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Abstract 

This paper studies evolutionary games in which players can condition their 
strategy choice on some observable characteristic of their opponent, a char­
acteristic we can their type. Recently, examples have been provided in which 
some players discriminate in this way, causing the evolutionary process to 
converge on non-Nash equilibrium play. Moreover, in some cases this gener­
alization of the standard set-up of evolutionary game theory has been shown 
to destabilize certain inefficient Nash equilibria. We here provide a general 
model of evolutionary selection among discriminating behaviors, and flnd 
that the above examples are not robust; the elose connection between evolu­
tionary selection and Nash equilibrium, already established for the standard 
set-up, continues to hold, albeit in a slightly more complexform. Moreover , 
inefficient Nash equilibria may indeed be (weakly) stable in the evolutionary 
dynamics, and efficient Nash equilibria may be unstable. 



1 Introd uction 

This paper studies symmetric two-person evolutionary games with discrim­
inating players. In contrast with standard evolutionary games, where each 
player always plays the same strategy, we introduce a framework in which 
players can ch ange their strategies in response to some observable ch ar act er­
istic of their opponent, a characteristic we caU their type. 

A number of recent papers have already pointed out some of the more 
striking possibilities deriving from this kind of discriminating behavior. For 
ex ample , Robson [14] and Banerjee and Weibull [1] show that the evolu­
tionary process need not lead to Nash equilibrium outcomes when players 
condition their strategy choice on the type of opponent. This contrasts with 
the general resu!t for the standard setting of evolutionary game theory (where 
each player uses the same strategy against all opponents) that the evolution­
ary processes leads the population state towards Nash equilibrium play, see 
e.g. Banerjee and Weibull [2J for a recent survey. Moreover, a number of 
recent studies of pre-play communication in co-ordination games show that 
the evolutionary process may lead the population state away from inefficient 
Nash equilibria when players condition their actions on pre-play messages, 
see e.g. Wärneryd [19] and Kim and Sobel [10]. 

The first set of examples raises some potentially serious questions about 
the evolutionary justification of Nash equilibrium. After all, there is nothing 
per se implausible about diseriminating behavior, and a robust justification 
of Nash equilibrium should be able to accomodate this and other reasonable 
variations of the original evolutionary model. The second set of examples 
are more ambiguousj they have been interpreted as saying that the evolu­
tionary mechanism selects among Nash equilibria, in favor of efficient or risk 
dominant equilibria. However, it is equally plausible to draw the implication 
that the evolutionary process selects against inefficient outcomes irrespective 
of whether these are Nash equilibria or not. 

The aim of the present paper is to try to understand the general principles 
behind these examples. To this end we formulate a general model of evolu­
tionary selection among discriminating behaviors in symmetric two-person 
games and study its general dynamic properties. The standard assumption 
in evolutionary game theory that each individual uses one and the same 
strategy against all opponents becomes a special case of this set ting. 

Our analys is of this generalized model reveals that the elose connec-
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tion between evolutionary selection and Nash equilibrium play, suitably re­
interpreted, continues to hold when players are allowed to condition their 
strategy choice on the type of their opponent. In particular, we find that 
any Lyapunov (or weakly) stable stationary outcome of the evolutionary se­
lection process, as operating on the full simplex of all discriminating behav­
iors, involves only Nash equilibrium play. More precisely, in such states the 
pure-strategy distributions in interactions within each player type, as well as 
between any two player types, always constitute Nash equilibria. Hence, in 
this generalized setting, all Lyapunov stable states are convex combinations 
of Nash equilibria of the underlying game. 

This general result immediately tells us that the non-Nash outcomes de­
rived in the examples above are not stable when all discriminatory behaviors 
are allowed for. Even though these outcomes are stable when the dynamics 
is restricted to some boundary face of the full simplex of all discriminating 
behaviors for the game, as in the mentioned examples, they are unstable in 
the unrestricted dynamics on the full simplex. 

Moreover, we find that the set of stationary payoffs expands as more types 
are introduced, and that this set converges to a limit set V'-oO'which is dense 
in the set UNE of "symmetric convex combinations" of Nash equilibrium 
payoffs of the underlying game (see Section 5 for definitions). AIso the subset 
of Lyapunov (or weakly) stable stationary payoffs converges,.towards a limit 
set as more types are introduced. However, this limit set, Woo C Voo may 
be a proper subset of the set UNE in the strict sense of differing by at least 
some interval of positive length. (In particular, Woo need not be den se in 
UNE.) In standard 2 x 2 co-ordination games the limiting stable payoff set 
W 00 consists of the "good" and the "bad" (strict) Nash equilibrium payoffs, 
as weIl as some, but not all, convex combinations of these two numbers. In 
particular, there is a whole interval of convex combinations near the "bad" 
equilibrium payoff which contains no stable payoff. 

The fact that the limiting payoff set contains the "bad" Nash payoff tells 
us that, at least in the present formulation, there is no evolutionary tendency 
leading away from a (strict) Nash equilibrium which is Pareto dominated by 
another Nash equilibrium. However, the lack of such a "drift" away from 
inefficiency is not surprising, given what is currently known about evolu­
tionary stability in co-ordination games with pre-play communication (see 
e.g. Bhaskar [4]). In the present set-up, "types" correspond to "messages" 
in these communication games. For such communication to destabilize an 
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inefficient outcome of the underlying game it is crucial that there exists a 
message (type) which is unsent in (absent from) the stationary state - this 
message is used to destabilize the state. To generat e a (Lyapunov ) stable but 
inefficient outcome in our framework, all we essentially need to do is to have 
all types present in the corresponding stationary state and let all players play 
the inefficient (strict Nash) equilibrium strategy with each other. 

The basic result - that Lyapunov stable states are convex combinations 
of Nash equilibria - is also valid in more general settings. In particular, it 
continues to hold if types carry (fixed) costs and it is costly to distinguish 
types. However, when such costs are introduced, the inefficient (strict) Nash 
equilibrium in co-ordination games is no longer stable, since the more costly 
types are selected against in the evolutionary process, and if there is an ab­
sent (costly) player type in an inefficient stationary state, then the potental 
entry of this type destabilizes the stationary state (granted these costs are 
small). Therefore, there cannot be a stable stationary state in which the 
average payoff coincides with the "bad" Nash equilibrium of the underly­
ing co-ordination game. Moreover, it turns out that the same argument, 
based on costly types and costly type-identification, rules out the existence 
of any (Lyapunov) stable state in games of the Prisoner's Dilemma variety. 
In fact, any game which has a Nash equilibrium which is unique, symmetric, 
pure, and Pareto dominated by some other symmetric strategy combination 
has the same non-existence property. Thus, there are many games which 
have inefficient stable states in the standard evolutionary model but which 
lack stable states in the present generalized model with discriminating be­
haviors. It thus appears that discriminating behavior introduces a tendency 
away from inefficient outcomes, and, in ceratin games, thereby destroying 
the evolutionary tendency towards Nash equilibrium behavior. _ 

The plan of the paper is as follows. In Section 2 we present the motivating 
examples. The formal model is developed in Section 3, and the basic results 
are derived in Section 4. Section 5 describes the limiting properties of the 
set s of stationary and stable payoffs, respectively, and Section 6 concludes 
with a summary and a brief discussion of the case in which different types 
carry different costs and the capacity to distinguish types is costly. 

