilibrium con­
cept does not presume that the players know the game or are capable 
of sophisticated calculations. Instead, players are repeatedly and ran· 
domly drawn from large populations to play the game, one population 
for each player position, and base their strategy choice on observed 
payoffs. The present paper examines in some detail such an interpre­
tation in a dass of population dynamics based on adaptation by way 
of imitation of successful behaviors. Drawing from results in evolu­
tionary game theory, implications of dynamic stability for aggregate 
Nash equilibrium play are discussed. 

• An earlier version of this paper was presented at the conference »Rationality in Eco­
nomics", held at the ICER, Turin, Italy, October 1993. We are grateful for comrnents 
from the discussant and from participants in this conference, as weil as from participants 
in the Roy seminar, Paris, December 1993. 

tBjörnerstedt's research was sponsored by the Wallander Foundation for Research in 
the Social Sciences. 

fWeibull's research was sponsored by the Industrial Institute for Economic and Social 
Research (JUl), Stockholm. Be thanks DELTA, Paris, for its hospitality during part of 
the writing of this paper. 
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1 Introduction 

The Nash equilibrium criterion is usually justified on rationalistic grounds, 
in terms of the involved players' "rationality", and, in some way or other, 
shared knowledge or beliefs about each others rationality and/or strategies 
etc. (see e.g. Tan and Werlang [20] and Aumann and Brandenburger [2]). 

1.1 Nash's rationalistic interpretation 

In his unpublished Ph.D. dissertation, John Nash provided the following 
rationalistic interpretation of his equilibrium criterion:l 

"We proceed by investigating the question: what would be a 
'rationaI' prediction of the behavior to be expected of rationaI 
playing the game in question? By using the principles that a 
rationaI prediction should be unique, that the players should be 
able to deduce and make use of it, and that such knowledge on 
the part of each player of what to expect the others to do should 
not lead him to act out of conformity with the prediction, one is 
led to the concept of a solution defined before. 

If Sl' S2' ... , Sn were the sets of equilibrium strategies of a solvable 
game, the 'rationaI' prediction should be. "the average behavior 
of rationaI men playing in position i would define a mixed strategy 
Si in Si if an experiment were carried out. 

In this interpretation we need to assume the players know the full 
structure of the game in order to be able to deduce the prediction 
for themselves. It is quite stronglya rationalistic and idealizing 
interpretation." ([16], p. 23) 

Nash used the phrase position i as we today would use the phrase "player 
i". Hence, "playing in position i" here means "choosing from the i:th player's 
strategy set with accompanying payoffs". 

1 For a discussion of the context of Nash's work, see Leonard [13]. We are grateful to 
Harold Kuhn for showing that study and for providing a copy of Nash's dissertation. 
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Note the restriction to solvable games. Nash defines a game to be such 
if all its (Nash) equilibria are interchangeable in the sense that if s and s' 
are equilibria, then also the strategy profile Sil in which some player i plays 
according to s but all others according to s', is an equilibrium. All two-person 
constant-sum games are solvable in this sense. However, many relevant games 
for economics are not solvable, in which Nash suggested something in the 
spirit of set-wise refinement: 

"In an unsolvable game it sometimes happens that good heuristic 
reasons can be found for narrowing down the set of equilibrium 
point s to those in a single sub-solution, which then play the role 
of a solution." (op. cit., p23) 

Here a sub-solution is a maximal set of interchangeable equilibria ([16J, 
p. 10). For instance, a strict Nash equilibrium, i.e., a strategy profile s in 
which every strategy Si is the unique best reply to s, viewed as a singleton 
set, is a sub-solution in this sense. 

1.2 Nash 's "mass-action" interpretation 

In fact, Nash also provided a quite distinct, "as if" interpretation, which he 
called the mass-action interpretation: 

"We shall now take up the 'mass-action' interpretation of equi­
librium points. In this interpretation solutions have no great sig­
nificance. It is unnecessary to assume that the participants have 
full knowledge of the total structure of the game, or the ability 
and inclination to go through any complex reasoning processes. 
But the participants are supposed to accumulate empirical infor­
mation on the relative advantages of the various pure strategies 
at their disposal. 

To be more detailed, we assume that tnere is a population (in the 
sense of statistics ) of participants for each position of the game. 
Let us also assume that the 'average playing' of the game involves 
n participants selected at random from the n populations, and 
that there is a stable average frequency with which each pure 
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strategy is employed by the 'average member' of the appropriate 
population. 

Since there is to be no collaboration between individuals playing 
in different positions ofthe game, the probability that a particular 
n-tuple of pure strategies will be employed in a playing of the 
game should be the product of the probabilities indicating the 
chance of each of the n pure strategies to be employed in arandom 
playing" ([161, pp. 21-22.) 

Nash notes that if Si is a population distribution over the pure strategies 
available to the i:th player position, then S = (Si) is formally identical with 
a mixed strategy profile, and the expected payoff to any pure strategy in a 
random matching between individuals, one from each player population, is 
identical with the expected payoff of the pure strategy when played against 
the mixed strategy profile s. With PiClt(S) denoting the i:th player's expected 
payoff when using pure strategy et against a mixed-strategy profile s, Nash 
continues: 

"Now let us consider what effects the experience of the partici­
pants will produce. To assume, as we did, that they accumulated 
empirical evidence on the pure strategies at their disposal is to 
assume that those playing in position i learn the numbers Picr(S). 
But if they know these they will employ only optimal pure strate­
gies, Le., those pure strategies [ ... ] such that PiClt(S) = maxppip(S). 
Consequently, since Si expresses their behavior, Si attaches posi­
tive coefficients only to optimal pure strategies, [ ... 1. But this is 
simply a condition for S to be an equilibrium point. 

