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Abstract: 

We assess  recent Chinese  climate policy proposals  in a multi‐region, multi‐sector  computable general 

equilibrium model with a Chinese carbon emissions trading scheme (ETS). When the emissions intensity 

per GDP  in  2020  is  required  to  be  45%  lower  than  in  2005,  the model  simulations  indicate  that  the 

climate policy‐  induced welfare  loss  in 2020, measured as the  level of GDP and welfare  in 2020 under 

climate policy relative to their  level under business‐as‐usual (BAU)  in the same year,  is   about 1%. The 

Chinese welfare  loss  in 2020 slightly  increases  in  the Chinese  rate of economic growth  in 2020. When 

keeping the emissions target  fixed at the 2020  level after 2020  in absolute terms, the welfare  loss will 

reach about 2% in 2030. If China’s annual economic growth rate is 0.5 percentage points higher (lower), 

the climate policy‐induced welfare  loss  in 2030 will  rise  (decline) by about 0.5 percentage points. Full 

auctioning of carbon allowances results in very similar macroeconomic effects as free allocation, but full 

auctioning leads to higher reductions in output than free allocation for ETS sectors. Linking the Chinese 

to the European ETS and restricting the transfer volume to one third of the EU’s reduction effort creates 

at  best  a  small benefit  for China,  yet with  smaller  sectoral output  reductions  than  auctioning.  These 

results highlight the importance of designing the Chinese ETS wisely. 

Keywords: China, climate policy, ETS, linking, CGE 

JEL classifications: C68, Q54, Q56 
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1. Introduction 

The  European  Union’s  (EU)    emissions  trading  scheme  (ETS)  has  been  extensively  researched,  in 

particular with  the help of Computable General Equilibrium  (CGE) models  (e.g. Klepper and Peterson, 

2006;  Böhringer  and  Löschel,  2005;  Böhringer  et  al.,  2009a,  2009b;  Hübler  and  Löschel,  2013).  This 

literature  highlights  that  deliberate  climate  policy  design  can  drastically  attenuate  climate mitigation 

costs. It highlights furthermore that different policy designs create various sectoral effects. Such sectoral 

effects  are  eminently  crucial  with  respect  to  national  and  international  competitiveness.  Deliberate 

design  encompasses  the  inclusion  of  relevant  sectors,  the  way  of  distributing  carbon  emissions 

allowances and the international scope or linking of climate policies. 

To date, the spotlight is shifting from Europe to China. The People’s Republic of China has  initiated ETS 

pilot  projects  in Beijing,  Shanghai, Guangdong, Hubei,  Tianjin,  Chongqing  and  Shenzhen.  These  pilots 

envisage  CO2  emissions  reductions  per  unit  of  output  between  17%  and  21%  by  2015  vis‐à‐vis  the 

respective  2010  level.  The  emissions  reductions  are  in  accordance  with  China’s  pledges  in  the 

Copenhagen Accord. These pledges presume an  intensity  target  for Chinese carbon emissions  (carbon 

emission measured in physical units per value unit of gross domestic product) between 40% and 45% for 

2020  vis‐à‐vis  2005.  The  European  Commission  supports  Chinese  policy  makers  in  designing  and 

implementing an emissions  trading  scheme  considering  the experience of  the EU ETS. To date, policy 

assessments of how to implement the Chinese emissions targets efficiently are, however, largely missing. 

In particular, a quantitative model‐based assessment of policy design options would help policy makers 

implement the prevailing emissions targets at low macroeconomic costs and to avoid excessive sectoral 

losses as well. The China‐related climate policy  literature has not yet studied  the  implementation of a 

national ETS in detail (see section 2). 

A particular  challenge  in  this  respect  is  the uncertainty  about  the  future  growth path of  the Chinese 

economy (cf. Hübler, 2011).  If China sustains  its high economic growth and relies on coal as an energy 
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source, carbon emissions will substantially grow. Consequently, the costs of reaching a given emissions 

target will  rise.  If, on  the  contrary, Chinese growth  rates decline and  converge  to a moderate growth 

steady state, carbon emissions will only moderately grow. Hence, mitigation costs of a given emissions 

target will be lower. The  impact of economic growth  is more complex with respect to  intensity targets: 

on  the one hand, higher economic growth augments business‐as‐usual  (BAU) emissions; on  the other 

hand, higher economic growth allows China to emit more under climate policy. Higher economic growth 

driven by higher technical progress may also result in a lower BAU carbon intensity. The resulting carbon 

intensity  under  climate  policy  is  given  by  the  intensity  target  and  independent  of  economic  growth. 

Nonetheless, higher growth expands emissions in absolute terms so that emissions reductions starting at 

this  higher  level  (on  the marginal  abatement  curve) might  be more  costly.  As  a  consequence,  it  is 

ambiguous whether and how economic growth affects the carbon price and total carbon mitigation costs 

under an intensity target. 

Moreover, European experience shows  that  some sectors are under higher competitive pressure  than 

others.  This  may  apply  in  particular  to  energy‐intensive  and  trade‐exposed  industries  as  they  are 

potentially prone to carbon leakage, i.e. their relocation to countries without climate policies. Therefore, 

it is of high importance to analyze specific sectoral impacts and to detect what sectors suffer most from 

the introduction of an ETS. 

Another  significant  issue  to  be  considered  is  the  involvement  of  a  Chinese  ETS  in  the  international 

climate policy context. In more detail, linking the Chinese ETS to the EU ETS is supposed to imply positive 

welfare effects  for both  regions. The EU may benefit  from  the presumably  lower marginal abatement 

costs in China, whereas China could profit from the revenues generated by exporting of offset credits. 

Our paper tackles these issues. It evaluates policy design options for China and takes up the three points 

mentioned above:  the uncertainty about  future growth, competitiveness at  the sectoral  level, and the 



4 
 

linkage of the Chinese to the EU ETS. Besides these three main points, it evaluates the costs of different 

Chinese intensity targets and auctioning versus free allocation of emissions allowances. 

Our analysis devises the following macroeconomic results in terms of China’s climate policy‐induced GDP 

and welfare  losses:  assuming  a  carbon  intensity  target  of  45%  for  2020  vis‐à‐vis  2005  and medium 

economic growth, the Chinese GDP and welfare  losses compared to BAU amount to about 1%  in 2020. 

They rise to about 2%  in 2030 provided that the emissions target for 2020  is kept constant  in absolute 

terms thereafter. Under the intensity target in 2020, higher Chinese economic growth slightly enhances 

mitigation  costs.  Under  the  fixed  emissions  cap  in  2030,  the  results  are  relatively  sensitive  to  the 

assumptions on Chinese economic growth: augmenting (attenuating) the medium annual growth rate by 

0.5 percentage points  increases  (decreases)  the GDP  loss  in  2030 by  0.4  and  the welfare  loss by  0.5 

percentage points. If the intensity target for 2020 is set to 50%, i.e. more stringent than the Copenhagen 

pledge, and is kept constant thereafter, the welfare loss will ascend to 2.9% in 2030, yet the GDP loss will 

only reach 2.2%. Linking the Chinese ETS to the EU ETS limited to a transfer volume of 300 Mt of CO2 per 

year would at best slightly reduce these macroeconomic costs. Furthermore, the difference between full 

auctioning and free allocation of allowances is minor and ambiguous at the macro level.  

At  the  level  of  energy‐intensive  Chinese  sectors  that  participate  in  emissions  trading,  the  results  are 

quantitatively  much  more  diverse  than  at  the  macro  level.  Climate  policy‐induced  sectoral  output 

changes under medium growth and a 45% intensity target vary roughly between +1.5% and ‐3% in 2020 

and  +0.5%  and  ‐7%  in  2030.  This  result  applies  to  free  allocation  of  allowances.  Full  auctioning  of 

allowances strongly augments (e.g. doubles) the sectoral output reductions. Therein, the sectoral output 

reductions are compensated by revenues from auctioning at the macro level. Linking the Chinese to the 

EU ETS  (restricted to 300 Mt of CO2 annually) also diminishes sectoral output, but clearly  to a smaller 

extent  than  full auctioning.  In  this  case,  the  sectoral output  reductions are compensated by  revenues 

from  exporting  allowances  to  Europe  at  the  macro  level.  The  macroeconomic  effects  of  different 
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economic  growth  assumptions  explained  above  translate  to  the  sector  level  in  terms  of  output 

reductions.  Augmenting  (attenuating)  the  medium  annual  growth  rate  by  0.5  percentage  points 

increases (decreases) the sectoral output losses in 2030 by around 15%, although also higher and lower 

losses occur in specific sectors. For example, the chemical sector can benefit from higher growth under 

climate policy in 2030. 

Our paper is structured as follows: section 2 reviews related literature strands. Section 3 provides a brief 

narrative model overview. Section 4 describes the policy scenarios under scrutiny. Section 5 presents and 

interprets the policy simulation results. Section 6 concludes. 

2. Literature 

The  literature  has  so  far  examined  the  stringency  and  achievability  of  China’s  Copenhagen  intensity 

targets. The  literature has also evaluated China’s  importance for mitigating climate change and China’s 

economic  incentives to  join a global emissions trading scheme  (ETS). A  few scholars have  theoretically 

scrutinized the economic effects of linking a Chinese system of carbon pricing to the European ETS, and 

they have estimated  the  volume of  carbon  allowance  transfers between China  and  Europe within  an 

efficiently connected system. The  lessons we  learn  from  these  literature streams are  the basis  for our 

research as presented in this paper. 

Like  our  study,  one  recent  literature  stream  evaluates  the  stringency  and  achievability  of  China’s 

Copenhagen pledge, defined as an emissions intensity target. According to its Copenhagen pledge, China 

announced  to  reduce  its carbon emissions  intensity between 40% and 45% until 2020 vis‐à‐vis 2005.1 

Steckel et al. (2011) show that the Chinese 45% intensity target, as given by the Copenhagen pledge, is 

capable of meeting  a  450 ppm  concentration  target,  resulting  in  a  two degree  temperature  increase 

                                                            
1 Qualitatively, we use carbon and CO2 as synonyms throughout the paper. Quantitatively, we report emissions as 
tons of CO2. 
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above  the  pre‐industrial  level.  Saveyn  et  al.  (2012)  aver,  based  on  their  CGE  model,  that  China’s 

emissions  intensities  in  a  reference  scenario  are  comparable  to  or  even  lower  than  required  by  the 

Copenhagen pledges. Hence, the Chinese intensity targets would not be binding. Different to Saveyn et 

al.  (2012), Dai et al.  (2011) estimate with  their CGE model  that China can achieve a 31% up  to a 39% 

reduction  in emissions  intensity between 2005 and 2020  in the BAU. The remaining part of the 40% to 

45%  intensity  target must be  realized  through a  carbon  constraint. Wang et al.  (2009) assess Chinese 

intensity targets of 45% for 2020 and 60% in 2030 in a CGE model. They find a GDP loss of 0.28% for 2020 

and  3.05%  in  2050  (without  research  and  development,  R&D,  policy).  Other  studies  underline  that 

income‐induced changes in consumption patterns and the removal of energy subsidies can curb Chinese 

carbon emissions (Dai et al., 2012; Lin and Jiang, 2011). Importantly, Marschinski and Edenhofer (2010) 

emphasize the ambiguity of intensity targets with respect to cost‐uncertainty. Building on this literature 

strand, we will assess the sensitivity of our results to the assumption on the Chinese intensity target and 

on economic growth. 

Like  other  analyses,  our model  analysis  examines  China  within  a  global  framework  of  trade‐related 

economies.  A crucial question is how important China’s emissions reductions are for climate protection 

within  a  global  framework.  The  recent  literature,  that  explores  China’s  role  within  a  global  carbon 

emissions trading scheme (ETS) or a global carbon tax regime, answers this question. The Asia Modeling 

Exercise highlights Asia’s and China’s importance for achieving an acceptable temperature goal: Paltsev 

et al. (2012) estimate that China’s participation or non‐participation in a global climate policy regime can 

change  the  CO2  concentration  by  as much  as  200  to  280  ppm.  This  translates  into  a  temperature 

difference of up to 1.3 degree Celsius above the preindustrial level. Another crucial question is whether 

China has an incentive to join a global ETS in its own interest, wherein the detrimental long‐term effects 
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of  climate  change  are  often  ignored.2  Hübler  et  al.  (2012)  assume  a  budget  of  global  emissions 

cumulated from 2005 to 2100 amounting to 400 Gt of carbon, resulting in a temperature goal of about 

two degrees. In a global ETS, emissions allowances are allocated to regions following a Contraction and 

Convergence approach (C&C; GCI, 1990). They find a consumption loss of up to 1.2% for China, which is 

higher than the consumption losses of the other model regions under examination and questions China’s 

incentive to join a global ETS. Hübler (2011, 2012), on the contrary, find that China prefers being inside a 

global ETS within the time  frame  from 2005 to 2030 or 2050. Given successful energy‐saving technical 

progress  and  declining  rates  of  China’s  economic  growth  over  time,  China  can  benefit  from  selling 

superfluous  emissions  allowances within  a per‐capita‐emissions‐based C&C  approach. Going one  step 

further, Li et al. (2012) pronounce that China would impose a carbon tax on exports in its own interest. 

