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1 Introduction

Neeman (2004) and Heifetz and Neeman (2006) have drawn attention to the so-called
BDP property and the role this property plays in mechanism design models with corre-
lated values. The label "BDP" - beliefs determine preferences - refers to the fact that, if
this property holds and if one knows an agent’s beliefs, then one also knows his prefer-
ences. They show that this property underlies the findings of Crémer and McLean (1988)
or McAfee and Reny (1992) that correlations of agents types can be used to eliminate in-
formation rents. In Crémer and McLean (1988) or McAfee and Reny (1992), differences
in an agent’s beliefs about the other agents’ characteristics induce differences in attitudes
towards state-contingent payment schemes; such schemes are then used to screen agents
in order to extract rents. Such rent extraction is necessarily incomplete if there are differ-
ent states of the world in which an agent has different payoff parameters and the same
beliefs.1

Heifetz and Neeman (2006) suggest that the set of incomplete-information models
having the BDP property is a negligible subset of the set of all incomplete-information
models that are consistent with common priors.2 Their suggestion is based on the view,
that, in a model with private values, the preferences of an agent can be specified indepen-
dently of his beliefs about other agents (Heifetz and Neeman (2006), p. 215).

We want to take issue with this view. In a common-prior setting, beliefs are the re-
sult of agents conditioning their expectations on whatever information they have. This
information includes their own preferences. The view that preferences and beliefs can be
specified independently presumes that the information that an agent has about this pref-
erences is not relevant for forming expectations about other agents’ characteristics. This
would be the case, for example, if, under the common prior, the agent’s preferences and
the other agents’ characteristics were stochastically independent. If the agent’s prefer-
ences and the other agent’s characteristics were not independent, the agent’s information

1Neeman (2004) applies this reasoning to a public-good provision problem with participation constraints.
He shows that feasible provision levels are close to zero when there are many agents and certain violations
of BDP are uniform over agents and states of the world, regardless of the number of participants. Gizatulina
and Hellwig (2010) show that such uniform violations of BDP are incompatible with the notion that, in a large
economy, individuals may be informationally small.

2Formally, they study the status of BDP models within a fixed family of incomplete-information models. As-
suming that this family is what they call "closed under finite unions", they show that, if the family contains
at least one BDP model, then within this family, failure of the BDP property is generic in a geometric and in
a measure theoretic sense. We discuss their results in Section 5.
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about his own preferences would still be irrelevant for expectations formation if this infor-
mation was redundant in the sense that it is already contained in some other information
variable that the agent also observes. Stochastic independence would be incompatible
with correlated values, the very specification that Heifetz and Neeman (2006) as well as
Crémer and McLean (1988) are concerned with. Complete redundancy would appear to
be very special.3

Even if preferences and beliefs are not specified independently, however, the BDP
property cannot be taken for granted. If beliefs are obtained by conditioning on informa-
tion and if this information includes the agent’s preferences, the question is whether the
map from information to beliefs is invertible. If it is, then the agent’s information, includ-
ing his preferences, can be inferred from his beliefs. If the map from information to beliefs
is not invertible, this inference is not possible everywhere.

There can be several reasons why the map from information to beliefs might not be in-
vertible. First, if there are many information variables and few parameters characterizing
beliefs, it may be impossible to tell which combination of information variables has given
rise to a given belief. Suppose, for example, that in an auction with two participants, an
agent observes not only the value he assigns to the object at auction but also a signal of the
value that other agent assigns to the object. With correlated private values, a given belief
that the other agent assigns a high value to the object may then be due to the fact that the
agent’s own value is high or to the fact that the agent has received an optimistic signal
about the other agent. The confounding of influences of different information variables
on beliefs makes it impossible to recover the value of any information variable from the
beliefs.

Second, even if the agent observes only the value he assigns to the object, correlations
might be such that the map from information variables to beliefs is not monotonic. In
this case, a given belief about the other agent’s valuation might be generated by different
realizations of the agent’s own valuation.

To assess whether the BDP property is negligible or not, one must consider whether a
lack of invertibility of the map from information variables to beliefs should be considered

3Redundance of information about preferences might appear to be natural in a universal-type-space set-
ting where the information on which an agent conditions is represented by his "type", a vector made up of
his preferences and his beliefs. In this framework, conditioning of beliefs on information ("type") is trivial
because the beliefs themselves are specified as part of the information. There is no account however, of what
information gives rise to the beliefs. Moreover, the assumed redundancy of information about preferences
imposes severe restrictions on the common prior.
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to be the rule or the exception. Heifetz and Neeman (2006) do not actually study this ques-
tion. When they impose a common-prior assumption, they require beliefs to be given by
conditional distributions, but they do not investigate the implications of this requirement
for their program.

This is where our paper steps in. In an abstract type space formulation, we explicitly
consider the mappings from the information variables that agents observe to their beliefs,
i.e., conditional distributions. Our main result shows that a confounding of influences of
different information variables is unlikely to occur if the set of objects about which the
agent forms his beliefs is sufficiently rich. In this case, the BDP property then is the rule,
rather than the exception.

Throughout the paper, we consider an agent’s "type" as reflecting not just his prefer-
ence parameters but also additional information variables that he may observe. We do
not limit ourselves to the "naive" type spaces considered by Crémer and McLean (1988),
where agents’ types are defined by their preference parameters only and differences in
preference parameters are the only source of heterogeneity in beliefs.

If type sets are finite, however, the same logic as in Crémer and McLean (1988) implies
that, if the cardinality of an agent’s type set is less than or equal to the product of the
cardinalities of the other agents’ type sets, then, for this agent, the BDP property holds for
an open and dense set of priors. If all agents’ type sets have the same cardinality, then, for
all agents, the BDP property holds for an open and dense set of common priors.4

Our main results concern models with a continuum of types. We treat the type ti of
agent i as a vector in Rni for some natural number ni. The vector of all agents’ types is a
vector in RN where N = ∑i ni. Priors are probability distributions on RN . We restrict the
analysis to priors for which marginal distributions of agents’ types have full supports and
regular conditional probability distributions have continuous versions. For any agent i,
such a regular conditional probability distribution is represented by a continuous function
from the space Rni of agent i’s types into the spaceM(RNnni) of probability distributions
for the other agents’ types. The topology on the space of priors is specified as the coarsest
topology under which the maps from priors to marginal distributions of agents’ types and
to continuous regular conditional probability distributions over the other agents’ types are
continuous. With this topology, the BDP property holds for any agent i on a residual set of
priors, i.e., on a countable intersection of open and dense sets of probability distributions
on RN .

4This confirms a conjecture in Compte and Jehiel (2009), p. 188.
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These results are based on an extension of the classical Embedding Theorem for con-
tinuous functions.5 An embedding of a metric space X in a metric space Y is a one-to-one
bicontinuous function from X into (a subset of) Y. The standard version of the Embed-
ding Theorem asserts that, for any natural numbers n and m, if m � 2n+ 1, then the set of
embeddings of a set X � Rn in [0, 1]m contains a residual subset of the set of continuous
functions from X into [0, 1]m. We use this theorem to show that, for any natural number n,
the set of embeddings of a compact set X � Rni into the space Y =M(Z) of probability
measures on a compact subset Z � RNnni that has infinitely many elements contains a
residual subset of the set of continuous functions from X into M(Z). The proof of this
result is based on the observation that, no matter what ni and N may be, the dimension
of M(Z) exceeds 2ni + 1.

In our setting, the Embedding Theorem implies that the set of embeddings contains a
residual subset of the set of continuous regular conditional distributions for any agent i.
Under the given topology on the set of priors, it follows that the set of priors giving rise
to regular conditional distributions that are embeddings must contain a residual subset of
the set of all priors that give rise to continuous regular conditional distributions. Because
embeddings are injective, any prior in this set exhibits the BDP property, i.e., under any
such prior, one can recover the agent’s type from his beliefs about the other agents’ types.
For any agent i, the BDP property thus holds on a residual set of priors.

Because the set of priors that satisfy the BDP property for all agents is given by the
(finite) intersection of the sets of priors that satisfy the BDP property for agent i, i = 1, ...I,
the BDP property also holds for all agents on a residual set of common priors. On the set
of common priors that have continuous density functions, the topology that yields resid-
ualness of the BDP property turns out to be the uniform topology for density functions.

In the following, Section 2 lays out the basic framework of our analysis. Section 3
introduces the BDP property and gives a few examples in order to build some intuition.
Section 4 formulates and proves our genericity results. Section 4.1 gives the result for
finite type spaces. Sections 4.2 - 4.4 give the results for continuous type spaces: Section
4.2 deals with the BDP property of a prior for a single agent, Section 4.3 with the BDP

5See Chapter V in Hurewicz and Wallman (1941). In economics, the literature on generic existence of
completely revealing rational expectations equilibria has made extensive use of Embedding Theorems; see,
in particular, Allen (1981). That literature, however, relied on Whitney’s Embedding Theorem for Cr functions
(Hirsch (1994), p. 35). Lacking the requisite differentiability properties, we use the Embedding Theorem for
C0 functions.
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property of a common prior for all agents. Section 4.4 deals with the BDP property of
common priors with continuous density functions.

The relation of our analysis to the literature is discussed in Section 5. There we show
that the difference between our analysis and the analysis of Heifetz and Neeman (2006)
is due to their considering genericity of the BDP property within a fixed family of mod-
els. If the family in question is the family of all common-prior models in the universal
type space, this approach involves no loss of generality. In finite-dimensional abstract
type spaces, however, the analysis of Heifetz and Neeman begs the question whether the
families of models within which their genericity results hold are themselves robust. In a
companion paper, Gizatulina and Hellwig (2011), we show that this is not the case. Us-
ing the results of this paper, we show there that the set of families within which the BDP
property is robust is itself a residual set in the set of all families of incomplete-information
models.

In contrast to this paper, Barelli (2009) and Chen and Xiong (2011) work with the uni-
versal type space. Barelli (2009) asserts that non-BDP models are topologically generic.
Chen and Xiong (2011) point to a flaw in his analysis and show that the BDP property
holds on a residual set of models in the universal type space. Their analysis uses the fact
that, in the weak* topology on the universal type space, models with finite type sets are
dense in the set of all models and BDP models are dense in the set of models with finite
type sets. In contrast, we do not rely on finite approximations but on embedding theorems
for continuous functions with finite-dimensional domains.

2 The Basic Framework

An abstract (Harsanyi) type space formulation of an incomplete-information model with
I � 2 agents involves a collection

T = fTi, θ̂i, π̂igI
i=1 (1)

such that, for any i, Ti is a set of abstract "types" for agent i, θ̂i is a mapping from Ti into
a set Θi of payoff parameter vectors for agent i, and π̂i is a mapping from Ti into the set
M (T�i) of probability distributions on the space T�i := ∏

j 6=i
Tj of the other agents’ abstract

types.6 For any ti 2 Ti, θ̂i(ti), the payoff type of agent i, indicates the agent’s payoff

6See, e.g., Bergemann and Morris (2005).
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parameters when his abstract type is ti; π̂i(ti), the belief type of agent i, represents the
agent’s probabilistic beliefs about the other agents’ types. Following Heifetz and Neeman
(2006), we assume that the spaces Ti and Θi are complete separable metric spaces, and
that the functions θ̂i : Ti ! Θi and π̂i : Ti !M (T�i) are continuous, where M (T�i) has
the topology of weak convergence of probability measures, i.e. the weak* topology.