Thus the assumption we made in this 'mass-action' interpretation 
lead to the conclusion that the mixed strategies representing the 
average behavior in each of the populations form an equilibrium 
point." (op cit., p. 22) 

"Actually, of course, we can only expect some sort of approxi­
mate equilibrium, since the information, its utilization, and the 
stability of the average frequencies will be imperfect." (op. cit., 
p 23) 
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Hence, in the "mass-action" interpretation, Nash argues that st ationari t y 
in population frequencies over pure strategies implies that the corresponding 
frequency distribution constitutes a Nash equilibrium. Although Nash did 
not discuss the matter, this approach presumes that there is no issue of 
strategically influencing the future behavior of other individuals. One could 
imagine that the populations are so large that unilateral deviations cannot 
be detected by others. 

1.3 Difficulties with the" mass action" interpretation 

There are a few problems with this interpretation, though. 
First, if the frequency distribution is indeed stationary but not completely 

mixed, i.e., does not involve all pure strategies in the game, then how can an 
individual know the payoffs of unused pure strategies? One way out would be 
to make the stronger assumption that all individuals know their whole payoff 
function, as weIl as the current population state, and can deduce the payoff 
associated with any deviation. But this would seem to run against the very 
spirit of the "mass action" interpretation which emphasizes that the parti c­
ipants need not know much about the game or be able to make complex 
calculations, but instead base their strategy choice on empirical information 
about the "relative advantages" of different pure strategies. Alternatively, 
one could assume that every now and then individuals "experiment" by mo­
mentarily using some unused strategy in order to learn the payoffs of unused 
strategies. But in order to obtain precise information about the expected 
payoffs to such alternative strategies, a substantial amount of aggregate ex­
perimentation is needed, which would perturb the population frequency dis­
tribution and hence reduce the informational value of experimentation. It is 
also not dear what incentives individuals would have to experiment. 

Secondly, the "mass action" interpretation does not say what would hap­
pen if the population frequency were not stationary but changes over time. 
The only suggestion in this direction is that we should only expect an "ap­
proximate equilibrium" if the" stability of the average frequency is imperfect" 
(see quote above). But this is not entirely convincing, since small fluctuations 
in frequencies (for example due to individuals' experimentation) may trig­
ger a "mass movement" away from the current "approximate equilibrium". 
(Think, for example, of population frequencies near those of some weakly 
dominated Nash equilibrium.) In order to handle non-stationary population 
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frequency distributions we need a model of population dynamics in which 
robustness properties of stationary distributions with respect to small fre­
quency perturbations can be examinedj in other words a dynamic stability 
analysis is called for. 

Thirdly, the postulated behavior in the "mass action" interpretation, to 
play optimally against the observed population distribution, implicitly in­
volves some form of inertia, even in the context of a stationary and com­
pletely mixed Nash equilibrium. For even if all frequencies and payoffs are 
common knowledge, and the frequency distribution constitutes a Nash equi­
librium, "rationality" does not imply that all individuals will continue to play 
according to this equilibrium. First, such players are by definition completely 
indifferent between all pure strategies in the support of the Nash equilibrium 
in question, which in a completely mixed Nash equilibrium is the full pure­
strategy space, and hence may without any payoff loss change pure strategy 
within this support. Hence, implicit in Nash's interpretation is a notion that 
indifferent individuals do not change strategy, at least in the aggregate. Sec­
ondly, and more profoundly, even if a certain stationary Nash-equilibrium 
frequency distribution has been observed for any amount of time, this does 
not imply that the only "rational" expectation is that this distribution will 
prevail. In fact, "rational" players may "rationally" believe that a certain 
equilibrium will be played up to a certain time, where af ter another equi­
librium will be played, etc.2 Nash's presumption, viz. that individuals who 
have observed a stationary frequency distribution will not use any strategy 
which is sub-optimal against this distribution, thus implicitly involves some 
form of inertia. Indeed, from abehavioral viewpoint, some form of inertia 
appears natural. 

1.4 Towards abehavioral model of population dy-. namlCS 

Rather than developing a learning mo del , the present paper examines in some 
detail the implications of the "mass-action" interpretation in the context of 
a dass of population dynamics based on "evolution by imitation". Indeed, 
prominent social scientists and biologists argue that adaptation by way of 

2There is also the further possibility that a certain non-stationary time pattern of 
frequency distributions is common knowledge. 
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imitation of successful behaviors is a fundamental driving force shaping hu­
man behavior and intelligence (see e.g. Ullman-Margalit [21] and Dawkins 
[8J). 

