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2 A MARKOV SWITCHING
COOKBOOK

Bruce Mizrach
Rutgers University

James Watkins
American Express

1. Introduction

Economists continue to debate the importance of nonlinearity to their discipline.
When it comes to forecasting levels, unit roots seems to be quite prevalent, and there
has been a great deal of skepticism about nonlinear models. See the arguments pro
and con in Ramsey (1996). The time series properties of higher moments have, how-
ever, led researchers to go beyond the standard linear, normally distributed world
of the textbooks. The two most widely developed lines of research in this area are
the ARCH volatility models of Engle (1982), and the asymmetric Markov-switching
model of Hamilton (1989). Our focus in this paper concerns numerical procedures
for the estimation of the MS type of models.

Hamilton extended Goldfeld and Quandt’s (1973) Markov switching regression
to the time series context. He analyzed the growth rate of U.S. real GNP. Hamil-
ton’s model not only accommodated the asymmetries �rst noted by Neftci (1984),
but also succeeded in reproducing the business cycle turning points established by the
NBER. The Markov-switching framework for output was later generalized to allow
for time-varying, duration-dependent, and seasonally dependent transition probabili-
ties (as in Filardo (1994), Durland and McCurdy (1994) and Ghysels (1994) respec-
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tively). Applications to interest rates by Hamilton (1988) and exchange rates by Engel
and Hamilton (1990) illustrate the usefulness of the model outside of its initial appli-
cation.

This paper is organized as follows. Section 2 brie�y reviews Hamilton’s Markov-
switching framework and introduces a few general concepts. Estimation procedures
are described in section 3, and the accompanying algorithms in sections 4 and 5. The
relative merits of the two algorithms is discussed in section 6 and computational speed
comparisons are presented in section 7. RATS code for both models is available from
the authors at http://www-snde.rutgers.edu/ research.html

2. Time Series Models of Changes in Regime

A brief description of the Markov-switching (hereafter MS) framework is helpful to
establish notation and vocabulary. The following description follows closely that of
Hamilton (1993).

Consider for simplicity a �rst order autoregression where the mean value around
which this series clusters may take on one of two values, ���� and ����:

�� � �� � ������ � ����� � ��� (1)

Suppose further that �� � ������	 
��. A change in the value of � alone is a change
in regime (or state) in this simple case. It should be noted however, that all of the
parameters of a model could be allowed to change with the state if thought appropri-
ate. Hamilton’s framework is rather agnostic regarding forces driving the change in
regime: “...changes in regime are the result of processes largely unrelated to past re-
alizations of the series and are not themselves directly observable.” Hamilton (1993,
p.234). It must be stressed that this does not mean that changes in regime are unre-
lated to the history of regimes� in fact, the state variable can have as long or longer a
“memory” than the observation series ��.

The state variable �� is associated with the indices for the constant terms in equa-
tion 1� for instance, �� � � is equivalent to saying �� � ����. Since the state variable
is unobservable, we will need to form probabilistic inferences of its value, and in so
doing form equivalent inferences regarding parameter values in 1. We assume that the
state variable is governed by the Markov chain:

���� � ������ � �� � �����	 (2)

���� � ������ � �� � �����	 (3)

���� � ������ � �� � �����	 (4)

���� � ������ � �� � ������ (5)

These transition probabilities are restricted so that ����� � ����� � ����� � ����� � ��
Hereafter, we will abbreviate notation when possible� the expression ���������� will
refer to whichever of the above values is appropriate in the given context. The model
given by 1, in conjunction with the assumptions regarding the transition probabilities,
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will be referred to as an MS(�) model. By increasing the autoregressive dimension,
we can consider higher-order MS(
) models.