In this abstract type space formulation a model exhibits the BDP property for agent i if for
any ti and t0i in Ti,

π̂i(ti) = π̂i(t0i) implies θ̂i(ti) = θ̂i(t0i). (2)

In the absence of restrictions on the mappings θ̂i and π̂i, there is no reason why this prop-
erty should hold. One expects the set of models exhibiting this property to be in some
sense negligible in the set of all models.

This conclusion cannot be taken for granted, however, if the belief mapping π̂i must
take the form

π̂i(�) = bi(�, νi), (3)

where νi 2 M (Ti � T�i) is a prior for agent i and bi(�, νi) is a regular conditional distrib-
ution for t�i given ti that is induced by νi, i.e. a function from Ti to M (T�i) such that for
any bounded continuous function f : T�i ! R,

R
T�i

f (t�i)bi(dt�ijti, νi) is the conditional
expectation of f (t�i) given ti. Heifetz and Neeman impose this restriction with the addi-
tional requirement that νi be common to all agents.7 We shall consider both, the case of
agent-specific priors νi, i = 1, ..., I, and the case of a common prior ν such that νi = ν for
all i.

The information on which agent i conditions his beliefs includes his payoff type θ̂i(ti).
To make this dependence explicit, we find it convenient to write (3) in the form

π̂i(�) = b̂i(θ̂i(�), ŝi(�), νi), (4)

where, for any ti 2 Ti, ŝi(ti) is a vector of payoff-irrelevant information variables that
agent i observes in addition to his payoff type θ̂i(ti), and the mapping ŝi(�) takes values in
some set Si.8 In this formulation, the underlying type space Ti matters only to the extent

7Dekel, Fudenberg, and Morris (2006) suggest that, in a non-common-prior environment, the approach of
Heifetz and Neeman would not even be well defined.

8This is without loss of generality. Any model fTi, θi, πigI
i=1 can trivially be rewritten in the form

fT̂i, θ̂i, π̂igI
i=1 where T̂i = Θi � Ti, θ̂i is the projection from Θi � Ti to Θi, and, with ŝi given as the projec-

tion from Θi � Ti to Ti, π̂i satisfies (4). In this formulation, the original type space Ti itself is interpreted as a
space of signals on which expectations are conditioned. For a discussion in the context of the universal type
space, see Section 5 below.

7



that ti affects the payoff type θ̂i(ti) and the information vector ŝi(ti). Therefore there is no
loss of generality in identifying abstract types with pairs of payoff and signal vectors and
writing

Ti = Θi � Si, (5)

with the understanding that, for any ti 2 Ti,

ti = (θi, si) implies θ̂i(ti) = θi and ŝi(ti) = si, (6)

i.e., the maps θ̂i(�) and ŝi(�) are the projections from Ti to Θi and Si. The representation (1)
of the incomplete-information model then takes the form

T̂ = fTi, π̂igI
i=1 = fΘi � Si, π̂igI

i=1, (7)

with the understanding that payoff and information mappings are the projections and
that belief mappings satisfy (4) for some prior νi. In this formulation, the beliefs

π̂i(ti) = b̂i(θ̂i(ti), ŝi(ti), νi) = bi(ti, νi) (8)

of agent i concern the pairs tj = (θ̂j(tj), ŝj(tj)), j 6= i, of the other agents’ payoff and
information vectors.9

As is standard for abstract type space formulations and is proved in the Appendix to
Heifetz and Neeman (2006), the mapping π̂i(�) = bi(�, νi) can be used to build an infinite
hierarchy of beliefs of i about the distribution of θ�i, the joint distribution of θ�i and the
other agents’ beliefs about preferences, etc. The abstract type space can thus be mapped
into the Θ-based universal type space of Mertens and Zamir (1985). If there is a common
prior, i.e., if the priors νi are all the same, the universal type space image of the abstract
type space model must have the prior assign all probability mass to a belief-closed subset
of the universal type space with the additional property that the belief of any type must
correspond to the value of a regular conditional distribution given the information that
this type has.

9A formulation with conditioning on other information variables, in addition to payoff parameters, was
previously proposed by Compte and Jehiel (2009), p. 188.
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3 The BDP Property

3.1 Definition

Heifetz and Neeman (2006) study the question what can be said about the set of models
having the BDP property as a question about agents’ priors. We shall do the same but we
shall use a slightly different formulation.

Given a prior ν on the set T :=
I

∏
j=1

Tj, we say that the marginal distribution for the type

ti of agent i has full support if the support of this marginal distribution is Ti.

DEFINITION 3.1 For any i, let ν be a prior on T such that the marginal distribution for ti has
full support and, moreover, there exists a continuous regular conditional distribution π̂i for t�i

given ti. The prior ν has the BDP property for agent i if, for any ti = (θi, si) and t0i = (θ
0
i , s0i) in

Ti = Θi � Si, π̂i(ti) = π̂i(t0i) implies θ̂i(ti) = θ̂i(t0i).

DEFINITION 3.2 Let ν be a common prior on T such that, for each i, the marginal distribution
for ti has full support and, moreover, there is a continuous regular conditional distribution π̂i for
t�i given ti.The common prior ν has the BDP property if it has the BDP property for each agent
i = 1, ..., n.

In contrast to our approach, Heifetz and Neeman (2006) do not require marginal type
distributions to have full support. Instead they use a definition of the BDP property which
neglects null sets. In their analysis, a prior on the underlying type space satisfies the BDP
property for agent i if there exists a subset T̂i of the type space for agent i such that the
prior assigns probability one to T̂i and, moreover, the BDP condition (2) holds for all ti

and t0i in T̂i.
To see why we use a slightly different formulation, with a more restricted set of dis-

tributions and a stronger version of the BDP property, consider the following example:
For given i, let Θi = [0, 1], Si = [0, 1], hence Ti = [0, 1]2, and let π̂i be a continuous func-
tion from [0, 1]2 into M(T�i) that satisfies the BDP condition (2) for all ti and t0i in Ti. Let
νi 2 M(Ti) be such that νi(Θi � fsi > 0g) = 0, and let ν 2 M(T) be given by the com-
position of νi and π̂i. By construction, then, π̂i(�) is a regular conditional distribution for
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t�i given ti under the measure ν. Define a new function π̄i(�) from [0, 1]2 into M(T�i) by
setting

π̄i(�jθi, si) � πi(�j(1� si)θi, 0). (9)

for all (θi, si) 2 [0, 1]2. Because π̄i(�jθi, si) � πi(�j(1� si)θi, 0) whenever si = 0 and, more-
over, ν((Θi � fsi > 0g)� T�i) = 0, the function π̄i(�) is also a regular conditional distrib-
ution for t�i given ti under the measure ν.

The measure ν and the belief function π̄i(�) satisfy the BDP property for agent i in
the sense of Heifetz and Neeman but not in the sense of Definition 3.1. If we set T̂i =

[0, 1]�f0g, then, for the given prior ν, we have ν(T̂i�T�i) = 1 and π̄i(�jθi, si) � πi(�jθi, si)

for (θi, si) 2 T̂i. Because πi(�) satisfies the BDP condition (2) for all ti and t0i in Ti, it follows
that π̄i(�) satisfies the BDP condition (2) for all ti and t0i in T̂i, as required for the Heifetz-
Neeman definition of the BDP property. However, for every type vector (θi, si) 2 [0, 1]2,
we have π̄i(θi, si) = π̄i(θ

0
i , s0i) for all (θ0i , s0i) for which (1� s0i)θ

0
i = (1� si)θi; For every type

(θi, si) 2 Ti, there exist types (θ0i , s0i) 2 Ti such that Condition (2) is violated by (θi, si) and
(θ0i , s0i).

From a mechanism design perspective, the neglect of null sets in the Heifetz-Neeman
definition of the BDP property is unsatisfactory. A mechanism designer is constrained by
the condition that, for any ti = (θi, si) in Ti and any t0i = (θ0i , s0i) 2 Ti, there should be
no incentive for agent i with type ti to dissemble and act as if the type was t0i. If the set
TinT̂i has probability zero under the given prior, the mechanism designer need not much
care about this incentive compatibility condition for ti 2 TinT̂i. However, he must care
about the fact that the presence of types in TinT̂i affects incentive compatibility conditions
for all types in T̂i. In the example, all types in T̂i can actually mimic types in TinT̂i that
have the same beliefs and different payoffs. In particular, for any type ti = (θi, si) with
θi > 0, there is another type t0i = (θ0i , s0i) with θ0i arbitrarily close to zero so that the belief
function π̄i assigns the same beliefs to both ti and t0i. Whereas the set of mimicked types
has prior measure zero, the set of types that can mimic has full measure. If the mechanism
designer respects incentive compatibility only for ti 2 T̂i and t0i 2 T̂i, he may end up with
a mechanism that satisfies incentive compatibility for ti and t0i in T̂i but violates incentive
compatibility for ti 2 T̂i and t0i 2 TinT̂i, i.e. it may violate incentive compatibility for a full
set of types.

Underlying this discussion, there is a deeper problem: The incomplete-information
model (1) takes the belief function π̂i as a primitive, and we initially defined the BDP
property for belief functions. In focussing on priors rather than belief functions, one must
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come to terms with the fact that a given prior is usually compatible with many belief
function. Specifically, if π̂i(�) = bi(�jν) is a regular conditional distribution for t�i given ti

under the prior ν, then any function π̄i(�) such that π̄i(ti) = π̂i(ti) for ν-almost all ti 2 Ti

is also a regular conditional distribution for t�i given ti under the prior ν. Our example
shows that it is quite possible for Definition 3.1 to be satisfied when the belief function is
taken to be π̂i(�) but not when it is π̄i(�).

The Heifetz-Neeman definition of the BDP property for priors deals with this problem
by eliminating a null set of types from the analysis. This implies that, if the BDP property
in their definition holds for one regular conditional distribution, then it must hold for all
regular conditional distributions under the given prior.

Definition 3.1 deals with the problem by restricting the analysis to priors under which
the marginal type distributions have full support. The following lemma shows that, for
such priors, the requirement that belief functions must be continuous eliminates the mul-
tiplicity of belief functions that are compatible with a given prior.10

LEMMA 3.3 For j = 1, ..., I, let Tj be a complete separable metric space, and let T :=
I

∏
i=1

Ti. For

any i, let π̂i : Ti !M(T�i) be a continuous function and let νi 2 M(T) be such that (3) holds,
i.e., νi is a prior for π̂i. If the support of the marginal distribution on agent i0s types that is induced
by Fi is equal to Ti, then π̂i is the unique continuous regular conditional distribution for t�i given
ti that is induced by Ti.

Proof. If the lemma is false, there exists a prior νi 2 M(T) such that the support of the
marginal distribution on agent i0s types is equal to Ti and there exist two belief functions

10Without continuity, the multiplicity of regular conditional distributions for a given prior is even more
vexing. For an example, suppose again that Θi = [0, 1], Si = [0, 1], hence Ti = [0, 1]2. For a given prior
νi, let bi(�j�, νi) be a regular conditional distribution for t�i given ti = (θi, si) such that the BDP property in
the sense of Definition 3.1 is satisfied. Construct another regular conditional distribution for t�i given ti by
setting

b̂i(�jθi, si, νi) = bi(�jθi, si, νi) if θi 2 (0, 1], si 2 [0, 1]

and
b̂i(�jθi, si, νi) = bi(�jψ(si), νi) if θi = 0, si 2 [0, 1],

where ψ : [0, 1] ! [0, 1]2 is Peano’s space-filling function. If νi assigns measure zero to the event θi = 0, we
have b̂i(ti, ν) = bi(ti, ν) for νi-almost all (θi, si), implying that b̂i(�, νi) is indeed another regular conditional
probability distribution for t�i given ti under νi. However, for every type vector (θi, si) 2 (0, 1] � [0, 1] for
agent i, there is s0i 2 [0, 1] such that b̂i(θi, si, νi) = b̂i(0, s0i , νi).

