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Paths and Consistency in Additive Cost Sharing

Eric J. Friedman�

Department of Economics, Rutgers University

New Brunswick, NJ 08903.

May 6, 1999

Abstract

Using a new representation theorem for additive cost sharing methods as sums
of path methods, we show that many of the standard additive cost sharing methods
(Aumann-Shapley, Shapley Shubik, and Serial Cost) are consistent. These results
follow directly from a simple su�cient condition for consistency: being generated by
associative paths, which can be used to show consistency for many other methods.

We introduce a new axiom, dummy consistency, which is quite mild. Nonetheless
there is an important relationship between dummy consistency and consistency. For
example, we show that all additive cost sharing methods which are dummy consistent
and demand monotonic are consistent.

Using dummy consistency, we also show that the Aumann-Shapley and Serial Cost
methods are the unique (additive) consistent extension of their restriction on all two
agent problems, while the Shapley-Shubik method has multiple consistent extensions
but a unique symmetric one. In fact, these results are unchanged when we replace con-
sistency with dummy consistency. Our characterization of the set of dummy-consistent
cost sharing methods provides a simple framework for analyzing consistent extensions
and is useful for constructing nonsymmetric methods.

1 Introduction

The principle of consistency has a long history in many economic allocation problems. (See

[22] for a detailed review and bibliography.) For example, under standard assumptions, the

�I would like to thank Rich Mclean for many detailed comments and suggestions, Ori Haimanko for
pointing out an error in an earlier version of this paper, , Herv�e Moulin, Yves Sprumont, and Y.T. Wang for
helpful comments. This paper contains results from two previous working papers: \Paths in Additive Cost
Sharing" and \Weak and \Strong Consistency in Additive Cost Sharing". Email: friedman@econ.rutgers.edu.
WWW: http://econ.rutgers.edu/home/friedman
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Walrasian allocation is consistent in the appropriate sense and indeed can be characterized

by consistency in combination with other basic axioms. The basic idea behind consistency

in any allocation problem is that, if an agent leaves the problem and takes her share with

her, then the allocation among the remaining agents is unchanged.

The application of consistency to cost sharing methods1 (CSMs) with binary demands was

introduced by Young [26] who showed that the Shapley value is the unique strongly consistent

method. However, Young's de�nition of consistency is quite demanding. Recently, Hart and

Mas-Colell [12] showed, using a more standard notion of consistency, that the Shapley value

is the unique consistent extension which \divides the surplus equally" in 2 person games,

using a new tool, the potential of a game.

More recently, Mclean, Pazgal and Sharkey [13] extended this result to the case with

continuous demands, showing that the Aumann-Shapley method is the unique consistent

extension of the Aumann-Shapley method de�ned on all 2 agent problems. Their proof of

this result is quite involved and also uses a notion of potential.

In this paper we show that, when restricted to additive methods, the existence and

uniqueness of consistent extensions can be analyzed much more directly. First we provide

a su�cient condition for a CSM to be consistent. Using this we show that the Aumann-

Shapley, Shapley-Shubik and Serial Cost methods are all consistent as are the weighted,

asymmetric, versions of all of these.

Next we introduce an extremelyweak version of consistency, dummyconsistency, and pro-

1For a general introduction to cost sharing see e.g., [25] and for details of the approach taken in this
paper see [8].
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vide a complete characterization of the set of dummy consistent CSMs. Dummy consistency

is an extremely natural requirement and thus may be applicable in a wider variety of situa-

tions than ordinary consistency. Nonetheless, in many cases the existence and uniqueness of

dummy-consistent extensions implies the existence and uniqueness of consistent extensions.

This allows us to easily prove the existence and uniqueness of consistent extensions from 2

agent problems to multi-agent problems for the Aumann- Shapley and Serial Cost methods,

while the Shapley-Shubik method may have multiple extensions, but a unique symmetric

one.2

Our results and method of analysis are based on a new representation for additive CSMs

based on the idea of a path method, which is a natural generalization of the Aumann-Shapley

formula. This representation method is also of independent interest for other applications

(see, e.g., [5, 7, 6]).

The paper is organized as follows: Section 2 reviews the structure of the class of additive

CSMs and describes their representation as sums of path methods, the key technique used

in this paper. Section 3 provides a su�cient condition for a CSM to be consistent and a

complete characterization of the dummy-consistent methods. We conclude in Section 4 with

the analysis of consistent extensions. Several proofs are in the appendix.

2 Additive Cost Sharing

We will consider the problem of dividing the cost of production among a group of agents,

where each agent has a demand for an idiosyncratic good. Thus, we will identify agents with

2These results also provide a useful tool for analyzing asymmetric CSMs, a topic explored in [5].
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their good, and since we will be interested in the consistency of various methods we will

allow for the set of agents to vary.

Let the set of potential agents be identi�ed with the set of nonnegative integers, Z+, and

let N be the set of nonempty �nite subsets of Z+. For some �nite set of agents N 2 N , their

allowed demands will be denoted by q 2 Q(N; q) = [0; q]N , where often q = 1. To save on

notation, we will think of q as �xed and therefore it will only be implicit in the notation. For

example we will usually write Q(N) instead of Q(N; q). The cost of serving these demands

is C(q) with C 2 C(N), where C(N) is the set of nondecreasing, continuously di�erentiable

functions from Q(N) to <+, satisfying C(0) = 0.3 . A cost sharing mechanism provides

a method for computing the cost shares allocated to each of the agents. The following

de�nition is introduced in [8].