As will be seen, if a population frequency distribution has full support over 
the pure strategies and is stationary in such an imitation dynamics then the 
distribution indeed constitutes a completely mixed Nash equilibrium, just as 
the above reasoning did suggest. Since there is no explicit "experimentation" 
in the dynamics considered here, also other population distributions than 
Nash equilibria can be stationary, viz. precisely those distributions which 
are such that all pure strategies in the support of each player-population 
distribution earn the same payoff. In a sense, such a population distribution 
constitutes a Nash equilibrium relative to the pure strategy subsets which 
constitute its support. However, one can show that any such non-Nash sta­
tionary distribution is dynamically unstable, since by definition some unused 
hetter pure strategy is then available to some player population.3 

The above implication is true even for the relatively weak notion of Lya­
punov stahility, which, in essence requires that a small perturbation of the 
population distribution does not trigger a movement away from the distribu­
tion. For predictive purposes, however, the more stringent notion of asymp­
totic stahility is more reliable; a population distribution has this stability 
propert y if it is Lyapunov stable and, moreover , attracts nearby population 
distributions towards itself. Only under asymptotic stability are predictions 
robust against occasion al perturbations of the population state, e.g. due 
to "experimentation" , "mistakes", "random mutations" etc. Unfortunately, 
however, many, if not most, relevant games possess no asymptotically stable 
population distribution at all. 

For instance, a Nash equilibrium which does not reach all the information 
sets in an underlying extensive-form representation of the game is in general 
not asymptotically stable in any of the considered population dynamics. The 
reason is simply that local strategies at unreached information sets can be 
changed without affecting payoffs. In a generic extensive-form game, the 
Nash equilibrium in question will for this reason even belong to a non-trivial 
connected set of Nash equilibria, and, since all Nash equilibria are stationary 

3There are games in which the unique Nash equilibrium is unstable but a whole set of 
strategies, containing the Nash equilibrium, constitute an attrador in the dynamics, see 
Swinkels [19J and Ritzberger and Weibull [17]. 
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in the studied population dynamics, there is no dynamic force "pulling" the 
population distribution back towards the Nash equilibrium in question within 
the set to which it belongs, and hence the Nash equilibrium in question is 
not asymptotically stable in any such population dynamics. 

Moreover, it has been shown that even an isolated Nash equilibrium, i.e., 
one which has a neighborhood without other Nash equilibria, is asymptoti­
cally stable in "bench-mark" populations dynamics (if and) only if it is strict. 
Many games of interest lack strict Nash equilibria, so again one cannot hope 
to find asymptotically stable population distributions. 

These observations suggest that the "mass-action" interpretation may 
have quite limited validity when used to predict individual strategy profiles, 
and, indeed, that the very criterion of Nash equilibrium may not have so 
strong "as if" foundations as could be hoped. This has lead some researchers 
to instead consider set-valued predictions. 

Here, we will reformulate Nash's "mass-action" interpretation in terms of 
asymptotically stable sets of strategy profiles. A set-valued prediction of this 
type simply means that once the population distribution has entered such a 
set, it will remain there, and, moreover, if the distribution is perturbed to fall 
slightly outside the set, then the dynamics will bring it back towards the set 
over time. Existence of asymptotically stable sets is no problem (just make 
the set sufficiently large), and, as will be seen, set-wise asymptotic stability 
does have a set-valued implication for Nash equilibrium play. 

2 The Model 

2.1 The game 

Consider a finite n-player game in normal (or strategic) form. Let I = {l, .. n} 
be the set of player positions in the game, Ai the pure-strategy set of player 
position i, Si its mixed-strategy simplex, and S = XiEJSi the polyhedron of 
mixed-strategy profiles. For any player position i, pure strategyaE Ai and 
mixed strategy Si E Si, let Sia denote the probability assigned to a. The sup­
port or carrie r of a mixed strategy Si E Si is the subset Gi(Si) of pure strate­
gies to which Si assigns positive probability, Le. Gi(S;) = {a E Ai : Sia> O}. 
A strategy profile S is called completely mixed or inte rior if all pure strategies 
are used with positive probability, i.e., if Gi(s;) = At for all player positions 
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i El. In contrast, a strategy profile is pure if only one pure strategy in each 
player position is assigned positive probability, i.e., if Ci(Si) is a singleton for 
each player position i El. 

The expected payoff to player position i when a profile s = (SI, .. , sn) E 
S is played will be denoted Ui(S), and Uia(S) denotes the payoff to player 
position i when the individual in this position uses pure strategyaE Aj 
against the profile s E S. The pure-strategy best-reply correspondence for 
player position i is denoted f3i : S -+ Ai. Hence, a strategy profile s E S is 
a Nash equilibrium if and only if every pure strategy in its support is a best 
reply to s, i.e., if Ci(Si) C f3i(S), or, more explicitly, Sia> O => a E f3i (s). 

2.2 The transmission mechanism 

A population state is formally identical with a mixed-strategy profile s E S, 
but now each component Si E Si represents the distribution of pure strategies 
in player population i, i.e., Sia is the probability that a randomly selected 
individuals in population i will use pure strategyaE Ai. 

At each play of the game, n individuals are randomly drawn, one from 
each player population. We assume that no individual ever randomizes but 
always uses some pure strategy in every play of the game. However, every 
now and then each individual reviews her pure-strategy choice. Let ria(s) 
denote the average time-rate in population state S E S at which an individ­
ual in player-population i, who currently uses strategy is a E Ai, reviews 
her strategy choice. Likewise, let pta (S) denote the probability that such a 
reviewing individual will choose strategy b E Ai . We write Pia(X) for the 
induced probability distribution over Aj; formally this is a mixed strategy for 
player position i: Pia(X) E Si. Note that Pfa(x) is the probability that the 
reviewing individual decides not to change strategy.4 

In a finite population one may imagine that the review times of an a­
strategist in population i constitute the arrival times of a Poisson process 
with average (across such individuals ) arrival rate ria( s), and that at each 
such arrival time the individual instantly selects a pure strategy according 
to the conditionai probability distribution Pia(S) over Si. Assuming that all 
individuals' Poisson processes are statistically independent, the probability 

