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Abstract
We conduct an experiment in an attempt to (i) measure the structure

of preferences over lotteries and (ii) test for stability of the probability
transformation functions over different choice sets. The design is based
on manipulations of the “probability triangle” A disaggregated nonpara-
metric analysis in which we classify subjects according to which trans-
formation function is most consistent with their revealed choice behavior
shows that a linear and a strictly concave transformation function are
the most common for risky choice. We find essentially no evidence of an
S-shaped transformation function for choice under risk. Formal econo-
metric estimation clearly rejects the S-shaped function in favor a strictly
concave function. A formal econometric analysis exploiting the ordered
discrete nature of the data leads us to infer a strictly concave probabil-
ity transformation function, consistent with the nonparametric analysis.
The difference between our results and those of previous studies can be
attributed to the choice of functional forms used in estimating the trans-
formation function, to the limited space of lotteries upon which estimates
have been based.

1 Introduction
Anticipated Utility theory (Quiggin (1982)) and the many “rank dependent”
generalizations of expected utility that followed (Chew, Karni and Safra (1985),
Segal (1989), Wakker (1990), to name just a few) provides a theoretically co-
herent and testable structure within which violations of expected utility theory
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can be interpreted and specific remedies (e.g., the nature of nonlinear weight-
ing of probabilities) can be tested. Emprical studies of the rank dependent
model (e.g., Wu and Gonzalez, Prelec, Camerer and Ho) have generally con-
cluded that the best-fitting specification for the probability weighting function
is an inverted S-shaped function. We find, contrary to previous studies, lit-
tle evidence for the S-shaped function. We believe that the fact that we have
explored choice behavior over the entire probability triangle and that we have
used a flexible functional form for the probability transformation function in our
analysis should lend credence to our findings. A more detailed exploration of
the differences in our experiment and previous studies is clearly warranted, but
it appears that the main difference between our approach and others is that we
have focused on estimating the transformation function for a specific 3-outcome
triangle, while others have estimated the transformation function based on bi-
nary choices over a broader range of monetary outcomes. What we present is
clear evidence for a strictly concave transformation function in the context of a
given probability triangle. We also find that estimates of the transformation
function are stable when the middle-sized outcome is varied.
Most studies that attempt to estimate the transformation funciton have as-

sumed that all subjects have the same preferences, but that they make errors in
decision making. One contribution of this paper is to provide a disaggregated
analysis of choice under risk without this homogeneity assumption. We also
estimate the transformation function directly in the context of an ordered dis-
crete choice specification, with the homogeneity assumption. Unlike previous
studies, however, we are able to estimate the transformation function without
making any assumption about the functional form of the elementary utility, or
value, function. For the transformation function, we use a flexible polynomial
specification that allows the function to take essentially any shape, and we test
for the correct order of the polynomial.
The organization of the paper is as follows. We first outline the probability

triangle and examine the nature of rank dependent expected utility preferences
in the triangle. Next, we outline the experimental design and procedures, and
follow with a discussion of the main empirical results. Finally, we outline the
econometric model that we use to estimate the transformation function and to
test for stability of the function to shifts in the middle outcome in the triangle.
The probability triangle is based on the assumption that probabilities change

in a constrained fashion within the triangle. For example, moving from the
origin along a ray towards the hypotenuse, the probability of winning the middle
prize falls, and the probability of winning the large and small prizes rise in
fixed proportions. The utility of dollar outcomes does not change unless the
dollar outcomes change. Many experimental studies using the MM triangle have
shown that subjects may have variable levels of risk aversion as the probability
of winning the middle prize changes, and that simple expected utility theory
cannot explain this phenomenon.
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2 The ProbabilityTriangle and Rank-Dependent
Expected Utility

Consider a N-outcome lottery L, denoted by

L = [x1, p1;x2, p2; ...xN , pN ],

with utility function u(L). Since the probabilities add to 1, pi = 1−Pn6=i pn
for some i. For a three-outcome lottery we can illustrate and analyze lottery
choice in a triangle. The expected utility of a lottery, L, is

EU(S) = u(x1)p1 + u(x2)p2 + u(x3)p3.