As will become apparent through the exposition of the estimation techniques,
numerous probabilistic inferences can be computed at different points throughout the
sample. For example, the inference ���� � �	 � � � 	 ���� � ����� will refer to the
probability that the unobserved state variable took on the values �	 � � � 	 � at times
� � 
 through � respectively, conditioned on data up to and including that from date
�. Such a value may be abbreviated ����	 � � � 	 �������� when possible, but note that
the chronological subset represented by �� will always be included to distinguish be-
tween �lter inferences, smoothed inferences, and 
-lag smoothed inferences (all to
be de�ned later). Likewise, an example of an observation density conditional on
states would be ������� � �	 � � � 	 ���� � �	 ����� and as may be apparent from the
notation, may depend on a �nite history of past regimes. It will also be necessary
to compute joint densities of states and observations, given by expressions such as
����	 �� � �	 � � � 	 ���� � �������. Both the observation densities and joint densi-
ties are abbreviated in the same manner as the inferences regarding states. Finally,
more familiar looking observation densities (i.e. ����������) will become available
as functions of the above densities.

Often the conditional density depends not only on the current regime, but also on
past regimes. This requires us to make assumptions regarding the memory of the state
variable. For simplicity, the state process is generally given the same time dimension
as the observation process. In other words, it will be assumed that the state variable is
AR(
). To still satisfy the property of a Markov system, we must restructure the two
regimes as ���� distinct regimes, to exhaust the combinations of states. For example,
in an MS(�) model, the expression

��� � ����� � ���������� � ����� � ���������� � ����� � �
���
� (6)

is associated with the event: ��� � �	 ���� � �	 ���� � ��.

3. The Filter

Recall the assumption that the state variable �� is generally unobservable. In order
to estimate the parameters of a MS model with this uncertainty, we must compute
probabilities associated with each possible regime. Further, in the case of a MS
model where the conditional density depends on both current and past regimes

������������� �� �������	 ����	 ����	 � � � 	 �����	 (7)

these inferences need to extend over several periods

����	 ����	 � � � 	 ��������� (8)

Such probabilities are estimated using Hamilton’s recursive �lter� We discuss the
�lter in the general case of an MS(
) model. This procedure will compute 
 and

�� period inferences (�� and ����distinct numbers for each �) and as a by-product,
the conditional likelihood function. It is the conditional likelihood function that
we seek for techniques such as Newton-Raphson (NR) or Davidon-Fletcher-Powell
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(DFP), since the burdensome exact-likelihood method provides only a marginal im-
provement. The exposition is con�ned to the case where there are two states, and the
initialization of the �lter is reserved to the end of the discussion.

An arbitrary iteration of the �lter begins by advancing an 
 period inference,
available to us from the prior iteration,

������	 ��	 � � � 	 ���������� � ���������� � ����	 ����	 � � � 	 ����������� (9)

We then use the appropriate density to �nd the joint probability inference of the cur-
rent observation and the 
 � � most recent states, conditional on last period’s datum,

������	 ����	 ��	 � � � 	 ���������� (10)

� �����������	 ��	 � � � 	 ������	 ��� � ������	 ��	 � � � 	 �����������
Integrating over states, we �nd a density conditional only on prior data,

���������� �
��

������

��
����

��
�������������	 ����	 ��	 � � � 	 ����������� (11)

We then have at our disposal an 
 � � period inference conditional on current data

������	 ��	 � � � 	 ������������ �
������	 ����	 ��	 � � � 	 ����������

���������� (12)

and by integration, an updated 
 period inference

������	 ��	 � � � 	 ������������ � (13)

������	 ��	 � � � 	 ������ � ������� � ������	 ��	 � � � 	 ������ � ��������

The updated inference is then used as input for the next iteration. In later dis-
cussion, when we refer to “�lter execution”, this will mean that the entire sample is
passed through the above process.