11



b1
i (�, νi),b2

i (�, νi) be such that b1
i (�, νi) and b2

i (�, νi) are both continuous and both regular
conditional distributions for t�i given ti under νi. If b1

i (�, νi) 6= b2
i (�, νi), there exists ti 2 Ti

such that b1
i (ti, νi) 6= b2

i (ti, νi). Because b1
i (�, νi) and b2

i (�, νi) are both regular conditional
distributions for t�i given ti under νi, it must be the case that νi(ftig � T�i) = 0. Because
the support of the marginal distribution on agent i0s types is equal to Ti, it must be the
case that, for any ε > 0, νi(Bε(ti) � T�i) > 0, where Bε(ti) is an ε-neighbourhood of ti.
However, because b1

i (�, νi) and b2
i (�, νi) are both continuous, b1

i (ti, νi) 6= b2
i (ti, νi) implies

b1
i (t

0
i, νi) 6= b2

i (t
0
i, νi) for all t0i 2 Bε(ti) if ε > 0 is sufficiently small. But then, b1

i (t
0
i, νi) 6=

b2
i (t

0
i, νi) for all t0i in a set that has positive measure under νi(� � T�i). This is incompatible

with the assumption that b1
i (�, νi) and b2

i (�, νi) are both regular conditional distributions
for t�i given ti under νi.

On the domain of Definitions 3.1 there is a one-to-one relationship between priors
and belief functions. Moreover, a prior has the BDP property for agent i in the sense of
definition 3.1 if and only if the belief function has the BDP property in the sense of the
original definition.

3.2 Examples

We illustrate the BDP property by several examples.

EXAMPLE 3.4 Let I = 2, Θ1 = S2 = R, Θ2 = S1 = f0g, and suppose that ν1 is a multivariate
normal distribution. Then agent 1’s conditional expectations satisfy

E1[s2jθ1, s1] =
cov(s2, θ1)

varθ1
(θ1 � E1θ1) + E1s2. (10)

If cov(s2, θ1) 6= 0, i.e., if the signal s2 contains any information about θ1, one can infer θ1 from the
belief variable E1[s2jθ1, s1] and the parameters E1θ1, E1s2, cov(s2, θ1), varθ1 of the prior ν1. Thus,
the BDP property holds for agent 1 unless the signal s2 is uncorrelated with the payoff type θ1.
Within the set of models covered by Example 3.4, BDP is generic.

In this example, agent 2 receives a signal about agent 1’s payoff type. Knowing this,
agent 1 treats his own payoff type as a signal about agent 2’s signal. Therefore, his belief
about agent 2’s signal varies with his payoff type. The relation is monotonic, and his
payoff type can be inferred from his belief type.

The following examples concern the possibility that BDP may fail because of the con-
founding influence of another information variable. In Example 3.5, confounding occurs,

12



in Example 3.6, confounding is neutralized by the presence of another dimension of be-
liefs.

EXAMPLE 3.5 Let I = 2, Θ1 = S1 = S2 = R, Θ2 = f0g, and suppose that ν1 is a multivariate
normal distribution. Then agent 1’s conditional expectations satisfy

E1[s2jθ1, s1] = αθ(θ1 � E1θ1) + αs(s1 � E1s1) + E1s2, (11)

where

�
αθ αs

�
=
�

cov(s2, θ1) cov(s2, s1)
� varθ1 cov(θ1, s1)

cov(θ1, s1) vars1

!�1

. (12)

In this case, as in Example 3.4, agent 1’s belief about agent 2’s signal is affected by agent 1’s payoff
type unless cov(s2, θ1) = 0. However, if agent 1’s own signal is also correlated with s2, it is not
possible to infer θ1 from the belief variable E1[s2jθ1, s1] and the parameters of the prior ν1. For such
an inference, one would also have to know the realization of agent 1’s own signal. In this setting,
for any prior on T that is multivariate normal, the BDP property fails to hold for agent 1 except in
the negligible case where cov(s2, s1) = 0.

EXAMPLE 3.6 Let I = 2, Θ1 = S1 = R, Θ2 = f0g, S2 = R2, and suppose that ν1 is a
multivariate normal distribution. Then agent 1’s conditional expectations satisfy 

E1[s1
2jθ1, s1]

E1[s2
2jθ1, s1]

!
= A

 
θ1 � E1θ1

s1 � E1s1

!
+

 
E1s1

2

E1s2
2

!
, (13)

where A = Σ21Σ�1
11 , with Σ21, Σ11 as submatrices of the variance-covariance matrix Σ of s1

2, s2
2, θ1, s1,

partitioned so as to reflect the distinction between the variables that agent 1 observes and the
variables that he does not observe. In this specification, both θ1 and s1 can be inferred from the
conditional expectations E1[s1

2jθ1, s1] and E1[s2
2jθ1, s1] whenever the matrix A is invertible, i.e.,

whenever the matrix Σ21 is nonsingular. Because the set of nonsingular two-by-two matrices is
open and dense in the set of all two-by-two matrices, the BDP property is generic for agent 1 within
the set of models covered by this example.

Whereas Example 3.5 involves a failure of BDP due to a confounding of influences of
different information variables, the following Example 3.7 shows that BDP will also fail if,
for given parameters of the prior ν1, the map from payoff types to conditional expectations
is not monotonic (not one-to-one). Subsequently, Example 3.8 will show that this problem
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is likely to disappear if there are more variables about which to form expectations so that
the vector of conditional expectations has a sufficiently high dimension.

EXAMPLE 3.7 Let I = 2, Θ1 = S2 = R, Θ2 = S1 = f0g, and suppose that ν1 is the distribution
that is generated when

s2 = θ2
1 + ε, (14)

where θ1 and ε are independent normal random variables. In this case, agent 1’s conditional dis-
tribution for s2 given θ1 is normal with mean

E1[s2jθ1, s1] = (θ
2
1 � E1θ2

1) + E1s2 (15)

and variance Varε. From the belief E[s2jθ1, s1], one can infer θ2
1 , but one cannot tell whether it is

the positive or the negative solution of the equation

θ2
1 = E1[s2jθ1, s1]� E1s2 + E1θ2

1 . (16)

The BDP property fails to hold.

EXAMPLE 3.8 Let I = 2, Θ1 = R, Θ2 = S1 = f0g, S2 = R2, and suppose that ν1 is the
distribution that is generated when

s1
2 = θ2

1 + ε, (17)

s2
2 = Aθ1 + Bθ2

1 + η (18)

where θ1,ε, and η are independent normal random variables and A and B are constants. In this
case, agent 1’s conditional distribution for s1

2 and s2
2 given θ1 is normal with means

E1[s1
2jθ1, s1] = (θ

2
1 � E1θ2

1) + E1s1
2, (19)

E1[s2
2jθ1, s1] = A(θ1 � E1θ1) + B(θ2

1 � E1θ2
1) + E1s2

2 (20)

and variance-covariance matrix

 
Varε 0

0 Varη

!
. If A 6= 0, then from (19) and (20), one obtains

θ1 = E1θ1 +
1
A

h
E1[s2

2jθ1, s1]� E1s2
2 � B(E1[s1

2jθ1, s1]� E1s1
2

i
, (21)

which shows that θ1 can be inferred by looking at E1[s1
2jθ1, s1] and E1[s2

2jθ1, s1] jointly. By looking
at the two belief variables together, one overcomes the difficulty that neither belief variable alone is
injective in θ1. The BDP property holds for agent 1 except in the negligible case A = 0.
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4 Genericity Results

4.1 The BDP Property with Finite Type Sets

Turning from these examples to a more general analysis, we first consider the case where
the type sets Ti are finite. If each type set Ti is finite, with ni elements, the space space

T :=
I

∏
i=1

Ti is also finite, with N =
I

∏
i=1

ni elements, and the prior F is represented by a

vector Π 2 RN , such that ∑N
k=1 Πk = 1. The set of such vectors is endowed with the usual

(Euclidean) topology.

PROPOSITION 4.1 Assume that, for each i, Ti is a finite set with ni distinct elements. For any i,
let

N�i :=
I

∏
j=1
j 6=i

nj (22)

be the cardinality of the set T�i. If ni � N�i for all i, then, for each i, the set Pi of priors that exhibit
the BDP property for agent i is open and dense in the set of all priors on T.

Proof. Fixing i, we note that any N vector ΠN of probabilities on T can be written in
matrix form as Π(i) = (πtit�i)where the different rows refer to different types ti of agent i
and different columns refer to the different elements t�i of T�i. The belief bi(�jti) of agent
i, conditional on ti, about the other agents’ types is represented by a vector of conditional
probabilities on T�i. Bayes’ Law implies that, under the prior Π, this vector is proportional
to the vector (πtit�i); one can write:

bi(t�ijti) = λ(ti)� πtit�i (23)

for all t�i 2 T�i, where

λ(ti) =
1

∑t�i2T�i
πtit�i

(24)

is chosen to ensure that the entries in (23) sum to one. Equations (23) and (24) imply that,
if the rows of the matrix Π(i) are linearly independent, as well as strictly positive, then
so are the belief vectors bi(�jti), ti 2 Ti. This implies, in particular, that the belief vectors
bi(�jti), ti 2 Ti, are all distinct and the function ti ! bi(�jti) is invertible, i.e. one can
infer the type ti of agent i from his belief vector. Given that ti = (θi, si), this means, in
particular, that one can infer θi from bi(�jti). The proposition follows because, by standard
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arguments, for ni � N�i, the set of ni � N�i matrices with linearly independent rows is
an open and dense subset Pi of Rni �RN�i = RN .

COROLLARY 4.2 Under the assumptions of Proposition 4.1, the set of common priors exhibiting
the BDP property is open and dense in the set of all priors on T.

Proof. Proposition 4.1 implies that, for each i, the set Pi of priors that satisfy BDP for
agent i is open and dense in the set of all priors on T. Because I is finite, the intersection
P = \I

i=1Pi of these open and dense sets for the different agents i is still open and dense.
The corollary follows by observing that a common prior satisfies BDP for all agents i if
and only if it belongs to P.

The assumption that ni � N�i ensures that the set of things about which agent i forms
his beliefs is larger than the set of things on which he conditions. When both sets are
finite, it follows that, generically, the map from types to beliefs is one-to-one. Indeed, the
belief vectors of different types are linearly independent, generically. This latter property
is sufficient for surplus extraction.11

4.2 The BDP Property for Agent i With a Continuum of Types

We next allow for a continuum of types of each agent. We assume that, for each i, there
is a positive integer ni such that the type set Ti of agent i is a subset of Rni . The space

T :=
I

∏
i=1

Ti of vectors of all agents’ types is a subset of RN , where N := ∑I
j=1 nj. The space

T�i of vectors of types of agents other than i is a subset of RN�i , where N�i = N � ni. The
sets Ti, i = 1, ..., I, and therefore also T and T�i, i = 1, ..., I, are assumed to be compact.