We suppose that x1 is the largest prize, and x2 and x3 are the middle and
smallest prizes. Taking the total derivative and setting equal to zero, we can
derive the following useful expression:

dp1
dp3

=
u(x2)− u(x3)
u(x1)− u(x2)

This is the (constant) slope of a constant-expected utility in the probability
triangle. Rank dependent expected utility augments the basic expected utility
model with a transformation or weighting function for the probabilities. Letting

L = [x1, p1;x2, p2; ...xN , pN ]

denote a lottery, the rank-dependent expected utility of L is given by:
RDEU(L) = u(x1)f(p1)+ u(x2)(f(1− p2)− f(p3)) + u(x3)(1− f(1− p3))
where f is the transformation function. The only conditions placed on f are

that f(0) = 0, f(1) = 1,and f is monotonic. If f is smooth and differentiable,
then the slope of the RDEU function in the triangle is given, through total
differentiation, by

dp1
dp3

=
u(x2)− u(x3)
u(x1)− u(x2)

f 0(1− p3)
f 0(p1)

This expression can be used to derive implicatfions for the shape of constant
rank-dependent expected utility contours in the probability triangle for different
assumed forms of the transformation function. An illustration of several possible
transformation functions and the implied preference maps are shown in Figure
1.
The purpose of the experiment reported on here is to determine (i) the form

of the transformation function within a given triangle and (ii) whether this form
is robust to changes in the triangle. The main experimental manipulation is to
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vary the middle prize (from near the largest prize to near the smallest prize).
Such a manipulation, leaving the transformation function unchanged, change
the slope of constant preference contours in a predictable way, namely, they
make the contours flatter in the relevant triangle, as illustrated in Figure 2.
This implies that choices should move towards the hypotenuse of the triangle as
the middle prize is shifted towards the smallest prize. This places restrictions on
which types of observed choice patterns can be associated with which possible
transformation functions. We now proceed to the details of this exercise.

3 Design of the Experiment
Figure 3 summarizes the experimental design. In the experiment there are
twenty choice questions. A question consists, in essence, of asking the indi-
vidual which point on a chord in a triangle he or she most prefers. Figure
3 illustrates the precise location of these chords in the choice triangle. The
numbers above the hypotenuse correspond to the chords emanating from that
part of the hypotenuse in descending order, according to the slope of the chord.
Thus, for example, chord a1 is the dashed line with slope = 1/3 intersecting
the vertical axis at .67, chord b1 is the solid line with slope = 1 intersecting
the vertical axis at .5, and chord c1 is the dotted line with slope=3 intersecting
the origin. The same 9 chords appear in both Triangle I and Triangle II in the
experiment.
The under the triangle indicates that the only difference between Triangle I

and II is in the size of the middle prize. The labels on the vertical and horizontal
axis indicate that the probability of a prize is measured on these axes. The main
analysis consists of comparing choice patterns over each group of chords with
the same slope in Triangle I to choice patterns over the corresponding group
of chords from Triangle II. The key fact that we are exploiting in this is that
changes in the slope of preference contours (equation 2.5) must be accounted
for through changes in the middle prize while the transformation function re-
mains unchanged. This allows us to make inferences about the shape of the
transformation function.

3.1 Method

The experiments were conducted by computer. Subjects were recruited from
economics classes at Rutgers University. Subject arrived at an appointed time
and were seated at individual computer terminals. When all subjects were
present, instructions were read aloud and questions answered. The instructions
are included as an appendix to the paper. Subjects were then free to work
through the questions at their own pace. There were twenty questions in the
experiment. The first two questions in each experiment were warm-up questions
which gave subjects choices among sets of choices where there was a strictly
dominant choice.
Payments in the experiment were denominated in U.S. dollars. At the end
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of the experiment, one of the lotteries chosen by each individual was randomly
selected, played out, and the result paid to the subject. The average payoff in the
experiments was approximately $20. The average time spent was approximately
45 minutes, including the instruction period. There were a total of 27 subjects
in the experiment.
The program is Windows-based and written in Visual Basic. For each ques-

tion, the program would initially display a point of a chord in one of the triangles.
The lottery was displayed in both tabular format and in a graphical format (pie
chart). The subject could use a mouse to move to the right or left on a bar
at the bottom of the screen to change the lottery displayed. Movements to the
right and left corresponded to moving up and down a chord in a triangle. The
subject could, at any time, select and confirm the currently displayed lottey.
The initial point displayed was always the midpoint of the chord.