De�nition 1 Given N 2 N , an additive cost sharing method x is a mapping x : Q(N) �

C(N)! <N
+ satisfying:

1) E�ciency:
P

n2N xn(q;C) = C(q),

2) Additivity: for all C;D 2 C(N) the following holds: 8n 2 N; xn(q;C+D) = xn(q;C)+

xn(q;D): 3) Dummy: For any C 2 C(N) such that @nC(p) = 0 8p 2 Q(N), then xi(q;C) = 0

for all q 2 Q(N).

Let CS(N) denote the set of all such CSMs.

Note that we use the notation @nC(p) to represent the partial derivative of C(q) with

respect to qn evaluated at p. Let CS(q;N) be the projection of CS(N) onto its second

3Note that the generic vector of 0's will be denoted by 0 and the unit vector of 1's by 1, where the
dimension of these vectors will be obvious from the context.
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component, i.e., if x(�; �) 2 CS(N) then x(q; �) 2 CS(q;N). Also let CS =
S
N2N CS(N).

The following representation theorem is given in [8].

Proposition 1 (Friedman and Moulin, 1998) For any N 2 N and x 2 CS(q;N), there

exists a vector of nonnegative Radon measures indexed by q, f�n(q)gn2N each de�ned on [0; q]

such that for all q 2 Q(N), C 2 C(N) and n 2 N :

xn(q;C) =
Z
[0;q]

@nC(p)d�n(q)(p)

and for each q 2 Q(N) and n 2 N the projection of �n(q) onto the qn axis is the Lebesgue

measure, i.e., �n(q)([a; b]� [0; q�n]) = b� a for 0 � a � b � qn.

Note that, as written, this is not a complete characterization, since not all vectors of

measures lead to valid CSMs. In particular, budget balance need not be satis�ed. In [8], a set

of restrictions on the measures was given which leads to a proper characterization theorem;

however, those conditions are quite complicated. We now present a second representation

theorem that is much more straightforward and intuitive. It is based on an important class

of CSMs, the path methods.

De�nition 2 A path function  is a mapping  : [0;1] � Q(N) ! Q(N) satisfying the

following for each q 2 Q(N):

1) (t; q) is continuous and nondecreasing in t.

2) (0; q) = 0 and there exists a t̂ > 0 such that for all t � t̂, (t; q) = q.

Let the set of all such path functions be denoted �(N).
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Also, for each q 2 Q(N) let �(q;N) be the projection of �(N) onto its second component,

for �xed q. Given such a path function, it is straightforward to construct a related CSM.

De�nition 3 Given a path  2 �(N) the \path method generated by " is given by

xn(q;C) =
Z 1

t=0
@nC((t; q))di(t; q):

As proven in [8], a path method is a valid CSM. A path method is the natural generaliza-

tion of the well known formula for the Aumann-Shapley method (discussed in the following

section). Note also that any convex combination of two CSMs is a valid CSM, and thus

any convex combination of path methods is also a CSM. In fact, as the following theorem

demonstrates, any CSM can be constructed as a convex combination of path methods.

Theorem 1 For any N 2 N the following are equivalent:

i) x 2 CS(N).

ii) There exists a family of probability measures, indexed by q 2 Q(N), �q, each on �(q;N)

such that

x =
Z
(�;q)2�(q;N)

x(�;q)d�q((�; q)):

The proof is given in the appendix. It is based on Wang's [23] representation theorem for

CSMs with discrete demands; independently, Haimanko [10] proved an analogous theorem

for the values of nonatomic games.

Thus, we have a simple representation of the additive CSM's as a sum of path generated

methods.
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2.1 Examples of path methods

One of the best known CSMs is the Aumann-Shapley method. This method was �rst used

as a CSM in Billera, Heath and Ranaan[1] to allocate the cost of a shared telephone system

and was subsequently characterized in terms of economic axioms in Billera and Heath [2]

and Mirman and Tauman [15]. For any N 2 N , it is a path method, xAS , generated by the

path n(t; q) = min[tqn; qn], which is the well known \diagonal path." (Figure 1)

A set of nonsymmetric variants of this method has been proposed by Mclean and Sharkey

[14]. These are constructed with a weight function w : N ! <+ n f0g and are the path

methods given by n(t; q) = min[tw(n)qn; qn]: For example when N = f1; 2g and w(n) = n

the path is shown in Figure 2.

Another well known CSM was proposed by Shubik [20], and is known as the Shapley-

Shubik method, since it is the Shapley value of the cooperative game generated from the

cost function. Before constructing this method we �rst consider the class of incremental

methods. An incremental method is constructed from an ordering ! 2 
(N), where 
(N)

is the set of all orderings, i.e., bijective functions ! : N ! (1; 2; : : : ; jN j). The incremental

method for order ! is computed as follows.

For any n 2 N and q 2 Q(N;1) de�ne S+(n;!) = fm 2 N j !(m) � !(n)g and

S�(n;!) = S+(n;!) n n then x!n(q;C) = C(qS+(n;!); 0�S+(n;!)) � C(qS�(n;!); 0�S�(n;!)). This

is equivalent to the path method generated by the function !n (t; q) which is 0 for t < !(n)�1,

qi for t > !(n) and (t � !(n))qi otherwise. For example, let N = f1; 2g and let !(n) = n;

the path for this CSM is as shown in Figure 3.
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We can generalize this to a random order method [24] by choosing a set of weights on

each ordering w : 
(N)! <+ nf0g which must satisfy
P

!2
(N)w(!) = 1. Then the random

order method with weights w is given by xw =
P

!2
(N)w(!)x
!. The Shapley-Shubik method

is given by the Random Order method with equal weights:

xSS = (jN j!)�1
X

!2
(N)

x!:

The generalized serial cost method was introduced in [8] and is based on the serial cost

method for homogeneous goods which was analyzed in [17]. The serial cost method for

homogeneous goods which was motivated by Fair Queuing [4] in the networking literature

and is interesting both axiomatically and strategically.4 The serial cost method, xSC is

generated by the path n(t; q) = min[t; qn]. (See Figure 4.)