The �lter is initialized with 
-period unconditional probabilities,

����	 ����	 � � � 	 ��� � ����	 ����	 � � � 	 �������� (14)

To �nd these, we start by computing the ergodic probabilities, which are simply the
unconditional estimates that the process will fall into each regime at an arbitrary date

���� � ���� � �� for � � �	 �� (15)

These are found by solving the following set of equations:

����� � ���� � ����� � ���� � ���� for � � �	 � (16)

���� � ���� � �� (17)

Employing the appropriate transition probabilities, we can compute the necessary

-period unconditional probabilities, e.g.:

���� � �	 ���� � �	 ���� � �� (18)

� ��� ���� � ������ � ��� � ��� ������ � ������ � ��� � �����
In the case of an MS�
� system, one needs to compute �� of these probabilities to
initialize the �lter.
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After the entire sample has been passed through the �lter, the computed obser-
vation densities can be used to form the conditional likelihood function

���� 	 ����	 � � � 	 ����� �
��

����� ����������� (19)

3.1 The Full-Sample Smoother

The �lter inferences provided above form a time series that can be volatile� they may
in fact indicate changes in regime that have not occurred.. Smoothed inferences
are more extensively conditioned by utilizing both past and future observations. This
feature reduces the chance that we will misinterpret an outlier occurring in a particular
regime for an actual change of state. Smoothed inferences can be distinguished from
�lter inferences by the time subscript on the relevant information set, �� instead of
��.

Suppose now that we wish to compute 
 � � period smoothed inferences for our
MS�
� model. After executing the �lter to obtain 
 � � period �lter inferences, we
expand those inferences to length 
 � �

������	 ��	 � � � 	 ���������� (20)

�
�����������	 ��	 � � � 	 ������	 ��� � ���������� � ����	 ����	 � � � 	 ��������

����������
The 
 � � period inferences can then be expanded in the same manner to 
 � �

period inferences, the 
�� period inferences into 
�	 period inferences, and so on.
This process is continued until we reach inferences of length �
 � � (����� distinct
numbers for each �). At this point, we can integrate to �nd what might be referred to
as non-adjacent probability inferences

��������	 ����	 � � � 	 ����	 ��	 � � � 	 ������������ (21)

�
��

�������������	 ����	 � � � 	 �������������

These quantities can be advanced one period

��������	 ������	 � � � 	 ����	 ��	 � � � 	 ������������ (22)

�
���������������	 ������	 � � � 	 ����	 �������

����������������
�

���������������� � ��������	 ����	 � � � 	 ����	 ��	 � � � 	 ������������	

then integrated again to expand the gap in the inferences

��������	 ����	 � � � 	 ����	 ��	 � � � 	 ������������ (23)

�
��

������ ��������	 ����	 � � � 	 ����	 ��	 � � � 	 �������������

Such iterations continue until the end of the sample is reached

���� 	 ����	 � � � 	 ����	 ��	 � � � 	 ������� �	
allowing us, via integration, to �nd full-sample the smoothed inferences

����	 ����	 � � � 	 ������� � (24)
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�
��

����

��
������ � � �

��
������ ���� 	 ����	 � � � 	 ����	 ��	 ����	 � � � 	 ������� ��

3.2 Approximations to Full-Sample Smoothed Inferences

Approximations to the above inference are available with signi�cantly less computa-
tion. If we use partial conditioning on future observations, we may still arrive at a
stable sequence of inferences. This possibility was recognized by Hamilton (1989).
After executing the �lter, one expands the inferences as would be done in the �rst
step of the full-sample smoother. When inferences of length �
 � � are reached, one
integrates over ����	 ����� � � � 	 ���� to �nd the 
-lag smoothed inference

����	 ����	 � � � 	 ���������� (25)

�
��

������ � � �
��

������ ������	 ������	 � � � 	 ����	 ��	 ����	 � � � 	 �����������

These inferences get their name from the quantity of future data used for conditioning.
The justi�cation for this method is that we have considered data suf�ciently far in the
future that any further conditioning of the inference for date � does not utilize the
observation from date �� Any further conditioning should have a negligible impact.