4 Empirical Results
Table 1 contains a summary statistic for the choices in the experiment, the
mean normalized choice on each chord in each triangle. The normalized choice
ranges from 0 to 1, with 0 indicating a choice on one of the axes of a triangle,
1 indicating a choice on the hypotenuse, and numbers strictly between 0 and
1 indicating choices strictly in the interior of a triangle. The lines in the table
labeled “horizontal dominant choice.” and “vertical dominant choice.” refer to
the first two choices in the experiment, each of which has a dominant choice. The
horizontal dominance question corresponds to a horizontal chord intersecting
the vertical axis of the choice triangle at .75, and calls for a choice of 0, since
any other choice involves a direct trade of probability of the largest prize for
probability of the smallest prize. The vertical dominance question corresponds
to a vertical chord intersecting the horizontal axis of the choice triangle at .25,
and calls for a choice of 1, since any other choice involves trading probability of
the largest for probability of the middle prize, or payment in the eariest period
for payment in the middle period. The other lines in the table refer to the
chords described in the design section above, and illustrated in Figure 3.
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Table 1: Means of Normalized Choices
Triangle I II

Chord
Horizontal Dominant .05
Vertical Dominant .86
a1 .25 .23
b1 .25 .30
c1 .29 .51
a2 .16 .22
b2 .21 .43
c2 .24 .42
a3 .11 .25
b3 .13 .22
c3 .35 .50

The main thing to note in this table is that there is generally an increase
in the normalized choice from Triangle I to Triangle II in each experiment,
consistent with RDEU. That is, the average choices are consistent with the
expression for the slope of constant preference contours (equation (2.5)) that
is separable into a part due to the utilty and a part due to the transformation
function.
Table 2 contains a detailed classification of choice patterns. Specifically, the

data is organized into triples of choices, with each triple containing choices along
chords of the same slope within a given triangle. For example, column Ia refers
to the “a” chord choices in Triangle I (those with a slope of 1/3), Ib refers to
the “b”chord choices in Triangle I (those with a slope of 1), and Ic refers to
the “c” chord choices in Triangle I (those with a slope of 3). Each triple of
choices is classified into one of 27 patterns according to whether the choices in
the triple were at the axis end of a chord, in the interior of the chord, or at
the hypotenuse of the chord. In the “description” column of the table there is
a triple of numbers for each possible pattern, (#1, #2,#3), where the entries
correspond to choices as one sweeps from the northeast to the southwest of the
triangle, and each entry is either a 1 (axis choice), a 2 (interior choice) or a 3
(hypotenuse choice). A choice is classified as at the end of a chord if it was
within .01 of the length of the chord from that end. The first eight patterns
(1-8) in the table all have at least 2 end choices at the same end of the chord
and at most one interior choice. The next 12 patterns (9-20) all have at least
one end choice at each end of a chord, and at most one interior choice. The
last seven patterns (21-27) all have at least two interior choices. In the next
part of the analysis we aggregate choice patterns into the just described three
groups of patterns, and refer to them as “linear,” “inflected,” and “concave”
patterns, with the name of each group indicating the shape of transformation
function consistent with such a choice pattern. The main thing to note in Table
2 is the prominance of the strictly linear (patterns 1 and 5) and the strictly
concave (pattern 27) choice patterns. Together these three pattern account for
just under 50% of choices in the Experiment.
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Table 2 Frequencies of Choice Patterns
Pattern # Description Ia IIa Ib IIb Ic IIc
1 (linear x) 1,1,1 21 6 7 1 2 1
2 (alx1) 1,1,2 1 5 1 3 1 0
3 (alx2) 1,2,1 1 1 2 1 0 0
4 (alx3) 2,1,1 1 0 0 0 1 0
5 (linear h) 3,3,3 0 0 0 0 1 1
6 (alh1) 3,3,2 1 0 1 0 1 0
7 (alh2) 3,2,3 0 0 0 0 1 1
8 (alh3) 2,3,3 0 0 0 0 0 1
9 (lnpv1) 1,1,3 0 0 0 0 1 1
10 (lnpv2) 1,3,1 0 0 1 0 0 0
11 (lnpv3) 3,1,1 0 0 0 0 0 1
12 (lnpv4) 3,3,1 0 0 0 0 0 0
13 (lnpv5) 3,1,3 0 0 0 0 0 0
14 (lnpv6) 1,3,3 0 0 0 0 0 1
15 (alnpv1) 1,3,2 0 1 0 2 0 0
16 (alnpv2) 3,1,2 1 0 1 1 0 0
17 (alnpv3) 1,2,3 0 0 0 0 0 0
18 (alnpv4) 3,2,1 1 0 0 0 0 0
19 (alnpv5) 2,1,3 0 0 0 0 0 0
20 (alnpv6) 2,3,1 0 0 0 0 0 1
21 (acon1) 2,2,3 0 0 0 0 1 3
22 (acon2) 2,3,2 0 0 0 2 0 0
23 (acon3) 3,2,2 1 1 2 1 1 3
24 (acon4) 2,2,1 2 1 2 3 2 0
25 (acon5) 2,1,2 1 0 1 0 4 0
26 (acon6) 1,2,2 2 2 3 5 4 0
27 (concave) 2,2,2 3 10 6 8 7 13
Total 27 27 27 27 27 27