Given a weight function w : P ! < n f0g we can de�ne the linearly weighted serial cost

method as the CSM generated by the path n(t; q) = min[w(n)t; qn] and the exponentially

weighted serial cost method as the method generated by the path n(t; q) = min[tw(n); qn],

two new classes of methods which are applied in [7].

2.2 Demand Monotonicity and Scale Invariance

So far, we have imposed no restrictions on the relationship of cost shares for di�erent de-

mands, i.e., given a CSM x and a cost function C we have imposed no restrictions on the

relationship between x(q;C) and x(q0;C) even if q and q0 are very close. For example, one

4Shenker [19], and Moulin and Shenker [17], have shown that games induced by serial cost are dominance
solvable, while Friedman and Shenker [9] have shown that such games are also solvable in overwhelmed
actions, and thus are robustly learnable for a wide class of learning algorithms and information structures.
The generalized serial cost method [8] has similar axiomatic and strategic characterizations.
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might want to require that x(q;C) be continuous in q. The two important axioms which we

now introduce are stronger than continuity.

The �rst axiom, scale invariance, is well known and was used in the original axiomatiza-

tions of the Aumann-Shapley method.

Given � 2 <N
++, de�ne ��(q) by ��(q)n = �nqn for n 2 N and de�ne ��(C) by ��(C)(q) =

C(��(q)), for C 2 C(N;1).

De�nition 4 (Scale Invariance) For all N 2 N a CSM, x 2 CS(N;1), is scale invari-

ant if x(��(q);C) = x(q; ��(C)), for all � 2 <N
++ and C 2 C(N;1).

Scale invariance is the statement that di�erent goods are not comparable, e.g. the units

used to measure qn cannot be meaningfully compared with those used to measure qm when

n 6= m. We now show that the set of scale invariant CSMs are generated by the scale invariant

paths. First however, we need a weak version of continuity, called \dummy continuity", to

simplify the presentation.

De�nition 5 Given any N 2 N , a CSM x 2 CS(N) is dummy continuous5 if for all

C 2 C(N), n;m 2 N and q 2 Q(N), limq0n!0 xn(q�n; q0n;C) = xn(q�n; 0;C).

Let SI(N) be the set of scale invariant CSMs over N 2 N in CS(N;1). It is easy to

characterize this set of scale invariant CSMs. De�ne �SI (N) to be the set of paths such

that (t; q) = �q((t; 1)), thus each component is i(t; q) = i(t; 1)qi, where 1 represents unit

vector (1; 1; : : : ; 1).

5Note that while dummy continuity is quite strong on its own, it is a relatively weak addition to ordinary
dummy and additivity. See [8] for a discussion on the need for \dummy continuity" and the changes that
arise without it.
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Theorem 2 For any N 2 N the following are equivalent:

i) x 2 SI(N) and is dummy continuous.

ii) There exists a non-negative probability measure � on �SI (N) such that

x =
Z
2�SI(N)

xd�():

Proof: This follows upon noting that a scale invariant CSM is completely determined by its

behavior on any particular q, such as q = 1. Thus SI(N) is isomorphic to CS(1; N;1). 2

Another important axiom is demand monotonicity [16, 8].

De�nition 6 (Demand Monotonicity) A CSM in CS(N) is demand monotonic if for

all n 2 N and q; q0 2 Q(N) such that qn � q0n and q�n = q0�n and all C 2 CS(N):

xn(q;C) � xn(q
0;C):

Demand monotonicity can be viewed as an extremely weak incentive constraint, since if a

CSM is not demand monotonic then there are obvious incentives for agents to overstate their

demands. We do not know the precise characterization of demand monotonic paths, but will

study a closely related problem in Section 3.1, when we combine demand monotonicity with

a weak notion of consistency.

3 Consistent Cost Sharing Methods

In this section we provide su�cient conditions for a CSM to be consistent. We begin with a

formal de�nition of consistency.
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Mclean, Pazgal, and Sharkey [13] de�ne a notion of consistency which is based on that

de�ned by Hart and Mas-Colell [11] for TU games. Their de�nition is analogous to many

versions of consistency found in the literature.6 However this de�nition is still quite strong,

and we will introduce a weaker condition (dummy consistency) below.

De�nition 7 (Consistency) A CSM x 2 CS is consistent if for any N 2 N , q 2 Q(N),

C 2 C(N), and m;n 2 N , with m 6= n :

xn(q; C) = xn(q�m; R
qm
m (C))

when Rqm
m (C)(p�m) = C(p�m; qm)� xm(p�m; qm;C) is an element of CS(N nm).

Thus, any agent and her cost share can be removed from the cost function without

a�ecting the cost shares of the remaining agents. We will denote the subset of CS which is

consistent by CON .