3 



2 Examples 

Figure 1 (a) illustrates a standard Prisoner 's Dilemma game. In the replicator 
dynamics (in fact, in any monotonic dynamics), as applied to the standard 
set-up of evolutionary games, the population state converges from any inte­
rior initial state to the state in which all individuals in the population play 
the dominant strategy 2 (" defect"). Consider, however, a situation with dis­
criminating behavior, as suggested in Robson [14], in which there are three 
types of player, labeled 1,2 and 3. Individuals of type 1 always play strategy 
1 (" cooperate" ) and type-2 individuals alway play" defect" , while individuals 
of type 3 play "defect" against types 1 and 2, hut "cooperate" against other 
individuals of type 3. The payoffs to these three types of player are given in 
Figure 1 (b). 

( 1 -1) 
2 O ( 1 -1 -1) 

2 O O 
2 O 1 

Figure l: A Prisoner's Dilemma game. 

Notice that once we have constucted the payoff matrix in Figure 1 (b) 
we can treat it as the payoff matrix of a standard evolutionary game with 
non-discriminating players who happen to have these payoffs. Therefore, all 
results in standard evolutionary game theory apply to this partially expanded 
game. In particular, the strictly dominated strategy 1 will be eliminated in 
the long run. Strategy 3 will not decrease over time since it is (weakly) 
dominant, so also strategy 2, which is weakly dominated by strategy 3, will 
be eliminated in the evolutionary process. Hence, only strategy 3 survives 
in the long run, implying that evolutionary selection will result in all players 
playing" cooperate" , w hich is not a Nash equilibri um strategy in the original 
game (see Robson [14] for details). 

Figure 2 (a) represents a dominance solvable game, for any payoff value 
a E R. In the standard replicator dynamics (or any monotoni c dynamics), 
the long-run outcome of this game has all players playing strategy 1. In con­
trast, if we introduce diseriminating behavior hy letting there be four types, 
where types 1 through 3 always play strategies 1 through 3, respectively, 
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while type 4 plays the best response to each of the four types (and therefore 
plays the Nash equilibrium strategy 1 against its own type), we can once 
again construct an augment ed payoff-matrix which can be analyzed with the 
standard tools of evolutionary game theory (Banerjee and Weibull [1]). 

u n U 
-a 6 3) -a 

-a -1 4 4 
-a -1 

-a+ 1 5 1 
-a+ 1 

-a+ 1 6 3 

Figure 2: A dominance-solvable game. 

The augmented game in Figure 2 (b) has one connected set of Lyapunov 
(or weakly) stable states and one additional asymptotically stable state. The 
aggregate behavior in each population state in the first component is identical 
with the unique Nash equilibrium outcome of the original game (Fig.2 (a)), 
i.e., all individuals use only strategy 1 and accordingly earn the Nash equi­
librium payoff 3. Each such state is composed of individuals of types 1 and 4 
only, and the share of the former exceeds 1/4.1 In the se con d outcome, only 
types 2 and 4 survive, in shares 1/3 and 2/3, respectively, and all individuals 
earn the payoff (7 - a)/3. Evidently, this outeorne is not compatible with 
Nash equilibrium in the original game since the strictly dorninated strategy 2 
gets played. Moreover, the payoff in this asymptotically stable state depends 
on the value of a, and for any a exceeding -2/3 this payofffalls below 3, the 
Nash equilibrium payoff. Thus, unlike in the previous example, what drives 
the population state away from the Nash outcome is not attraction towards 
some more efficient state.2 

lTo see that any state with no individuals of types 2 and 3, and with at least one 
quarter of type 1, is Lyapunov stable, note that on the boundary face of the mixed­
strategy simplex where strategies 2 and 3 are extinct any state in the accordingly reduced 
game (with on ly strategies 1 and 4) is Lyapunov stable. Moreover in a neighborhood in 
the full mixed-strategy simplex of such a state, bot h strategies 2 and 3 earn less than 3, 
the payoff of 1 and 4, cf. Banerjee and Weibull (1991,1992). 

2To see that the population state with no individuaIs of types 1 and 3, one-third of 
type 2 and two-thirds of typ e 4 is asymptotically stable, note that, when the dynamics 
is restricted to the corresponding boundary face of the mixed strategy simplex, this state 
is asymptotically stable, see e.g. Weibull (1992). Moreover, in a neighborhood of this 
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The last ex ample we consider is the standard co-ordination game in Fig­
ure 3 (a). It has two asymptotically stable population states in the usual 
replicator dynamics, viz. the state in which all individuals play the "good" 
strategy 1 and the state in which all individuals play the "bad" strategy 2. 
However, if we identify types 1 and 2 with players who always play 1 and 
2, respectively, and type 3 with players who play 1 against type 1, 2 against 
type 2 and 1 against type 3, then we obtain the augmented payoff matrix 
in Figure 3 (b). In this new game, strategy 2 (corresponding to individuals 
always playing 2 in the original game) cannot survive in the evolutionary 
selection process. Therefore, in the long run, in this setting with some dis­
criminating behaviors, we necessarily end up in the "good" Nash equilibrium 
(1,1) with payoff 2. 

( 
2 O 2) 
O 1 1 
212 

Figure 3: A co-ordination game. 

3 The model 

The analys is in the present paper is restricted to the standard setting of 
evolutionary game theory, viz. finite and symmetric two-player games in 
normal form. Let I = {I, 2, ... , m} be the set of pure strategies. Accordingly, 
a mixed strategy is a point x on the (m - 1 )-dimensional unit simplex ~ = 
{x E R+ : Li Xj = I} in m-dimensional Euclidean space. The support of a 
mixed strategy x E ~ is the subset C (x) = {i E I : Xj > O} of pure strategies 
which are assigned positive probabilities. A strategy x is called interior (or 
completely mixed) if C(x) = I, and we then write x E int(~). 

Let ajj be the payoff of strategy i E I when played against strategy j E I, 
and let A be the associated k x k payoff matrix. Accordingly, the (expected) 
payoff of a mixed strategy x E ~, when played against a mixed strategy 

state, both strategies 1 and 3 earn less than strategies 2 and 4, ef. Banerjee and Weibull 
(1991,1992). 
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y E ~, is u(x, y) = x· Ay = 2:ij XiaijYj. The payoff function u : ~2 -+ R is 
bi-linear and the payoff of a pure strategy i E I, when played against a mixed 
strategy y, is u(ei,y), where ei is the i'th unit vector in Rm, etc. We will 
frequently identify a pure strategy i E I with its mixed-strategy counterpart 
ei E ~. We summarize any symmetric 2-player normal-form game as a pair 
G = (I, u), where I is the set of pure strategies and u : ~2 -+ R the associated 
payoff function. 