"Alternatively, one could re-interpret what we here caU reviewing as the" exit" of one 
individual who is instantaneously replaced by a new" entrant" . 
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that any two individuals happen to review simultaneously is zero, and the 
aggregate of reviewing times in the i:th player population among a-strategists 
is a Poisson process with arrival rate Siaria( s) when the population is in state 
s. If strategy choices are statistically independent random variables, the 
aggregate arrival rate of the Poisson process of individuals who switch from 
one pure strategyaE Ai to another, b E Ai , is Siaria(S)pta(s).5 

2.3 The induced dynamics 

Since we consider large (technically speaking infinite) populations, we invoke 
the law of large numbers and model these aggregate stochastic processes as 
deterministic flows, each such flow being set equal to the expected rate of 
the corresponding Poisson arrival process.6 Rearranging terms, one obtains 
the following population dynamics 

Sia = E ric(s)pic (s) Sic - ria (s) Sia. (1) 
CESi 

In order to guarantee that this system of differential equations has a 
unique solution through every initial population state SO E S, we hence­
forth assume that the involved review functions ria: S ........ R+ and choice­
probability functions Pia : S ........ Si are Lipschitz continuous. Under this 
hypothesis, the equation system (1) induces a well-defined dynamics on the 
state space S (by the Picard-Lindelöf Theorem, see e.g. Hirsch and Smale 
[10]). In particular, a solution trajectory starting in S never leaves S, and a 
solution trajectory starting in the interior of S remains for ever in the interior 
(but may of course converge to a limit point on the boundary of S). 

5 A Poisson process is a stochastic point process in continuous time, the points usually 
heing called arrival times. The probability distribution of arrival times is given by a 
function A : R -+ R, called the intensity of the process, such that A(t)dt is the probability 
for an arrival in the infinitesimal time interval (t, t + dt). Superposition of independent 
Poisson processes is again a Poisson process, and its intensity is the sum of the constituent 
intensities. Likewise, statistically independent decomposition, such as at the strategy 
switchings above, of a Poisson process also result in Poisson processes. See e.g. Qinlar [6] 
for details. 

6Such determinstic approximations are not always innocent, see Boylan [5] for a critical 
analysis. 
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3 Imitation Dynamics 

3.1 Definition 
A population dynamics of the form (1) will be called imitative if more preva­
lent strategies are more likely to be adopted by reviewing individuals, ceteris 
paribus. More precisely, if two pure strategies b, e E Ai currently have the 
same expected payoff, but b is currently more popular than e in the sense 
that more individuals in player population i currently use b, then the choice 
probability for b, pta(s), should exceed that of e, P~a(s). Technieally this can 
be expressed as the requirement that each choice probability pta (s) be strictly 
increasing in Sib, the population share of the potential "target" strategy b. 

Of course, such an imitative feature does not preclude that individuals 
also are sensitive to payoffs. For instance, the behaviorally plausible notion 
that individuals with less successful strategies are, on average, more inclined 
to review their strategy choice than individuals with more successful strate­
gies can be formalized by having the average review rate ria ( S) non-increasing 
in the current expected payoff Uia(S). The likewise plausible notion that more 
successful strategies are, on average, more prone to being adopted than less 
successful ones can be formalized by letting each choice probability pta (s) be 
non-decreasing in the expected payoff Uib(S) ofthe potential "target" strategy 
b. These possibilities will now be illustrated in a few examples. 

3.2 Pure imitation by failing individuals 
As a model of "pure", or »unbiased" imitation, assume that a reviewing 
individual adopts the pure strategy of "the first man in the street". Hence, 
independently of which strategy the reviewing individual has used so far, it 
is as if she were to draw an individual at random from her player population, 
according to a uniform probability distribution across individuals, and adopt 
the pure strategy of the individual she happened to sample. Formally: 

(2) 

for all population states s and pure strategies a, b E Ai . In a sense, one 
could say that a reviewing individual then decides to »just do what others 
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are doing" in her player population. 7 

If, moreover, the average review rates within a player population are in­
dependent of the current strategy of the potential reviewer, i.e. rill( s) = r.( s) 
for some functions ri, then this form of pure imitation leads to no change 
at all in the population state; all states are stationary. In particular, Nash's 
contention that a stationary frequency distribution in his" mass-action" in­
terpretation necessarily constitutes a Nash equilibrium, is not valid. But this 
is no surprise, since by assumption payoffs are here completely irrelevant both 
for review propensities and choice probabilities. 

More plausibly, suppose instead that individuals with less successful strate­
gies review their strategy at a higher average rate than individuals with more 
successful strategies, i.e., let 

(3) 

for some positive function Pi : R x S -+ R+ which is strictly decreasing in its 
first argument. 

Note that this monotonicity assumption does not presumed that an a­
strategist in population i necessarily knows the expected value Uill ( s) of her 
current pure strategy, nor that she knows the current state s. For instance, 
some or all such individuals could have some noisy empirical data on their 
own current payoff and perhaps also on some alternative pure strategies or, 
say, the current average payoff Ui(S) in their player population. The only 
informational assumption in (3) is that, on average, the review rate of a­
strategists is higher if their expected payoff is lower, ceteris paribus. 

Under assumptions (2) and (3), the population dynamics (1) becomes 

(4) 

Note that the growth rate Sill/Sill of the population share of a-strategists 
by assumption is higher than that of the population share of lrstrategists if 
and only if the current payoff Uill(S) to strategy a exceeds that of strategy b. 