For example, consider the Aumann-Shapley method with jN j agents when C(p) = jpnj2,

where jpj =
P

n2N pn. Then @nC(p) = 2jpnj and thus

xn(q;C) =
Z 1

0
2tjqjqndt = jqjqn:

Now if we remove agent m, we get

Rqm
m (C)(p�m) = j(qm; p�m)j

2 � j(qm; p�m)jqm:

Recomputing xn, by �rst removing agent m yields

xn(q;C) =
Z 1

0
(2j(qm; tq�m)j � qm)qndt = jqjqn;

6See, e.g. Thomson [22] for a survey of consistency.
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as expected if Aumann-Shapley is consistent, which will be proven below and was also shown

in [13].

By contrast, we now introduce the property of dummy consistency which only requires

that dummies can be removed from a cost sharing problem without a�ecting the cost shares,

a much milder requirement.

De�nition 8 (Dummy Consistency) A CSM x 2 CS is dummy-consistent if for all N 2

N , C 2 CS(N) such that agent n 2 N is a dummy agent (@nC(p) � 0), xm(q;C) =

xm(q�n; Rqn
n (C)) for all m 6= n.

Note that when i is a dummy agent, then Rqi
i (C)(q�i) = C(q�i; 0i), and thus we do not

need to impose any conditions on Rqi
i (C)(q�i). Let DCON denote the subset of CS which

is dummy consistent.

Dummy consistency seems (to us) to be an extremely natural requirement for CSMs,

while strong consistency, which may be desirable, is not be as fundamental.7

For example, consider the Aumann-Shapley method when C(q) = jq�mj2. Computing

directly for n 6= m yields xn(q;C) = jq�mjqn, as before, while assuming dummy consistency

yields xn(q;C) =
R 1
0 2tjq�mjqndt; which gives the same result.

3.1 Consistent Cost Sharing Methods

In this section we develop partial representation theorems (based on Theorem 1) for con-

sistency and dummy consistency. This will allow us to easily show that many well known

7Several readers of earlier drafts of this paper have suggested that dummy consistency should actually be
called \strong dummy" as it is essentially a version of the dummy axiom and much weaker than a consistency
action. We retain the (perhaps misleading) title of dummy consistency to stress its relationship with ordinary
consistency.
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CSMs are consistent, and to allow us to construct other consistent CSMs. We �rst introduce

a new collection of paths.

De�nition 9 A path  2 �(N), for N 2 N is separable if for each n 2 N , n(t; q) is

independent of q�n, which we write as (with a slight abuse of notation) n(t; qn).

Let �S(N) be the subset of � containing all the separable paths and �S =
S
N2N �S(N).

Note that there is a natural projection from �S(N) to �S(N n m) for m 2 N , �Nm which

simply removes the component m from  2 �S(N). This is well de�ned, since none of the

components in �S(N nm) depend on qm.

Theorem 3 The following are equivalent:

i) x 2 DCON .

ii) For all N 2 N there exists a probability measure � on �S(N) such that for any m 2 N ,

xN =
Z
2�S(N)

xd�()

and

xNnm =
Z
2�S(N)

�Nm[x
]d�():

Proof: In appendix.

Thus, the separable paths generate all of DCON . As the next result demonstrates, all of

the previously mentioned CSMs are generated by separable paths and therefore are dummy

consistent.8

8The boundedness of q in the above theorem does not a�ect these results, since we need only check at
each �nite value of q.
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Corollary 1 The following CSMs are dummy consistent:

1) Aumann Shapley and weighted Aumann-Shapley.

2) Serial Cost and both linearly and exponentially weighted Serial cost.

3) Random order methods and Shapley-Shubik.

However, it is easy to show that not all CSMs are dummy consistent. Consider the case

when N = f1; 2; 3g, q = 1 and the CSM is x where (t; q) = (tq1; tq2; (1 � q1)q3t + q1q3t),

which is not separable.9 Let the cost function be C(q1; q2; q3) = q2q3 which does not depend

on q1. Then x2(q;C) =
R1
0 [(1 � q1)q3t + q1q3t]q2 = q1q3(1=2 � q1=6) which depends on q1

even though agent 1 is a dummy agent. Thus it is not dummy consistent.

Ordinary consistency imposes a more stringent requirement on the paths. We now demon-

strate a dummy consistent CSM which is not strongly consistent. Consider the CSM x, for

N = f1; 2; 3g and q = 1, where (t; q) = (tq1; (t+ t2)q2=2; tq3), which is separable and scale

invariant. Let C(q1; q2; q3) = q1q2q3. Then

x1(q;C) =
Z 1

0
dt(q2(t+ t2)=2)(tq3)q1 = 17q1q2q3=24;

while Rq3
3 (C)(p1; p2) = 17p1p2=24. If x were strongly consistent, then the cost share to

agent 1 could be computed by removing agent 3 yielding
R1
0 dt17(q2(t + t2)=2])=24q3q1 =

85q1q2q3=288 which di�ers from the cost share which was computed directly, e.g. when

q = (1; 1; 1) the direct computation shows that x1(q;C) = 17=24 while the computation

applying strong consistency computes a value of 85=288 which are unequal. Thus x is not

strongly consistent. This is because the path which de�nes this CSM is not associative.

9Note that in these examples we are assuming that the domain of t is [0,1]. This simpli�es the appearance
of the path since it allows us to write, e.g., tq1 instead of min[1; t]q1.
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De�nition 10 A path  2 �(N), for N 2 N is associative if it is separable and right

di�erentiable in t, and there exists a continuous and right di�erentiable function �(t; s)

which is nondecreasing in both arguments such that, n(t; n(s; qn)) = n(�(t; s); qn) for all

n 2 N .