As usual, a pure strategy i E I is weakly dominated if there exists a 
strategy x E ~ which never earns a lower payoff and sometimes a higher 
payoff (i.e., u(x,y) ~ u(ei,y) Vy E ~ with strict inequality for some y). A 
pure strategy i E I is strictly dominated if there exists a strategy x E ~ which 
always earns a higher payoff [u(x,y) > u(ei,y) Vy E ~]. A best reply to a 
strategy y E ~ is a strategy x E ~ such that u(x, y) ~ u(x', y) Vx' E ~. For 
each y E ~, let f3{y) C ~ be its set of (mixed-strategy) best replies. A Nash 
equilibrium is a pair (x, y) of mutually best replies, a Nash equilibrium is strict 
if each strategy is the unique best reply to the other, and a Nash equilibrium 
(x,y) is symmetric if x = y. By Kakutani's Fixed Point Theorem, every 
finite and symmetric game has at least one symmetric Nash equilibrium. 

One solution concept which is weaker than Nash equilibrium is iterative 
strict dominance. A pure strategy i E I is said to be iteratively strictly 
undominated if it is not strictly dominated in the original game G, nor in 
the game G' obtained from G by removal of all strictly dominated strategies, 
nor in the game G" obtained from G' by removal of all strategies which are 
strictly dominated in G', etc. A related but distinct solution concept is that 
of rationalizability (Bernheim [3]; Pearce [12]). A pure strategy i E I is never 
a best" rep ly if there exists no mixed strategy y E ~ against which i E I is a 
best reply. A strategy i E I is rationalizable if it is not a "never best reply" 
in the original game G, nor in the game G' obtained from G by removal of all 
"never best replies, " nor in the game G" obtained from G' by removal of all 
"never best replies," etc. Each of these two methods of iterated elimination 
of pure strategies stops in a finite number of steps. Pearce [12] has shown 
that, while the two remaining sets may differ in games with more than two 
players, they in fact coincide in all two-player games.3 

3 A strictly dominated strategy is never a best reply, and hence the set of rationalizable 
strategies is always a subset of the set of strategies surviving the iterated elimination of 
strictly dominated strategies. 
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In this context of finite and symmetric two-person games in normal form, 
evolutionary game theory studies the long-run effects of evolutionary selec­
tion among strategies. Each individual is then (genetically or culturally) 
"programrned" to play some fixed strategy in the game in question, and in­
dividuals are randomly drawn in pairs from a large population to play the 
game. In the standard so-called replicatordynamics, the growth rate of the 
subpopulation programrned to a strategy i E l is proportional to its current 
( average) payoff. 

In this standard set-up of evolutionary game theory one can introduce 
a richer menu of behaviors as follows. Suppose there is a finite set T = 
{I, ... , k} of types of individual. At each matching of two individuals from 
the population, both individuals know their own type and can (costlessly and 
without error) observe each other's type. One many then think of a possible 
behavior for an individual of any given type as a "rule" <p which to each 
type r E T of opponent prescribes a strategy i = <p( r), i.e. as a function 
<p : T ---+ l. Let F be the set of all such functions - the set of all possible 
behaviors - the number of which is #F = m k • We define a character K­

as an element of the (finite) product set H = T x F, i.e., as a pair (r, <p), 
where r E T is a type, visible to each and everyone, and <p E F is abehavior, 
observable only indirectly and incompletely via its out come in interactions. 
The total number of possible characters thus is n = #H = k . m k . Each 
individual in the population is fully described by her character since her own 
type determines the strategy choice of her "opponent" at each encounter, via 
the opponent's behavior, and her own behavior determines her strategy choice 
in every possible encounter. More precisely, the payoff to an individual with 
character K- = (r,<p), when meeting an individual with character A = (v,'l/J), 
is aij for i = <p(v) and j = 'l/J(r). We will call a behavior <p E F constant if 
there exists some i E l such that <p(v) = i 'Vv E T. 

This expanded setting for pairwise interactions is equivalent with the 
standard setting of evolutionary game theory if we take the pure strategy 
set to be H = {I, 2, ... , n}, the set of characters, and the payoff matrix to 
be the n x n matrix A with entry OKA = aij in row K- and column A, where 
K- = (r,<p), A = (v,'l/J), i = <p(v) and j = 'l/J(r). In other words, OKA is the 
payoff that "strategy" K- earns when used against "strategy" A. Since there 
are n pure strategies in this expanded game, its mixed-strategy space is the 
(n -1 )-dimensional unit simplex L in Rn. For any pair of "mixed strategies" 
a, Il- E L in the expanded game, let v( a, Il-) denote the payoff to "strategy" 
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u when used against "strategy" p, i.e., 

v(u,p)=u·Ap= L UK·O:K'\·P.\, 
K,'\EH 

In this way, we have defined the payoff function v : L x L -t R of the 
expanded game g = (H, v) in which characters are viewed as pure strategies. 
(The standard setting of evolutionary game theory can be identified with the 
special case when T is a singleton set, i.e., when there is only one type T. For 
then there there are precisely kbehaviors, viz. <p( T) = i, for i = 1,2, ... , k. 
Hence, H =1, L = ~ and v = u.) 

We need some notation to describe the composition and dynamics of the 
population in the expanded game g. For I\. E H, let PK be the population 
share of individuals with character 1\.. The vector P = (PK)KEH is then the 
population state, a point on the unit simplex L, the space of mixed strategies 
in g, and one may study the workings of the (standard, continuous-time) 
replicator dynamics on this (typically very high-dimensional) simplex. When 
the population state is P E L, any individual of character I\. E H, i.e., playing 
"strategy" I\. in game g, obtains the (average, expected) payoff v( eK, p) at a 
random matching, where eK is the I\. : th unit vector in Rn. Likewise, the 
average payoff in the population is v(p,p). The payoff function v is bi-linear 
and the replicator dynamics is 

'A = v(eK - P,P)PK [VI\. E H], 

to which all results from standard evolutionary game theory apply. 
Applying this general framework to the Prisoner's Dilemma game in Fig­

ure 1 (a), we note that the partially expanded game in Figure 1 (b) has three 
types, T = {l, 2, 3}, but each type is restricted to a single behavior. For in 
that example, the onIy behavior of type 1 is the constant behavior <p(v) = 1 
for all v E T, the only behavior of type 2 is likewise constant, 'I/J(v) = 2 
for all v E T, and the only behavior of type 3 is the non-constant behavior 
,(l) = ,(2) = 2 and ,(3) = 1. In contrast, the fully expanded game g has 
23 = 8 behaviors available to each of the three types, so the game g has 
8 x 3 = 24 pure strategies (characters ). It is easily verified that, unlike in 
the partially expanded game in Figure 1 (b), the strategy I\. = (T, 'I/J), which 
(for any given type T) plays 2 against every type v E T, is not weakly dom­
inated in the fully expanded game g . Similarly, if we construct the fully 
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expanded game g associated with the co-ordination game in Figure 3 (a), 
then play of the "bad" Nash equilibrium strategy 2 against all types is not 
weakly dominated (unlike in the partially expanded game in Figure 3 (b»). 