In this setting, a prior is a probability measure on T. Given a prior ν 2 M(T), we
write ν̄i(ν) for the marginal distribution on Ti that is induced by ν. A regular conditional
distribution for t�i given ti, is a function from Ti intoM(T�i). We endow the range of this
function with the topology of weak convergence of probability measures, i.e. the weak*
topology.

For reasons discussed in Section 3.1, we restrict our attention to the subset N c
i (T) of

priors on T such that, for ν 2 N c
i (T), the support of the marginal distribution ν̄i(ν) is Ti

and, moreover, there exists a continuous function bi(�, ν) from Ti into M(T�i) that is a

11For a discussion of the role of linear independence, see Crémer and McLean (1988), McAfee and Reny
(1992).
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regular conditional distribution for t�i given ti. By Lemma 3.3, this restriction eliminates
the indeterminacy in the relation between priors and belief functions that is due to the
fact that regular conditional distributions can be arbitrarily modified on null sets. For
ν 2 N c

i (T), there is therefore no ambiguity in Definition 3.1 saying that ν has the BDP
property for agent i if and only if the associated continuous belief function bi(�, ν) has the
BDP property.

The assessment of genericity, robustness, or negligibility of the BDP property in the
space N c

i (T) depends on the topology that is imposed on this space. Because we are in-
terested in the behaviour of conditional distributions, it would be inappropriate to simply
specify the space of priors as a subspace of M(RN) endowed with the topology of weak
convergence of probability measures, i.e. the weak* topology. The topology of weak con-
vergence fails to control for the behaviour of conditional distributions. If a sequence of
measures νk converges weakly to a limit ν, the regular conditional distributions can ex-
hibit a discontinuity in the limit.12 Such a discontinuity in the information that is available
to the agent is likely to induce a discontinuity in his behaviour.

To avoid such discontinuities, we want to specify the topology on N c
i (T) so that the

map from priors to joint distributions of types and beliefs is continuous.13 If payoff func-
tions are also continuous, this condition ensures that behaviour correspondences are up-
per hemi-continuous in types. Continuity of the map from priors to joint distributions
of types and beliefs ensures that, if payoff functions are continuous, then the map from
priors to joint distributions of types and actions is upper hemi-continuous.

Because belief functions are continuous, continuity of the map from priors to joint dis-
tributions of types and beliefs is obtained if the maps ν ! ν̄i(ν) and ν ! bi(�, ν) from
priors to type distributions and from priors to belief functions are continuous. For any
ν 2 N c

i (T), the marginal distribution ν̄i(ν) is an element of the space M(Ti) of proba-
bility measures on Ti and the induced belief function bi(�, ν) is an element of the space
C(Ti,M(T�i)) of continuous functions from Ti into M(T�i). Endowing M(Ti) with the

12Examples are given by Jordan (1977) and Hellwig (1996). In the present setting, let I = 2, n1 = n2 = 1.
For k = 1, 2, ..., let νk be such that t1 is uniformly distributed on [0, 1] and t2 =

1
2 [1+ sin(kt1)]. The sequence

fνkg converges weakly to the uniform distribution on [0, 1]2 . For any k, agent 1 is able to perfectly infer
the type of agent 2 from his own type, but, in the limit, observation of his own type provides him with no
information at all about the type of agent 2.

13This is the continuity property required in Jordan (1977). As mentioned above, with continuous payoff
functions, this continuity property implies that the map from priors to joint distributions of types and actions
is upper hemi-continuous. For details, see Jordan (1977), Hellwig (1996).
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topology of weak convergence and C(Ti,M(T�i)) with the topology of uniform conver-
gence, we specify the topology on N c

i (T) to be the coarsest topology under which the
mapping ϕi from N c

i (T) to M(Ti)� C(Ti,M(T�i)) that is defined by the formula

ϕi(ν) = (ν̄i(ν), bi(�, ν)) (25)

is continuous.
Given this topology, the following results establish the residualness of the BDP prop-

erty in N c
i (T). The first result is an extension of the standard embedding theorem for

continuous functions to the case where the range of the functions is a space of measure.

PROPOSITION 4.3 Let Ti, T�i be compact subsets of Rni and RN�i . If T�i has infinitely many
elements, the set E(Ti,M(T�i)) of embeddings of Ti in M(T�i) is a countable intersection of
open and dense subsets of C(Ti,M(T�i)).

Proposition 4.3 contains the main insight of our analysis: If T�i has infinitely many el-
ements, the space M(T�i) of agent i’s beliefs is an infinite-dimensional space. If agent i’s
type set is finite-dimensional, the set of belief functions that are embeddings is a residual
set. Because embeddings are injective, any belief function that is an embedding necessar-
ily has the BDP property: for any such function bi(�, ν) and any b̄i 2 M(T�i) there is at
most one ti = (θi, si) such that bi(ti, ν) = b̄i. For the proof of Proposition 4.3, the reader is
referred to Appendix A.1

PROPOSITION 4.4 Let Ti, T�i be compact subsets of Rni and RN�i and let T := Ti � T�i.
Let N c

i (T) be endowed with the coarsest topology under which the mapping ν ! ϕi(ν) =

(ν̄i(ν), bi(�, ν)) is continuous. If T�i � RN�i has infinitely many elements, then the setN �
i (T) of

priors in N c
i (T) that have the BDP property for agent i is a residual subset, i.e., N �

i (T) contains
a countable intersection of open and dense subsets of N c

i (T).

Proof. Let E(Ti,M(T�i)) be the set of embeddings of Ti in M(T�i) and note that any
measure ν with bi(�, ν) 2 E(Ti,M(T�i)) has the BDP property. It therefore suffices to
show that the set ϕ�1

i (M(Ti)� E(Ti,M(T�i))) is a residual subset of N c
i (T).

By Proposition 4.3, E(Ti,M(T�i)) is a residual subset of C(Ti,M(T�i)). Trivially then,
M(Ti)�E(Ti,M(T�i)) is a residual subset of the spaceM(Ti)�C(Ti,M(T�i)). By Lemma
A.2 in the Appendix, residualness of ϕ�1

i (M(Ti)�E(Ti,M(T�i))) inN c
i (T) follows if the

mapping ϕi is open as well as continuous.
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Because the topology on N c
i (T) is the coarsest topology under which ϕi is continu-

ous, the open sets in N c
i (T) all take the form V = ϕ�1

i (U) where U is an open subset of
M(Ti)� C(Ti,M(T�i)). For any open set V � N c

i (T), therefore, the set ϕi(V) is open,
i.e., ϕi maps open sets into open sets. Thus, ϕi is open as well as continuous. By Proposi-
tion 4.3 and by Lemma A.2 in the Appendix, therefore, ϕ�1

i (M(Ti)� E(Ti,M(T�i))) is a
residual subset of N c

i (T).

4.3 The BDP Property for a Common Prior With a Continuum of Types

With finite type sets, the genericity of the BDP property for common priors was a simple
corollary of the genericity of the BDP property for any single agent. With a continuum
of types, the matter is slightly more complicated. The reason is that we now require
continuity of belief functions for all agents, so the relevant set of measures is the set
N c(T) := \I

k=1N c
k (T) of priors on T that admit continuous regular conditional distrib-

utions for t�i given ti for all agents i. An assessment of the set of priors on T that have
the BDP property for all agents simultaneously requires a consideration of the intersec-
tions \I

i=1N �
i (T), as a subset of N c(T). Proposition 4.4 establishes residualness of the

set N �
i (T) of priors having the BDP property for agent i in the set N c

i (T) of priors on
T that admit continuous regular conditional distributions for t�i given ti. This does not,
however, permit any inference about the relation between N �

i (T) and the intersection
N c

i (T) = \I
k=1N c

k (T). There is no guarantee that the perturbations of belief functions that
serve to establish denseness of N �

i (T) in N c
i (T) can be chosen to lie in the intersection

\I
k=1N c

k (T), as would be required to establish denseness of N �
i (T) in \I

k=1N c
k (T).

To avoid this difficulty, we go back to the residualness of BDP belief functions that was
established in Proposition 4.3. From this result, we derive the residualness of common
priors with the BDP property in N c(T) by the same argument that we used in the proof
of Proposition 4.4. In the following proposition, as before, the spacesM(Ti) andM(T�i))

have the topology of weak convergence, and C(Ti,M(T�i)) has the topology of uniform
convergence.

PROPOSITION 4.5 For i = 1, ..., I, let Ti be a compact subset of Rni , and assume that N c(T) :=

\I
k=1N c

k (T) is nonempty, where, as before, T =
I

∏
j=1

Tj. Let N c(T) be endowed with the coarsest
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topology under which the mapping

ν ! ϕ(ν) := (ϕ1(ν), ..., ϕI(ν)), (26)

with ϕi(ν) = (ν̄i(ν), bi(�, ν)), i = 1, ..., I, from N c(T) to
I

∏
i=1
[M(Ti)� C(Ti,M(T�i))] is con-

tinuous. If the sets Ti, i = 1, ...I, have infinitely many elements, then the set N �(T) of elements
of N c(T) that have the BDP property for all agents is a residual subset, i.e., N �(T) contains a
countable intersection of open and dense subsets of N c(T).

Proof. Because the setN �(T) of priors inN c(T) that have the BDP property for all agents
is equal to the intersection \I

i=1N �
i (T) of the sets N �

i (T) of priors in N c(T) that have the
BDP property for agents i = 1, ..., I, it suffices to show that each of the sets N�

i (T) contains
a countable intersection of open and dense subsets of N c(T).

The proof of this latter claim is similar to the proof of Proposition 4.4. Because any
measure ν with bi(�j�, ν) 2 E(Ti,M(T�i)) has the BDP property, it suffices to show that
the set ϕ�1

i (M(Ti) � E(Ti,M(T�i))) is a residual subset of N c(T). By Proposition 4.3,
E(Ti,M(T�i)) is a residual subset of C(Ti,M(T�i)). Therefore,M(Ti)�E(Ti,M(T�i)) is
a residual subset ofM(Ti)�C(Ti,M(T�i)). Residualness of ϕ�1

i (M(Ti)�E(Ti,M(T�i)))

in N c(T) follows if the mapping ϕi is open as well as continuous.
By the same argument that was given for the mapping ϕi in the proof of Proposi-

tion 4.4, the mapping ϕ = (ϕ1, ..., ϕI) is a continuous and open mapping from N c(T)

to
I

∏
i=1
[M(Ti) � C(Ti,M(T�i))]. Because the projection is also continuous and open, it

follows that ϕi is also open and continuous. Residualness of N �
i (T) in N c(T) follows

immediately.

4.4 The BDP Property for Common Priors with Continuous Densities

In the formulation of Proposition 4.5, it is somewhat unsatisfactory that nonemptyness
of N c(T) is assumed and that the topology on N c(T) is not specified explicitly. Both
these weaknesses are eliminated if the analysis is restricted to probability measures with
continuous, bounded densities. We now assume that, for each i, the type set Ti for agent i
is compact and is the closure of an open set T̊i. As before, we assume that Ti is a subset of

Rni , and we write T and T�i for the products
I

∏
j=1

Tj and
I

∏
j=1
j 6=i

Tj. Given the set T, we consider
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the set Md(T) of measures ν such that, for some continuous and bounded function f ν :
T ! R+, we have

ν(B) =
Z

B\T
f ν(t)dt (27)

for any measurable B � T. For any ν 2 Md(T) and any ti 2 Ti, set

f̄ ν
i (ti) =

Z
T�i

f ν(ti, t�i)dt�i. (28)

Because f ν is continuous and bounded on T and because the set T�i is bounded, the
integral in (28) is well defined for all ti 2 Ti. Moreover, f̄ ν

i (ti) depends continuously on
ti. The function f̄ ν

i (�) from Ti to R+ that is defined by (28) is the density function of the
marginal distribution ν̄i(ν) that is induced by ν. We write Md

+(T) for the set of measures
ν 2 Md(T) such that f̄ ν

i (ti) > 0 for all i and all ti 2 Ti.
For ν 2 Md

+(T) and ti 2 Ti, we can then define a density function βi(�jti, ν) on T�i by
setting

βi(t�ijti, ν) :=
f ν(ti, t�i)

f̄ ν
i (ti)

(29)

for t�i 2 T�i. With this density function, we associate the probability distribution bi(�jti, ν)

such that
bi(B�ijti, ν) :=

Z
B�i\T̊�i

βi(t�ijti, ν)dt�i (30)

for any measurable set B�i � RN�i . The function bi(�j�, ν) is obviously a regular condi-
tional probability distribution for t�i given ti.