Weitzel et al. (2012) make  less optimistic assumptions on technical progress and economic growth and 

restrict the time horizon to 2020. They find that only with extraordinarily high border carbon adjustment 

rates or  international  transfers China would prefer  joining  a  global  ETS  in order  to  achieve  a welfare 

improvement. We conclude from this literature that it is questionable whether China has an incentive to 

join a global climate ETS  (when we  ignore  the detrimental  long‐term  impacts of climate change). As a 

consequence, we do not model  China within  a  full  global  emissions  trading  scheme,  but we  link  the 

Chinese ETS to the EU ETS in a specific scenario. 

So far, few scholars have explored the potential and consequences of linking the Chinese to the EU ETS. 

Marschinski et al. (2012) examine the  linkage of a Chinese ETS sector to an EU ETS sector  in a stylized 

two‐sector  trade model.  They  point  out  that,  in  contrast  to  the  standard  Ricardo‐Viner model,  the 

welfare effects of  linking are  in general ambiguous, because  linking creates a positive gains‐from‐trade 

effect, but also an ambiguous terms‐of‐trade effect. Our research corroborates this ambiguity of linking 

with respect to welfare gains: the welfare gains through  linking are small and can even become slightly 

                                                            
2 When taking long‐term impacts of climate change on China into account, it can become more attractive for China 
to engage in climate action in order to avoid these damages. 
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negative.  The  consecutive  question  is  how  high  the  potential  of  an  exchange  of  carbon  allowance 

between  China  and  Europe  is.  Heindl  and  Voigt  (2012)  analyze  a  hypothetical  international  carbon 

allowance  (offset) market  in  a CGE  framework. They  find  that China  is  among  the  countries with  the 

highest  potential  for  the  generation  of  additional  allowances  for  the  EU  ETS  due  to  its  low marginal 

abatement costs compared with other emerging economies.  In order to exploit this high potential, we 

link the Chinese to the EU ETS in one scenario. 

3. Model and Data 

We conduct a quantitative assessment of the Chinese emissions trading scheme  (ETS) with the help of 

PACE (Policy Analysis based on Computable Equilibrium). PACE is a multi‐sector, multi‐region computable 

general  equilibrium  (CGE) model  of  global  production,  consumption,  trade  and  energy  use which  is 

calibrated  for  the  year  2005  proceeding  in  five‐year  time  steps  until  the  year  2030.  The  model  is 

recursive dynamic, this means, it is solved for a sequence of global market equilibria. The equilibria are 

connected via investments and other exogenous drivers of economic growth. 

A comprehensive model overview and the underlying assumptions about the substitution possibilities in 

the production process of fossil and non‐fossil goods, consumer preferences and the representation of 

trade  links are presented  in the Supplementary Appendix. For further technical details, the reader may 

refer  to Böhringer and  Lange  (2003), Böhringer and  Löschel  (2006), Böhringer and Rutherford  (2008), 

Böhringer et al. (2009a) and Hübler and Löschel (2013). 

The benchmark data for the year 2004/2005 are taken from the GTAP 7 data base (Global Trade Analysis 

Project;  Badri  and  Walmsley,  2008).  This  data  base  takes  inter‐sectoral  input‐output  linkages  into 

account so that (policy‐induced) economic effects in one sector propagate to other sectors and overlap. 

The  resulting  general  equilibrium  combines  all  these  overlapping  effects.  Data  for  the  dynamic  BAU 

calibration until 2030 are taken from IEO (2008/2010). IEO (2008/2010) provides detailed regional data 
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on  fuel‐specific  primary  energy  consumption  and  carbon  emissions.  The  IEO  data  contain  implicit 

assumptions on the development of population growth, technical progress and fossil fuel prices, which 

results in a certain GDP growth path.  

Table 1: Regions and sectors in this PACE model version (ETS means emissions trading scheme; categories in capital 
letters, model sectors in small letters) 

Regions Sectors 

ASIA AND PACIFIC: 
China  
India  
Japan  
South Korea, Indonesia  
      and Malaysia 
Australia and New Zealand  

EUROPE (EURASIA): 
Europe (EU‐27)  
Russia  

AMERICAS: 
Canada 
United States of America 
Mexico  
Brazil 

REST: 
Rest of Annex I 
Rest of the World 
 

AGRICULTURE:          

      NON‐ETS 

            Food, agriculture and wood 

ENERGY: 

      NON‐ETS 

Crude oil 

Natural gas 

Coal 

       ETS 

Petroleum and coal products (refined) 

            Electricity and heat 

INDUSTRY: 

ETS  

   Aluminium  

   Bricks and tiles (and construction products) 

   Cement 

Iron and steel production 

Iron and steel further processing 

Fertilizers (and other nitrogen compounds) 

Inorganic chemicals 

Organic chemicals 

Other chemicals, rubbers and plastics 

Paper (pulp) and publishing 

Other non‐metallic minerals  

Other non‐ferrous metals 

NON‐ETS 

Machinery and other manufacturing  

Mining and construction 

Textiles (wearing, apparel) and leather  

Transportation 

 SERVICES: 

       NON‐ETS 

Services (commercial and public) 

 

Substitution elasticities in international trade (so‐called Armington elasticities) follow empirical estimates 

reported  in  the GTAP  data  base.  Constant  elasticity  of  substitution  (CES)  values  between  production 
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factors (capital, labour, energy inputs, non‐energy inputs) are taken from Okagawa and Ban (2008) who 

provide  sectoral  panel  data  estimates  for  the  period  from  1995  to  2004.  The  values  of  important 

elasticities of substitution applied to our model are reported in the Supplementary Appendix.3 

Our model partitions the world  into 13 regions as  illustrated  in Table 1.  In each region,  it distinguishes 

the  23  listed  production  sectors  plus  one  investment  good  sector.  The  model  includes  seven 

disaggregated energy‐intensive sectors (aluminium, bricks and tiles, cement,  iron and steel production, 

fertilizers, organic chemicals and  inorganic chemicals) beyond the sectors provided by the GTAP 7 data 

base (cf. Löschel et al., 2009; Hübler and Löschel, 2013). These sectors have been generated by applying 

the Splitcom routine (Horridge, 2005) to additional data (Eurostat, 2009; UN, 2009a, b). 

4. Scenarios 

In  order  to  compare  various  climate  policy  design  options  and  assumptions  on  Chinese  growth, we 

define the following scenarios for China. Therein, we take only CO2 emissions into account as greenhouse 

gases. 

Scenario  BAU  (business‐as‐usual)  does  not  contain  any  climate  policy.  As  the  simulation  results will 

frequently be presented as percentage changes compared to BAU, it is worthwhile giving an overview of 

the key BAU assumptions. As outlined previously, growth rates  for GDP, energy consumption, and CO2 

emissions as well as the price level rely on assumptions given by the International Energy Outlook (IEO, 

2008/2010).  IEO  (2008/2010) offers  a detailed  assessment of  international energy markets  and other 

economic parameters until 2035 which are built upon consistent estimates and  interrelations between 

all  variables.  The  average  growth  rates  of  the  Chinese  GDP  for  the  different  five‐year  intervals 

represented in the model read:  

                                                            
3 A higher elasticity number denotes a better possibility to substitute inputs for each other due to price changes. An 
elasticity of one signifies a Cobb‐Douglas relation. An elasticity value of zero signifies a Leontief  function without 
substitution possibilities so that all inputs are used in fixed proportions. 
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 2010 – 2015:    8.5%, 
 2015 – 2020:    6.5%, 
 2020 – 2025:    5.0%, 
 2025 – 2030:    4.0%. 

As discussed in section 2, the previous literature finds ambiguous results with respect to the stringency 

of  Chinese  emission  intensity  reduction  targets.  This  circumstance  underlines  the  uncertainty  of  the 

underlying BAU projections. Therefore, in our scenario choice we will put special emphasis on different 

growth projections of the Chinese economy. 

Table  2  gives  an  overview  of  our  scenarios  which  can  be  distinguished  along  three  dimensions: 

assumptions on  linking the Chinese to the EU ETS, assumptions on Chinese GDP growth, and allocation 

mechanisms  (free  allocation  vs.  full  auctioning  of  emissions  allowances).  In  the  presence  of  carbon 

pricing  like  auctioning of emissions  allowances, producers have  to pay  for  the use of  fossil energy  in 

production  corresponding  to  the  released  carbon.  (Each unit of  coal, gas or oil has a  specific physical 

carbon content.) Our model assumes free trading of allowances without transaction costs. 

Scenario STANDARD implements the Chinese intensity targets for 2020. As a reference case, we impose 

the upper bound emission intensity reduction of China’s Copenhagen pledges, i.e. an intensity reduction 

of 45% compared to the 2005 intensity level.4 We assume that the cap tightens in a linear fashion over 

the modeled  time  horizon,  i.e.  one  third  of  the  reduction  is  reached  in  2010  while  two  thirds  are 

achieved by 2015. The emissions reduction is borne by the ETS sectors listed in Table 1. The choice of ETS 

sectors follows the current state of the Chinese climate policy strategy. The ETS sectors cover about 75% 

of overall Chinese CO2 emissions. Non‐ETS sectors are assumed to be subject to general supplementary 

                                                            
4 The  intensity  target  is  implemented by calculating  the 2005 emissions  intensity  (CO2 per unit of GDP)  for BAU, 
from which we are able to derive the targeted emissions  intensity for the year 2020. Following that, we translate 
the calculated  intensity cap  into an absolute emissions cap by multiplying the targeted  intensity  level by the GDP 
level  which  is  projected  in  the  BAU  scenario.  Since  the  Chinese  GDP  slightly  declines  due  to  climate  policy 
compared to BAU,  the emissions gap would need to slightly decline,  i.e.  tighten, as well, which we neglect. As a 
consequence, we  slightly underestimated  the  carbon price and  climate policy  cost  for a given Chinese  intensity 
target. Our estimates are in this respect careful/conservative. 
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climate  and  energy  policy.  These  climate  and  energy  policy  assumptions  are  in  accordance with  the 

Chinese policy of reducing energy and hence emissions intensity independent of emissions trading. The 

supplementary policy ensures  that carbon  leakage between ETS and non‐ETS  sectors  that would  raise 

overall Chinese emissions  is avoided, and overall Chinese emissions  thus match  the given target.5 This 

scenario  further assumes  that China keeps  its carbon emissions constant at  the 2020  level after 2020 

(until 2030 which is the terminal year of our simulation). This assumption follows newest Chinese policy 

plans that consider emissions targets for the period after 2016 in absolute terms.6 Nonetheless, it is still 

an  open  question  whether  China  will  follow  an  intensity  target  or  an  absolute  cap  in  the  future. 

Therefore, we explicitly assume an  intensity  target  for  the  time after 2020  in  the alternative  scenario 

INTENSITY2030. 

Table 2: Scenario overview. 

 Assumptions on linking to EU ETS 

(STANDARD; LINKING) 

GDP growth 

assumptions 

(LOW GROWTH; 

MEDIUM 

GROWTH; 

HIGH GROWTH) 

STANDARD/LOW 

GROWTH/free alloc. 

STANDARD/LOW 

GROWTH/full auct. 

LINKING/LOW 

GROWTH/free alloc. 

LINKING/LOW 

GROWTH/full auct. 

STANDARD/MEDIUM 

GROWTH/free alloc. 

STANDARD/MEDIUM 

GROWTH/full auct. 

LINKING/MEDIUM 

GROWTH/free alloc. 

LINKING/MEDIUM 

GROWTH/full auct. 

STANDARD/HIGH 

GROWTH/free alloc. 

STANDARD/HIGH 

GROWTH/full auct. 

LINKING/HIGH 

GROWTH/free alloc. 

LINKING/HIGH 

GROWTH/full auct. 