4 Basic results 

For any type T ET, we will call the subset of individuals of type T sub­
population T. Hence, individuals in the same sub-population differ only with 
respect to their behaviors. In particular, they are all met by the same choice 
of strategy when meeting any given individual; if an individual of type T 

meets an individual with behavior rp, then the latter will choose strategy 
rp( T) E J. Let pT denote the population share of individuals of typ e T, i.e., 
for any population state p E I: and type T ET, pT is the sum of all PK such 
that K = (T, rp) for some rp E F. 

It tums out to be useful to decompose aggregate behavior in the whole 
population into the aggregate behaviors in the matchings between every com­
bination of sub-populations T, II E T (including the case T = II). For each 
pure strategy i E J in the original game G, every type T E T and population 
state p E I: with pT > O, let pill be the share of individuals in sub-population 
T who use strategy i when meeting an individual of type II ET, i .e., pill is the 
share of individuals of type T who have behaviors rp with rp(lI) = i. Clearly 
the vector pTII = (pill)iEI is a point on the unit simplex Å of the original game 
G, i.e. pTII can be viewed as the mixed strategy (in G) that any individual 
of type II faces when matched with an individual of type T. In other words, 
pTII E Å is the aggregat e behavior of individuals in sub-population T E T 
when meeting individuals from sub-population II E T, and pliT E Å is the 
aggregate behavior of sub-population II in the same encounters. 

In the replicator dynamics, as applied to the standard setting of (single­
population) evolutionary game theory, any Lyapunov stable population state 
x E Å, viewed as a mixed strategy, is a best reply to itself, i.e., (x, x) con­
stitutes a Nash equilibrium (Bomze [6]).4 This fundamental result general­
izes to the present setting as follows: if sub-populations T and II (possibly 

4 N ote that Lyapunov (or weak) stabiJity is less stringent than the perhaps more familiar 
criterion of asymptotic stability; Lyapunov st ab iii t y essentially prohibits local "drift" away 
from the stationary state in question, while asymptotic st ab iIi t y essentially requires a local 
"pull" towards the state, see e.g. Hirsch and Smale (1974) for definitions. 
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i = v) are non-extinct in a Lyapunov stable population state, then these 
sub-populations play some Nash equilibrium against each other. Formally: 

Proposition l If p E L: is Lyapunov stable in the replicator dynamics on 
L: and pT,pl/ > O, then (pTI/,pVT) E Ll2 is a Nash equilibrium ofG. 

Proof: Suppose p E L: is stationary with pT, pV > O, and suppose pTI/ E Ll 
is not a best reply (in G) to pI/T E Ll. Then some strategy i E I in the 
support C(pTI/) C I earns a suboptimal payoff against pI/T. Let A E H 
be any character (i, <p) with <p( v) = i and P>. > O (such a A exists since 
pT > O and p[1/ > O). Let K E H be a character (i, 1/;), where 1/;(v) E j3(qI/T) 
and "p(w) = <p(w) Vw E T, w '# v. In other words, character K plays a 
best rep ly against the type-v sub-population, hence earning a higher payoff 
than character A in such encounters, and otherwise K plays exactly like A. 
Since pl/ > O, we thus have v(eK - e\p) > O. By stationarity of p>. > O, 
v(e>'-p,p) = O, so v(eK-p,p) > O, implyingpK = O bystationarity. However, 
by continuity of v, qK = v( eK - q, q )qK > O for all interior population states q 
in some neighborhood of p. Hence, p is not Lyapunov stable in the replicator 
dynamics on L: .• 

In other words, even when allowing for all possible behaviors, and not just 
fixed strategies, evolution selects, in so far as (Lyapunov) stable outcomes 
are concerned, behavior which is "rational" and "coordinated" in the sense 
of Nash-equilibrium play between all sub-populations. As a consequence, 
(Lyapunov) stable aggregat e behavior is always some convex combination of 
Nash equilibrium play. That the con vers e is not generally true, i.e., that cer­
tain convex combinations of Nash equilibria may be dynamically unstable, 
is seen in the co-ordination game in Figure 3 (a) above. The mixed-strategy 
Nash equiIibrium strategy x E Ll in this game is to randomize with prob­
abilities 1/3 and 2/3, respectviely, and it is well-known from the literature 
on standard evolutionary games that this state is unstable in the replicator 
dynamics. (To see this, let (J' be the stationary state in which the population 
sh are playing strategy 1 is 1/3 and the population share playing strategy 2 
is 2/3. Then a slightly higher share of players using strategy 1 gives these 
a higher than average payoff, and so their population sh are increases, im­
plying the instability of (J'.) As a consequence, this state is uns table als o in 
the present setting, since with only one type, T = {l}, we are back in the 
traditional set ting. 
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A related result for standard evolutionary games is that if an interior 
dynamic solution path x(t) to the replicator dynamics converges over time, 
then the limit state y E ~ is a best rep ly to itself, i.e., then (y, y) consti­
tutes a Nash equilibrium of G (Nachbar [11]). The generalization of this 
result is straight-forward: if an interior dynamic solution path p(t) to the 
replicator dynamics on L: converges over time to some state q E L:, and if 
sub-populations r and 11 (possibly r = 11) are non-extinct in that limiting 
state, then they play a Nash equilibrium against each other. Formally: 

Proposition 2 If an interior dynamie solution path to the replicator dyna m­

ics converges to a state p E L: with p", pV > O, then' (pTV,pVT) E ~2 is a Nash 
equilibrium of G. 

Proof: Suppose p(O) E int(L:), p(t) -+- p, and pT,pv > O. Suppose 
pTII E ~ is not a best reply (in G) to pliT E ~. Then some strategy i E I 
in the support C(pTII) C I earns a suboptimal payoff against pVT. Just as 
in the proof of Prop.1, let A E H be any character (r, <p) with <p(II) = i 
and PA > O, and let K E H be a character (r, 1/;), where 1/;(11) E {3(pVT) and 
1/;(w) = <p(w) Vw E T with w =j:. 11. Since pli > O, we thus have v(e'" - eA,p) > 
O. The limiting state p is stationary by continuity of v, and pA > O, so 
v(eA - p,p) = O. Hence, v(e'" - p,p) > 0, implying p'" = O by stationarity. 
By continuity of v, ej,.. = v(e" - q, q)q" > O for all states q E int(L:) in some 
neighborhood of p. Thus the coordinate p,..(t) does not converge to zero along 
the path p(t), a contradiction to p" = O. Hence, pTV E {3(pVT) .• 

Samuelson and Zhang [16] have shown that the replicator dynamics, in 
the standard (two-population) setting of evolutionary game theory, wipe out 
all non-rationalizable strategies, irrespective of whether the population state 
converges or not. More exactly, if a strategy i E I is not rationalizable, 
then its population share converges to zero in the continuous-time replicator 
dynamics on ~, from any interior initial state. In particular, all strictly dom­
inated strategies vanish. However, the same is not true for weakly dominated 
strategies, an issue addressed in Samuelson [15], where it is shown that a vari­
ety of evolutionary selection dynamics, including the replicator dynamics, do 
not eliminate such strategies. This observation has an important implication 
for the present generalized setting, since if there is more than one type in the 
population, then any strategy i E I which is strictly dominated in the orig-
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inal game G is only weakly dominated in the expanded game g. 5 Therefore 
we cannot invoke Samuelson's and Zhang's [16] result to prove that strategies 
i E I which are strictly dominated in G will be wiped out in the replicator 
dynamics on the strategy space L of the expanded game g. However, in all 
examples in [15], the survival of weakly dominated strategies is due to the 
fact that the strategies against which they fare badly vanish. Indeed, one 
can show that if a pure strategy i E I is weakly dominated by some strategy 
m E Ll, and sub-population i does not vanish over time, then it must be the 
case that all sub-populations j against which m is better than i vanish(see 
Appendix) In force of this result , we have 

Proposition 3 If strategy i E I is non-rationalizable in G, then the product 
piv • pV converges to zero over time along any interior solution path to the 
replicator dynamics, VT, 11 E T. 