By inspection of (29), the density βi(t�ijti, ν) depends continuously on ti 2 Ti and t�i 2
T�i. By standard arguments, again using Lebesgue’s bounded-convergence theorem, it
follows that the function ti ! bi(�jti, ν) that is given by (30) maps the domain Ti of the
marginal density f̄ ν

i continuously into M(T�i). By the same argument as in Lemma 3.3,
this is the only regular conditional distribution for t�i given ti that maps Ti continuously
into M(T�i).

By construction, we have Md
+(T) � N c(T). The continuity property of the regular

conditional distribution here is actually stronger than in the preceding analysis. For ν 2
Md

+(T), the belief function bi(�j�, ν) actually takes values in the subspace Md(T�i) of
M(T�i) consisting of those measures that have densities that are continuous on T�i. If we
endow Md(T�i) with the topology that is induced by the uniform topology for density
functions, we find that the function bi(�j�, ν) maps the set Ti continuously into Md(T�i),
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i.e., that bi(�j�, ν) is an element of the space C(Ti,Md(T�i)) of continuous functions from
Ti into Md(T�i). If we endow C(Ti,Md(T�i)) with the uniform topology, we obtain the
following analogue of Proposition 4.3.

PROPOSITION 4.6 For i = 1, ..., I, let Ti be a compact subset of Rni and let T�i :=
I

∏
j=1
j 6=i

Tj and T =

I

∏
j=1

Tj. Assume that the sets Ti have nonempty interiors T̊i. Then for any i, the set E(Ti,Md(T�i))

of embeddings of Ti in Md(T�i) is a residual subset, i.e., it contains a countable intersection of
open and dense subsets of C(Ti,Md(T�i)).

For a proof of Proposition 4.6, the reader is referred to Appendix A.2.
To translate this result into a proposition about priors, we endow the space Md

+(T)
with the coarsest topology under which the maps

ν ! ψi(ν) = (v̄i(ν), bi(�, ν)), (31)

from distributions on T into marginal distributions and belief functions, are continuous.
In this context, the range Md

+(Ti) of the function ν ! v̄i(ν) is taken to have the topology
that is induced by the uniform topology for density functions, the range C(Ti,Md(T�i))

of the function ν ! bi(�, ν) the topology of uniform convergence.

PROPOSITION 4.7 For i = 1, ..., I, let Ti be a compact subset of Rni and let T�i :=
I

∏
j=1
j 6=i

Tj and

T =
I

∏
j=1

Tj. Assume that the sets Ti have nonempty interiors T̊i. Let Md
+(T) is endowed with the

coarsest topology under which the mapping

ν ! ψ(ν) := (ψ1(ν), ..., ψI(ν)), (32)

with ψi(ν) = (v̄i(ν), bi(�, ν)), from Md
+(T) to

I

∏
i=1
[Md

+(Ti)� C(Ti,Md(T�i))] is continuous.

Then the set N ��(T) of priors in Md
+(T) that have the BDP property for all agents is a residual

subset of Md
+(T).

Proposition 4.7 follows from Proposition 4.6 by the same argument by which Proposi-
tion 4.5 was derived from Proposition 4.3. The details are left to the reader.
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COROLLARY 4.8 For i = 1, ..., I, let Ti be a compact subset of Rni and let T =
I

∏
j=1

Tj. Assume

that the sets Ti have nonempty interiors T̊i. IfMd
+(T) is endowed with the topology that is induced

by the uniform topology for density functions, then the set N ��(T) of priors on T that have the
BDP property for all agents is a residual subset of Md

+(T).

Corollary 4.8 follows immediately from Proposition 4.7 and the following lemma, the
proof of which is given in Appendix A.3.

LEMMA 4.9 The topology that is induced by the topology of uniform convergence of density func-
tions is the coarsest topology under which the mapping ν ! ψ(ν) in Proposition 4.7 is continuous.

5 Relation to the Literature

The thrust of our results runs counter to that of Heifetz and Neeman (2006) and Barelli
(2009), and parallels Chen and Xiong (2011). It is therefore appropriate to discuss the
relation of our analysis to theirs. Heifetz and Neeman (2006) consider families fT kgk2K

of incomplete-information models of the form

T k = fTk
i , θ̂k

i , π̂k
i gI

i=1 (33)

where, for any k in some index set K, for any i, Tk
i is a set of abstract "types" for agent i,

θ̂k
i is a mapping from Tk

i into a set Θk
i of payoff parameter vectors for agent i, and π̂k

i is
a continuous mapping from Tk

i into the set M
�
Tk
�i
�

of probability distributions on the
space Tk

�i of the other agents’ abstract types. They restrict their attention to incomplete-
information models that are consistent with common priors and study the genericity of
the BDP property in the set

P �M
 

I

∏
i=1

[
k2K

Tk
i

!
(34)

such that F 2 P if and only if F is a common prior for one model Tk in the family that is
being considered. Under the assumption that the family fT kgk2K is "closed under finite
unions", they show that the set P is convex: If Fk1

and Fk2
are common priors for the

incomplete-information models T k1
, T k2

, then, for any α 2 [0, 1], the measure

αFk1
+ (1� α)Fk2 2 M

 
I

∏
i=1
(Tk1

i [ Tk2

i )

!
(35)
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is a common prior for the model T k̂ = f(Tk1

i [ Tk2

i ), θ̂ k̂
i , π̂k̂

i gI
i=1, where T k̂ is the model that

corresponds to the "union" of T k1
and T k2

, with θ̂ k̂
i , π̂k̂

i specified so that

(θ̂ k̂
i (ti), π̂k̂

i (ti)) = (θ̂
k1

i (ti), π̂k1

i (ti)) if ti 2 Tk1

i (36)

and
(θ̂ k̂

i (ti), π̂k̂
i (ti)) = (θ̂

k2

i (ti), π̂k2

i (ti)) if ti 2 Tk2

i . (37)

Given this finding, they go on to show that any prior Fk̂ 2 P that can be represented
in the form

Fk̂ =
J

∑
j=1

αjFkj
, (38)

with αj > 0 for all j, has the BDP property if and only if every one of the distribu-
tions Fkj

has the BDP property. This leads them to conclude that, unless the incomplete-
information models T k, k 2 K, admit only BDP priors, the set of non-BDP priors will
be geometrically and measure-theoretically generic in P . Specifically, if the incomplete-
information models T k, k 2 K, admit one or more non-BDP priors, the set of BDP priors
will be a proper face of the convex set P . Moreover, under certain additional regularity
conditions, the set of BDP priors will be finitely shy in P .

Chen and Xiong (2011) contrast the geometric and measure theoretic approaches of
Heifetz and Neeman (2006) with their own topological approach, which yields genericity
of the BDP property in a universal type space setting. Our approach is also topologi-
cal. From our perspective, however, with finite-dimensional type spaces, the difference
between our results and those of Heifetz and Neeman (2006) is not one of topological
versus geometric or measure-theoretic genericity but one of genericity in the full space
versus genericity in a specially chosen subspace. Heifetz and Neeman (2006) are con-
cerned with the genericity of non-BDP priors relative to the set of priors that is associated
with a given family fTkgk2K of incomplete-information models that is closed under finite
unions. If the family fT kgk2K is the set of common-prior models in the universal type
space, this approach involves no loss of generality. With finite-dimensional abstract type
spaces, however, the requirement that the family fT kgk2K be closed under finite unions
is quite restrictive. In a companion paper, Gizatulina and Hellwig (2011), we show that,
if the priors have continuous densities, then a family that satisfies this requirement is at
most countable; more precisely, such a family consists of unions of members of a count-
able family of models with type sets that do not intersect each other. As an implication of
Proposition 4.7, we then find that the set of such families for which all models satisfy the
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BDP property contains a residual set. The set of families of models for which Heifetz and
Neeman (2006) obtain geometric and measure-theoretic genericity on non-BDP priors is
itself a sparse set.

Topological genericity of the BDP property is also discussed by Barelli (2009) and Chen
and Xiong (2011). Barelli suggests that the measure-theoretic approach of Heifetz and
Neeman (2006) is problematic and states a topological genericity result for non-BDP pri-
ors. Chen and Xiong (2011) point to an error in Barelli’s argument and prove a topological
genericity result for BDP priors.

In contrast to this paper, Barelli (2009) and Chen and Xiong (2011) specify the type

space T =
I

∏
i=1

Ti as the Θ-based universal type space, i.e., the space of payoff parameters

and belief hierarchies that is generated by the payoff type space Θ =
I

∏
i=1

Θi.14 Chen and

Xiong rely on the fact that, if the space of common priors on this space is endowed with
the topology of weak convergence of probability measures, i.e., the weak* topology, the
set of common priors with finite supports is dense and the set of BDP priors is generic in
the set of finite priors.

Because Chen and Xiong work with the universal type space and with finite approx-
imations and we work with finite-dimensional abstract type spaces and embedding the-
orems, their results and ours reflect different aspects of the underlying structure. In a
universal type space setting, one can rely on the weak* topology because there is no need
to worry about informational discontinuities. The dependence of beliefs on information
plays no role because agents’ beliefs themselves are encoded in their types.

To understand this point, go back to Example 3.7, where agent 2 has a noisy signal
s2 = (θ1)

2+ ε and agent 1’s belief about the signal s2 reveals (θ1)
2 but not θ1. If the support

of agent 1’s type distribution was the finite set

f� 2np
n

,�2(n� 1)p
n

, ...,� 2p
n

, 0,
1p
n

,
1+ 2p

n
, ...,

1+ 2(n� 1)p
n

,
1+ 2np

n
g (39)

and the support of the noise term ε contains only even multiples of 1p
n , the signal s2 would

14Barelli (2009) presents his analysis as if he was considering arbitrary type spaces. However, like Heifetz
and Neeman (2006), he works with fixed belief functions. By the arguments in Gizatulina and Hellwig (2011),
this implies that distinct indecomposable type sets cannot intersect. As he goes on to talk about convergence
of sequences of models in terms of Hausdorff convergence of the corresponding sequences of type sets, he
cannot be working with abstract finite-dimensional type spaces but must implicitly be working with the
universal type space.
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actually reveal θ1 and so would agent 1’s belief about s2. In this case, if s2 is an even multi-
ple of 1p

n , agent 2 will know that θ1 is negative; if s2 is an odd multiple of 1p
n , agent 2 will

know that θ1 is positive. If we consider a sequence of type distributions with supports (39)
approximating the continuous type distribution, there is an informational discontinuity
because, in the continuous limit, agent 2 cannot distinguish whether θ1 is negative or pos-
itive. This informational discontinuity, however, appears only in the abstract type space
approach of Example 3.7. In a universal type space approach, the informational discon-
tinuity is avoided. With beliefs defined by types, weak convergence of type distributions
implies that the equations E2[θ1js2] = θ1 and E1[s2jθ1] = θ1 holds in the limit as well as
along the sequence.