Despite this monotone connection between payoffs and growth rates, it 
is still not true that stationarity implies Nash equilibrium. For instance, 

7This "pure" form of imitation mayalternatively be thought of in terms of "naive 
entrants", Le., an "old" individual being replaced by an uninformed "newcomer". 
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any pure strategy profile is a stationary state in (4), for the simple technical 
reason that the dynamics does not allow any population sh are Sja. to increase 
from zero. The intuitive explanation is simply that all reviewing individuals 
imitate "the first man in the street" , and in a population state with (at least) 
one pure strategy absent, no "man in the street" uses that pure strategy, 
and so no reviewing individual with adopt that strategy. In particular, any 
pure population distribution, whether it be a Nash equilibrium or not, is 
stationary. 

However, stationarity in the inte rior of the state space S does imply Nash 
equilibrium. For in such a population state all pure strategies in the game 
are used by some individuals, and so all pure strategies available to each 
player position must earn the same payoff, by stationarity in (4), and hence 
the population state constitutes a Nash equilibrium. To see the intuition 
for this, suppose, on the contrary, that some pure strategyaE Ai earns 
more than another, b E Aj. Then a-strategists would on average abandon 
their strategy at a lower time rate than b-strategists, while bot h types of 
strategist would be equally likely to be imitated (by (2)). Hence, the share 
of a-strategists would grow at a higher rate than that of b-strategists. In 
particular, bot h growth rates could not be zero, and so the population state 
would not be stationary. 

In sum, this sort of imitation process does lend some support to com­
pletely mixed Nash equilibria. Unfortunately, though, such equilibria turn 
out to have poor stability properties, and hence are not likely to be observed 
(see Section 4 below). 

Note, finally, that if the function Pi is linear (or, more exactly, affine) in 
the payoff argument, Le., Pi( z, s) = ai( s) - Pi( s)z for some positive functions 
aj, Pi, then (4) boils down to the following simple expression 

(5) 

In other words, then the growth rate of the share Sia. of a-strategists in 
player population i is proportional to the difference between the payoff to a­
strategists, Uia(S), and the average payoff in player population i, Ui(S). But 
this is merely a player-specific rescaling of time in the so-called replicator 
dynamics, studied in evolutionary biology! That dynamics is derived from 
particular assumptions about of biological asexual reproduction, and takes 
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the form (5) with f3i(S) = 1 for all i E I and s E S.8 

3.3 Imitation of successful individuals 

While the transmission mechanism in the preceding sub-section is "pureIy" 
imitative in the sense ofbeing independent of the payoffs of potential "target" 
strategies, it seems behaviorally more plausible to assume that more success­
ful individuals are more likely to be imitated than less successfulones. 

An example of such a "success-oriented" imitation dynamics will here be 
outlined. In order to isolate this "pull" effect from the above studied "push" 
effect away from less successful strategies, we now set all average review rates 
equal to one: 

(6) 

for all population states s, player positions i and pure strategies a E ~. 
Instead, now let the choice probabilities P~a (s) be increasing both in the 
target population share Sib and in the target payoff Uib(S), as follows 

(7) 

where ?ria: R X S -+ R+ is strictly increasing in its first argument. In other 
words, the "pull" towards a pure strategy b E Ai is proportional to its "pop­
ularity" Sib, where the proportionality factor may depend on the reviewing 
individual's current pure strategy a and on the current population state s, 
and, most importantly, is an increasing function of the current expected pay­
off of the "target" strategy b. In order to have the choice probabilities sum 
up to one, we require Eb ?ria [Uib( S), S] Sib = 1 (in all population states s and 
for all player positions i and associated pure strategies a). 

As in the earlier case of differentiated review rates, the informational as­
sumption behind choice probabilities of the form (7) is not that an a-strategist 
in population i necessarily knows the current expected payoffs Uib( s) of all 
available pure strategies b, nor does she have to know the current popula­
tion state s. It is sufficient that some individuals have some, perhaps noisy, 
empirical information about some available payoffs, and, on average, move 
more towards those with higher current expected payoffs than towards those 

SIn an alternative formulation, the replicator dynamics is written on the form (5) with 
fj;(s) = l/ui(s), see e.g. Hofbauer and Sigmund [11]. 
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with lower. In fact, some individuals may, due to observational noise, change 
to strategies which perform worse than the strategy they abandoned. 

Conversely, (7) allows for the opposite possibility that virtually all re­
viewing individuals adopt one of the currently optimal (pure) strategies, by 
making the "attraction" function 1ri sufliciently "payoff sensitive". For in­
stance, suppose each function 1ria is exponential, 

(8) 

for some Ui > 0.9 The boundary case Ui = O then corresponds to "pure" im­
itation as discussed above, and the limit case Uj -. 00 corresponds to "pure" 
best-reply behavior at interior states s, in the sense that all reviewing indi­
vi duals then switch to currently optimal pure strategies.10 Hence, the form 
(7) for choice probabilities spans a whole range of myopi c choice behaviors 
from pure imitation to pure optimization. In particular, individuals with 
very high individualreview rates (given the over-all unit averagerate) can be 
made to move virtually instantaneously to a currently optimal strategy, and 
hence almost always play optimally against the current population strategy 
s even if this Huctuates over time. 