Pro or: Suppose first that strategy i E I is strictly dominated by m E Ll 
in G. For any types T,1I E T, let Hrv = {x; E H : x; = (T,rp) for some 
rp E F such that rp( 11) = i} and HV = P E H : A = (II,1/;) for some 1/; E F}. 
Then piv is the sum of all PK with x; E Hrv and pV is the sum of all PÅ with 
A E HV. From now on, fix any character x; = (T, rp) E Hrv and let O' K E L be 
such that, for each j E C(m), the sum of O'K(T, 1/;), over all1/; E F such that 
1/;(11) = j and 1/;(p) = rp(p) Vp =111, is mj' In other words, the mixed strategy 
O' K in the expanded game g assigns zero probability to all pure strategies 
A = (p,1/;) E H which have types p =I T and/or have behaviors 'IjJ which differ 
from rp when meeting individuals of types p =I 11 and/or have behaviors 
1/; which play strategies j E I outside the support of m E Ll. Moreover, 
O'K randomizes the behavior against type 11 in such away that the induced 
distribution over the pure strategy set I coincides with that of m E Ll. It 
follows that x; E H is weakly dominated by O' K E L (because x; does worse 
than 0'1( against pure strategies A E HV and does equally weIl against all other 
pure strategies A E H). Formally, V(O'K - el(, eÅ) > O VA E HV and V(O'K - e\ 
eÅ) = O VA tt Hv. By the proposition in the Appendix, PI((t)PÅ(t) -+ O as 
t -+ 00, VA E Hv, Summing over all A E HV, we get Pl((t)~(t) -+ O. This 

SThis is so because in the present setting a pure strategy, i, in the underlying game is 
only part of the pure strategies in the expanded game. In particular, there are individuals 
who in the expanded game use strategy i against some opponents and other strategies 
against others. 
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is true for any K, E HIll, so we may also sum over all K, E HIll, yielding 
pill(t)pll(t) -+ O as t -+ +00. 

It follows that af ter a sufficiently long time interval, the game will be 
played arbitrarily elose to how it would have been played, had every strictly 
dominated strategy been eliminated from game G. Hence, if a strategy i E I 
is not strictly dominated in G but in the game G' obtained when all strictly 
dominated strategies have been eliminated, then the above logic implies, by 
continuity of v, that the product p[lI(t)pll(t) vanishes as t -+ +00. Indeed, 
this result holds for all strategies i E I which do not survive the iterated 
elimination of strictly dominated strategies, a criterion which is equivalent 
to being non-rationalizable in two-person games, thereby establishing the 
claim in the proposition. I 

The above result says, inter alia, that the ex amples mentioned above 
(Robson [14]; Banerjee and Weibull [1] and Banerjee and Weibull [2]) in an 
essentiai way depend on the incompleteness of the population. To see this, 
let Zi be the share of matchings at which strategy i E I is used in any interior 
population state p E L : 

Zi = L pT[L pillpll]. 
TET ilET 

Hence z = (Zt, ... , Zk) E 6 and any interior dynamic path p(t) on L 
induces an associated dynamic path z(t) on 6. The following result is an 
immediate implication of Proposition 3: if strategy i E I is non-rationalizable 
in G, then Zi(t) -+ O as t -+ 00, along any interior solution path p(t) to the 
replicator dynamics. 

5 Limit results 

We here investigate the limiting properties of the set of payoffs in station­
ary and Lyapunov stable states, respectively, as the number of types tends 
to infinity. Af ter all, it is usually not a priori evident how many types one 
should naturally assume in a given modelling con text, and even the set T 
of types could itself follow some evolutionary process over time. Our first 
result establishes that the set of stationary payoffs expands towards a limit 
set Voo which is a dense subset of the set UNE of "symmetric convex combi­
nations" of Nash equilibrium payoffs in the underlying game G. The second 
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result establishes that the subset of Lyapunov stable stationary payoffs has 
a limit set Woo C Voo which is a proper, not dense, subset of the set UNE. 

In order to make precise these claims, some more notation is needed. 
First, let N E( G) C ~ 2 be the set of Nash equilibria of G. Recall that there 
exists at least one symmetri c Nash equilibrium. Let (m, m) E ~2 be such. 
Let WNE C R2 be the set of Nash equilibrium payoff pairs, and let D C R2 
be the diagonal in R2 (i.e., D = {(x,x): x E R}). The set W NE is compact, 
symmetric around D, and, as just noted, contains at least one point (u m , u m ) 

in D (where um = u(m, m)). Let W SNE be the (nonempty) intersection 
of the convex hull of WNE with D, i.e., WSNE = co(WNE) n D. Then 
WSNE = D n [y, u] for some y, u E R with y :5 um ::5 u. Let UNE = (y, u], 
i.e., UNE is the set of "symmetric convex combinations" of Nash equiIibrium 
payoffs mentioned above. 

Turning to the expanded game g, we first observe that stationarity in 
the replicator dynamics requires all individuals in the population to earn the 
same payoff. Let V C R be the set of payoffs compatible with stationarity 
in a given expanded game g. (More exactly, w E V iff w = v(p,p) for some 
stationary state p E E.) Clearly the set V depends on the set T of types only 
via the cardinality of T; if #S = #T then the associated sets V coincide. 
Hence, without ambiguity we may write lik C R for the set of stationary 
payoffs in any expanded game g of the same underlying game G, with k 
types. 

Proposition 4 The sequence of payoff sets lik is (weakly) increasing towal'ds 
a limit set Voo which is dense in UNE. 

Proof: It is evident that the sequence of set s VIe is (weakly) increasing, 
since, when going from k to k + l types one can always let the k "old" types 
be present in the same population shares and "behave" as before and let 
the population sh are of the "new" type be zero. Moreover, all sets Vk are 
subsets of the image of the compact set ~2 under the continuous function 
u, and so the sequence has a limit ("its smallest upper bound"), which we 
denote Voo • Clearly um E UNE belongs to each set VIe; just let every type use 
only constant behaviors such that the population shares accross strategies is 
identical with the Nash equilibrium strategy m E ~. Then all individuals 
use pure strategies in the support of m and meet m, and so earn the same 
(average) payoff, implying stationarity. Now consider any point w between 
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um and ii, or between y and um. Then w is a convex combination of um 

and ii or y, with weight A E (0,1) attached to il or y, as the case may be. 
By having sufficiently many types in the expanded game, one can obtain a 
stationary payoff corresponding to a rationai ~ E (O, 1) arbitrarily elose to A, 
thus establishing the denseness of Voo in UNE. 