 

Scenario LINKING is identical to STANDARD and additionally links the Chinese to the European ETS in the 

model  years  2025  and  2030  (A  linking  regime  is  not  expected  before  2020).  The  Chinese  ETS 

encompasses  the  same sectors as  the EU ETS. The  linking mechanism  is managed by  the Chinese and 

                                                            
5  This  type  of  carbon  leakage,  from  regulated  to  non‐regulated  sectors, was  detected  by  Zhang  et  al.  (2013a, 
2013b). 
6 http://www.bloomberg.com/news/2013‐06‐04/china‐sticks‐to‐carbon‐intensity‐target‐while‐dismissing‐co2‐
cap.html. 
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European governments. This means, the Chinese government will presumably sell allowances to the EU 

government so that fewer allowances will be remaining in China. It distributes the remaining allowances 

to Chinese ETS sectors (firms) and redistributes the revenues from selling the allowances to the Chinese 

representative consumer in a lump‐sum fashion. Notably, the import of allowances to the EU from China 

is  limited  to  one  third  of  the  EU’s  total  abatement  effort  in  this  year  vis‐à‐vis  2005,  in  our  case 

approximately 300 Mt CO2 in 2030, per policy assumption. 

Notably, we  take  the  importance  of  China’s  economic  growth  for  emissions  and  thus  climate  policy 

effects into account. In this respect, scenario MEDIUM GROWTH refers to GDP growth rates as outlined 

in  the description of  the BAU  scenario. Moreover,  IEO  (2008/2010) offers additional growth  scenarios 

taking into account the possibility of unexpected economic crises or surges. By running additional growth 

scenarios, we are able to assess the robustness of the simulation results with respect to uncertainties in 

the BAU projections of future economic developments. Thereby, the HIGH GROWTH scenario assumes 

annual GDP  growth  rates  to  be  0.5  percentage  points  greater  than  in  the  reference  case  presented 

above, whereas the LOW GROWTH scenario assumes GDP growth rates 0.5 percentage points below the 

reference case.  

Another important aspect of policy design is the way of distributing emissions allowances. As depicted in 

Table  2,  we  run  each  scenario  with  free  allocation  of  carbon  emissions  allowances  and  with  full 

auctioning  of  allowances  as  the  two  border  cases.  Real  policy may  choose  to  allocate  part  of  the 

allowances for free so that the resulting economic effects are in between the results of the border cases. 

In case of free allocation, firms buy allowances in the first step and are compensated for their purchase 

via an output subsidy in the second step (cf. Jensen and Rasmussen, 2000; Edwards and Hutton, 2001). 

In all Chinese scenarios, the other regions follow the Copenhagen pledges. The European Union follows 

the Roadmap to a  low‐carbon economy  in 2050 reaching a CO2 reduction of over 80% vis‐à‐vis 1990  in 
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2050. The EU Roadmap reduction targets for 2020 and 2030 are 23% and 39% vis‐à‐vis 1990. All other 

Annex I countries as well as the most important emerging economies (India, Mexico, Brazil) follow their 

respective Copenhagen pledges until 2020. We assume that these targets are intensified thereafter. The 

policy paths follow the scenarios of the projects RoSE7 (Roadmaps towards Sustainability Energy Futures: 

A Model‐Based Assessment of Scenarios for decarbonising the energy system  in 21st century) and EMF 

28 (Energy Modelling Forum: assessment of the EU Decarbonisation Roadmap 2050). 

As  a  robustness  check  of  our  scenario  simulations, we  run  several  alternative  policy  scenarios.  The 

results are presented in the Supplementary Appendix. 

The  first  sensitivity  analysis  concerns  the  stringency of  the  intensity  target  in 2020. We  consider  two 

additional  cases:  LOW  assumes  a  40%  INTENSITY  TARGET,  which  is  the  lower  bound  of  China’s 

Copenhagen pledge. In this scenario, China reduces its CO2 emissions per unit of GDP by 40% until 2020 

relative to the 2005  level. HIGH assumes a 50%  INTENSITY TARGET that goes beyond the Copenhagen 

pledges in terms of stringency for comparison. In these scenarios, absolute emissions levels are also kept 

constant after 2020. 

Second,  in addition  to  the STANDARD scenario, we assume  that Chinese emissions  follow an  intensity 

target  instead of a  fixed  target after 2020. The  intensity  target  for 2020  is  intensified by 3% annually 

between 2020 and 2030. We refer to this analysis as scenario  INTENSITY 2030. This scenario results  in 

laxer  emissions  targets  than  STANDARD.  Chinese  emissions  are  allowed  to  slightly  increase  under 

INTENSITY2030, whereas they are kept constant under STANDARD. 

The  robustness  check  scenario  FIXED  ELEC  is  scenario  STANDARD  with  a  fixed  price  for  Chinese 

electricity. In China, electricity prices cannot freely react like in the fully competitive market represented 

in our model. Hence,  in  this  scenario we assume  that Chinese electricity prices are given by  the BAU 

                                                            
7 http://www.rose‐project.org/consortium. 
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without climate policy for each year. The electricity prices are kept fixed  in the policy scenario for each 

year. At  the same  time,  the Chinese electricity sector  receives a subsidy  (or occasionally a  tax), which 

guarantees that electricity is produced at the given price without negative (or positive) profits.  

5. Results 

This  section presents  the  results of  the  PACE  simulations  for  the  scenarios described  in  the previous 

section. Figure 1 gives an overview of the main results of the scenario STANDARD  in the year 2020 for 

the  different  assumptions  on GDP  growth.  The  results  are  reported  as  percentage  changes  between 

STANDARD and BAU within 2020. We  focus on  free allocation of allowances, because  this  is  the most 

likely policy implementation in China until 2020. Figure 1 reports macroeconomic impacts in GDP (gross 

domestic product) and welfare. Macroeconomic impacts in terms of GDP losses are relatively moderate. 

If we  assume MEDIUM  GROWTH,  a  45%  reduction  of  CO2  intensity  versus  the  2005  level  induces  a 

decline  in  GDP  of  approximately  1.2%.  This  result,  however,  depends  on  the  assumptions  about 

economic growth. The increase (decrease) of the annual GDP growth rate by 0.5 percentage points raises 

(lowers)  GDP  losses  by  approximately  0.2  percentage  points.  Compared  with  emissions  targets  in 

absolute form, the definition of emissions targets  in  intensity form changes the target  level  if different 

GDP growth rates are assumed: absolute emission targets will be  lower (higher) if GDP growth is  lower 

(higher). Since the welfare loss in 2020 rises in economic growth, we conclude that the BAU increase in 

emissions dominates  the  laxer emissions  target. Meanwhile,  the carbon  intensity under climate policy 

stays constant across different growth scenarios because it is determined by the intensity target. These 

aspects are visible in Table 3. 

Welfare  is  an  economic  indicator  that  provides  better  information  about  the  prosperity  of  the 

participants of an economy. We express welfare changes by the Hicks Equivalent Variation (HEV), which 

measures  the  change  in  consumption  expenditures  of  the  regional  representative  consumer,  as  an 
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indicator for the induced change in utility. Welfare behaves similarly to GDP, although welfare reductions 

are  significantly  lower  than GDP  reductions, e.g. 0.9%  if we assume MEDIUM GROWTH. Furthermore, 

welfare losses react less sensitively to different growth assumptions than GDP losses. Altering the annual 

GDP growth rate by 0.5 percentage points results  in a welfare  loss change of  less than 0.1 percentage 

points. 

Figure 1: Central simulation results for the scenario STANDARD in 2020 (% changes vs. BAU) under different growth 
assumptions: GDP and welfare effects. 

 

 

 

GDP as well as  the welfare  indicator  thereby  include both, direct economic  impacts of  the market  for 

emissions  allowances  and  all  other  general  equilibrium  effects.  Besides  consumption,  GDP  directly 

encompasses the net export value (exports minus imports) and investment.8 In PACE, international trade 

reacts  significantly  to  climate  policy, whereas  capital  investment  reacts  to  a  small  extent.  Indirectly, 

international  trade  and  investment  also  affect  the welfare measure. Nonetheless,  any  policy‐induced 

changes in the trade pattern show up more strongly in the GDP numbers.  

                                                            
8  International  trade  is modeled  in  the  typical  Armington  style.  The  current  account  imbalances,  given  by  the 
benchmark year data, are kept constant in absolute terms. 
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Figure 2: Central simulation results for the scenario STANDARD in 2030 (% changes vs. BAU) under different growth 
assumptions: GDP and welfare effects. 

 

 

 

Figure 2 shows the same  indicator changes  for the year 2030. GDP and welfare  losses are significantly 

higher than in 2020 – with GDP losses ranging between 1.6 and 2.4% and welfare losses between 1.8 and 

2.7%. This  is  first and  foremost due to the stringent ETS cap that we assume  for China after 2020,  i.e. 

absolute emissions remain at their respective 2020 level, while the economy grows. Therefore, also CO2 

emissions reductions compared to the BAU level are considerably higher than in 2020 for both, the total 

economy and the ETS segment. CO2 intensity levels are significantly reduced to meet the same emissions 

target as in 2020 with higher GDP. 

We further observe that in the LOW GROWTH scenario, GDP losses turn out to be up to 0.4 percentage 

points  lower  and welfare  losses  up  to  0.5  percentage  points  lower  than  under MEDIUM  GROWTH. 

Conversely, in the HIGH GROWTH scenario, GDP losses turn out to be up to 0.4 percentage points higher 

and  welfare  losses  up  to  0.5  percentage  points  higher  than  under MEDIUM  GROWTH.  Hence,  the 

sensitivity  of  the  results  to  the  growth  assumption  is  considerably  higher  in  2030  than  in  2020.  This 

happens because we consider a longer time horizon with lower or higher growth rates for each year and 
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because we  keep  emissions  fixed  at  their  2020  levels  after  2020.  Therefore,  differences  in  economic 

indicators arising from different growth assumptions propagate.  

In the following, we will look at the results for 2020 in more detail as reported in Table 3. The results are 

again  expressed  as  changes  between  STANDARD  and BAU  or  in  absolute  numbers. GDP  and welfare 

changes correspond to the values illustrated in Figure 1.  

The difference  in  the  results between  full  auctioning of  allowances  and  fully  free  allocation  is minor. 

First, the emissions intensity level and thus the emissions reduction in the ETS sector and for the overall 

Chinese economy are given by the reduction target and thus not affected by the type of allocation (free 

versus  auctioning).  Second,  this  result  is  in  accordance with  theory:  the  allocation  of  allowances  has 

distributional impacts, whereas the economically efficient solution is achieved by the final distribution of 

allowances after emissions trading for any  initial allocation (cf. Montgomery, 1972). In our stylized CGE 

model, however,  firms do not have own endowments  (e.g. with allowances) nor do they make profits. 

Instead, we compensate firms for their purchases of allowances through an output subsidy. Applying this 

procedure, the results are not completely  independent of the allocation mechanism. If we assume free 

allocation of allowances, the price for allowances will slightly  increase compared to full auctioning: the 

output  subsidy  raises output and  thus  the demand  for  inputs  including  fossil  fuels and  corresponding 

allowances. At  the  same  time, ETS emissions are always capped at  the  same  level  so  that overall ETS 

emissions do not change due to free allocation. This requires more substitution away from fossil inputs. 

For each growth assumption,  the GDP  loss  is  slightly higher with  free allocation  than with auctioning, 

whereas the opposite is true for the welfare loss. 

Positive CO2 allowance prices as depicted in Table 3 imply that all analysed reduction targets are binding. 

CO2 prices (per ton) at the given intensity reduction targets are modest (approximately 8€ in all growth 

scenarios). Although  they are hardly  sensitive  to  the  implemented  changes  in  the annual GDP growth 

rates, we  observe  that  CO2  prices  decline with  increasing  growth  rates.  This  is  due  to  the  fact  that 
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emission  reduction  targets  are  determined  in  intensity  form  so  that  the  absolute  CO2  emissions  cap 

becomes higher,  i.e.  laxer, with higher growth as depicted  in Table 3. This  result  indicates  that higher 

economic growth  induces  the use of  costly mitigation options  that  reduce  the  carbon price, but  raise 

macroeconomic costs. We conclude that the  impact of economic growth under an  intensity target  is  in 

general ambiguous: depending on  the complex general equilibrium system  that determines  (marginal) 

mitigation costs, mitigation costs and CO2 prices may be unaffected or  (slightly)  in‐ or decrease under 

higher economic growth. 

Table  3  also  presents  revenues  from  carbon  pricing  in  the  ETS  sectors  which  range  between 

approximately 40 and 50 billion €. Note that in the case of free allocation, these revenues are returned 

as  an  output  subsidy  to  participating  firms. Nevertheless,  despite  declining  prices,  revenues  increase 

with  higher  economic  growth  due  to  higher  absolute  emission  levels.  Although  we  do  not  model 

different possibilities of revenue recycling, the result reveals a considerable amount of revenues that can 

be used for different purposes, e.g. technology investment or the reduction of public debt in reality. 