Choice probabilities of the form (7), combined with the earlier made as­
sumption (6) of unit review rates, result in the following population dynam­
ICS: 

(9) 

Just as in the above case (4) of pure imitation combined with payoff­
dependent review rates, pure strategies a with higher expected payoffs Uia (s) 
have higher growth rates in (9) than pure strategies with low expected pay­
offs. Again, and essentially for the same reasons, it is still not true that 
stationarity implies Nash equilibrium, while stationarity in the inte rior does. 

9Cf. the logit model of discrete choice, see e.g. McFadden [14]. 
lOSome technical subtieties arise in the limit: the limit vector field is (i) Lipschitz 

continuous only on the interior of each of a class of geometricaIly well-behaved subsets 
which together partition the state space, and (ii) does not define a monotonic dynamics 
in the sense defined above. 
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Similarlyas in the pure imitation dynamics (4), we note that if the "at­
traction" functions 1r'ia are linear (strictly speaking affine) in the "target" 
payoff, i.e., 1r'ia(Z,S) = Aia(S) + Pia(S)Z for some positive functions Aia and 
JJia, then (9) boils down to the following player-specific rescaling of time in 
the replicator dynamics:ll 

Sia = (ESiCJJiC(S») [Uia(S) - Ui(S)] Sia . 
cEA 

(10) 

It is not difficult (but somewhat tedious ) to verify that a combination of 
affine review rates and affine attraction functions, Le., a combination of the 
"linear" transmission mechanisms behind the dynamics (5) and (10), leads 
to a dynamics of the general form 

(11) 

where the function Ai is a polynomial which is positive on S and depends on 
the parameters of the review rates and attraction functions. 

4 Dynamie Stability and Nash Equilibrium 

All population dynamics in the preceding section can be written in the form 

(12) 

for some growth-rate functions gia : S -+ R which are Lipschitz continuous 
and such that Ea gia (S )Sia = O for every player position i E I and strategy 
profile s E S. (This identity is equivalent to saying that the sum of population 
shares remains constant over time.) Such growth-rate functions will be called 
regular. 

4.1 Monotonicity properties 

As noted above, the studie d imitation dynamics (4) and (9) also satisfy the 
following monotoni city condition with respect to payoffs: 

llTo see this, note that the requirement that choke probabilities sum to one implies 
Aia(S) = 1 - Jlia(S)Ui(S), and hence Ee 1I'ie [Uia(S), s] Sie = (Ee Jlie(S» [Uia(S) - Ui(S)] + 1. 
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(13) 

Such growth rate functions, and their induced dynamics, are usually 
called monotonic in the evolutionary game-theory literature (see [15], [9], 
[18]). 

Moreover, in some special cases, more precisely in (5), (10) and more 
generally (11), we found that each growth rate gia(S) was proportional to the 
strategy's payoff excess Uia(S) - Ui(S). In the terminology of Samuelson and 
Zhang [18], such growth-rate functions, and the induced dynamics, are called 
aggregate monotonic: 

gia(S) = Ai(S) [Uia(S) - Ui(S)] (14) 

for some positive function Ai : S -+ R (such that gia is Lipschitz continuous). 
A special case of aggregate monotonicity is evidently the replicator dy­

namics (see e.g. Hofbauer and Sigmund [11]): 

(15) 

4.2 Stability properties 

Turning now to stability concepts, suppose some population dynamics is 
given in the form of a system of autonomous ordinary differential equations, 
such as, for example (12). 

A population state s* E S is called Lyapunov stable if small perturbations 
of the state do not lead it away, in the precise sense that every neighborhood 
8 of s* contains a neighborhood eo of s* such that all solution orbits starting 
in eo remains in e forever. 12 

A more stringent stability notion is that of asymptotic stability, which 
essentially requires that the population also returns towards the state af ter 
any small perturbation. Formally, a population state s* E S is called asymp­
totically stable if it is Lyapunov stable and has a neighborhood e' from which 
all solution orbits converge to s* over time.13 

12By a neighborhood of a point is here meant an open set containing the point. 
13See e.g. Hirsch and Smale [10] for definitions and discussions of stability coneepts. 
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Both these st abili t y concepts are analogously defined for non-empty and 
closed subset S· C S. Just let a neighborhood of such a set S· mean an open 
set containing it. Then Lyapunov stability means that every neighborhood e 
of S· contains a neighborhood eo of S· such that all solution orbits starting 
in eo remains in e forever, and asymptotic stability means that, in addition, 
there is a neighborhood e' of S· from which all solution orbits converge to 
S· (in the sense that the distance to the set S· shrinks towards zero over 
time). 

4.3 Results for monotonic dynamics 

We first note that all monotonic population dynamics (12) have the same set 
of stationary states, viz. those states in which all non-extinct pure strategies 
in each player position have the same expected payoff. Formally, this is the 
set So = XieISf, where 

Si = {Si E Si : Uia(S) = Ui(S) for all a E Ai with Sia> O}. 

It follows immediately from this observation that every Nash equilibrium 
S is a stationary state in all monotonic population dynamics, and that every 
interior stationary state s is a (completely mixed) Nash equilibrium. As 
noted earlier, a non-interior population state s may be stationary without 
being a Nash equilibrium. However, such states are not Lyapunov stable in 
any monotoni c population dynamics, and ar~ thus not likely to be observed 
in "practice": 

Proposition 1 (Bomze [4], Nachbar [15], Friedman [9]): If s E S is 
Lyapunov stab le in some monotonic population dynamics (12), then s is a 
Nash equilibrium. 