4. Hill Climbing

It is almost always the case that we are unsure as to when each regime was active in
our sample. We therefore need to handle two types of uncertainty during estimation:
uncertainty regarding parameter values and uncertainty regarding the path of the state
variable. Recall that the �lter computes, as a by-product, the conditional likelihood
function

���� �
��

����� ����������	 (26)

where

���������� �
��

���� � � �
��

������ �������	 ����	 � � � 	 ����	 ����� (27)

����������� � ������	 ����	 � � � 	 �����������
The dual uncertainty of our estimation problem makes maximization of the above

likelihood function is more complicated than it may �rst appear. If we knew the path
of the state variable, we could simply maximize the above function with only small
modi�cations to a canned software package. However, each chronological element of
the likelihood function is a mixture distribution, composed of the densities represent-
ing each state. The weights for these densities (the probabilistic inferences associated
with each regime or recent history of regimes) are functions of the parameters being
estimated. As a result, the complete set of �lter inferences will change with every
perturbation of the parameter vector during gradient computation. For the sake of
clarity, consider an arbitrary iteration of a DFP routine. We have at our disposal a
tentative value for the set of parameters. Each element of the gradient requires that
we execute the �lter twice. Next, every stepsize to be considered requires a new ex-
ecution of the �lter, and only then can the updated parameter vector be chosen. We
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leave it to the reader to consider what is involved to compute the Hessian numerically.
Apart from this additional consideration, numerical maximum likelihood tech-

niques, such as DFP are applied in the normal way.

5. The EM Algorithm

The EM algorithm (hereafter EMA), as outlined by Hamilton(1990), deals with the
dual uncertainty problem in a different way. One begins with an initial guess for
the vector of parameters, say ���	. The �lter and smoother, both parametrized by
the extent of regime dependence, are executed to obtain inferences conditional on the
entire sample of observations. The smoothed inferences are used as weights for coef�-
cient updating, via minimization of the sum of weighted squared residuals. Improved
estimates of the transition probabilities are simple functions of the smoothed proba-
bilities. The set of updated values constitutes ���	� we repeat the process until some
convergence criterion is satis�ed.

To outline the procedure in greater detail, consider a two-state MS��� model:

��� � ����� � ���������� � ����� � ���������� � ����� � �
���
� 	 (28)

��� � ����� � ���������� � ����� � ���������� � ����� � �
���
� � (29)

���� � ���	 �
������	 � � �	 �. Constructed this way, �� parameters need to be
estimated: ����	 ����	 �����	 �����	 �����	 �����	 
���	 
���	 �����	 �����. A single
iteration of the EM algorithm starts by executing the �lter. Upon completion, the
�lter yields regime inferences for � periods

����	 ��������
and for � periods

����� ���� � ����	 ����	 ��������� (30)

We use the � to rede�ne the state in terms of the 
 permutations of the � lags, e.g.
��� � � implies �� � �	 ���� � �	 ���� � �. Also obtained are observational
densities, both conditioned on states

�������� 	 ����� � �������	 ����	 ����	 ����� (31)

and unconditional with regard to states

�����������
A typical observation density is written

�������� � �	 �����

�
�


���
	
��

��

���� � ������ ���������� � �����

����������� � ����������
�������
We next execute the smoother to �nd a probability series that is less volatile than
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that provided by the �lter

����� ��� � � ����	 ����	 ������� �	 (32)

while integration yields

����	 ������� � and ������� �� (33)

With smoothed inferences available, coef�cients are updated numerically by mini-
mizing the sum of weighted squared residuals

�
����	 ����	�

�
� ��� ���

���

���

�

�����

���
� �� � ����� � ���� �

�
(34)

where � � ������	 �����	 �����	 ������ and

�
���
� � �� �� ������� � �	 ����� � (35)

An example of an error series element would be

�
���
� � ��� � ������ ���������� � ������ ���������� � ������

Estimation of the regimes’ variances requires similar weighting

�
����� �
���� � �	 ����	 ������� ���

��� ���� � ��

���

���

��
������

��
���������� � ������ ���������� � ��������

����������� � ����������

for � � �	 �� Updated transition probabilities also utilize smoothed inferences

��� � ���� � ������ � �� �

��

����� ���� � �	 ���� � ���� ���

����� ������ � ���� �
for �	 � � �	 �� (36)

We have completed a single iteration of the algorithm� we repeat until convergence.

6. Relative merits of Different Algorithms

The DFP routine described earlier is the same method used by Hamilton (1989) for
his analysis of the business cycle. Hamilton (1990) proposed the above EMA as an
alternative, to handle systems of greater complexity.