Let �A(N) be the subset of paths in �S(N) which are associative and �A =
S
N2N �A(N).

Theorem 4 Assume that for all N 2 N there exists a probability measure � on �A(N) such

that for any m 2 N ,

xN =
Z
2�S(N)

xd�()

and

xNnm =
Z
2�S(N)

�Nm[x
]d�();

then x 2 CON .

Proof: In appendix.

Note that above characterization is only partial. We conjecture the complete charac-

terization is true when q < 110: all x 2 CON can be written as a combination of CSMs

generated by associative paths, subject to a few technical provisos.11

An important simplifying result, which we now show, is that all demand monotonic meth-

ods which are dummy consistent are also strongly consistent, since the paths associated with

such methods are associative. Thus it is easy to see that, in this case, ordinary consistency

reduces to dummy consistency, which is typically much easier to check.

10When q =1 is not bounded, the set of associative paths is not closed in the appropriate topology.
11For example, right di�erentiability is probably not necessary, nor perhaps is monotonicity.
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There are some technical di�culties involved with this characterization, when the domain

of q's is unbounded, since the limiting behavior of the class paths, which are both demand

monotonic and dummy consistent, is not well behaved. Thus we will consider the class of

CSMs which are de�ned only on a bounded domain.

Let DM be the set of demand monotonic CSMs in CS, for q < 1. Now, the extreme

CSMs are constructed from a single in�nitely long path. For any N 2 N let �(t) be a

path de�ned on t 2 <+ which is nondecreasing such that there exists a t̂ > 0 such that

for all t > t̂, �(t) � q. Let �DM;DCON(N) be the set of all such paths and �DM;DCON =

S
N2N �DM;DCON(N). Given � 2 �DM;DCON(N) de�ne � by �(t; q)n = min[�n(t); qi], for

all n 2 N . (Figure 5.)

Theorem 5 For any q <1 the following are equivalent:

i) x 2 DM
T
DCON .

ii) For all N 2 N there exists a probability measure � on �DM;DCON (N) such that for any

m 2 N ,

xN =
Z
2�DM;DCON (N)

xd�()

and

xNnm =
Z
2�DM;DCON(N)

�Nm[x
]d�():

Proof: In the Appendix.

Thus, we can now present a simple su�cient condition for consistency:

Corollary 2 For any q <1, if x 2 CS is dummy consistent and demand monotonic, then

it is strongly consistent.
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Proof: From Theorem 5 we know that all CSMs which are demand monotonic and dummy

consistent are generated by paths of the form n(t; q) = min[�i(t); qi], where �i(t) is nonde-

creasing. Thus, these paths are associative with �(t; s) = min[t; s]. Since CSMs which are

demand monotonic and dummy consistent are sums of such paths this implies that they are

consistent. 2

We now show that all of the previously discussed CSMs are consistent.

Theorem 6 The following CSMs are consistent:

1) Aumann Shapley and weighted Aumann-Shapley.

2) Serial Cost and weighted Serial cost.

3) Random order methods and Shapley-Shubik.

Proof: Consistency of Serial cost and Random order methods follow immediately from Corol-

lary 2 and the fact that they are demand monotonic. For the weighted Aumann-Shapley

Mechanism it follows upon noting that the path which generates the mechanism is associative

with �(t; s) = ts, since twiswiqi = (ts)wiqi. 2

4 Consistent Extensions

As mentioned in the introduction, one important question about consistency is whether two

agent CSMs can be extended, using consistency, to general CSMs with an arbitrary number

of agents. In [11], Hart and Mas-Collel, showed that in the case of binary demands, if we

assume that a consistent CSM when restricted to two agents \divides the surplus equally"

then it must be the Shapley Method. For the continuous demand setting considered in this
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paper, Mclean, Pazgal and Sharkey [13], showed that if a consistent CSM is the Aumann-

Shapley method on all 2 agent problems, then it must be the Aumann-Shapley method.

Both proofs require the use of a potential, and do not appear to be easily extendable for

studying consistency questions related to extensions of other CSMs.

In this section, we show that when restricted to the case of additive CSMs, problems of

this sort are straightforward to analyze by using the representation theorems in the previous

section. In particular, we will often be able to use dummy consistency to simplify the

analysis. Furthermore, the results for dummy consistency also apply to the case with a

�xed population where we might have conditions on the CSM when there are a group of

dummy agents. For example, consider a three agent cost sharing problem for which we know

that when agent one agent is a dummy, the other 2 agents should use the Aumann-Shapley

method, but when a di�erent agent is a dummy, then the remaining two should use serial

cost. Using the tools developed in this section for dummy consistency, we can show that

there is a unique CSM which satis�es these conditions. (This approach is explored in more

detail in [5].)

Thus, our goal in this section is to understand when a CSM de�ned for two agent problems

extends to a consistent CSM for an arbitrary number of agents. Let N2 = fN 2 N j jN j = 2g

and de�ne CS2 =
S
N2N2

CS(N), which is the set of CSMs de�ned for all two agent methods.

The basic problem that we now consider is this: given an y 2 CS2, what is the set of

consistent extension of y, i.e., what methods x 2 CON (or DCON) coincide with y on all

N 2 N2.
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From the previous section we know that if y cannot be generated by associative (resp.

separable) paths there can be no consistent (resp. dummy consistent) extensions of y to

CS. However, even when y is generated in this way, there may be no extensions or many

extensions. We �rst show that in a common setting there is at most one consistent extension.