It is easily established that every strict Nash equilibrium is asymptot i­
cally stable in any monotonic population dynamics: if s E S is a strict Nash 
equilibrium, then the population state s is asymptotically stable in every 
monotonic dynamics (12). However, as mentioned in the introduction, the 
"typical relevant" case is that the game has no strict Nash equilibrium at all. 
This is the motivation behind set-valued stability approaches. In particular , 
a set-valued connection has been established between, on the one hand, cer­
tain asymptotically stable sets of population states and, on the other hand, 
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sds of Nash equilibria which meet the requirement of strategic stability in 
the sense of Kohlberg and Mertens [12]. A set S· C S of Nash equilibria 
is strategically stable if it is robust with respect to any sequence of small 
"trembles" or perturbations of the strategies. This robustness criterion was 
designed with the intention to meet certain "rationalistic" desiderata. How­
ever, it so happens that there is a connection between set-wise asymptotic 
stability in population dynamics of the type studied here (in fact in alarger 
dass of dynamics) and strategic stability. The connection takes the form of 
set-wise indusion: 

Proposition 2 (Swinkels [19]): Suppose S· C S is non-empty, closed and 
convex. If S· is asymptotically stable in some monotone population dynamics 
(12), then S· contains a strategically stable set of Nash equilibria.14 

Hence, if we (a) have a monotonic population dynamics defined on the 
mixed-strategy space S of some game, and (b) have found a (closed and 
convex) subset S· which is asymptotically stable in this dynamics, then we 
are sure that S· contains some subset S' of Nash equilibria which meets the 
stringent requirement of strategic stability. In some cases the set S' might 
be much smaller than S· while in others these two sets may even coincide. 
Likewise, in some cases S· will correspond to only one payoff outcome, while 
in others S· may involve many different payoff outcomes. Hence, the preci­
sion of the evolutionary prediction may differ between games and between 
subsets within games. 

4.4 Results for aggregat e monotonic dynamics 

From an operational viewpoint, the above result has the drawback that it 
may be hard to verify asymptotic stability in a given population dynamics. 
Moreover, the modeler may not be so sure of which exact specification of 
the dynamics is appropriate to the application at hand, and hence may want 
to focus on sets which are asymptotically stable in a fairly wide range of 
population dynamics.15 In the special case of aggregate monotoni c dynamics, 

14Swinkels' result (his Theorem 1), is more general both with respect to the dynamics 
and with respect to the shape of the set S* . 

15Note, however, that asymptotic stability in one population dynamics implies asymp­
totic stability in all "nearby" population dynamics, so the predictions according to the 
above result are at least locally robust. 
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there is some headway in these directions - hot h towards operationality and 
towards rohustness with respect to the dynamics. 

We saw above that only for interior population states is it true that 
stationarity implies Nash equilihrium. However, as indicated above, such 
states have poor stability properties. For instance, Hofbauer and Sigmund 
[11] show that no interior population state is asymptotically stahle in the 
replicator dynamics (15). The proof of this daim is based on an important 
observation by Amann and Hofbauer [1], viz. that the replicator dynamics 
induces the same solution orbits in the interior of the state space S as a cer­
tain volume-preserving dynamics.16 Such a dynamics has no asymptotically 
stable state, and since the solution orbits are the same as for the replicator 
dynamics, the latter has no asymptotically stable state in the interior of the 
strategy space. 

A slight generalization of this result leads to the conclusion no inte rior 
closed set S* is asymptotically stable in the replicator dynamics. Moreover , 
since the restriction of the replicator dynamics to any suh-polyhedron of the 
polyhedron S of mixed strategy profiles is the replicator dynamics for the 
associated "subgame", no closed set S* which is contained in the relative 
interior of S or any of its sub-polyhedra is asymptotically stable in the repli­
cator dynamics (15). Hence, if we search for sets which are asymptotically 
stable in a dass of population dynamics including the replicator dynamics, 
then we have to discard all such relatively interior subsets. 

Formally, first note that the strategy space S is the Cartesian product of 
n simplexes, one for each player, so S is a polyhedron. More generally, the 
set of possible randomizations over any non-empty subset of pure strategies 
for some player i defines a sub-simplex of mixed strategies for that player, Le., 
a suhset Si C Si which also is a simplex of mixed strategies. The Cartesian 
product of such sub-simplexes constitutes a polyhedron of mixed strategy 
profiles, a sub-polyhedron S' = xS: of S. In particular, each pure strategy 
profile, viewed as a singleton set, is a minimal sub-polyhedron, and the full 
set S is the maximal sub-polyhedron. 

A closed set S* C S will here be called relatively interior if it is contained 
in the interior of some sub-polyhedron S' of S. Clearly every sub-polyhedron 

16The divergence of a dynamics i: = f(z) at a state z is the trace of the Jacobian of 
f at z, Le., div[f(z)] = Ei8fi(Z)/8zi. The dynamics is calle d volarne preserving if 
div [f (z)] E O. Such a dynamics hehaveslike water flowing under constant temperature 
and pressure, and can hence have no asymptotically stahle state. 
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is a closed and convex set. 
Having thus defined the relevant mathematical concepts, the negative 

result mentioned ahove, on dynamic stahility, can he summarized as follows:17 

Proposition 3 (Hotbauer and Sigmund [11]): Suppose S· is a non­
empty and closed subset of S. If S· is relatively inte rior, then it is not 
asymptotically stable in the replicator dynamics (15). 