Table 3 contains direct comparisons of choice patterns over chord triples of
the same slope between the two triangles in the experiment. For example, the
matrix at the top of Table 3 compares choice patterns over the chord choices
with slope 1/3 in Triangle I of the Experiment with choice patters over the
same chord choices in Triangle II. The Stuart-Maxwell Chi-Square test statistic
reported below each matrix tests the hypothesis that the distribution of choice
patterns is unchanging from Triangle I to Triangle II. We interpret these tests as
evidence of stability (or lack thereof) of the transformation function. If choice
patterns in Triangle I and Triangle II are consistent with the same general
sort of transformation function (linear, infllected, or concave), then we call the
transformation function stable. This hypothesis is never rejected statistically.
More interesting, perhaps, than the stability of the transformation function is
what the distribution of transformation functions implies. The preponderance of
choice patterns are consistent with a linear or concave transformation function,

7



with very few inflected patterns.

Table 3: Nonparametric Test for Stability of the
Probability Weighting Function

(Ia vs IIa) After Linear Inflected Concave Total
Before
Linear 11 1 4 16
Inflected 0 0 2 2
Concave 1 0 8 9
Total 12 1 14 27
Stuart-Maxwell Chi-square Statistic: 3.65 P-value: .16
(Ib vs IIb) After Linear Inflected Concave Total
Before
Linear 4 3 4 11
Inflected 0 0 2 2
Concave 1 0 13 14
Total 5 3 19 27
Stuart-Maxwell Chi-square Statistic: 4.90 P-value: .09
(Ic vs IIc) After Linear Inflected Concave Total
Before
Linear 2 1 4 7
Inflected 0 1 0 1
Concave 2 2 15 19
Total 4 4 19 27
Stuart-Maxwell Chi-square Statistic: 3.60 P-value: .17

Conventional wisdom has it that the probability transformation function in
RDEU is inflected, with a crossing point around p=.35, but there is simply no
evidence in support of this in our experiment.

5 Estimating & Testing Transformation Func-
tions

5.1 An Ordered Choice Model

Recall that along a given chord within a triangle, each individual is presented
with the same finite number of ordered points, C ≡ {c1, ..., cR}, from which a
selection is made. In so doing, note that individuals are not permitted to locate
anywhere along the chord, but rather at one of the R given chord points. In
this restricted problem, suppose that an individual selects cj , and denote cj−1
and cj+1 as the adjacent chord points. Now, consider the unrestricted choice
problem in which an individual can locate anywhere along the chord. With c∗
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as the optimum chord location for the unconstrained problem, we then infer
that:

c∗² [cj−1, cj+1] .

From the above discussion, we do not know the optimum (unrestricted) chord
location but rather an interval that contains it. Consequently, for estimation
purposes, we formulate an ordered choice model. To this end, for a ”typical”
individual, let

α

·
f 0(1− p3)
f 0(p1)

¸
≡ s̄(c)

be the slope of the RDEU function as given in (2.5), where:

α ≡ u(x2)− u(x3)
u(x1)− u(x2) .