As  outlined  previously,  a  supplementary  policy  is  included  by means  of  a  hypothetical  (endogenous) 

carbon tax for the non‐ETS sectors in order to avoid carbon leakage from ETS to non‐ETS sectors. This tax 

prevents CO2 emissions  in those sectors from exceeding the BAU  level and reflects aggregate marginal 

abatement costs (MACs) of the sectors. The simulation results show small MACs in the non‐ETS segment 

of the economy ranging between about 0.6 and 1.2€. 

The  impacts  of  climate  policy  on  international  trade  are  considerable.  Losses  in  net  export  values 

(exports minus imports) range between approximately 3 and 6% compared to BAU. Since climate policy 

makes  domestic  Chinese  goods more  expensive  relative  to  foreign  goods,  exports  of  Chinese  goods 

decline, while relatively less expensive goods from abroad are imported to a higher degree.  
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Table 3: Simulation results for China under the STANDARD scenario in 2020. 

Indicator Growth Scenario 

% change vs. BAU within 2020 LOW GROWTH MEDIUM GROWTH HIGH GROWTH 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -1.0 -1.0 -1.2 -1.2 -1.3 -1.3 

Welfare -0.9 -0.9 -0.9 -1.0 -1.0 -1.1 

Net exports -2.7 -2.8 -4.1 -4.2 -5.8 -5.8 

CO2 emissions (Gt) 7.093 7.093 7.565 7.565 8.065 8.065 

CO2 intensity (Gt per bn 2005€) 1.686 1.686 1.686 1.686 1.686 1.686 

CO2 price ETS sectors (2005€ per t) 8.49 7.59 8.27 7.46 8.10 7.36 
Revenues from carbon pricing in ETS 
sectors (bn 2005€) 44.683 39.946 46.486 41.933 48.535 44.101 
Marginal abatement costs non-ETS 
sectors (2005€ per t) 1.03 0.65 1.17 0.81 1.17 0.84 

Electricity price (2005€ per kWh) 0.100 0.105 0.100 0.105 0.100 0.105 

Chinese sectoral output:  

ETS sectors:       

Petroleum and coal products 1.4 -3.3 1.6 -2.7 1.9 -2.1 

Paper and publishing -0.4 -0.8 -0.5 -0.8 -0.5 -0.8 

Fertilizers -0.2 -0.9 -0.1 -0.7 0.1 -0.5 

Organic chemicals 0.2 -0.5 0.5 -0.1 0.8 0.2 

Inorganic chemicals 0.0 -0.5 0.2 -0.3 0.4 0.0 

Cement -0.8 -1.4 -0.8 -1.4 -0.8 -1.3 

Bricks and tiles -0.5 -1.1 -0.5 -1.1 -0.5 -1.0 

Other non-metallic minerals -1.5 -3.5 -1.4 -3.1 -1.2 -2.9 

Iron and steel production -0.8 -1.5 -0.8 -1.5 -0.8 -1.4 

Iron and steel further processing -0.6 -1.5 -0.4 -1.3 -0.2 -1.0 

Aluminium -1.8 -3.5 -1.8 -3.4 -1.9 -3.3 

Other non-ferrous metals -2.1 -4.2 -2.0 -4.0 -2.0 -3.8 

Electricity and heat -2.7 -6.3 -2.7 -6.1 -2.7 -5.8 

Non-ETS sectors:       

Food, agriculture, wood -0.2 -0.1 -0.2 -0.1 -0.3 -0.2 

Crude oil -0.2 -0.6 -0.4 -0.8 -0.6 -0.9 

Natural gas 7.8 7.1 7.6 7.0 7.5 7.0 

Coal -23.9 -23.3 -24.4 -23.8 -24.6 -24.1 

Machinery and other manufacturing -0.6 -0.7 -0.9 -1.0 -1.1 -1.2 

Mining and construction 0.0 -0.1 0.0 -0.1 0.0 -0.1 

Textiles and leather -0.4 -0.3 -0.7 -0.6 -1.0 -0.9 

Transportation 1.6 1.4 2.0 1.8 2.5 2.3 

Services -0.3 0.0 -0.4 -0.3 -0.5 -0.4 
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Capital  and  labour  prices  decrease  relative  to  BAU.  Climate  policies  induce  lower  production  levels 

(compared  to BAU)  and hence  a declining demand  for production  factors  resulting  in  lower prices of 

capital and labour. Though, these effects are minor. 

Due  to  the output  subsidy,  the electricity price net of  the  subsidy  is  lower under  free allocation  than 

under full auctioning. In the model results, electricity price changes (over periods and induced by climate 

policy within  each  period)  are  overall  small. Notwithstanding, we  run  the  robustness  check  scenario 

FIXED ELEC with a Chinese electricity price  fixed  to BAU  in each period  in order  to mimic  the Chinese 

price  setting  policy.  Yet,  this  scenario  assumption  changes  the  results  only  to  a minor  extent.  This 

outcome can be expected given the small electricity price changes in the other scenarios. Hence, we do 

not elaborate further details. It  is noteworthy, though, that the tendency of the welfare effect of fixing 

the electricity price  is not necessarily negative. The  reason  is presumably  that  the electricity sector as 

well as  the whole economy are subject  to existing  taxes and subsidies. We  thus measure second‐best 

effects which can create unexpected outcomes. 

Table 4: Simulation results for China under the STANDARD scenario in 2030. 

Indicator Growth Scenario 

% change vs. BAU within 2030 LOW GROWTH MEDIUM GROWTH HIGH GROWTH 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -1.6 -1.6 -2.0 -1.9 -2.4 -2.3 

Welfare -1.8 -1.8 -2.2 -2.3 -2.7 -2.7 

Net exports -3.7 -3.9 -5.7 -5.9 -8.1 -8.3 

CO2 emissions (Gt) 7.093 7.093 7.565 7.565 8.065 8.065 

CO2 intensity (Gt per bn 2005€) 1.182 1.182 1.126 1.126 1.074 1.074 

CO2 price ETS sectors (2005€ per t) 14.64 13.45 16.29 15.07 18.07 16.79 
Revenues from carbon pricing in ETS 
sectors (bn 2005€) 71.136 65.354 82.688 76.495 95.590 88.819 
Marginal abatement costs non-ETS 
sectors (2005€ per t) 1.57 1.16 1.73 1.31 1.88 1.48 

Electricity price (2005€ per kWh) 0.101 0.109 0.103 0.111 0.105 0.113 

European macroeconomy:       

CO2 emissions ETS segment (Gt) 1.406 1.406 1.406 1.406 1.406 1.406 

CO2 price (2005€ per t) 52.44 52.61 64.35 64.46 74.62 74.80 
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Indicator Growth Scenario 

% change vs. BAU within 2030 LOW GROWTH MEDIUM GROWTH HIGH GROWTH 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese sectoral output:       

ETS sectors:       

Petroleum and coal products 2.8 -2.8 3.1 -2.5 3.7 -1.9 

Paper and publishing -0.8 -1.2 -1.0 -1.4 -1.2 -1.6 

Fertilizers -0.6 -1.4 -0.5 -1.4 -0.5 -1.4 

Organic chemicals 0.2 -0.6 0.4 -0.4 0.7 -0.1 

Inorganic chemicals -0.1 -0.8 0.0 -0.7 0.1 -0.6 

Cement -1.3 -2.0 -1.5 -2.1 -1.7 -2.3 

Bricks and tiles -0.8 -1.5 -1.0 -1.6 -1.3 -1.8 

Other non-metallic minerals -2.7 -4.6 -3.0 -4.8 -3.2 -5.0 

Iron and steel production -1.2 -2.0 -1.4 -2.2 -1.6 -2.3 

Iron and steel further processing -1.0 -2.0 -1.0 -1.9 -0.9 -1.9 

Aluminium -2.8 -4.8 -3.3 -5.2 -3.7 -5.6 

Other non-ferrous metals -3.2 -5.6 -3.7 -6.1 -4.1 -6.5 

Electricity and heat -5.8 -11.3 -6.8 -12.2 -7.8 -13.2 

Non-ETS sectors:       

Food, agriculture, wood -0.5 -0.3 -0.6 -0.5 -0.8 -0.6 

Crude oil -0.4 -0.9 -0.5 -1.1 -0.7 -1.3 

Natural gas 11.8 11.3 12.3 11.8 12.7 12.3 

Coal -40.4 -39.6 -44.3 -43.5 -47.9 -47.0 

Machinery and other manufacturing -0.9 -1.0 -1.2 -1.4 -1.6 -1.8 

Mining and construction -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 

Textiles and leather -1.0 -1.0 -1.4 -1.4 -1.9 -1.9 

Transportation 2.2 1.9 2.8 2.5 3.5 3.2 

Services -0.5 -0.5 -0.7 -0.6 -0.9 -0.8 

 

In  the  following policy simulations, we will  refer to the year 2030 with stronger policy‐induced effects 

than  in 2020 due to the higher BAU emissions  level. Table 4 reports the results for STANDARD  in 2030 

depicted by Figure 2 in more detail. Additionally to the Chinese macro‐economic results, it contains two 

European macroeconomic  indicators.  Emissions  in  the  EU  ETS  amount  to  about  1.4  Gt  and  are  not 

affected by the choice of the Chinese policy scenario. The EU ETS CO2 price amounts to about 64€ per 

ton in the MEDIUM GROWTH case and is significantly affected by the different growth scenarios.9  

                                                            
9 This is due to the fact that also for the EU modified economic growth rates analogously to the Chinese scenarios 
are assumed. 
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In contrast to the CO2 price in 2020, the CO2 price clearly rises in the economic growth rate in 2030. The 

reason  is that higher GDP growth augments BAU emissions over  time, while  the emissions cap  is kept 

constant in absolute terms after 2020 in the STANDARD scenario. As a consequence, in 2030 the increase 

in  emissions due  to higher  economic  growth dominates  the  laxer  absolute  emissions  target  for  2020 

determined by higher economic growth. This means, the CO2 intensity in 2030 has to decrease in order 

to fulfil the emission target as depicted in Table 4, and hence the CO2 price increases with higher growth. 

The CO2 allowance price is however still moderate with a maximum of 18€ for the HIGH GROWTH case. 

The view on the EU, as reported in Table 4, will in particular be relevant for linking the EU to the Chinese 

ETS in the next policy scenario denoted by LINKING.  

Table 5 shows  the simulation  results assuming LINKING of  the Chinese ETS  to  the EU ETS. As outlined 

previously, the maximum of allowances imported by the EU is assumed to be limited to one third of its 

abatement effort. As a result, China exports about 300 Mt of CO2 in form of allowances to Europe. Due 

to  this  restriction, we do not observe  full equalization of  the Chinese and European carbon price, but 

limited convergence: the price for allowances in the Chinese ETS rises by approximately 2€ in all growth 

scenarios, while  it declines by more  than 20€  in  the EU ETS. This asymmetry of price changes occurs, 

because China’s emissions in ETS sectors in 2030 are almost four times the EU’s emissions in ETS sectors. 

The macroeconomic  impacts  in  terms  of GDP  and welfare  changes  do  not  qualitatively  deviate  from 

those  of  the  scenarios without  linking.  In  accordance with  theory,  in  our  simulations  linking  slightly 

attenuates welfare and GDP  losses  in China compared to a situation without  linking by reaching higher 

economic efficiency. The policy‐induced GDP drop becomes 0.1 percentage points smaller than without 

linking. The welfare drop decreases slightly through linking with free allocation but can increase with full 

auctioning.  The  latter  outcome  and  the  small  magnitude  of  the  welfare  gain  support  the  view  of 

Marschinski et al. (2012), stating that the Chinese welfare effect of linking is ambiguous under a Chinese 

intensity target. 
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Revenues  from emissions  trading are higher  in 2030  than  in 2020 due  to higher permit prices.  In  the 

LINKING case revenues  increase compared to the STANDARD case since permit prices are higher  in the 

former  scenarios  as  a  result  of  larger  abatement  efforts. Moreover,  there  are  additional  revenues 

generated by the export permits to the EU ETS. 

Regarding the MACs of non‐ETS sectors in 2030, we observe an increase of approximately 0.5€ per ton of 

CO2 compared to 2020 throughout all scenarios. Not surprisingly, there is no significant change between 

the STANDARD and LINKING cases in 2030 as emissions trading between the EU and China only occurs in 

the ETS sectors. Nevertheless, the difference between the ETS allowance price and the hypothetical non‐

ETS carbon tax, represented by the MACs,  increases when moving from the STANDARD to the LINKING 

scenarios, and hence increase the wedge between carbon prices in both segments of the economy and 

the resulting inefficiency. 

Table 5: Simulation results for China under the LINKING scenario in 2030. 