It turns out that, for suhsets S* C S which are themselves suh-polyhedra 
of S, the propert y of asymptotic stability in aggregate monotonic population 
dynamics can he concisely characterized in terms of a certain correspondence 
on S, called the "better-reply" correspondence (Ritzherger and Weihull [17]). 
This "new" correspondence , assigns to each mixed-strategy profile s E S 
those pure strategies a for each player i which give him at least the same 
payoff as he ohtains in s. Formally, the image ,(s) of any profile s E S is the 
Cartesian product of the suhsets 

(16) 

one such set for each player i E I. The pure strategies in ,i( s) are thus 
weakly better replies to s than Si is. 

Clearly all pure strategies which are best replies are better replies in this 
sense, so the image ,(s) of any strategy profile s under the hetter-reply 
correspondence , always contains the image f3( s) of the hest-reply corre­
spondence f3. In particular, if s E S is a Nash equiIihrium, then the set of 
weakly hetter pure replies coincides with the set of hest pure replies, Le., 
f3(s) = ,(s). Although ,(s) hy definition is a suhset of pure strategy profiles, 
it will he notationally convenient to identify it with the associated suhset of 
("degenerate") mixed strategies (vertices of the polyhedron S). 

Ritzherger and Weihull [17] call a suh-polyhedron S' closed under the 
better-reply correspondence if it contains all its weakly hetter replies, Le., if 
,( s) C S' for all s E S', or, more concisely, ,(S') C S'. For instance, 
a singleton set S' = {s} is closed under , if and only if s is a strict Nash 
equilihrium, and the full polyhedron S is trivially closed under ,. Moreover , 

17Hotbauer and Sigmund [11] state this result only in the special case of an interior 
singleton in a two-player game. For details concerning its present generalization, see 
Ritzberger and Weibull [17]. 
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there always exists at least one minimal suh-polyhedron which is closed under 
, (there are only finitely many suh-polyhedra).18 

Closedness of suh-polyhedra S' C S under the hetter-reply correspon­
dence , characterizes asymptotically stahle in aggregate monotonic popula­
tion dynamics, as follows: 

Proposition 4 (Ritzberger and Weibull [17]): If a sub-polyhedron S' C 
S is closed under" then S' is asymptotically stable in all aggregate mono­
tonic population dynamics. If a sub-polyhedron S' C S is asymptotically 
stable in some aggregat e monotonic population dynamics, then S' is closed 
under ,. 

It follows from Swinkels' [19] result ahove, Proposition 2, that any suh­
polyhedron S' which is asymptotically stahle in some monotonic population 
dynamics contains a set of Nash equilihria which is strategically stahle in 
the sense of Kohlherg and Mertens [12]. However, for aggregate monotonic 
dynamics, the implication is even stronger: every suh-polyhedron S' which 
is asymptotically stahle in some aggregate monotonic population dynamics 
contains an essential eomponentof Nash equilihria.19 Moreover, an essential 
component contains a strategically stahle set (Kohlherg and Mertens [12]). 

This slightly stronger implication of asymptotic stahility follows from 
Proposition 3 comhined with the following result: 

Proposition 5 (Ritzberger and Weibull [17]): If a sub-polyhedron S' C 
S is elosed under" then it eontains an essentiai eomponent of Nash equilib­
ria, and hence a/so a strategieally stab le set. 

Just as in the case of Proposition 2 ahove, the cutting power of this result 
on the connection hetween evolutionary selection and Nash equilihrium play 
is game dependent. 

The games under consideration heing finite, also the set of suh-polyhedra 
S' C S is finite. Hence, it is immediate that there exists at least one minimal 

18C.f. curb sets, i.e., sets dosed under the best-reply correspondence, a notion introduced 
in Basu and Weibull [3}. 

19The set of Nash equilibria is a finite union of connected sets, or components, and such 
a component is called essentiai if it is robust with repect to perturbations of payoffs, see 
van Damme [7]. 
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such sub-polyhedron set S' which is closed under the better-reply correspon­
dence 1, and every strategically stable set of Nash equilibria is contained 
in some such set. In particular, since a generic extensive form game has 
at least one strategically stable payoff outcome (Kohlberg and Mertens [12]), 
the associated strategy set is contained in a minimal sub-polyhedron which is 
closed under 1, and hence is asymptotically stable in all aggregate monotonic 
population dynamics. 

5 Conclusions 

The discussed dynamic models of evolution by imitation do lend some sup­
port to the "mass-action" interpretation of Nash equilibrium. However, the 
analysis also suggests that evolutionary predictions may be context depen­
dent. The social, cultural, institutionaI etc. environment in which the inter­
action takes place presumably shapes the transmission mechanism by which 
behaviors spread in society. And different transmission mechanisms induce 
different population dynamics, and hence possibly different dynamically sta­
ble sets. However, the discussed set-valued approach suggests that some, 
perhaps less precise, predictions can be made with only some qualitative 
knowledge about the dynamics in question. More exactly, if one requires 
that predictions be valid for all aggregate monotonic population dynamics -
which we saw appeared as "first order" approximations of the studied imita­
tion dynamics - then one can identify the relevant sets directly by means of 
the better-reply correspondence, which relies only on the data of the game. 

Many direction for further research in the broad area of behavioral foun­
dations for non-cooperative solution concepts appear highly relevant. Rather 
than sketching here a few such possibilities we advise the interested reader 
to consult the recent special issues on evolutionary game theory and game 
dynamics in Journal of Economic Theory (August 1992) and Games and 
Economic Behavior (4 and 5, 1993). 
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