The logic is the same in both cases, so suppose for the sake of definiteness 
that it is il which is the second payoff. By definition of UNE, there exists 
strategies x and y in ~ such that (x, y), (y, x) E N E(G) and ii = [u(x, y) + 
u(y, x )]/2. For any t: > O there exists some ~ = s/ k E [0,1] within distance t: 

from A such that s is even and k ~ s + 1. Let there be k types in T, and place 
all types around a cirele. Let each typ e l' E T play m E ~ against its own 
type, x E ~ against its s/2 nearest "clockwise neighbor" types on the cirele, 
y E ~ against its s /2 nearest "counter-clockwise" neighbors, and m against 
all k - s-l other types on the circle. Then all types play Nash equilibria 
with each other, and all individuals in the population earn the same (average) 
payoff[l·um+~·u(x,y)+~.u(y,x)+(k-s-l)·um]/k = ~.um+(l-~)'ii. I 

The finding (Proposition 1) that Lyapunov stability implies Nash equi­
librium play within each sub-population l' E T, as weIl as between any two 
sub-populations 1', v E T, has the immediate implication that all individuals 
in any stationary Lyapunov stable state earn the same payoff and that this 
payoff belongs to UNE. Let Wk C UNE denote the subset of payoffs com­
patible with Lyapunov stability in an expanded game g with k types. (Le., 
w E Wk iff w = v(p, p) for some Lyapunov stable state p E ~.) The following 
result establishes that, as the number k of types increases towards infinit y, 
the Lyapunov stable payoff set Wk converges towards a limit set Woo C UNE 

(in a sense to be made precise below). Moreover, the limit set Woo may be a 
propersubset of UNE in the strong sense that it differs from UNE by at least 
some interval of positive length. (In particular, WOO is not necessarily dense 
in UNE.) 

In order to establish this elaim, we treat the possibility of minimax Nash 
equilibria sepårately. For this purpose, let U o E R be the minimax payojJ in 
G and let ~o C ~ be the (nonemtpy) set of minimax strategies in G, i.e., 

Uo = mm max u(x,y) 
ye~ xe~ 

and ~o = {y E ~ : u(x, y) :::; U o "Ix E ~} . Clearly no Nash equilibrium 
payoff is lower than the minimax value: U o :::; y. Let Wk+ = Wk n (uo , +00). 
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Proposition 5 The sequence of payoJj sets W.: is (weakly) increasing to­
wards a limit set in UNE. If there is at most one Nash equilibrium in G with 
payoffs (uo, uo), then Wk -+ woo C UNE. There are games G such that UNE 
contains an interval disjoint from woo. 

Proof: We first establish W[ C W':+ l Vk, where each set W[ C UNE is 
a subset of the image of the compact set ~2 under the continuous mapping 
u, and hence the sequence (W':)k_oo has a compact upper bound and thus 
converges to some subset of UNE ifthe sequence {W,:} is (weakly) increasing. 

For any number k of types, let Hk be the set· of characters, Fk the set 
of behaviors, and Lk the unit simplex, in the associated expanded game 9 
. Suppose p E Lk is Lyapunov stable in the replicator dynamics on Lk and 
w = v(p,p) > uo• Then every '" E Hk with PK > O earns w, i.e., v(e",p) = w, 
by stationarity. Given such a state P E Lk one may identify an associated 
state q E Lk+l in the game 9' with one more type r', a state which is 
Lyapunov stable in the replicator dynamics on Lk+! and has average payoff 
w, as follows. When this is done, the claim W.: C Wktl has been established. 

For this purpose, let m E ~o be aminimax strategy in G, and let T' = Tu 
{r'}, where #T = k and r' tf:. T. We say that a char act er A = (v,'I/J) E Hk+! 
agrees with a character", = (r,<p) E Hk if v = r and 'I/J(v) = <p(v) Vv E T. 
For each A = (v, 'I/J) E H k+l with v E T there exists preciselyone '" = (r, <p) E 
Hk with which A agrees. Denote this "'(A). Define the state q E Lk+l by 
letting, for each A = (v,'I/J) E Hk+l with v E T, q>. = miPK(>.) if 'I/J(r') = i, 
and, for each A = (v,'I/J) E Hk+l with v tf. T, q>. = O. In other words, 
sub-population r' is extinct in state q E Lk+l and all other sub-populations 
behave against each other precisely as in state P E Lk and they all minimax 
individuals of the "new" type r', if these would appear. Hence, the average 
payoff v(q, q) in state q E Lk+l is w. Moreover, q is Lyapunov stable. To 
see this, note that any "pure strategy" A E Hk+l of type r' earns less than 
w in state q : v( e>' - q, q) :5 U o - w < O VA E H7'. By continuity of v, this 
inequality holds for all P E Lk+l in some neighborhood of q. Thus, 'fiA < O 
for all A E H7' in this neighborhood. Since by hypothesis the state q E Lk+l 
is Lyapunov stable relative to the boundary face where q>. = O, V A E H7', q 
is Lyapunov stable in the full replicator dynamics on Lk+l' 

If Uo tf. U N E, then, by Prop.1, Wk+ = Wk for all k, since then (uo, uo) tf. 
WNE, and so the limit woo exists. If, on the other hand, Uo E UNE, then 
Uo = u(m,m) for some Nash equilibrium (m,m) E ~o, and (uo,uo) cannot 
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be obtained as the convex combination of Nash equilibria with other payoffs. 
Suppose U o f/:. Wk for some k, i.e., every corresponding population state 
p E ~k is unstable, and suppose also U o E Wk+l, i.e., some corresponding 
population state q E ~k+l is Lyapunov stable. However, by stationarity, 
all individuals in q earn uo , and, by Prop.l, all present types play some 
minimax Nash equilibrium strategy against each present type. If the number 
of present types is less than k + 1 we have a contradiction to the hypothesis 
that all corresponding population states p E ~k are unstable. If the number 
of present types is k + 1, we again have a contradiction, since if every type 
plays some minimax Nash equilibrium strategy against each type, we could 
take away one type and re-scale all k remainin subpopulation distributions 
accordingly, without loosing stability, thus creating a Lyapunov stable state 
p E ~k with payoff uo.6 

The possibility of the existence of an interval (a, b) C R which is disjoint 
from WOO and yet is a subset of UNE follows from the example given below .• 

Consider the co-ordination game in Figure 3 (aJ played by two types, 
T = {1,2}. Let p E L: be a stationary state with a payoff slightly above 1. 
Such a state p can be generated in only two distinct ways: either at least one 
type plays the "good" Nash-equilibrium strategy 1 against itself, or each type 
plays this strategy when meeting the other type. In the first case, the type 
playing the "good" equilibrium strategy with itself can" invade" the popu­
lation, and thus destabilize the state p. In the second case, a small invasion 
by a population consisting of 50% of each type can "invade." Therefore, no 
stationary state which has a payoff slightly above 1 is stable. In contrast, 
both the "good" (strict) Nash equilibri um payoff 2 and the "bad" (strict) 
Nash equilibrium payoff 1 are always Lyapunov stable, irrespective of the 
number of types. This follows immediately from the well-known ract that 
every strict equilibrium is an asymptotically stable population state in stan­
dard evolutionary dynamics (see e.g. Samuelson and Zhang [16]), combined 
with the monotonicity propert y established in Proposition 5. 