Indicator Growth Scenario 

% change vs. BAU within 2030 LOW GROWTH MEDIUM GROWTH HIGH GROWTH 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -1.5 -1.5 -1.9 -1.9 -2.3 -2.3 

Welfare -1.8 -1.9 -2.2 -2.3 -2.7 -2.8 

Net exports -4.0 -4.2 -6.0 -6.2 -8.3 -8.5 

CO2 emissions (Gt) 6.771 6.771 7.243 7.243 7.742 7.742 

CO2 intensity (Gt per bn 2005€) 1.128 1.128 1.078 1.078 1.031 1.031 

CO2 price ETS sectors (2005€ per t) 16.78 15.36 18.40 16.94 20.17 18.67 
Revenues from carbon pricing in ETS 
sectors (bn 2005€) 76.131 69.688 87.474 80.533 100.224 92.728 
Revenues from permit export to EU 
(bn 2005€) 5.403 4.946 5.925 5.455 6.496 6.010 
Marginal abatement costs non-ETS 
sectors (2005€ per t) 1.60 1.14 1.75 1.30 1.89 1.46 

Electricity price (2005€ per kWh) 0.102 0.111 0.104 0.113 0.106 0.115 

European macroeconomy:       

CO2 emissions ETS segment (Gt) 1.728 1.728 1.728 1.728 1.728 1.728 

CO2 price (2005€ per t) 29.99 30.20 41.99 42.18 53.36 53.56 

Chinese sectoral output:       

ETS sectors:       
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Indicator Growth Scenario 

% change vs. BAU within 2030 LOW GROWTH MEDIUM GROWTH HIGH GROWTH 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Petroleum and coal products  3.0 -3.4 3.3 -3.0 3.8 -2.4 

Paper and publishing -0.9 -1.4 -1.1 -1.6 -1.3 -1.8 

Fertilizers -0.8 -1.8 -0.8 -1.8 -0.7 -1.7 

Organic chemicals -0.1 -1.0 0.2 -0.8 0.5 -0.5 

Inorganic chemicals -0.3 -1.1 -0.2 -1.0 -0.1 -0.9 

Cement -1.5 -2.3 -1.7 -2.4 -1.9 -2.5 

Bricks and tiles -1.2 -1.9 -1.4 -2.0 -1.6 -2.2 

Other non-metallic minerals -3.7 -5.8 -3.9 -6.0 -4.2 -6.1 

Iron and steel production -1.5 -2.4 -1.6 -2.5 -1.8 -2.6 

Iron and steel further processing -1.3 -2.5 -1.3 -2.4 -1.2 -2.3 

Aluminium -3.3 -5.6 -3.8 -6.0 -4.2 -6.3 

Other non-ferrous metals -3.9 -6.6 -4.3 -7.0 -4.7 -7.4 

Electricity and heat -6.5 -12.7 -7.5 -13.6 -8.5 -14.4 

Non-ETS sectors:       

Food, agriculture, wood -0.4 -0.3 -0.6 -0.4 -0.7 -0.6 

Crude oil -0.2 -0.9 -0.4 -1.0 -0.6 -1.3 

Natural gas 12.4 11.9 12.8 12.3 13.2 12.8 

Coal -43.5 -42.6 -47.2 -46.2 -50.5 -49.5 

Machinery and other manufacturing -0.9 -1.1 -1.3 -1.4 -1.7 -1.8 

Mining and construction -0.1 -0.2 -0.1 -0.2 -0.1 -0.2 

Textiles and leather -0.9 -0.9 -1.4 -1.4 -1.9 -1.9 

Transportation 2.1 1.8 2.8 2.4 3.5 3.1 

Services -0.5 -0.5 -0.7 -0.6 -0.8 -0.8 

 

In order to check the robustness of our results, we run alternative scenarios. The results are presented in 

the Supplementary Appendix. First, we consider  two additional  intensity  targets:  (i) 40% CO2  intensity 

reduction by 2020 compared to the 2005 level which is the lower bound of China’s Copenhagen pledge 

(referred to as LOW), and (ii) 50% CO2 intensity reduction by 2020 compared to the 2005 level which is a 

more ambitious  target  than China’s Copenhagen pledge  (referred  to as HIGH).  In  these scenarios,  the 

absolute  emissions  levels  are  again  kept  constant  after  2020.  Among  other  results, we  find  for  the 

MEDIUM GROWTH  case  that  in 2020 an  increase  in  the  intensity  reduction  target by  five percentage 

points  results  in  an  additional GDP  loss  of  approximately  0.2  percentage  points  and  in  an  additional 

welfare  loss  of  about  0.4  percentage  points.  An  alleviation  of  the  intensity  reduction  target  to  40% 
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almost  halves  the  CO2  price  while  an  increase  of  the  target  raises  the  allowance  price  more  than 

proportionally to almost 13€ per ton of CO2.  In 2030, we  find similar quantitative differences between 

the targets. Also, the CO2 price  is still at a moderate  level, reaching approximately 21€ per ton for the 

most  ambitious  target  considered.  At  the  sectoral  level,  we  find  a  disproportionate  behaviour  of 

production  changes with  increasing  intensity  reduction  targets.  The  detailed  results  are  presented  in 

Tables 7 to 15 of the Supplementary Appendix. 

In a second alternative scenario analysis, we do not keep Chinese emissions fixed after 2020, but let the 

emissions intensity decrease by 3% annually, which we denote by INTENSITY 2030 and which is reported 

in the Supplementary Appendix. The GDP, welfare and sectoral output  losses  in  INTENSITY 2030  in the 

year  2030  are  smaller  than  in  STANDARD.  The  reason  is  that  the  intensity  target  intensifying  at  3% 

annually with simultaneous Chinese economic growth results  in laxer emissions targets after 2020 than 

keeping  emissions  fixed  at  their  2020  level  in  STANDARD.  The  results  of  INTENSITY  2030 MEDIUM 

GROWTH are similar  to  those of STANDARD LOW GROWTH. Meanwhile,  the welfare  loss and  the CO2 

price have a smaller magnitude under  INTENSITY 2030 MEDIUM GROWTH than under STANDARD LOW 

GROWTH, whereas the opposite is true for GDP.  

Besides macroeconomic climate policy effects, we also analyse sectoral effects for China. Table 3 reports 

sectoral results  for the scenario STANDARD. At the sectoral  level, our tables report relative changes  in 

the output value of each Chinese sector. Among the ETS sectors, we observe that the electricity sector 

experiences  the  largest  production  losses,  ranging  between  2.7%  and  6.3%, with  higher  losses  if  full 

auctioning  is  assumed.  Also  aluminium,  other  non‐ferrous  metals  and  other  non‐metallic  minerals 

experience production  losses of up  to 4.2%. On  the other hand,  some  sectors even benefit  from  the 

introduction of an ETS, at  least  if the allowances are allocated freely. Among these sectors are refined 

petroleum products as well as the chemical industries. Presumably, these sectors can reduce emissions 

at  low  costs and  sell  superfluous allowances. Unlike under  free allocation,  there  is no output  subsidy 
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under  full  auctioning  so  that we  expect  sectoral  outputs  to  decline when  auctioning  off  allowances. 

Accordingly, we observe  in  several  cases  that  full auctioning enhances negative production effects or 

reduces positive production effects compared with free allocation. Petroleum products are an exception, 

since  they  benefit  from  carbon  pricing  under  free  allocation,  but  lose  under  full  auctioning.  The 

allocation mechanism has, however, no significant  impact on both macroeconomic  indicators, GDP and 

welfare, since auctioning generates lump‐sum revenues for the representative consumer. 

Regarding the non‐ETS sectors, particularly the  impacts on the resource extraction  industries  is  in part 

remarkable. While  coal  extraction  suffers  most,  with  production  losses  around  24%  throughout  all 

scenarios in 2020, natural gas extraction benefits to a high extent. The implemented emissions cap hence 

induces a  fuel switch away  from coal  towards the  less CO2‐intensive natural gas.  In contrast, crude oil 

extraction is hardly affected by the introduction of the climate policy, which is mainly due to its relatively 

small  significance  in  Chinese  electricity  generation.  The  other  non‐ETS  sectors  show  relatively  small 

impacts.  

The  sensitivity  of  the  sectoral  impacts  toward  the  different  growth  assumptions  is  ambiguous. 

Qualitatively,  the  results  hold  throughout  all  cases.  However,  quantitative  results  depend  to  a  high 

degree  on  the  sector. Whereas many  industries with  relatively  high  production  losses,  e.g.  cement, 

aluminium, other non‐ferrous metals and electricity, hardly react to modified GDP growth rates, some 

other  sectors,  such  as petroleum  and  coal products, organic  chemicals  and  inorganic  chemicals  show 

significant  responses.  This  affirms  that  the  economic  effects  of  Chinese  ETS  policy  design  strongly 

depend on Chinese economic growth. 

Like the macroeconomic results, the sectoral impacts for scenario STANDARD in 2030, reported in Table 

4,  are qualitatively  similar  to  the  results  in 2020  in  Table  3.  Electricity,  aluminium, other non‐ferrous 

metals  and  other  non‐metallic minerals  experience  the  largest  production  losses  relative  to  the  BAU 

projection. Output  losses  in  the electricity  sector  reach up  to 13.2%  in  the  full auctioning  case of  the 
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HIGH GROWTH scenario relative to BAU. With respect to the reaction to different growth assumptions, 

the pattern  is similar  to  that observed  in Table 3. Nevertheless,  in 2030  the electricity sector  is much 

more sensitive to modifications in the growth rate than in 2020. Organic and inorganic chemicals, and to 

a smaller extent fertilizers and processing of iron and steel, benefit from higher economic growth under 

climate policy. 

Table 5 depicts the sectoral results for scenario LINKING in 2030. Basically all sectors (with the exception 

of petroleum products under free allocation) reduce their output (value) compared to no  linking, since 

there are considerably less allowances available in the Chinese ETS, because they are exported to the EU. 

The additional outputs  losses due  to  linking are small compared  to  the existing policy‐induced output 

losses,  though.  The  sectors  electricity  and  other  non‐metallic minerals  suffer  especially  large  output 

losses when linking is introduced. They are already affected most without linking, and the higher carbon 

price affects them disproportionately.  

The sectoral output reductions are overall smaller under INTENSITY 2030 MEDIUM GROWTH than under 

STANDARD  LOW  GROWTH.  The  detailed  results  are  presented  in  Table  16  of  the  Supplementary 

Appendix. 

6. Conclusion 

This policy research paper has studied and compared Chinese climate policy scenarios for the years 2020 

and  2030. We  consider  the design of  a potential Chinese  emissions  trading  system.  Thereby, we put 

emphasis on  three  issues which are of  special  importance  for  the Chinese  case:  (i) uncertainty about 

future economic growth, (ii) competitiveness concerns for affected sectors, and (iii)  linking the Chinese 

emissions trading scheme (ETS) to the EU ETS. The targets follow the upper bound Chinese Copenhagen 

pledge and the most recent Chinese climate policy strategies. 
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We find the following main results. Implementing a 45% intensity target (CO2 emissions per unit of GDP 

reduced by 45% until 2020 relative to the 2005  level)  in China generates a welfare  loss of about 1%  in 

2020  if we assume a medium GDP growth  rate. We  find  that despite  the emissions  target  in  intensity 

form, the welfare loss in 2020 slightly rises in Chinese economic growth. This result is in accordance with 

Marschinski and Edenhofer (2010) who highlight the ambiguity of intensity targets for cost uncertainty. If 

the CO2 emissions level in 2020 is kept constant until 2030, the resulting welfare loss will clearly rise to 

above 2%  in 2030. Varying  the  rate of Chinese economic growth by ±0.5 percentage points  induces a 

welfare change  in 2030 by up to 0.5 percentage points with a higher welfare  loss  for higher economic 

growth. This result underlines the considerable sensitivity of China‐specific climate policy analyses to the 

unknown future development of China’s economic growth. 

At the sectoral level, we observe ambiguous impacts. While several sectors are affected only moderately 

by  the  introduction  of  an  ETS,  some  industries,  e.g.  electricity,  aluminium,  other non‐ferrous metals, 

experience  non‐negligible  production  losses.  Moreover,  the  choice  between  auctioning  and  free 

allocation  of  allowances  has  minor  implications  for  the  Chinese  macroeconomy,  but  distributional 

impacts  at  the  sector  level.  All  sectors  covered  by  the  Chinese  ETS  suffer  higher  losses  under  full 

auctioning  than  under  free  allocation.  This  makes  the  implementation  of  auctioning more  difficult, 

although wise recycling of the revenues from auctioning  (not scrutinized  in our analysis) can create an 

additional welfare gain (at least in form of a weak double‐dividend, i.e. an improvement compared to the 

lump‐sum revenue transfer, cf. Goulder, 1995). 