(We give examples of methods with multiple extensions in the following section.)

Theorem 7 Let x 2 CS2 be generated by a single associative (resp. separable) path. Then

there exists at most one x̂ 2 CS such that x = x̂ on N2 and is consistent (resp. dummy

consistent).

Proof: Let x̂ be one such extension. Then x is generated by a sum of separable paths k;

however, if the sum cannot be written as a single path, then there must be some N 2 N2 for

which the associated CSM is not constructed from a single path, violating the assumption.

Thus, all extensions must be path methods, but clearly if there were two paths that di�ered,

then they must di�er on some N 2 N2. 2

This theorem is applicable to almost all of the previously discussed methods.

Corollary 3 The following methods de�ned on CS2 extend uniquely toDCON (resp. CON):

Random order methods, Aumann-Shapley, Serial cost, and their weighted versions.

Note that the above theorem does not include Shapley-Shubik, since it is a sum of mul-

tiple path generated methods. As we show in the next section Shapley-Shubik has many

(nonsymmetric) extensions; however, it has only one symmetric extension.
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Theorem 8 The Shapley-Shubik CSM de�ned on CS2 has a unique consistent (resp. dummy

consistent) symmetric extension.

Proof: Fix N = f1; 2; : : : ; ng � Z+ such that n � 3. For simplicity assume that t 2 [0; n].

For any i; j 2 N with i 6= j, the Shapley-Shubik CSM on fi; jg, CS(fi; jg) can be written

as
P

�2� x
�=n!, where for n 2 N , �n (t; q) = ��(i)(t)q�(i). It is easy to see that when viewed

as a CSM over N , these are the only paths (up to equivalence of reparameterization) which

\project" for all i; j 2 N , i 6= j, to a two agent random order value. Thus any extension

to N can be written as
P

�2� �(�)x
� where

P
�2� �(�) = 1 and for all � 2 �, �(�) � 0.

However, unless all the �'s are equal the method is not be symmetric. 2

4.1 Nonsymmetric extensions

Somewhat surprisingly, a nonsymmetric CSM may be symmetric when \projected" onto N2.

For example, as we now demonstrate, the Shapley-Shubik mechanism has (many) nonsym-

metric extensions.

Consider the case whenN = f1; 2; 3g. We construct a CSM which is a convex combination

of random order values with the following orderings: !1 = (1; 2; 3) and !2 = (3; 2; 1). De�ne

xi to be the random order value for order �i. Then consider the CSM de�ned by (x1+x6)=2.

It is straightforward to check that all two agent methods induced by this method coincide

with the Shapley-Shubik CSM. Thus, this provides an example of a nonsymmetric extension

of the Shapley-Shubik CSM. (Agents 1 and 3 are interchangeable, but agent 2 is not with

either 1 or 3.) Note that there are other nonsymmetric extension which are combinations of
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various random order values.12

In general there are even more complex examples of CSMs with non-unique consistent

extensions. Note that generically, if x 2 CS2 is generated by a �nite number of paths then the

extension (if it exists) will be unique, since the paths can not be `mixed' together; however,

in particular cases they can have multiple extensions as shown here. Consider the following

asymmetric CSM in CS2 which is generated by the average of the following associative and

scale invariant paths:

a(t; q) = (tq1; tq2; t
2q3; tq4; tq5; : : :);

b(t; q) = (tq1; t
1:5q2; t

6q3; tq4; tq5; : : :);

c(t; q) = (tq1; t
0:5q2; t

3q3; tq4; tq5; : : :);

where for simplicity we require that t 2 [0; 1]. By this we mean that for N = f1; 2g the

CSM is the average of the methods generated by the three paths, (tq1; tq2), (tq1; t
1:5q2), and

(tq1; t0:5q2).

Clearly, this element of CS2 has the \natural" extension [xa+xb+xc]=3 (see Figure 6a).

However, it also has another extension which is given by [xd + xe + xf ]=3, where

d(t; q) = (tq1; tq2; t
6q3; tq4; tq5; : : :);

e(t; q) = (tq1; t
1:5q2; t

3q3; tq4; tq5; : : :);

f (t; q) = (tq1; t
0:5q2; t

2q3; tq4; tq5; : : :);

12We only considered a world with 3 agents in this example to simplify notation. This can be easily
\embedded" in the world with an in�nite number of agents which we have been considering using the same
technique as demonstrated in the next example.
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which is shown in Figure 6b; however they both have the same projections onto 2 agent

methods (see Figure 6c for the projection onto the �rst two coordinates).

Finally, any convex combination of these two methods is dummy consistent. Thus, there

are in�nitely many \nontrivial" extensions. In general, extensions of arbitrary CSMs can be

quite complex.

A Appendix: Proofs of theorems

A.1 Theorem 1

Theorem 1: For any N 2 N and q 2 Q(N), the following are equivalent:

i) x 2 CS(q;N).

ii) There exists a probability measure � on �(q;N) such that

x =
Z
(�;q)2�(q;N)

x(�;q)d�((�; q)):

Proof: Fix N 2 N and q < q. First we discuss some mathematical preliminaries. Let x; y 2

CS(q;N) and let �x; �y be their representing vector measures, as in Proposition 1. Then

de�ne d̂(x; y) =
P

n2N d(�xn; �
y
n), where d(�; �) is the Prohorov metric [3]. Under this metric,

convergence for CS(q;N) is given by limt!1 xt = x i� for all C 2 Ĉ(N), limt!1 xt(q;C) =

x(q;C). Note that this is the metric of weak convergence and thus CS(q;N) is a closed and

compact metric space, as it is isomorphic to a product of closed convex subsets of the space

of probability measures. (See [18] for the standard construction.)