Clearly, all individuals are not identical, as evidenced by the fact that they make
different choices. To allow for individual differences (without having observed
demographic information), we assume that individual i has an RDEU function
with slope at chord point c given by:

s(c) = α

·
f 0 (1− p3 (c))
f 0 (p1 (c))

¸
+ ε ≡ s̄(c) + ε,

where ε denotes an unobserved individual specific component. We assume that
ε is identically distributed over individuals and over chords for a given indi-
vidual. Further, along a given chord, we assume that the εi are independently
distributed over individuals. For any specific individual, the choice made along
one chord may or may not depend on that made along another. If each individ-
ual behaves as if ε is redrawn before making each decision, then independence
is plausible; otherwise it is not. If we incorrectly assume that ε is indepen-
dently distributed over individuals, then following an argument in Robinson [ ]
for Tobit models, it can be shown that the resulting quasi-maximum likelihood
estimator is still consistent. Accordingly, since we do not have a sample size
sufficiently large to explore alternative correlation structures, here we proceed
under the assumption that ε is i.i.d. distributed chords and individuals.
As we do not want to make strong assumptions about the transformation

function, we model it flexibly by a series (polynomial) approximation. The
degree of this approximation will be examined and subjected to tests below.
Employing this series approximation, and a normality assumption for the un-
observed factor, we then formulated an ordered model for which we obtain a
maximum likelihood estimator.
We begin by approximating the transformation function with a polynomial

of degree p:

f (x) =

pX
i=0

γiX
i
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We can now approximate the slope of an indifference curve for a ”typical” indi-
vidual:

s̄(c) = α

Pp
i=1

h
iγip3 (c)

i−1iPp
i=1

h
iγip1 (c)

i−1i = α

Pp
i=2

h
1 + iβip3 (c)

i−1iPp
i=2

h
1 + iβip1 (c)

i−1i ,
where βi ≡ γi/γ, i = 2, .., p, denote the identifiable parameters for the transfor-
mation function. Denote β as the (p-1)x1 vector with ith element βi and denote
σ2 as the error variance. Then, with θ =

£
β0, α, σ2

¤0
as the parameter vector

of interest, it remains to specify the likelihood for θ.
For individual i and chord d, let cd1, ..., cdK denote the choice set ordered

along a chord in a north-east direction. With m(d) as the slope of cord d and
with c∗ (d) as the unconstrained optimal choice:

c∗ (d) < c1 ⇐⇒ m < s̄(c1) + εi

cj−1 ≤ c∗ (d) < cj ⇐⇒ s̄(cj−1) + εi ≤ m (d) < s̄(cj) + εi, j = 1, ..., R

c∗ (d) ≥ cR ⇐⇒ m (d) ≥ s̄(cR) + εi.

With εi distributed as N(0,σ2) and Φ (•) as the distribution function for a N(0,1)
random variable, probabilities for the above three events are given as:

P1d (θ) = Φ ([s̄(c1)−m (d)] /σ)
Pjd (θ) = Φ ([s̄(cj)−m (d)] /σ)− Φ ([s̄(cj)−m] /σ) , j = 1, ..., R− 1
PRd (θ) = 1− Φ ([s̄(cR)−m (d)] /σ)

Employing these probabilities, we can now write the log probability associ-
ated with individual i’s choice on chord d = 1,...,D.. Define the indicator I(E)
as 1 if E occurs and 0 otherwise. Let:

Y1i(d) = I(c∗i (d) < c1)
Yji(d) = I (cj ≤ c∗i (d) < cj−1) , j = 1, ..., R− 1
YRi(d) = I (c∗i (d) ≥ cR)

Along chord c, the log likelihood contribution for individual i is then:

Lid (θ) =
RX
j=1

Yji(d)Ln (Pjd(θ)) .