Linking the Chinese ETS to the European one (with a total volume of transferred CO2 allowances limited 

to 300 Mt per year)  creates  small GDP gains  for China. This  result  indicates  that momentous Chinese 

gains  from  linking  to  the EU ETS would  require massive  volumes of  transferred allowances –  if China 

achieves welfare gains at all. The ambiguous Chinese welfare effects of  linking  that we  find are  in  line 

with the theoretical considerations by Marschinski et al. (2012). In a robustness check, we fix the Chinese 
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electricity  price  in  each  year  to  the  BAU  level  in  order  to mimic  price  setting.  This  electricity  price 

exercise  creates  minor  and  ambiguous  welfare  deviations  and  supports  the  validity  of  our  perfect 

competition scenarios. 

In alternative policy scenarios, we analyse the impact of altered emission intensity reduction targets. We 

find disproportionate  increases of policy‐induced welfare  losses as well as  sectoral output  losses with 

rising  targets.  Furthermore,  if  the  intensity  target  intensifies by 3% annually between 2020 and 2030 

instead  of  keeping  absolute  emissions  constant  after  2020,  the  resulting welfare  loss  in  2030 will be 

about 0.5 percentage points lower. Notably, all intensity targets are binding in our model. These results 

are  important for China’s choice between an  intensity target as envisaged so far and a  fixed emissions 

target in absolute terms as recently planned. 

Besides  these  findings,  the  usual  uncertainties  in  CGE  models  such  as  in  the  estimated  values  for 

elasticities of substitution and future technical progress apply (cf. the detailed discussion  in Hübler and 

Löschel, 2013, section 4). Future research could put more emphasize on the relation between economic 

growth  and  mitigation  costs  under  an  intensity  target.  Furthermore,  future  research  could  more 

specifically scrutinize the Chinese ETS pilot projects. 
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9. Supplementary (Online) Appendix 

The Supplementary Appendix provides a detailed model description  including the key model equations 

and corresponding parameter values (elasticities of substitution) as well as additional scenario results for 

the alternative assumptions of LOW and HIGH Chinese intensity targets. 

The  CGE  (computable  general  equilibrium)  model  PACE  is  implemented  in  MPSGE  (Mathematical 

Programming System for General Equilibrium Analysis; Rutherford, 1999), a subsystem of GAMS (General 

Algebraic Modeling System; Brooke et al., 2010).  It uses PATH  (Dirkse and Ferris, 1995)  for solving the 

MCP (mixed complementarity problem). The MCP consists of a set of inequalities that describe the world 

economy with  its  regions  and  sectors  for  each  year.  For  each  year,  there  exists  a  set  of  prices  and 

quantities  that uniquely  solves  the  inequalities.  Three  classes of  conditions  characterize  the perfectly 

competitive  equilibrium  defined  by  the MCP:  zero‐profit  conditions, market  clearing  conditions  and 

budget  conditions.  These  conditions  directly  follow  from  profit maximization  of  firms with  constant 

returns  to  scale  and utility maximization of  consumers with homothetic preferences. The production‐

related  conditions determine  the price of  each  good  as  the unit  cost  (marginal  cost)  to produce  this 

good. The key model equations are described below. 

Each  model  region  consists  of  one  representative microeconomic  consumer.  Furthermore,  in  every 

region  each  production  sector  is  represented  by  one  microeconomic  producer.  The  representative 

consumer chooses a consumption bundle that maximizes his utility provided his preferences and income 

budget. Income  is gained from providing the primary production factors (labour, capital and fossil‐fuels 

that  he  owns)  to  the  producers  within  the  same  region.  In  the  presence  of  climate  policy,  the 

representative  consumer  also  provides  emissions  allowances  to  the  producers.  Final  demand  of  the 

representative  consumer  is modelled  as  a  constant  elasticity  of  substitution  (CES)  composite  which 

combines  an  energy  with  a  non‐energy  aggregate.  Substitution  within  the  non‐energy  aggregate  is 
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represented  by  a  Cobb‐Douglas  function.  Substitution  between  energy  goods  within  the  energy 

aggregate is represented by a CES function. 

The producer chooses the  input bundle that maximizes his profits given his production technology. His 

technology transfers a certain amount of  input goods and production  factors  into a certain amount of 

one output good. The production  factors capital and  labour are perfectly mobile across sectors within 

each region, whereas the production factor natural resources is sector‐specific. Land is attributed to the 

production factor capital. The main production function of each sector has the CES structure described 

by Equation (Z1). The CES specification allows producers to substitute energy inputs by other inputs, for 

example, when  the price  for  fossil  fuels  rises because of  carbon pricing. The extent of  substitution  is 

limited by the elasticity of substitution and the benchmark calibration of  input shares. Each good used 

for intermediate or final demand is a combination of a domestically produced variety of this good and a 

CES aggregate of varieties of this good imported from the other regions (Armington, 1969).  

The tax system  includes all types of taxes and subsidies on produced and traded goods and production 

factors provided by the benchmark data. The government of each region collects tax revenues and pays 

subsidies and redistributes them to the representative consumer in a lump‐sum way. In the presence of 

carbon pricing like auctioning of emissions allowances, producers have to pay for the use of fossil energy 

in production corresponding to the released carbon. (Each unit of coal, gas or oil has a specific physical 

carbon content.) In the case of free allocation of allowances, producers have to buy allowances as usual 

in  the  first  step. Producers  receive a  subsidy which compensates  this payment  in  the second step  (cf. 

Jensen and Rasmussen, 2000; Edwards and Hutton, 2001). Our model assumes free trading of allowances 

without transaction costs within the Chinese and the European emissions trading scheme (ETS). With the 

help of a second carbon pricing mechanism (representing a carbon tax), the other European sectors are 

required to reduce emissions so that the economy‐wide emissions target is fulfilled. In a similar vein, we 

assume  supplementary  climate  and  energy  policy  in  Chinese non‐ETS  sectors which  ensures  that  the 
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overall  Chinese  emissions  target  for  each  year  is  fulfilled,  also  in  the  presence  of  carbon  leakage. 

Notably, like most CGE models, our model does not take any costs of climate damages into account. This 

implies that we carry out a cost effectiveness analysis, not a cost benefit analysis. 

With respect to dynamic behaviour, the model runs from 2005 to 2030 in five‐year steps. It is recursive 

dynamic, this means, it is solved for a sequence of global market equilibria. The equilibria are connected 

via investments and other exogenous drivers of economic growth. Capital accumulation is not subject to 

an  optimal  inter‐temporal  decision  though;  it  follows  the  Solow‐Swan  model:  in  each  period  a 

representative  consumer  saves  a  certain  fraction  of  income.  Savings  are  fully  transferred  into 

investments and augment  the  capital  stock of  the next period. The other exogenous drivers  implicitly 

include  technical progress,  affecting  total  factor productivity  and energy productivity,  and population 

growth. In the business as usual scenario without climate policy intervention, each period is calibrated to 

external data. While capital accumulation, production and consumption are determined by the business 

as  usual  calibration,  they  react  to  policy  shocks  in  the  climate  policy  scenarios.  Presumably,  the 

introduction of climate policy reduces investment and production and thus the economic growth path.  

In  the  following, we  list  the  key model  equations,  i.e. we  describe  the model  in  a  stylized way  that 

highlights  the  principal  structure.  For  simplicity,  the model  view  is  restrained  to  one  specific  period 

leaving out the model dynamics. From a dynamic view, productivity and thus the output value for a given 

input bundle will  increase, and the representative consumer will  invest a  fraction of his  income to the 

subsequent period’s  capital  stock. This  investment  is produced similar  to  the other production goods. 

The model equations are written as a mixed  complementarity problem  (MCP)  for each  region  (r) and 

each period (t). As outlined above, an MCP consists of zero‐profit and market clearance conditions and a 

consumer’s budget condition.  p denotes a price, X denotes a pecuniary quantity. i or j denote a sector. f 

signifies the production factors capital (K), labour (L) and natural fossil resources. ߠ௙,௜
ீ  represents a set of 

taxes and subsidy rates on output and  inputs. M  indicates an Armington (intermediate) good. C  is CO2 
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associated with  fossil  fuel  inputs  in  fixed  proportion. ߨ  denotes  profits, CES  a  constant  elasticity  of 

substitution function with the elasticity written as an upper index, and LTF a Leontief function. 

 
I. Zero‐profit conditions: 
 
 

(Z1) Goods (Y) production in sectors i:  
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(Z2)  Armington  aggregation  (M)  of  imports  from  foreign  regions  (s),  associated with  a  price  for 

transportation (݌௦,௥,௜
் ) and an elasticity of substitution between different regions (a1), and between 

the import bundle and the domestically produced good (a2): 

 
 

௜ߨ
ெ ൌ ௜݌

ெ െ ܧܥ ௜ܵ
௔ଶ ቄ݌௜

௒, ܧܥ ௜ܵ
௔ଵห

௦
௦,௜݌൫ܨܶܮൣ

௒ , ௦,௥,௜݌
் ൯൧ቅ หߠ௙,௜

ீ ൑ 0		∀	ሺݎ,  ሻݐ

 
 

(Z3)  Utility  (U)  generation  of  the  representative  consumer  in  each  region  (r)  follows  the  nest 

structure shown  in Figure M1 excluding factor  inputs,  i.e.  it combines an energy with a non‐energy 

input bundle: 
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II. Market clearance conditions: 
 
 

(M1)  Goods markets (domestic inputs, Armington exports and domestic consumption): 
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(M2)  Armington goods (M) markets: 
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(M3a)  Intratemporal utility condition referring to the consumer’s budget (B):10 

 
 

ܺ஻

௎݌
൑ ܺ௎		∀	ሺݎ,  ሻݐ

 
 
(M3b)  Factor (F) markets (for mobile and immobile factors given regional factor endowments): 
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III. Budget condition: 
 
 

(B1)  Consumers’ purchases (plus capital investments that will be added to the next period’s capital 

stock in a multi‐period setting) with the total value XB must not exceed their factor income (from the 

sectorally mobile and immobile parts of factors including natural fossil resources) plus revenues from 

selling CO2 (C) allowances plus tax minus subsidy (Q) revenues as a function of given tax and subsidy 

rates, plus net financial inflows from abroad (D):  
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10 Compare Markusen’s tutorial, http://spot.colorado.edu/~markusen/teaching.html (accessed 06/2013). 
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Table 6: Sector‐specific elasticities of substitution for energy‐intensive sectors under examination, common for all 
regions (corresponding to the functional notation in Z1 to B1). 

Sector  kle-m kl-e m e kl n a1 a2 

 
         

Petroleum and coal 
products 

 0.848 0.250 0.082 0.500 0.334 0.500 4.200 2.100 

Paper and publishing  0.187 0.211 0.250 0.500 0.381 0.500 5.900 2.950 

Fertilizers  0.848 0.250 0.082 0.500 0.334 0.500 6.600 3.300 

Organic chemicals  0.848 0.250 0.082 0.500 0.334 0.500 6.600 3.300 

Inorganic chemicals  0.848 0.250 0.082 0.500 0.334 0.500 6.600 3.300 

Cement  0.306 0.411 0.191 0.500 0.358 0.500 5.800 2.900 

Bricks and tiles  0.306 0.411 0.191 0.500 0.358 0.500 5.800 2.900 

Other non-metallic 
minerals 

 0.306 0.411 0.191 0.500 0.358 0.500 5.800 2.900 

Iron and steel production  1.173 0.644 0.253 0.500 0.220 0.500 5.900 2.950 

Iron and steel further 
processing 

 1.173 0.644 0.253 0.500 0.220 0.500 5.900 2.950 

Aluminium  0.306 0.411 0.191 0.500 0.358 0.500 8.400 4.200 

Other non-ferrous metals  0.306 0.411 0.191 0.500 0.358 0.500 8.400 4.200 

Electricity and heat  0.000 0.256 0.391 0.500 0.460 0.500 5.600 2.800 
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Table 7: Simulation results for China under the STANDARD scenario in 2020 and LOW GROWTH. 