Using this, we de�ne the following metric on �(q;N): if ; 0 2 �(q;N) then d(; 0) =

d̂(x; x
0

). In this metric, �(q;N) is a compact metric space. Note also that in these metrics
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the mapping that maps  to x is injective and continuous as is the mapping which maps x

to its related measure �.

Now we construct the representing measure in the theorem: Let CS(q;N ; k) be the set

of x 2 CS(q;N) for which their representing measures � have support only on the grid

gk = fp j 9n 2 N; s:t: 8m 6= n; 2kpm 2 Zg (this is a grid and not a lattice, as illustrated

in Figure 7). Note that gk � gk+1 and therefore CS(q;N ; k) � CS(q;N ; 2k) for all k � 1.

Similarly de�ne �(q;N ; k) which is the set of paths which have support on gk, for which

�(q;N ; k) � �(q;N ; 2k2) for all k � 1. It is straightforward to show that CS(q;N ; k) is the

set of CSMs which only depend on the value of the cost function at the intersection points

of the grid, i.e., ĝk = fp j 8n 2 N; 2kpn 2 Zg. This is the problem considered by Wang

[23]. In that paper he proves the following using an elegant argument based on a result of

Sprumont [21]:

Proposition 2 (Wang (1998)) The set ext CS(q;N ; k) is equal to the set fx j  2

�(q;N ; k)g.

Note that �(q;N ; k) is �nite; thus for each xk 2 CS(q;N ; k) there exists a vector prob-

ability measure �k on �(q;N ; k) such that xk =
R
2�(q;N ;k) x

d�k(). Now, by taking the

\limit" as k !1 we get the desired result, after noting the following.

Lemma 1 Given an x 2 CS(q;N) there exists a sequence xk 2 CS(q;N ; k) such that

limk!1 xk = x.

Proof: Let Cy(q;N) be the subset of C(q;N) which contains only functions for which all cross

partial derivatives are continuous, i.e., the functions @SC(q) is continuous for all S � N .
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Note that Cy(q;N) is dense in C(q;N) and also that any function in Cy(q;N) can be uniquely

decomposed into a sum of funtions C =
P

S�N CS, where CS has support only on the interior

of [0; qS].

Following [8] (Lemma 1) starting with the representation formula:

xn(q;C) =
Z
[0;q]

@nC(p)d�n(q)(p)

we can integrate by parts multiple times to get

xn(q;C) =
X
S�N

Z
[0;qS]

@
jSj
S C(p)�Sn(p)dpS

where @SC(p) is (�m2S@m)C(p) and �Sn is an L
1 density function on [0; qS] satisfying

P
m2S �

S
m(p) =

1. (Note that this is the continuous version of the discrete representation formula in [16].)

Now, given such a set of �'s which represent the CSM x, construct a CSM on xk as

follows. Let HS(p) � [0; qS] be the hypercube in the grid gk which contains p 2 [0; qS], i.e.,

let p� be the largest p in ĝk which is not larger (in the vector ordering) than p and p+ to be

the smallest element of ĝk which is not smaller than p. Now de�ne �Sm(p; k) =
R
[p�;p+] �

S
m(p)

and note that by construction the CSM induced by these �Sm(p; k)'s only depends on the

values of C(p) on ĝk and thus de�nes an element of CS(q;N ; k). Also, note that since it

only depends on the values of C(p) on ĝk, it is well de�ned on all of C(q;N) and not just on

C1(q;N). Also, on all C 2 Cy(q;N) limk!1 xk(q;C) = x(q;C). Since Cy is dense in C this

implies that limk!1 d(xk; x) = 0. �

Proof of theorem: Consider some x 2 CS(q;N) and choose any sequence xk 2 CS(q;N ; k)

such that limk!1 xk = x. Now, using the above proposition, there exists a sequence of vector
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probability measures �k which represent the CSMs xk and note that �k induces a measure

on �(q;N) which we will also (with a slight abuse of notation) denote by �k. Since �(q;N) is

a compact metric space, the space of probability measures on �(q;N) must be compact [18],

and therefore there exists a subsequence on which �k converges to a measure on �(q;N).

This measure is the desired representation of x as an integral over �(q;N), proving the

theorem. 2

B Theorem 3

The following are equivalent:

i) x 2 DCON .

ii) For all N 2 N there exists a probability measure � on �S(N) such that for any m 2 N ,

xN =
Z
2�S(N)

xd�()

and

xNnm =
Z
2�S(N)

�Nm[x
]d�():

Proof: It is easy to see that a CSM generated by a seperable path is dummy consistent and

thus a convex combination of such methods is also dummy consistent; thus we concentrate

on the converse, that (i) implies (ii).

Consider some dummy consistent CSM, x 2 DCON: For any N 2 N , using Theorem 1,

we can write the restriction of x to N , xN , as an integral over paths. Now for some m 2 N

consider the CSM x0 on N n m. Given C 2 C(N) for which agent m is a dummy we can
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compute x0 for n 2 N nm as

xN =
Z
f! j !2
g

xd�()

using dummy consistency, this is equal to

xNnm =
Z
f! j !2
g

�Nm[x
]d�():

which must yield the same answer for any qm between 0 and q and in particular when qm = 0.