However, there are games in which a unique Pareto dominant (but non­
strict) Nash equilibrium is unstable. An example is given in Figure 4. Here 
lY E (0,1), j3 E (0,1 - ~) and I 2: O. The three first rows and columns to-

6The so-called Hawk-Dove game is an example of a game in which a minimax Nash 
equilibrium payoff is stable in the case of one type and unstable in the case of two or more 
types. A demonstration of this is available from the authors upon request. 
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get her constitute a generalized Rock-Paper-Scissors game which has a unique 
Nash equilibrium, and in this equilibrium both players randomize uniformly 
over the three strategies, and each player obtains the payoff l -~. It is 
well-known that this equilibrium is unstable in the usual single-population 
replicator dynamics (see e.g. Hofbauer and Sigmund [9] or Weibull [20]). For 
nonnegative values of i, this "Rock-Papers-Scissors equilibrium" remains a 
Nash equilibrium in the full game in Figure 4. However, the full game has 
two more Nash equilibria, each of which is symmetric. One is the strict equi­
librium in which both players use only strategy 4, resulting in payoff j3 to 
both players - by hypothesis a lower payoff than in the "Rock-Papers-Scissors 
equilibrium". The third Nash equilibrium is completely mixed and its payoff 
can be made arbitrarily low by choosing i sufficiently large. However, the 
unique Pareto-dominant Nash equilibrium, giving payoff 1- ~ to each player, 
is not Lyapunov stable, for any number of types. For if p E E is a stationary 
population state with this payoff, then all individuals in the population earn 
the same payoff and all types play the" Rock-Papers-Scissors equilibrium" 
with all types. When a type meets itself, the situtation is exactly as in 
the usual single-population case, and thus the state is unstable with respect 
to pairwise matchings within each type. When two different types meet, 
the situation is the same as in the two-population case (cf. Hofbauer and 
Sigmund [9]). But instability in the single-population dynamics implies in­
stability in the standard two-population dynamics. Thus, no stationary state 
which produces the Pareto-dominant Nash equilibrium payoff is Lyapunov 
stable in this example. 

2-0 
l 
O 
-i 

o 
2-0 

1 
-i 

Figure 4: An enlarged "Rock-Paper-Scissors" game. 
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6 Concluding discussion 

The results presented in the preceding sections evidently depend, inter alia, 
on our choice of solution concept. For the most part, we have used Lyapunov 
(or weak) stability as a criterion for selection among stationary population 
states in our evolutionary model of discriminating behaviors. This dynamic 
criterion is weaker than the maybe more familiar criterion of asymptotic sta­
bility which in essence requires that the state have a bas in of attraction which 
contains some neighborhood of the state. For unlike asymptotic stability, 
Lyapunov stability allows for the absence of a local "pull" back towards the 
state in question, so such a state may even have an empty basin of attraction. 

Hence, one might wish to use a stricter dynamic solution criterion than 
Lyapunov stability. However, asymptotic stability has too mu ch cutting 
power in the present con text , since there may be many stationary states 
in which several types of player occupy exactly the same role in the sense of 
having the same behavior (rule to select a strategy against an opponent) and 
receiving the same responses from opponents. As a result, the population 
shares of these types can be altered without altering the outeorne, implying 
that such stationary states cannot be asymptotically stable. 

An interesting alternative dynamic solution concept is set-wise asympfotic 
stability. In essence, a set of stationary states is asymptotically stable if it has 
a basin of attraction which contains a neighborhood of the set. (See Swinkels 
[18] and Ritzberg and Weibull [13] for applications of such criteria to standard 
evolutionary game theory.) Applying this criterion to the co-ordination game 
of Section 2, it turns out that the (Lyapunov stable) "bad" (strict) Nash 
outcome can be eliminated. To see why this is the case, suppose P C I: is 
an asymptotically stable set of stationary states yielding the inefficient Nash 
equilibrium payoff 1, then all individuals have to play the "bad" strategy 2 
against each other. If the set P is nonempty, then the stationary state po in 
which one type is absent and all other types play the "bad" strategy against 
all types must be in P (since the vector field vanishes on the straight line 
connecting this state with any other state in P). But we know that if one 
type is absent in an inefficient stationary state, there is a tendency to move 
away from this state towards higher efficiency. (For instance, individuals of 
the absent type can "invade" the state po by playing the" good" strategy l 
with each other and strategy 2 with all other types.) So the set P is not 
asymptoticall stable in any version of the co-ordination game with at least 
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two types. 
An argument for efficiency in co-ordonation games, very similar in spirit 

to the one given above, has recently been suggested in Kim and Sobel [10]. 
In that paper (of which we were unaware when we first wrote this paper), 
they apply a formal framework very similar to the one we set up in Section 3 
to the study of pre-play communication in co-ordination games (or, in their 
terminology, common interest games). However, unlike us, they do not ex­
plicitly model the dynamics of an evolutionary process, but instead adopt 
a static evolutionary solution concept recently suggested by Swinkels [17), 
called equilibrium evolutionary stability (EES). This concept differs from the 
more standard concept of evolutionarily stable strategies (ESS) in being a 
set-wise solution concept (like set-wise asymptotic stability ) and in essentially 
requiring immunity only against invading populations which themselves are 
in (Nash) equilibrium (see Swinkels [17J for details). However, when one 
studies the inefficient outcome in co-ordination games, such invadors are eas­
ily produced since the potential invaders play the efficient Nash equilibrium 
strategy. Along these lines, one can show that the inefficient Nash equilib­
rium does not belong to an EES set. In fact, the argument is more or less 
exactly as above; if the inefficient equilibrium is to belong to an EES set 
then this set must also contain an equilibrium in which strategy 2 ("bad") 
is played but where there is an unsent message (the equivalent of an absent 
type in our framework), and this unsen t message can be used to destabilize 
the inefficient outcome. 