The universal type space approach is not well suited to dealing with the endogeneity
of beliefs. When, in Section 2 above, we introduced the role of beliefs as conditional dis-
tributions given the information that is available to agents, we argued that, without loss
of generality, any incomplete-information model T = fTi, θ̂i, π̂igI

i=1 could be rewritten in
the form

T̂ = fΘi � Si, π̂igI
i=1 (40)

with the understanding that, for any ti = (θi, si) 2 Θi � Si, θ̂i(ti) = θi is the payoff type
of agent i and ŝi(ti) = si is an additional signal observed by agent i. In principle, this

reformulation is also available when T =
I

∏
i=1

Ti is the universal type space. In this case,

however, the type of any agent i is a pair ti = (θi, hi) where θi is the agent’s payoff type
and hi indicates the hierarchy of the agent’s beliefs about the other agents’ payoffs, the
other agents payoffs and first-order beliefs, etc. Reformulating a universal type space
model in the form (40) is trivial, but requires that the space Si of signals available to agent
i be identified with the space Hi of belief hierarchies for this agent. The question what
information can be inferred from the observation of the type ti = (θi, si) = (θi, hi) is
moot because, for each belief hierarchy hi 2 Hi, there is a unique measure π̂i(hi) on T�i

that is compatible with the belief hierarchy hi. By construction, all relevant information
is encoded in the belief hierarchy si = hi, and any other information, e.g., about payoff
types, is redundant.

In the universal type space approach, the question whether beliefs properly reflect the
information that is available to agents becomes a question about type sets and priors. For
a single agent i, the belief function π̂i must satisfy the equation π̂i(hi) � bi(θi, hijνi) for
some measure νi and for all (θi, hi) in the support of the measure νi. This is possible only
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if if the BDP property holds so that all information about θi is already encoded in hi or if
θi is to some extent independent of the other agents’ types so that beliefs about the other
agents’ types do not depend on θi. The latter alternative is very special. The analysis of
Chen and Xiong (2011) exploits this structure of the universal type space without paying
attention to the fact that beliefs should be treated as the result of conditioning on available
information.

6 Concluding Remarks

We conclude this paper with several additional remarks. First, the genericity properties
established in Propositions 4.6 and 4.7 are still obtained if we replace the space Md

+(T)
by the space Md

+(T̊) of measures with densities that are defined on the interior of T and
if we endow the spaces Md

+(T̊i) and Md(T̊�i) of marginal distributions on the interiors
of the type spaces of agent i and agent other than i with the topologies that is induced
by the compact open topologies, rather than the uniform topologies for the associated
density functions. In this case, however, an analogue of Corollary 4.8 is only obtained if
an additional condition of uniform boundedness is imposed on the density functions of
the priors under consideration.

Second, in Gizatulina and Hellwig (2011), we show that the genericity properties es-
tablished in Propositions 4.6 and 4.7 hold also for an infinite-dimensional type space of

the form T = [∞
`=1T`, where, for each `, T` =

I

∏
i=1

T`i is a finite-dimensional set. This

corresponds to a specification with ex ante uncertainty about the incomplete-information
model that is going to be relevant. If the set of such models is countable and each model
has a finite-dimensional type space, the BDP property is still generic.

Third, the assumption that the type sets Ti in Proposition 4.7 are taken as fixed and
given is not essential. In principle, the set T in Proposition 4.7 could be any compact
subset of RN that has a nonempty interior T̊. Given a measure ν with a density that is
continuous on T̊, the belief function bi(�j�, ν) is defined on the set Dν

i of types of agent
i for which the marginal density f̄ ν

i (ti) is strictly positive. Dν
i is an element of the set

Do
i of open subsets of Rni that have compact closures. Thus bi(�j�, ν) can be treated as

an element of the space [D2Do
i
C(D,Md(T.i)). If the topology on [D2Do C(D,Md(T�i))

is specified so that a sequence fbk
i g of functions in [D2Do C(D,Md(T�i)) converges to a

limit bi 2 [D2Do C(D,Md(T�i)) if and only if, every compact subset K of the domain
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Dbi of bi is also a subset of the domains Dbk
i

of the functions bk
i for any sufficiently large

k, and, moreover, limk!∞ bk
i (ti) = bi(ti), uniformly on K, an extension of the argument

given to prove Proposition 4.6 can be used to show that the set [D2DoE(D,Md(T�i))

of embeddings is a residual subset of [D2Do C(D,Md(T�i)). A similar generalization of
Proposition 4.3 is also available.

Forth, in a previous version of this paper, we had applied the Embedding Theorem to
the conditional-expectations functions t̄ν

�i(�), which are given by the formula

t̄ν
�i(ti) :=

Z
Tν
�i

t�iβi(t�ijti, ν)dt�i =

R
Tν
�i

t�i f ν(ti, t�i)dt�i

f̄ ν
i (ti)

.

Under the dimensionality assumption that 2ni + 1 � N�i, the Embedding Theorem for
continuous functions implies that, for any ε > 0 there exists an embedding ti ! t̂ε

�i(ti)

such that
t̂ε
�i(ti)� t̄ν

�i(ti)
 < ε for all ti 2 Dν

i . Given this embedding, approximating
densities can be defined by writing

f νε
(ti, t�i) = β(t�i + t̂ε

�i(ti)� t̄ν
�i(ti)jti) f̄ ν

i (ti) if ti 2 Dν
i , (41)

and

f νε
(ti, t�i) = 0 if ti /2 Dν

i . (42)

The BDP property of approximating priors is then directly embodied in the conditional
expectations, and there is no need to appeal to the fact that probability distributions them-
selves are infinite-dimensional objects.

Finally, if we strengthen the assumptions on the set of priors under consideration so
that we can use a differentiable approach, then, under the dimensionality assumption
that 2ni + 1 � N�i, we can strengthen the claim that BDP priors are generic from residual
to open and dense. Specifically, if N̄cd is a subset of N̄c so that, for any ν 2 N̄cd, the
support Tν of ν is a compact manifold and the conditional-expectations functions t̄ν

�i are
continuously differentiable on Tν

i , and if the topology on N̄cd is such that, for all i, the map
from priors into agent i’s conditional-expectations functions is continuous when the range
of this map is given the strong C1 topology, then, under the dimensionality assumption in
Proposition 4.7, the set of common priors exhibiting the BDP property is open and dense
in N̄cd. The proof is basically the same as the proof of Proposition 4.7, except that the
Embedding Theorem for continuous functions with compact domains must be replaced
by Whitney’s Embedding Theorem for C1 functions, see, e.g., Hirsch (1994), p. 35.
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A Appendix

In this appendix, we state and prove the embedding theorems that are used in Section 4.
For any separable metric space X, a subset of X is said to be residual in X if it contains
a countable intersection of open and dense subsets of X. For any two separable metric
spaces X and Y, C(X, Y) will denote the space of continuous functions from X to Y. The
space C(X, Y) will be endowed with the uniform topology. The set of embeddings of X
into Y will be denoted as E(X, Y).

A.1 Proof of Proposition 4.3

Proposition 4.3 in the text is an instance of the following result, with X = Ti and Z = T�i.

PROPOSITION A.1 Let X � Rn be compact, and let Z be a compact metric space with infinitely
many elements. Let Y = M(Z) be the space of probability measures on Z, endowed with the
topology of weak convergence of probability measures. Then the set E(X, Y) of embeddings of X in
Y is a residual subset of C(X, Y).

In proving Proposition A.1, we will repeatedly use the following lemma from topol-
ogy.

LEMMA A.2 Let X, Y be any two topological spaces and let g be a continuous and open function
from X to Y. Then, for any open and dense set U � Y, the inverse image g�1(U) is an open and
dense subset of X. For any residual set Yr � Y, the inverse image g�1(Yr) is a residual subset of
X.

Proof. Continuity of g : X ! Y implies that g�1(U) is open in X whenever U is open
in Y. Further, openness of g implies that g(V) is open in Y whenever V is open in X.
Thus, if V is open in X and U is dense in Y, we must have g(V) \U 6= ∅ and, therefore,
V \ g�1(U) = g�1(g(V)\U) 6= ∅. Thus, g�1(U) is dense in X whenever U is dense in Y.
The first statement of the lemma is proved.

To prove the second statement, it suffices to observe that, if Yr � Y satisfies Yr �
\∞

k=1Uk for some sequence fUkg of open and dense subsets of Y, then

g�1(Yr) � g�1(\∞
k=1Uk) = \∞

k=1g�1(Uk),

and, by the first statement of the lemma, the sets g�1(Uk), k = 1, 2, ..., are open and dense
in X.
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LEMMA A.3 Let X and Y be as specified in Proposition A.1. If there exists a separable metric
space Q that is homeomorphic to [0, 1]2n+1 and if there exists a mapping Φ from C(X, Y) to
C(X, Q) that is continuous and open, then the set E(X, Y) of embeddings of X in Y is a residual
subset of C(X, Y).

Proof. Let h be a homeomorphism from Q to [0, 1]2n+1. We claim that the formula

H( f ) := h � f

defines a homeomorphism H from C(X, Q) to C(X, [0, 1]2n+1). To establish this claim, we
note that, because h is continuous, H takes values in C(X, [0, 1]2n+1). Continuity of h also
implies that H is continuous. Because h is invertible, the inverse of H is well defined, with

H�1( f̂ ) = h�1 � f̂

for any f̂ 2 [0, 1]2n+1. Continuity of h�1 implies that H�1 takes values in C(X, Q) and that
H�1 is continuous.

By the classical Embedding Theorem,15 the set E(X, [0, 1]2n+1) of embeddings of X in
[0, 1]2n+1 is a residual subset of C(X, [0, 1]2n+1). By Lemma A.2 therefore, H�1(E(X, [0, 1]2n+1))

is a residual subset of C(X, Q). If the mapping Φ from C(X, Y) to C(X, Q) is continuous
and open, then, again by Lemma A.2, it follows that the set Φ�1(H�1(E(X, [0, 1]2n+1))) is
a residual subset of C(X, Y).

To prove the lemma, it therefore suffices to show that

Φ�1(H�1(E(X, [0, 1]2n+1)) � E(X, Y). (43)

For this purpose, suppose that f 2 Φ�1(H�1(E(X, [0, 1]2n+1))nE(X, Y). Then there exist
x1, x2 2 X such that f (x1) = f (x2) and h(Φ(x1j f )) 6= h(Φ((x2j f )). Because h is a homeo-
morphism, h(Φ(x1j f )) 6= h(Φ((x2j f )) implies Φ(x1j f ) 6= Φ(x2j f ), which in turn implies
f (x1) 6= f (x2). The assumption that Φ�1(H�1(E(X, [0, 1]2n+1))nE(X, Y) 6= ∅ thus leads
to a contradiction, which proves (43). The lemma follows immediately.

To prove Proposition A.1, it thus suffices to show that there exist Q and Φ as specified
in the lemma. We define Q as the unit simplex in R2n+1

+ , i.e.,

Q :=

(
q 2 R2n+1

+ j
2n+1

∑
i=1

qi � 1

)
. (44)

15See Theorem V.2, p. 56, in Hurewicz and Wallman (1941).
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LEMMA A.4 The set Q that is defined by (44) is homeomorphic to [0, 1]2n+1.