Indicator Stringency of the intensity target 

% change vs. BAU within 2020 LOW (40%) MEDIUM (45%) HIGH (50%) 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -0.842 -0.840 -0.998 -0.988 -1.237 -1.206 

Welfare -0.529 -0.565 -0.878 -0.926 -1.412 -1.463 

Fossil energy consumption -11.0 -11.1 -17.9 -18.1 -24.7 -25.0 

CO2 emissions (Gt) 7.738 7.738 7.093 7.093 6.448 6.448 

CO2 emissions ETS segment (Gt) 5.904 5.904 5.263 5.263 4.617 4.617 

CO2 total -11.9 -11.9 -19.2 -19.2 -26.6 -26.6 

CO2 ETS segment -15.0 -15.0 -24.3 -24.3 -33.6 -33.6 

CO2 intensity (Gt per bn 2005€) 1.840 1.840 1.686 1.686 1.533 1.533 

CO2 price (2005€ per t) 4.93 4.47 8.49 7.59 13.13 11.54 

Electricity price (2005€ per kWh) 0.097 0.100 0.100 0.105 0.102 0.110 

Chinese sectoral output:       

Petroleum and coal products 1.2 -1.5 1.4 -3.3 2.0 -5.1 

Paper and publishing -0.3 -0.5 -0.4 -0.8 -0.6 -1.1 

Fertilizers 0.1 -0.3 -0.2 -0.9 -0.7 -1.7 

Organic chemicals 0.5 0.1 0.2 -0.5 -0.2 -1.2 

Inorganic chemicals 0.3 0.0 0.0 -0.5 -0.3 -1.1 

Cement -0.5 -0.8 -0.8 -1.4 -1.2 -2.2 

Bricks and tiles -0.3 -0.6 -0.5 -1.1 -0.8 -1.8 

Other non-metallic minerals -0.6 -1.8 -1.5 -3.5 -2.5 -5.5 

Iron and steel production -0.5 -0.9 -0.8 -1.5 -1.1 -2.2 

Iron and steel further processing -0.1 -0.7 -0.6 -1.5 -1.0 -2.5 

Aluminium -1.1 -2.1 -1.8 -3.5 -2.6 -5.2 

Other non-ferrous metals -1.2 -2.4 -2.1 -4.2 -3.1 -6.3 

Electricity and heat -1.3 -3.5 -2.7 -6.3 -4.1 -9.5 
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Table 8: Simulation results for China under the STANDARD scenario in 2020 and MEDIUM GROWTH. 

Indicator Stringency of the intensity target 

% change vs. BAU within 2020 LOW (40%) MEDIUM (45%) HIGH (50%) 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -1.011 -1.010 -1.164 -1.156 -1.397 -1.371 

Welfare -0.606 -0.639 -0.949 -0.996 -1.474 -1.526 

Fossil energy consumption -10.7 -10.8 -17.6 -17.8 -24.5 -24.7 

CO2 emissions (Gt) 8.253 8.253 7.565 7.565 6.878 6.878 

CO2 emissions ETS segment (Gt) 6.305 6.305 5.621 5.621 4.931 4.931 

CO2 total -11.6 -11.6 -18.9 -18.9 -26.3 -26.3 

CO2 ETS segment -14.6 -14.6 -23.9 -23.9 -33.2 -33.2 

CO2 intensity (Gt per bn 2005€) 1.840 1.840 1.686 1.686 1.533 1.533 

CO2 price (2005€ per t) 4.79 4.37 8.27 7.46 12.79 11.35 

Electricity price (2005€ per kWh) 0.097 0.100 0.100 0.105 0.103 0.110 

Chinese sectoral output:  

Petroleum and coal products 1.5 -1.0 1.6 -2.7 2.0 -4.5 

Paper and publishing -0.3 -0.5 -0.5 -0.8 -0.7 -1.2 

Fertilizers 0.3 -0.1 -0.1 -0.7 -0.5 -1.5 

Organic chemicals 0.8 0.5 0.5 -0.1 0.1 -0.9 

Inorganic chemicals 0.5 0.2 0.2 -0.3 -0.1 -0.9 

Cement -0.4 -0.8 -0.8 -1.4 -1.2 -2.1 

Bricks and tiles -0.3 -0.6 -0.5 -1.1 -0.8 -1.7 

Other non-metallic minerals -0.5 -1.5 -1.4 -3.1 -2.4 -5.1 

Iron and steel production -0.5 -0.9 -0.8 -1.5 -1.1 -2.1 

Iron and steel further processing 0.1 -0.5 -0.4 -1.3 -0.9 -2.2 

Aluminium -1.1 -2.0 -1.8 -3.4 -2.7 -5.0 

Other non-ferrous metals -1.1 -2.2 -2.0 -4.0 -3.1 -6.0 

Electricity and heat -1.3 -3.3 -2.7 -6.1 -4.3 -9.2 
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Table 9: Simulation results for China under the STANDARD scenario in 2020 and HIGH GROWTH. 

Indicator Stringency of the intensity target 

% change vs. BAU within 2020 LOW (40%) MEDIUM (45%) HIGH (50%) 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -1.190 -1.190 -1.344 -1.336 -1.567 -1.545 

Welfare -0.697 -0.728 -1.040 -1.085 -1.553 -1.605 

Fossil energy consumption -10.4 -10.5 -17.3 -17.5 -24.2 -24.5 

CO2 emissions (Gt) 8.798 8.798 8.065 8.065 7.331 7.331 

CO2 emissions ETS segment (Gt) 6.730 6.730 5.992 5.992 5.264 5.264 

CO2 total -11.3 -11.3 -18.7 -18.7 -26.1 -26.1 

CO2 ETS segment -14.2 -14.2 -23.6 -23.6 -32.9 -32.9 

CO2 intensity (Gt per bn 2005€) 1.840 1.840 1.686 1.686 1.533 1.533 

CO2 price (2005€ per t) 4.65 4.27 8.10 7.36 12.47 11.17 

Electricity price (2005€ per kWh) 0.097 0.100 0.100 0.105 0.103 0.110 

Chinese sectoral output:       

Petroleum and coal products 1.9 -0.4 1.9 -2.1 2.1 -4.0 

Paper and publishing -0.3 -0.5 -0.5 -0.8 -0.7 -1.2 

Fertilizers 0.5 0.2 0.1 -0.5 -0.3 -1.3 

Organic chemicals 1.2 0.8 0.8 0.2 0.4 -0.5 

Inorganic chemicals 0.7 0.4 0.4 0.0 0.1 -0.6 

Cement -0.4 -0.7 -0.8 -1.3 -1.2 -2.0 

Bricks and tiles -0.3 -0.6 -0.5 -1.0 -0.8 -1.6 

Other non-metallic minerals -0.3 -1.2 -1.2 -2.9 -2.3 -4.7 

Iron and steel production -0.5 -0.8 -0.8 -1.4 -1.2 -2.0 

Iron and steel further processing 0.3 -0.2 -0.2 -1.0 -0.7 -1.9 

Aluminium -1.0 -1.9 -1.9 -3.3 -2.7 -4.9 

Other non-ferrous metals -1.0 -2.0 -2.0 -3.8 -3.1 -5.8 

Electricity and heat -1.1 -3.0 -2.7 -5.8 -4.4 -9.0 
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Table 10: Simulation results for China under the STANDARD scenario in 2030 and LOW GROWTH. 

Indicator Stringency of the intensity target 

% change vs. BAU within 2030 LOW (40%) MEDIUM (45%) HIGH (50%) 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -1.402 -1.376 -1.593 -1.551 -1.836 -1.770 

Welfare -1.314 -1.362 -1.781 -1.832 -2.378 -2.424 

Fossil energy consumption -25.6 -25.8 -31.2 -31.5 -36.8 -37.1 

CO2 emissions (Gt) 7.738 7.738 7.093 7.093 6.448 6.448 

CO2 emissions ETS segment (Gt) 5.510 5.510 4.859 4.859 4.217 4.217 

CO2 total -27.6 -27.6 -33.6 -33.6 -39.7 -39.7 

CO2 ETS segment -34.8 -34.8 -42.5 -42.5 -50.1 -50.1 

CO2 intensity (Gt per bn 2005€) 1.289 1.289 1.182 1.182 1.075 1.075 

CO2 price (2005€ per t) 11.00 10.19 14.64 13.45 19.25 17.51 

Electricity price (2005€ per kWh) 0.099 0.105 0.101 0.109 0.103 0.113 

European macroeconomy:       

CO2 emissions ETS segment (Gt) 1.406 1.406 1.406 1.406 1.406 1.406 

CO2 price (2005€ per t) 52.45 52.58 52.44 52.61 52.42 52.63 

Chinese sectoral output:       

Petroleum and coal products 2.4 -1.8 2.8 -2.8 3.3 -3.9 

Paper and publishing -0.6 -1.0 -0.8 -1.2 -1.0 -1.5 

Fertilizers -0.2 -0.9 -0.6 -1.4 -0.9 -2.1 

Organic chemicals 0.4 -0.2 0.2 -0.6 -0.1 -1.2 

Inorganic chemicals 0.1 -0.4 -0.1 -0.8 -0.4 -1.2 

Cement -1.0 -1.5 -1.3 -2.0 -1.6 -2.5 

Bricks and tiles -0.6 -1.1 -0.8 -1.5 -1.1 -1.9 

Other non-metallic minerals -2.1 -3.5 -2.7 -4.6 -3.3 -5.8 

Iron and steel production -1.0 -1.6 -1.2 -2.0 -1.5 -2.5 

Iron and steel further processing -0.7 -1.5 -1.0 -2.0 -1.3 -2.6 

Aluminium -2.3 -3.8 -2.8 -4.8 -3.3 -5.9 

Other non-ferrous metals -2.6 -4.4 -3.2 -5.6 -3.8 -7.0 

Electricity and heat -4.6 -8.8 -5.8 -11.3 -6.9 -13.9 
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Table 11: Simulation results for China under the STANDARD scenario in 2030 and MEDIUM GROWTH. 

Indicator Stringency of the intensity target 

% change vs. BAU within 2030 LOW (40%) MEDIUM (45%) HIGH (50%) 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -1.772 -1.745 -1.969 -1.927 -2.225 -2.160 

Welfare -1.726 -1.776 -2.220 -2.275 -2.857 -2.908 

Fossil energy consumption -28.5 -28.7 -33.8 -34.1 -39.2 -39.5 

CO2 emissions (Gt) 8.253 8.253 7.565 7.565 6.878 6.878 

CO2 emissions ETS segment (Gt) 5.761 5.761 5.076 5.076 4.388 4.388 

CO2 total -30.7 -30.7 -36.5 -36.5 -42.3 -42.3 

CO2 ETS segment -38.9 -38.9 -46.1 -46.1 -53.4 -53.4 

CO2 intensity (Gt per bn 2005€) 1.228 1.228 1.126 1.126 1.023 1.023 

CO2 price (2005€ per t) 12.54 11.68 16.29 15.07 21.21 19.40 

Electricity price (2005€ per kWh) 0.101 0.107 0.103 0.111 0.106 0.116 

European macroeconomy:       

CO2 emissions ETS segment (Gt) 1.406 1.406 1.406 1.406 1.406 1.406 

CO2 price (2005€ per t) 64.33 64.43 64.35 64.46 64.37 64.50 

Chinese sectoral output:       

Petroleum and coal products 2.9 -1.5 3.1 -2.5 3.6 -3.6 

Paper and publishing -0.8 -1.2 -1.0 -1.4 -1.2 -1.7 

Fertilizers -0.2 -0.9 -0.5 -1.4 -0.9 -2.0 

Organic chemicals 0.7 0.1 0.4 -0.4 0.1 -0.9 

Inorganic chemicals 0.2 -0.3 0.0 -0.7 -0.3 -1.2 

Cement -1.2 -1.7 -1.5 -2.1 -1.8 -2.6 

Bricks and tiles -0.8 -1.3 -1.0 -1.6 -1.3 -2.1 

Other non-metallic minerals -2.3 -3.7 -3.0 -4.8 -3.7 -6.0 

Iron and steel production -1.2 -1.8 -1.4 -2.2 -1.6 -2.6 

Iron and steel further processing -0.7 -1.4 -1.0 -1.9 -1.3 -2.5 

Aluminium -2.8 -4.3 -3.3 -5.2 -3.8 -6.3 

Other non-ferrous metals -3.1 -4.9 -3.7 -6.1 -4.3 -7.4 

Electricity and heat -5.5 -9.8 -6.8 -12.2 -8.0 -14.9 
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Table 12: Simulation results for China under the STANDARD scenario in 2030 and HIGH GROWTH. 