Thus after reparameterizing (each path separately) in terms of t, the representation for Nnm,

can be given by (!�m(t; q�m); 
!
n (t; qm)) for ! 2 
. Repeating this process for all m 2 N

yields the desired set of paths !m(t; qm). 2

C Theorem 4

Assume that for all N 2 N there exists a probability measure � on �A(N) such that for any

m 2 N ,

xN =
Z
2�S(N)

xd�()

and

xNnm =
Z
2�S(N)

�Nm[x
]d�();

then x 2 CON .

Lemma 2 If  is associative then n(t; qn) is nondecreasing and right di�erentiable in qn.

In addition

@+s �(t; s) = @+n n(t; n(s; qn)) _n(s; qn)= _n(t; n(s; qn));

where @+ denotes right di�erentiation and _n(t; qn) = @+t n(t; qn),
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Proof: Given qn choose any q0n > qn and let s solve (s; q0n) = qn and s solve n(s; q0n) = q0n

and note that s0 > s. Then by associativity n(t; qn) = n(t; n(s; q0n) = n(�(t; s); q0n) and

similarly n(t; q0n) = n(�(t; s0); q0n), but since �(t; s
0) � �(t; s) which implies that n(t; q0n) �

n(t; qn) since n(�; �) is nondecreasing in its �rst argument by de�nition.

Di�erentiating the identity n(t; n(s; qn)) = n(�(t; s); qn) with respect to s yields

@nn(t; n(s; qn)) _n(s; qn) = _n(t; j(s; qj))@s�(t; s);

thus since all the other right derivatives exist, the right derivative of n(t; qn) with respect

to qn must exist and solve the equation. �

Lemma 3 If  is an associative path, then x is strongly consistent.

Proof: Note that since all the functions involved ( and �) are nondecreasing and right

di�erentiable, all the functional compositions which we use in the following calculations are

also nondecreasing and right di�erentiable. Thus, in the following we use right di�erentiation,

denoted by @+. Also, to simplify notation assume that (1; q) = q.

Assume that C is twice continuously di�erentiable and that n 6= m 2 N . Now

xn(q;C) =
Z 1

0
dt @+n C((t; q)) _n(t; qn);

where we are using the separability of . Di�erentiating yields,

@mxn(q;C) =
Z 1

0
dt @nmC((t; q)) _n(t; qn) @

+
mm(t; qm): (�)

Strong consistency implies that xm(q; Ĉ) = xm(q�n; Ĉ) � xm(q�n;C 0), where C 0(p�n) =

xn(p�n; qn;C)), where Ĉ(p�i) = C(p�i; pi), and we ignore the fact that C 0 is not nondecreas-

ing, as it does not a�ect the calculations. Now we compute the second term. Using (*) yields
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xm(q�m;C 0) =

Z 1

0
ds
Z 1

0
dt @nmC(�n(t; �n(s; q�n)); n(t; qn)) _n(t; qn) _m(t; qm) @

+
mm(t; m(s; qm))

and since  is associative

xm(q�m;C
0) =

Z 1

0
ds
Z 1

0
dt @nmC(�n(�(t; s); q�n)); n(t; qn)) _n(t; qn) _m(t; qm) @

+
mm(t; m(s; qm))

Changing variables to u = �(t; s) and v = t, noticing that the Jacobian of the transformation

is @+s �(t; s), and using the identities, �(t; 0) = 0 and �(t; 1) = t results in

xm(q�n;C
0) =

R 1
0 du

R 1
u dv @nmC(�n(u; q�n); n(v; qn)) _n(v; qn) _m(s; qm) @+mm(u; qm)

@+s �(t; s)
(��):

Combining the formula from the preceding lemma (with m replacing n and v replacing t)

with (**) yields

xm(q�n;C
0)) =

Z 1

0
du

Z 1

u
dv @nmC(�n(u; q�n); n(v; qn)) _n(v; qn) _m(u; qm):

Integrating with respect to v yields

xm(q�n;C
0) =

Z 1

0
du@m[C(�n(u; q�n); qn)� C((u; q))] _m(u; qm));

which equals xm(q;C)� xm(q�n; Ĉqn); proving strong consistency for twice di�erentiable C.

Since the set of twice di�erentiable functions is dense in C(N) this su�ces to prove the

theorem. 2

Noting that a convex combination of strongly consistent CSMs is strongly consistent,

completes the proof of the Theorem.
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D Theorem 5

For any q <1 the following are equivalent:

i) x 2 DM
T
DCON .

ii) For all N 2 N there exists a probability measure � on �DM;DCON (N) such that for any

m 2 N ,

xN =
Z
2�DM;DCON (N)

xd�()

and

xNnm =
Z
2�DM;DCON(N)

�Nm[x
]d�():

Proof: Consider any x 2 DM
T
DCON . For any N 2 N let �(q) be the representing

measure (over �(N)) via Theorem 1 of x(q; �) 2 CS(N), for q < 1. Let �(q) be the

representing vector measure (over [0; q]N) via Proposition 1. The following property of � is

given in [8].

Proposition 3 (Friedman and Moulin (1998)) If x(q; �) 2 DM(q;N) and �(q) is the

representing vector measure, then for all n 2 N and q0n > qn then �n(q) = �n(q�n; q0n) on

[0; q].

Now, consider some  2 �DM;DCON . By dummy consistency we know that it can be

written, for each n 2 N as n(t; qn); however, by the above proposition we must have that

n(t; qn) = n(t; q
0
n) for any qn < q0n < q whenever n(t; q

0
n) � qn. Thus, we can write

n(t; qn) = min[qn; n(t; qn)]. 2
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