The averaged Log-likelihood (over individuals and chords) can now be defined
as:

LogL ≡
DX
d=1

Lid (θ) .
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5.2 Results

Beginning with Triangle 1, transformation functions were estimated with ap-
proximating polynomials of degrees 3,4,5, and 6. Based on a likelihood ratio
test, the P-value for comparing degrees 3:4 is .13, which is marginal evidence
that a third degree polynomial is satisfactory. The Pvalue increases to a value
in excess of .4 in comparing polynomial degrees 4:5 and 5:6. Not surprisingly,
given these results, in Figure 1 the transformation function for polynomial de-
grees 4,5, and 6 are virtually identical. Based on these results, a fourth degree
polynomial provides a satisfactory approximation to the transformation func-
tion. As is evidenced in Figure 4, while no restrictions were placed on the shape
of this function, the estimate is strictly concave.
Turning to Triangle 2, we found very similar results to those obtained above.

Namely, based on high P-values, a polynomial degree of four or higher provides
a good approximation to the transformation function. As shown in Figure 5,
transformation functions based in approximating polynomials of degrees 4-6 are
virtually identical. Moreover, as in Triangle 1, the transformation function is
also strictly concave for Triangle 2.
In theory, the transformation function for Triangle 1 should be the same

as that for Triangle 2. To provide a test this proposition, we estimated a
”combined” model in which the transformation function was restricted to be
the same over both triangles. For the case of a fourth degree approximating
polynomial, Figure 6 compares this combined transformation function with that
for the separate triangles. As is evidenced in this figure, these transformation
functions are close to eachother. As the P-value for this test is in excess of .9,
we (strongly) are unable to reject the null hypothesis that the transformation
function for Triangle 1 is the same as that for Triangle 2. Accordingly, all
subsequent results are based on the pooled (over triangles) sample with the
transformation function being approximated. by a fourth degree polynomial.
Table 4 provides the estimation results for the pooled sample.

Table 4: Parameter Estimates
Parameter Estimate Standard Error Uncombined
β1 -1.49 (.17) [-1.52, -1.44]
β2 1.62 (.22) [1.80, -1.47]
β3 -.71 (.09) [-.81,-.63]
σ2I 3.50 (.77) [3.03]
σ2II 1.94 (.26) [2.04]
αI 7.16 (1.32) [6.04]
αII 4.26 (4.26) [4.65]

Note that the parameter estimates reported in Table 4 must be normalized in
order to get the coefficients for the transformation function, properly speaking.
The estimates come from estimating the first-order condition for maximization,
which is a ratio of derivatives of the transformation function.
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6 Conclusions
In this paper we have presented a disaggregated analysis of experimental data
which allows us to make inferences about the nature of preferences under risk in
the relevant choice triangles. Contrary to many previous studies of the rank de-
pendent model, we find little evidence of an S-shaped probability transformation
function for choice under risk. For choice under risk we find that the majority of
subjects choose in a manner consistent with either a linear or a strictly concave
transformation function. The difference between our results and those of previ-
ous studies can be attributed to the restricted choice of functional forms used
in those studies for estimating the transformation function, and to the different
(more restricted) space of lotteries upon which those estimates have been based.
We augmented the nonparametric analysis with a formal econometric analy-

sis which exploits the detailed information that our experimental procedure
provides. Since subjects were able to make choices in discrete intervals along
any given chord in the probability triangle, the choice data leads naturally to
an ordered discrete choice formulation which provides more precise information
than would be the case with binary choice data. The parameter estimates
for our flexible polynomial parameterization of the probability transformation
function imply a strictly concave function, consistent with our findings from the
nonparametric analysis.
We believe that the rank dependent model is a natural extension of develop-

ments in choice since Bernoulli. Expected utility theory, for example, enriched
the expected value model by capturing the essential notion that risk attitude is
important in choice under risk. The rank dependent model similarly enriches
expected utility theory by quantifying, through the probability transformation
function, departures from linearity due to psychological factors that depend on
the structure of risk prospects one faces.
As Quiggin (1993) has noted, the rank dependent model is based on the

requirement that the entire probability distribution, and not the individual
probabilities in isolation, must be transformed to fully represent an individ-
ual’s decision making. This general approach to modelling decision making
seems to us to be very useful in that it allows us to quantify departures from
rationality, through the transformation function. A special case of these mod-
els is the linear transformation, which corresponds to expected utility . Our
particular experimental implementation allows subjects to express their prefer-
ences more precisely, by giving them a large menu of possible choices, instead of
the more usual pairwise choice format employed in other experimental studies.
This, in turn, allows us to make more precise inferences about the nature of the
transformation function without strong functional form assumptions.
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