Proof. Because both Q and [0, 1]2n+1 are compact convex subset of R2n+1
+ and have non-

empty interiors, they are both homeomorphic to the closed unit ball in R2n+1
+ and therefore

to each other.16

To construct the mapping Φ, we proceed as follows: Exploiting the fact that Z has
infinitely many elements, we fix 2n+ 1 distinct elements z1, ..., z2n+1 of Z. For this purpose,
we note that, as compact metric space, Z is separable. Therefore, there exists some ε > 0
so that the open ε-balls Bε(z1), ...., Bε(z2n+1) around z1, ..., z2n+1 do not intersect each other,
i.e., Bε(zi) \ Bε(zj) = ∅ for all i and all j 6= i. Moreover, by Urysohn’s lemma, there
exist continuous functions g1, ...g2n+1 from Z into [0, 1] such that, for any i, gi(zi) = 1 and
gi(z) = 0 for z 2 ZnBε(zi). For any z 2 Z, therefore, ∑2n+1

i=1 gi(z) 2 [0, 1], and, for any
µ 2 M(Z), the vector

ϕ(µ) =

�Z
Z

g1(z)dµ(z), ...,
Z

Z
g2n+1(z)dµ(z)

�
(45)

is an element of the set Q that is defined by (44). Given the mapping ϕ : M(Z) ! Q, the
formula

Φ(b) = ϕ � b (46)

defines a mapping from C(X,M(Z)) into the space of functions from X to Q. We need to
show that Φ(b) 2 C(X, Q) for all b 2 C(X,M(Z)) and that the mapping Φ is continuous
and open. We begin by showing that the mapping ϕ has these properties.

LEMMA A.5 The mapping ϕ : M(Z) ! Q that is defined by formula (45) is continuous and
open.

Proof. Continuity of ϕ is immediate from (45) and the definition of the topology of weak
convergence.

Note that, if Z is a compact metric space and if the space Y = M(Z) of probabil-
ity measures on Z is endowed with the topology of weak convergence of probability
measures, i.e., the weak* topology, then Y is a compact metric space.17 If fh1, h2, ...g is

16See Proposition 4.26 in Lee (2000).
17See Theorem 6.4, p. 45, in Parthasarathy (1967)
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a countable dense set of continuous functions from Z into [0, 1], then, by an argument
Parthasarathy (1967), p. 43, the mapping

µ ! h(µ) :=
�Z

Z
h1(z)dµ(z),

Z
Z

h2(z)dµ(z), ...
�

defines a homeomorphism betweenM(Z) and a subspace S of the infinite product [0, 1]∞.
Without loss of generality, we may assume that hi = gi for i = 1, ..., 2n + 1. Let π2n+1 :
[0, 1]∞ ! [0, 1]2n+1 be the natural projection from [0, 1]∞ to the first 2n+ 1 factors of the
infinite product. Then

ϕ = π2n+1 � h.

Because the homeomorphism h : M(Z) ! S is open and the composition of two open
mappings is also open, openness of the mapping ϕ : M(Z)! Q will follow if the restric-
tion πS

2n+1 of π2n+1 to S is shown to be an open mapping from S to Q.
For this purpose, we note that ϕ mapsM(Z) onto Q, i.e., that ϕ(M(Z)) = Q : For any

q = (q1, ..., q2n+1) 2 Q, any µ 2 M(Z) such that µ(fzig) = qi for i = 1, 2, ...2n+ 1, and
µ(Zn [i Bε(zi)) = 1�∑2n+1

i=1 qi satisfies ϕ(µ) = q. Thus, we obtain

π2n+1(S) = π2n+1 � h(M(Z)) = ϕ(M(Z)) = Q.

Now let V be any open subset of S. By definition of the subspace topology for S, there
exists an open set U � [0, 1]∞ such that V = S \U. Thus,

πS
2n+1(V) = πS

2n+1(S \U) = π2n+1(S \U) = π2n+1(S) \ π2n+1(U) = Q \ π2n+1(U).

Because the projection π2n+1 is an open mapping from [0, 1]∞ to [0, 1]2n+1, the set π2n+1(U)
is an open subset of [0, 1]2n+1. Therefore, the set πS

2n+1(V) = Q \ π2n+1(U) is open in the
subspace topology for Q as a subset of [0, 1]2n+1. Thus, πS

2n+1maps any open subset of
S = h(M(Z)) into an open subset of Q. This proves that the mapping πS

2n+1 : S ! Q is
open. The mapping ϕ = πS

2n+1 � h : M(Z)! Q is therefore also open.

LEMMA A.6 The mapping Φ that is defined by formula (46) maps C(X,M(Z)) continuously
into C(X, Q).

Proof. Because ϕ is continuous, obviously, Φ(b) 2 C(X, Q) if b 2 C(X,M(Z)). To prove
that Φ is continuous, we note that, as mentioned above, if Z is a compact metric space,
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then M(Z) is a compact metric space. A metric ρ for M(Z) is given by the formula

ρ(µ, ν) = sup
k

����Z hk(zy)dµ(z)�
Z

hk(z)dν(z)
���� , (47)

where fh1, h2, ...g is a countable dense subset of the set of continuous functions from Z
into [0, 1]. Again there is no of generality in assuming that hk = gk for k = 1, ..., 2n+ 1.

For any γ > 0, define η(γ) := γ
2n+1 . Then, for any µ and ν in M(Z), ρ(µ, ν) < η(γ)

implies ����Z hk(z)dµ(z)�
Z

hk(z)dν(z)
���� < γ

2n+ 1

for all k. Thus, ρ(µ, ν) < η(γ) implies kϕ(µ)� ϕ(ν)k � γ, where k�k is the Euclidean
norm on R2n+1. If b and b̂ in C(X,M(Z)) are such that

sup
x2X

ρ(b(x), b̂(x)) < η(γ) =
γ

2n+ 1
,

it follows that
sup
x2X

ϕ(b(x))� ϕ(b̂(x))
 � γ,

i.e., if b and b̂ are η(γ)-close, then Φ(b) and Φ(b̂) are γ-close. This proves that Φ is contin-
uous.

LEMMA A.7 The mapping Φ : C(X,M(Z))! C(X, Q) that is defined by (46) is open.

Proof. By Proposition 2.2.b, p. 269, in Clausing (1978), the lemma follows from the fact
that Y =M(Z) and Q are compact convex sets and that the mapping ϕ : Y ! Q is affine,
as well as continuous and open.

Proposition A.1 now follows from Lemmas A.3, A.6, and A.7.

A.2 Proof of Proposition 4.6

Proposition 4.6 in the text is an instance of the following result, with X = Ti and Z = T�i.

PROPOSITION A.8 Let X � Rn, and let Z � RN�n be compact sets with nonempty interiors.
Let Y =Md(Z) be the space of probability measures on Z that have continuous density functions
and let the topology on Y be induced by the uniform topology for density functions. Then the set
E(X, Y) of embeddings of X in Y is a residual subset of C(X, Y).
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The proof proceeds along the same lines as the proof of Proposition A.1. We note that
Md(Z) is a separable metric space. A metric ρ for Md(Z) is given by the formula

ρ(µ, ν) = sup
z2Z

�� fµ(z)� fν(z)
�� , (48)

where fµ and fν are the continuous densities associated with µ and ν.
The conclusion of Lemma A.3 remains valid with X � Rn and Y =Md(Z) having the

topology that is induced by uniform convergence of density functions. To prove Propo-
sition A.8, it therefore suffices to specify a mapping Φ̂ : C(X,Md(Z)) ! C(X, [0, 1]2n+1)

that is continuous and open. We do so by setting

Φ̂(b) = ϕ̂ � b (49)

for b 2 C(X,Md(Z)), where ϕ̂ : Md(Z)! [0, 1]2n+1 is given by the formula:

ϕ̂(µ) =

�
fµ(z1)

1+ fµ(z1)
, ....,

fµ(z2n+1)

1+ fµ(z2n+1)

�
, (50)

where z1, ..., z2n+1 is an arbitrary but fixed collection of distinct elements of the interior of
Z.

LEMMA A.9 The mapping ϕ̂ : Md(Z)! [0, 1]2n+1 is continuous and open.

Proof. Continuity is immediate from (50). Openness follows from observing that ϕ̂ is the
composition of the homeomorphism µ ! fµ between M�(Z) and C(Z, R+), the projec-
tion f ! ( f (z1), ... f (z2n+1)) from C(Z, R+) to R2n+1

+ , and the homeomorphism

( f1, ... f2n+1)!
�

f1

(1+ f1)
, ...,

f2n+1

(1+ f2n+1)

�
from R2n+1

+ to the product [0, 1)2n+1.

LEMMA A.10 The function Φ̂ that is defined by (49) and (50) maps C(X,Md(Z)) continuously
into C(X, [0, 1]2n+1).

Proof. By routine calculations, (50) implies

kϕ̂(µ)� ϕ̂(µ̄)k � (2n+ 1)max
i

�� fµ(zi)� fµ̄(zi)
��
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for any µ and µ̄ in Md(Z), where k�k is again the Euclidean norm on R2n+1. For any µ

and µ̄ in Md(Z), therefore,

kϕ̂(µ)� ϕ̂(µ̄)k � (2n+ 1)ρ(µ, µ̄).

The function ϕ̂ thus is uniformly continuous. By the same argument as in the proof of
Lemma A.6, it follows that Φ̂ takes values in C(X, [0, 1]2n+1) and that Φ̂ is continuous.

The proof that Φ̂ is also open is more involved. The range Md(Z) of belief functions
now consists of measures with continuous density functions and is therefore not com-
pact.18 Therefore we cannot rely on the result of Clausing (1978) to infer that Φ̂ is open if
ϕ̂ is open. Instead we need a new argument.

LEMMA A.11 For any (q, µ) 2 [0, 1)2n+1 �Md(Z), the infimum ρ�(q, µ) of the distance
ρ(µ, ν) over the set of measures ν 2 Md(Z) that satisfy

ϕ̂(ν) = q. (51)

is well defined and satisfies

ρ�(q, µ) = max
i

���� qi

1� qi
� fµ(zi)

���� . (52)

Proof. Fix q 2[0, 1)2n+1 and µ 2 Md(Z) and let fµ be the density of µ. For any ε > 0 and
any i, let Bε(zi) be the open ε-ball around zi and let gε

i 2 C(Z, [0, 1]) be such that gε
i (zi) = 1

and gε
i (z) = 0 for all z /2 Bε(zi). For any ε > 0 and any α > 0, consider the function f̂αε

that is given by the formula

f̂αε(z) = max

"
0, α fµ(z) +

2n+1

∑
i=1

�
qi

1� qi
� α fµ(zi)

�
gε

i (z)

#
. (53)

By construction, the function f̂αε(�) from Z into R+ is continuous. Thus, if ε and α are such
that Z

Z
f̂αε(z)dz = 1, (54)

then f̂αε(�) is the density of a measure ναε 2 Md(Z).