Indicator Stringency of the intensity target 

% change vs. BAU within 2030 LOW (40%) MEDIUM (45%) HIGH (50%) 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -2.157 -2.128 -2.368 -2.324 -2.634 -2.568 

Welfare -2.154 -2.202 -2.694 -2.744 -3.373 -3.419 

Fossil energy consumption -31.2 -31.4 -36.4 -36.6 -41.5 -41.8 

CO2 emissions (Gt) 8.798 8.798 8.065 8.065 7.331 7.331 

CO2 emissions ETS segment (Gt) 6.027 6.027 5.290 5.290 4.560 4.560 

CO2 total -33.7 -33.7 -39.3 -39.3 -44.8 -44.8 

CO2 ETS segment -42.6 -42.6 -49.6 -49.6 -56.6 -56.6 

CO2 intensity (Gt per bn 2005€) 1.171 1.171 1.074 1.074 0.976 0.976 

CO2 price (2005€ per t) 14.075 13.177 18.070 16.789 23.321 21.415 

Electricity price (2005€ per kWh) 0.103 0.109 0.105 0.113 0.107 0.118 

European macroeconomy:       

CO2 emissions ETS segment (Gt) 1.406 1.406 1.406 1.406 1.406 1.406 

CO2 price (2005€ per t) 74.61 74.75 74.62 74.80 74.62 74.83 

Chinese sectoral output:       

Petroleum and coal products 3.5 -1.0 3.7 -1.9 4.0 -3.1 

Paper and publishing -1.0 -1.3 -1.2 -1.6 -1.4 -2.0 

Fertilizers -0.1 -0.8 -0.5 -1.4 -0.9 -2.0 

Organic chemicals 1.0 0.4 0.7 -0.1 0.4 -0.7 

Inorganic chemicals 0.3 -0.2 0.1 -0.6 -0.2 -1.1 

Cement -1.4 -1.8 -1.7 -2.3 -2.0 -2.8 

Bricks and tiles -1.0 -1.5 -1.3 -1.8 -1.6 -2.3 

Other non-metallic minerals -2.6 -3.9 -3.2 -5.0 -4.0 -6.2 

Iron and steel production -1.3 -1.9 -1.6 -2.3 -1.8 -2.7 

Iron and steel further processing -0.6 -1.3 -0.9 -1.9 -1.2 -2.4 

Aluminium -3.1 -4.7 -3.7 -5.6 -4.2 -6.7 

Other non-ferrous metals -3.5 -5.3 -4.1 -6.5 -4.7 -7.8 

Electricity and heat -6.5 -10.8 -7.8 -13.2 -9.0 -15.8 
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Table 13: Simulation results for China under the LINKING scenario in 2030 and LOW GROWTH. 

Indicator Stringency of the intensity target 

% change vs. BAU within 2030 LOW (40%) MEDIUM (45%) HIGH (50%) 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -1.360 -1.336 -1.543 -1.503 -1.777 -1.713 

Welfare -1.318 -1.389 -1.778 -1.858 -2.369 -2.449 

Fossil energy consumption -28.4 -28.6 -34.0 -34.3 -39.6 -40.0 

CO2 emissions (Gt) 7.416 7.416 6.771 6.771 6.126 6.126 

CO2 emissions ETS segment (Gt) 5.187 5.187 4.537 4.537 3.895 3.895 

CO2 total -30.6 -30.6 -36.6 -36.6 -42.7 -42.7 

CO2 ETS segment -38.6 -38.6 -46.3 -46.3 -53.9 -53.9 

CO2 intensity (Gt per bn 2005€) 1.236 1.236 1.128 1.128 1.021 1.021 

CO2 price (2005€ per t) 12.68 11.71 16.78 15.36 22.15 19.99 

Electricity price (2005€ per kWh) 0.100 0.107 0.102 0.111 0.104 0.116 

European macroeconomy:       

CO2 emissions ETS segment (Gt) 1.728 1.728 1.728 1.728 1.728 1.728 

CO2 price (2005€ per t) 30.03 30.20 29.99 30.20 29.93 30.20 

Chinese sectoral output:       

Petroleum and coal products  2.5 -2.4 3.0 -3.4 3.7 -4.6 

Paper and publishing -0.7 -1.1 -0.9 -1.4 -1.1 -1.8 

Fertilizers -0.5 -1.2 -0.8 -1.8 -1.2 -2.5 

Organic chemicals 0.2 -0.5 -0.1 -1.0 -0.4 -1.7 

Inorganic chemicals -0.1 -0.6 -0.3 -1.1 -0.6 -1.6 

Cement -1.2 -1.8 -1.5 -2.3 -1.9 -2.8 

Bricks and tiles -0.9 -1.5 -1.2 -1.9 -1.4 -2.4 

Other non-metallic minerals -3.0 -4.7 -3.7 -5.8 -4.4 -7.2 

Iron and steel production -1.2 -1.9 -1.5 -2.4 -1.7 -2.8 

Iron and steel further processing -1.0 -1.9 -1.3 -2.5 -1.7 -3.1 

Aluminium -2.8 -4.5 -3.3 -5.6 -3.8 -6.8 

Other non-ferrous metals -3.2 -5.3 -3.9 -6.6 -4.5 -8.1 

Electricity and heat -5.3 -10.1 -6.5 -12.7 -7.5 -15.5 
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Table 14: Simulation results for China under the LINKING scenario in 2030 and MEDIUM GROWTH. 

Indicator Stringency of the intensity target 

% change vs. BAU within 2030 LOW (40%) MEDIUM (45%) HIGH (50%) 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -1.729 -1.703 -1.919 -1.878 -2.166 -2.101 

Welfare -1.720 -1.790 -2.211 -2.288 -2.841 -2.921 

Fossil energy consumption -31.0 -31.2 -36.3 -36.6 -41.7 -42.1 

CO2 emissions (Gt) 7.931 7.931 7.243 7.243 6.556 6.556 

CO2 emissions ETS segment (Gt) 5.439 5.439 4.754 4.754 4.066 4.066 

CO2 total -33.4 -33.4 -39.2 -39.2 -45.0 -45.0 

CO2 ETS segment -42.3 -42.3 -49.6 -49.6 -56.9 -56.9 

CO2 intensity (Gt per bn 2005€) 1.180 1.180 1.078 1.078 0.975 0.975 

CO2 price (2005€ per t) 14.18 13.17 18.40 16.94 24.12 21.90 

Electricity price (2005€ per kWh) 0.102 0.109 0.104 0.113 0.107 0.118 

European macroeconomy:       

CO2 emissions ETS segment (Gt) 1.728 1.728 1.728 1.728 1.728 1.728 

CO2 price (2005€ per t) 42.02 42.17 41.99 42.18 41.94 42.18 

Chinese sectoral output:       

Petroleum and coal products  3.0 -2.0 3.3 -3.0 3.9 -4.1 

Paper and publishing -0.9 -1.3 -1.1 -1.6 -1.3 -2.0 

Fertilizers -0.4 -1.2 -0.8 -1.8 -1.2 -2.5 

Organic chemicals 0.5 -0.3 0.2 -0.8 -0.2 -1.4 

Inorganic chemicals 0.0 -0.6 -0.2 -1.0 -0.5 -1.5 

Cement -1.4 -1.9 -1.7 -2.4 -2.1 -3.0 

Bricks and tiles -1.1 -1.6 -1.4 -2.0 -1.7 -2.5 

Other non-metallic minerals -3.2 -4.8 -3.9 -6.0 -4.7 -7.3 

Iron and steel production -1.4 -2.1 -1.6 -2.5 -1.9 -2.9 

Iron and steel further processing -1.0 -1.8 -1.3 -2.4 -1.6 -3.0 

Aluminium -3.2 -4.9 -3.8 -6.0 -4.3 -7.2 

Other non-ferrous metals -3.7 -5.7 -4.3 -7.0 -4.9 -8.5 

Electricity and heat -6.3 -11.1 -7.5 -13.6 -8.6 -16.3 
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Table 15: Simulation results for China under the LINKING scenario in 2030 and HIGH GROWTH. 

Indicator Stringency of the intensity target 

% change vs. BAU within 2030 LOW (40%) MEDIUM (45%) HIGH (50%) 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -2.116 -2.087 -2.320 -2.277 -2.577 -2.511 

Welfare -2.151 -2.216 -2.687 -2.758 -3.361 -3.433 

Fossil energy consumption -33.5 -33.7 -38.6 -38.9 -43.7 -44.1 

CO2 emissions (Gt) 8.476 8.476 7.742 7.742 7.009 7.009 

CO2 emissions ETS segment (Gt) 5.704 5.704 4.968 4.968 4.238 4.238 

CO2 total -36.2 -36.2 -41.7 -41.7 -47.2 -47.2 

CO2 ETS segment -45.7 -45.7 -52.7 -52.7 -59.7 -59.7 

CO2 intensity (Gt per bn 2005€) 1.129 1.129 1.031 1.031 0.933 0.933 

CO2 price (2005€ per t) 15.683 14.643 20.174 18.665 26.268 23.946 

Electricity price (2005€ per kWh) 0.104 0.111 0.106 0.115 0.108 0.120 

European macroeconomy:       

CO2 emissions ETS segment (Gt) 1.728 1.728 1.728 1.728 1.728 1.728 

CO2 price (2005€ per t) 53.40 53.56 53.36 53.56 53.30 53.56 

Chinese sectoral output:       

Petroleum and coal products  3.5 -1.4 3.8 -2.4 4.2 -3.6 

Paper and publishing -1.1 -1.5 -1.3 -1.8 -1.5 -2.2 

Fertilizers -0.3 -1.1 -0.7 -1.7 -1.2 -2.4 

Organic chemicals 0.8 0.1 0.5 -0.5 0.1 -1.1 

Inorganic chemicals 0.1 -0.4 -0.1 -0.9 -0.4 -1.4 

Cement -1.5 -2.1 -1.9 -2.5 -2.2 -3.1 

Bricks and tiles -1.3 -1.8 -1.6 -2.2 -1.9 -2.7 

Other non-metallic minerals -3.5 -5.0 -4.2 -6.1 -5.0 -7.5 

Iron and steel production -1.5 -2.2 -1.8 -2.6 -2.0 -3.0 

Iron and steel further processing -0.9 -1.7 -1.2 -2.3 -1.6 -2.9 

Aluminium -3.6 -5.3 -4.2 -6.3 -4.7 -7.5 

Other non-ferrous metals -4.0 -6.1 -4.7 -7.4 -5.4 -8.8 

Electricity and heat -7.2 -11.9 -8.5 -14.4 -9.6 -17.2 
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Table 16: Simulation results for China under the INTENSITY 2030 scenario in 2030 and MEDIUM GROWTH.  

Indicator Stringency of the intensity target 

% change vs. BAU within 2030 LOW (40%) MEDIUM (45%) HIGH (50%) 

or unit in parentheses free alloc. full auct. free alloc. full auct. free alloc. full auct. 

Chinese macroeconomy: 
GDP -1.583 -1.568 -1.745 -1.720 -1.960 -1.919 

Welfare -1.251 -1.291 -1.659 -1.708 -2.196 -2.251 

Fossil energy consumption -21.7 -21.9 -27.7 -27.9 -33.6 -33.8 

CO2 emissions (Gt) 9.118 9.118 8.359 8.359 7.599 7.599 

CO2 emissions ETS segment (Gt) 6.629 6.629 5.868 5.868 5.106 5.106 

CO2 total -23.5 -23.5 -29.8 -29.8 -36.2 -36.2 

CO2 ETS segment -29.7 -29.7 -37.7 -37.7 -45.8 -45.8 

CO2 intensity (Gt per bn 2005€) 1.357 1.357 1.244 1.244 1.131 1.131 

CO2 price (2005€ per t) 8.78 8.24 12.03 11.21 16.11 14.90 

Electricity price (2005€ per kWh) 0.099 0.103 0.101 0.106 0.103 0.111 

European macroeconomy:       

CO2 emissions ETS segment (Gt) 1.406 1.406 1.406 1.406 1.406 1.406 

CO2 price (2005€ per t) 64.28 64.37 64.32 64.42 64.35 64.46 

Chinese sectoral output:       

Petroleum and coal products  2.8 -0.3 2.9 -1.3 3.1 -2.5 

Paper and publishing -0.6 -0.9 -0.8 -1.1 -1.0 -1.4 

Fertilizers 0.2 -0.3 -0.2 -0.8 -0.5 -1.4 

Organic chemicals 1.0 0.6 0.7 0.2 0.4 -0.4 

Inorganic chemicals 0.5 0.1 0.2 -0.2 0.0 -0.7 

Cement -0.9 -1.2 -1.2 -1.6 -1.5 -2.1 

Bricks and tiles -0.6 -0.9 -0.8 -1.2 -1.0 -1.6 

Other non-metallic minerals -1.6 -2.6 -2.2 -3.6 -2.9 -4.7 

Iron and steel production -0.9 -1.3 -1.2 -1.7 -1.4 -2.1 

Iron and steel further processing -0.3 -0.8 -0.6 -1.3 -0.9 -1.9 

Aluminium -2.1 -3.2 -2.7 -4.1 -3.2 -5.2 

Other non-ferrous metals -2.3 -3.6 -3.0 -4.8 -3.7 -6.1 

Electricity and heat -3.9 -7.0 -5.3 -9.5 -6.7 -12.1 

 