Problems may arise during gradient computation due to the shape of the likeli-
hood surface associated with a MS model. Mixture distributions may have as many
local maxima as regimes, and likelihood functions derived from these densities may
be plagued by the same features. The EMA however, does not involve the examina-
tion of likelihood surfaces, and as such, may avoid both local maxima and singulari-
ties. Another positive attribute of the EMA noted in other applications is its ability to
arrive in the neighborhood of the mode of the likelihood function in a few early steps,
which can prove advantageous if one is performing a rough grid search to determine
optimal starting values. Hamilton also argues that an EMA may not be as demanding
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numerically: ”while one could calculate analytic derivatives from rote adaptation of
the recursion ..., that approach would require burdensome additional computer pro-
gramming and calculation time for each parameter.” Hamilton (1990, p. 40).

If the EMA is indeed more robust than a DFP algorithm and computationally
more ef�cient, one would clearly prefer the former. However, Hamilton’s claim
regarding the computational speed of the EMA is problematic. Consider the full-
sample smoothing technique outlined earlier: this procedure requires computation of
order �������� �, where 
 is the relevant autoregressive dimension, � is the number
of states and � is the sample size. In our experience, if 
 is 	 or larger, while � � �
and � is a modest ��� to ��� points, a single iteration of the EMA can take several
minutes on an ��� MHz Pentium, utilizing the �� bit version of RATS. If several
hundred iterations are necessary to achieve convergence, such investment in computer
time becomes prohibitive. By contrast, a single iteration of a DFP routine requires
several seconds.

Despite these concerns, the EMA may be preferable in many contexts. If no au-
toregressive dynamics are present, the full-sample smoother becomes much less of a
problem, and the EMA’s ability to avoid the dif�culties of poorly shaped likelihood
surfaces outweighs any additional CPU time. In their investigation of exchange rates,
Engel and Hamilton (1990) successfully employed the EMA in the presence of nu-
merous local maxima. The case for the EMA is also strengthened by the possibility
of using the approximate smoother, as it is only marginally more demanding than the
�lter.

7. Computational Comparisons

To explore the computational issues more thoroughly, consider the Hamilton’s (1989)
analysis of real GNP growth. The model was �tted by DFP:

�� � �� �
��

��� �
��������� � ����� � ��	 �� � ������	 
��� (37)

The two constants ���� and ���� are associated with high and low rates of growth.
We recreated Hamilton’s results via three methods: DFP, the EMA with full-sample
smoothing (EMA(1)), and the EMA using approximate smoothing (EMA(2)). Pre-
sented below are the computational demands of each algorithm for different conver-
gence criteria.

Table 1 illustrates two important claims: �rst, that using the approximate EMA
signi�cantly reduces CPU time relative to the pure form of the EMA� second, when
comparing gradient-search methods with EM methods, a tradeoff exists between the
time that it takes to complete an iteration and the number of iterations needed to
achieve convergence. While EM uses ��� fewer iterations, each iteration takes from
� to �� times as long.

The usefulness of the approximate EM routine is of course dependent on the
accuracy of the results. Comparing the approximate EM results with those provided
by the DFP algorithm, we �nd that the mean absolute difference between the elements
of the parameter vector decreases as the convergence criterion is tightened, and is no
greater ����
� if we set � � ����.
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Table 1. Number of Iterations to Convergence

Criterion DFP EMA(1) EMA(2)
� � ���� �� �� ��
� � ���� ��� �� ��
� � ���� ��	 �� ��

sec./iter. �� ��� ��

8. Conclusion

Markov-switching models have become widely used in accordance with the growing
evidence of nonlinearity in economic time series. We have detailed the two leading
algorithms for estimating MS models and have provided a discussion of the compu-
tational questions that arise during the course of an estimation problem.

Although the EM algorithm is usually more robust with respect to poor likelihood
surfaces than gradient-based methods, the pure form of the former technique often
places prohibitive demands on computer time. Fortunately, the availability of an
approximation technique allows the EM method to stand as a practical alternative to
commonly used hill-climbing routines.
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