18Compactness would require that the density functions belong to an equicontinuous set of functions.
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We claim that, if ε > 0 is sufficiently small, there exists α(ε) such that equation (54)
holds for α = α(ε) and ε. Moreover, if ε is close to zero, α(ε) is close to one. To prove this
claim, we note that, because

R
Z fµ(z)dz = 1, (53) impliesZ

Z
f̂αε(z)dz � α+

2n+1

∑
i=1

qi

1� qi

Z
Z

gε
i (z)dz � α+ H(ε) (55)

and Z
Z

f̂αε(z)dz � α+
2n+1

∑
i=1

�
qi

1� qi
� fµ(zi)

� Z
Z

gε
i (z)dz � α� H(ε), (56)

where

H(ε) :=
2n+1

∑
i=1

max
�

qi

1� qi
, fµ(zi)

� Z
Z

gε
i (z)dz

�
2n+1

∑
i=1

max
�

qi

1� qi
, fµ(zi)

� Z
Bε(zi)

dz. (57)

Then, for α � 1� H(ε), (55) and (57) imply
R

Z f̂αε(z)dz � 1 and, for α � 1+ H(ε), (56)
and (57) imply

R
Z f̂αε(z)dz � 1. By the intermediate value theorem, there exists α(ε) 2

[1� η, 1+ η] such that
R

Z f̂αε(z)dz = 1. Moreover, by (57), limε!0 H(ε) = 0 and, therefore,
limε!0 α(ε) = 1.

Consider the measures να(ε)ε 2 Md(Z) that are induced by the density functions
f̂α(ε),ε for ε > 0 sufficiently small and α(ε) chosen so that (54) holds. Because the points
z1, ..., z2n+1 in Z are distinct, there exists ε̄ > 0 such that, for ε < ε̄, no two of the open balls
Bε(zi) intersect each other. In this case, (53) implies

f̂αε(zi) =
qi

1� qi
(58)

for all i. For α = α(ε), it follows that the measure να(ε)ε 2 Md(Z) satisfies ϕ̂(ναε) = q.
This implies, in particular, that the set of measures satisfying (51) is nonempty so that the
infimum ρ�(q, µ) is well defined.

For any one of the measures να(ε)ε with ε < ε̄, we compute

ρ(µ, να(ε)ε) = sup
z2Z

��� fµ(z)� f̂α(ε),ε(z)
���

� sup
z2Z

�����(1� α(ε)) fµ(z)�
2n+1

∑
i=1

�
qi

1� qi
� α(ε) fµ(zi)

�
gε

i (z)

�����
� (1� α(ε)) sup

z2Z
fµ(z) +max

i

���� qi

1� qi
� fµ(zi)

����+ (1� α(ε)) fµ(zi).
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If ε and α(ε) go to zero, the first term and the third term on the right-hand side vanish and
only the middle term remains. Therefore,

ρ�(q, µ) � max
i

���� qi

1� qi
� fµ(zi)

���� .

Equation (52) follows because, for ν satisfying (51), we also have

ρ(µ, ν) = sup
z2Z

�� fµ(z)� fν(z)
��

� max
i

�� fµ(zi)� fν(zi)
��

= max
i

���� fµ(zi)�
qi

1� qi

���� ,

and hence
ρ�(q, µ) � max

i

���� qi

1� qi
� fµ(zi)

���� .

LEMMA A.12 For any ε > 0, there exists a continuous function νε from [0, 1)2n+1 �Md(Z) to
Md(Z) such that, for any (q, µ) 2 [0, 1)2n+1 �Md(Z), ϕ̂(νε(q, µ)) = q and

ρ(µ, νε(q, µ)) � ρ�(q, µ) + ε, (59)

where ρ�(q, µ) is again the infimum of the distance ρ(µ, ν) over the set of measures ν 2 Md(Z)
that satisfy (51).

Proof. Fix ε > 0. For any q 2 Q and any µ 2 Md(Z), let

ψε(q, µ) := fν 2 Md(Z)jϕ(ν) = q and ρ(µ, ν) < ρ�(q, µ) + εg, (60)

and let ψ̄ε(q, µ) be the closure of ψε(q, µ). To prove the lemma, it suffices to show that the
correspondence ψ̄ε from Q�Md(Z) into Md(Z) has a continuous selection.

By Theorem 1.2 of Michael (1964), existence of a continuous selection of the closed-
valued correspondence ψ̄ε from Q �Md(Z) into Md(Z) is guaranteed if ψ̄ε is convex-
valued and lower hemi-continuous. To show that ψ̄ε has these properties, it suffices that to
show that ψε has them: Convex-valuedness of ψ̄ε then follows from the convex-valuedness
of ψε and the observation that the closure of a convex set is convex; similarly, lower hemi-
continuity of ψ̄ε follows from the lower hemi-continuity of ψε.19

19Hildenbrand (1974), pp. 36, 26.
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To establish convex-valuedness of ψε, fix (q, µ) 2 Q �Md(Z). Let ν1, ν2 be any two
elements of ψε(q, µ), and, for some λ 2 (0, 1), consider the convex combination λν1+(1�
λ)ν2 of ν1 and ν2. Because ν1 and ν2 belong to ψε(q, µ), the densities fν1 fν2 of ν1, ν2 satisfy

fν1(zi) = fν2(zi) =
qi

1� qi
(61)

for all i and
sup
z2Z

ρ(µ, νj) < ρ�(q, µ) + ε (62)

for j = 1, 2. From (61), we immediately obtain

fλν1+(1�λ)ν2
(zi) = λ fν1(zi) + (1� λ) fν2(zi) =

qi

1� qi

for all i, hence, ϕ̂(λν1 + (1� λ)ν2) = q. Moreover, (62) implies

ρ(µ, λν1 + (1� λ)ν2)

= sup
z2Z

�� fµ(z)� λ fν1(z)� (1� λ) fν2(z)
��

� λ sup
z2Z

�� fµ(z)� fν1(z)
��+ (1� λ) sup

z2Z

�� fµ(z)� λ fν2(z)
��

< ρ�(q, µ) + ε.

Thus, λν1 + (1� λ)ν2 2 ψε(q, µ).
To prove lower hemi-continuity of ψε, consider any pair (q, µ) 2 Q �Md(Z), any

measure ν 2 ψε(q, µ), and any sequence f(qr, µr)g that converges to (q, µ). Because ϕ̂ is
open, there exists a sequence fνrg converging to ν such that ϕ(νr) = qr for all r. For any
r, the triangle inequality implies

ρ(µr, νr) � ρ(µr, µ) + ρ(µ, ν) + ρ(ν, νr).

Since ν 2 ψε(q, µ) satisfies (62), it follows that, for some η > 0, we have

ρ(µr, νr) � ρ(µr, µ) + ρ�(q, µ) + ε+ ρ(ν, νr)� η

for all r. If r is large enough so that ρ(µr, µ), ρ(ν, νr), and jρ�(q, µ)� ρ�(qr, µr)j are all less
than η

3 , it follows that
ρ(µr, νr) < ρ�(qr, µr) + ε

and, hence, that νr 2 ψε(qr, µr). This proves that ψε is lower hemi-continuous.
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LEMMA A.13 The mapping Φ̂ : C(X,Md(Z))! C(X, [0, 1]2n+1) is open.

Proof. The lemma is equivalent to the statement that Φ̂�1 is a lower hemi-continuous cor-
respondence. To verify lower hemi-continuity, consider any functions b 2 C(X,Md(Z))
and β 2 C(X, Q) such that β = Φ̂(b). Consider any sequence fβrg in C(X, Q) that con-
verges to β. For any r, define a function br by setting

br(x) = ν1/r(β
r(x), b(x))

for any x 2 X, where ν1/r is the function given by Lemma A.12 with ε = 1
r Because ν1/r,

βr, and b, are continuous, br 2 C(X,Md(Z)). Lemma A.12 implies that , for any γ > 0,
there exists η(γ) > 0 such that, if

φ̂(b(x))� βr(x)
 < η(γ) for all x, then

ρ(b(x), br(x)) � ρ�(βr(x), b(x)) +
1
r

for all x. By Lemma A.11, it follows that

ρ(b(x), br(x)) � max
i

���� βr
i (x)

1� βr
i (x)

� fb(x)(zi)

����+ 1
r

= max
i

���� βr
i (x)

1� βr
i (x)

� βi(x)
1� βi(x)

����+ 1
r

for all x, where fb(x) is the density of the measure b(x). Now the uniform convergence
of the sequence fβrg to β implies that, for any η > 0, there exists R(η) such that for
all r � R(η), ρ(b(x), br(x)) < η for all x. This proves that the sequence fbrg converges
uniformly to b. Lower hemi-continuity of Φ̂ follows immediately.

A.3 Proof of Lemma 4.9

Proof. We first show that, if Md
+(T) is endowed with the topology that is induced by the

uniform topology for density functions, then the maps ν ! ψi(ν) = (v̄i(ν), bi(�, ν)) are
continuous and open. We begin by proving continuity. If fνkg is a sequence in Md

+(T)
that converges to a limit ν 2 Md

+(T), the associated densities satisfy

lim
k!∞

f νk
(ti, t�i) = f ν(ti, t�i), (63)

uniformly on T. Because the continuous function f ν is bounded on the compact set T,
it follows that the densities f νk

are uniformly bounded. For any i, therefore, Lebesgue’s
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bounded convergence theorem implies that

lim
k!∞

f̄ νk

i (ti) = lim
k!∞

Z
T�i

f νk
(ti, t�i)dt�i =

Z
T�i

f ν(ti, t�i)dt�i = f̄ ν
i (ti), (64)

uniformly on Ti, which proves that the sequence fν̄i(ν
k)g converges to ν̄i(ν).

Because ν 2 Md
+(T), we have f̄ ν

i (ti) > 0 for all ti 2 Ti; indeed, because f̄ ν
i (�) is

continuous, f̄ ν
i (ti) is bounded away from zero on Ti. Because the marginal densities f νk

i

converge uniformly to f̄ ν
i , it follows that they are uniformly bounded away from zero. If

we combine (63) and (64) with (29) in the text, we obtain

lim
k!∞

βi(t�ijti, νk) = βi(t�ijti, ν), (65)

uniformly on T. For any ti 2 Ti, therefore, the sequence fbi(�jti, νk)g converges to bi(�jti, ν),
uniformly on Ti. Continuity of the map ψi(ν) = (v̄i(ν), bi(�, ν)) is thus proved.

To show that ψi is open, we note that, for any ψi has an inverse. For any ν̄i 2 Md
+(Ti)

and any bi 2 C(Ti,Md(T�i)), let f̄ ν̄i and βi(�j�) be the associated marginal and conditional
density functions and consider the measure ψ�1

i (ν̄i, bi) that is defined by the formula

ψ�1
i (Bi � B�ijν̄i, bi) =

Z
Bi

Z
B�i

βi(t�ijti) f̄ ν̄i(ti)dt�idti. (66)

By another application of Lebesgue’s bounded convergence theorem, one sees that ψ�1
i (ν̄i, bi) 2

Md
+(T) and that ψ�1

i is continuous. Therefore ψi is open.
Next, we show that the topology that is induced by uniform convergence of densities

is in fact the coarsest topology under which the maps ν ! ψi(ν) = (v̄i(ν), bi(�, ν)) Let B be
any open subset of Md

+(T) in the topology that is induced by the uniform topology for
density functions and let T be any other topology on N db

+ (T) such that the maps ψi are
continuous. Because, in the topology that is induced by the uniform topology for density
functions, ψi is an open mapping, ψi(B) is an open subset of Md

+(Ti)� C(Ti,Md(T�i)).
Because ψi is continuous when Md

+(T) has the topology T , it follows that ψ�1
i (ψi(B)) =

B 2 T . Thus, the topology onMd
+(T) that is induced by the uniform topology for density

functions is at least as coarse as T .
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