Kim and Sobel {lOJ are actually able to get an even stronger result. They 
show that all EES outcomes of a co-ordination game are Pareto efficient. The 
use of such set-valued stability concepts may thus provide powerfu'l tools for 
eliminating inefficient equilibria. However, we feel that the embodied argu­
ment for elimination is not entirely convincing. Af ter all, while it is true that 
the "bad" Nash equilibrium outcome in a co-ordination game (such as the 
one in Fig.3 (a)) does not meet set-valued stability criteria, it is nevertheless 
both Lyapunov stable and has a nonempty basin of attraction. Hence, it 
is in fact a possible long-run outcome of the evolutionary process in some 
situations. 7 

7Por example, let the initial population state be such that each typ e has only two 
(constant) behaviors, viz. play of either strategy 1 ("good") or 2 ("bad"), respectively, 
against all types. If the population share of each type playing" good" is sufficiently small, 
the population state will converge towards the stationary state in which all individuals 
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Kim and Sobel [10] provide a dynamic heuristic for the fact that the 
(static ) EES-criterion eliminates the inefficient Nash equilibrium outcome 
along the following lines: there may be some "drift" within the EES set 
which leads away from this out come towards a similar outcome with an un­
sent message, but this latter outcome is (as argued above) unstable. However, 
such an idea of "drift" implicitly refers to some dynamics which is not ex­
plictly modelled. One cause for such "drift" could be (small) costs associated 
with types and/or with the capacity to distinguish types. In fact, one can 
provide a cost-based story which, within a purely static evolutionary frame­
work similar to that of Kim and Sobel [10], destabilizes the inefficient Nash 
equilibrium in the co-ordination game. 

To see this, let, from now on, each individual be distinguished not only, 
as in Sections 3-5 above, by his type l' and behavior <p, but also by his par­
titioning 'Jr of the set T of types. We formalize the notion that an individual 
cannot discriminate among types within cells of his partitioning by requiring 
that his behavior be constant on each cell of 'Jr (i.e., <p has to be measurable 
with respect to 'Jr). We now call a tripiet consisting of a typ e 1', a behavior 
<p and a partitioning 'Jr, a (generalized) character. 

Furthermore, suppose each type l' carries a different cost and that a 
partitioning with more cells costs more than a partitioning with fewer cells. 
We in fact only need (a) that there be at least two types which are more 
costly than the least costly type, and (b) that the (degenerate ) partitioning 
with the full set T as its only cell costs less than all other partitionings (i.e., 
that there is a cost associated with the capacity to discriminate at all). Both 
these requirements would seem to be generically met in any realistic setting. 

Both kinds of costs, i.e., the ones associated with being a type and with 
distinguishing types, respectively, are assumed to be lexicographically smaller 
than the payoffs of the underlying game. This allows us to employ the mod­
ified version of the ESS criterion, called MESS, suggested in a different ev 0-

lutionary context in Binmore and Samuelson [5]. A strategy (f E L in our 
expanded game g is a MESS if, for any other strategy /-l E L: either (f is a 
better reply than /-l to (f, or, if /-l is as good a reply against (f as (f is to itself, 
then (f is a better reply to /-l than /-l is to itself, or, if /-l is as good a reply to 
(f as (f is to itself and (f is as good a reply to /-l as /-l is to itself, then (f should 
not be more costly than /-l. 

play" bad" against each other, just as in the standard evolutionary game theory setting. 
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Note that a MESS strategyaE 2: is a neutrally stable strategy (NSS) in 
the game g , and therefore it is Lyapunov stable in the replicator dynamics on 
2:.8 We c1aim that in a co-ordination game of the kind discussed in Section 
2 above there is no MESS in which only the "bad" strategy 2 is used. For 
if all types were to play the same strategy (2) against each other, then no 
(generalized) character which distinguishes between any two types could be 
present, since the state could then be invaded by a char act er which differs 
only by not making that distinction and hence is less costly. Therefore, all 
individuals in the population must have the whole set T as the only cell in 
their partitioning (just as in standard evolutionary game theory). But then 
carrying a type which is more costly than the least costly typ e is useless, since 
nobody makes any distinction in his behavior. Hence, all players have to be of 
the least costly type, which we may caU type l without loss of generality (and 
we are completely back in the standard set-up of evolutionary game theory). 
However, if this were the case, then a new type could enter which would 
play strategy 2 against typ e l and strategy l against itself, and so earn more 
than all other players (by the lexicographic ordering of costs below payoffs). 
Hence, there is no MESS in which only the inefficient Nash equilibrium is 
played. 

We finally note that with such costs as indicated above, there exists no 
MESS in games of the Prisoner's Dilemma variety. In fact, this non-existence 
applies to any game whic~ has a Nash equilibrium which is unique, pure, 
symmetric and Pareto dominated by another (possibly mixed) strategy com­
bination. To see that there is no MESS in such a game, recall that a MESS 
is a NSS, and a NSS is a Lyapunov stable state, and hence every present 
type must playa Nash equilibrium with every present type, by Proposition 
1. Hence, all individuals play the unique Nash strategy of the game G. By 
the same argument as given above concerning co-ordination games, only the 
least costly type, "type l ," will be present, and no one will discriminate 
against anyopponent. We now distinguish between two cases, one in which 
the dominating outcome involves some strategy x E ~ played against itself 
and one in which the dominating outcome involves two strategies, x' and x", 
played against each other. In the first case, an absent type playing x against 

8 Neutral stability is the weakening of evolutionary stability that one obtains if the strict 
inequality in its definition is replaced by a weak inequaJity. Moreover, neutral stability 
impJies Lyapunov stability in the replicator dynamics, see WeibuU (1992). 
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itself and the Nash strategy against type 1 can invade. In the second case, 
two absent types, each playing the Nash equilibrium strategy against its own 
typ e and x' and x" against each other, respectively, can invade. In either 
case, there is no MESS. 

Kim and Sobel [10] avoid this kind of instability by requiring that the 
invader should playan equilibrium strategy. This idea, due to Swinkels [17], 
is certainly an elegant way to restore existence. However, it seems unclear 
whether this is the most insightful route. We do feel that there is a real 
tendency towards efficiency in evolutionary games, and that this tendency 
sometimes conflicts with the Nash equilibrium logic, generating instances of 
non-existence. To recognize this conflict and to take to heart its implications 
may be more instructive than to rule out the possibility. 

Appendix 

Proposition: If a strategy i E I is weakly dominated by som e strategy 
x E ~ , and u(x, ej) exceeds u( ei , ej), then Xi(t)Xj(t) -+ O along any interior 
solution path to the replicator dynamics. 

Proof: Define w : int(~) -+ ~ by w(x) = -ln(xi) + Lj=1 Xj ln(xj). 
Clearly w is continuously differentiable, and w(x(t» = u(x, x(t») - u( ei , x(t» 
Vt. Since x weakly dominates i, and x(t) is interior, w(x(t) increases mono­
tonically over time. Suppose Xj(t) does not converge to zero. It suffices 
to show that w( x( t» then increases without bound, since the latter implies 
Xi(t) -+ o. LetS = u(x-ei, ej), a positive number. Let z = (x-xjej )/(l-xj), 
and note that z E ~ and x = (1 - Xj)z + xje j . By bi-linearity of u, 
w(x(t» = (1 - Xj)u(x - ei , z) + Xju(x - ei , ej). Both these terms are non­
negative, so 

lim sup w(x(t» ~ S . lim sup Xj(t) 
t-oo t-oo 

If w( x( t» were bounded, then the lejt hand side would be zero, a possiblity 
which is excluded since Xj(t) does not converge to zero. Hence, w(x(t» -+ 00. 
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