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Abstract

In this paper we develop a uni�ed framework for the study of additive cost

sharing methods. We show that any additive cost sharing method satisfying

the dummy axiom can be generated by a (possibly in�nite) convex combination

of path generated methods. We also show that the set of scale invariant cost

sharing methods can be generated by the set of scale invariant paths and the

set of demand monotonic methods by the set of demand monotonic paths, both

of which we construct.

We �rst apply these results to the study a strict version of marginality, and

show that none of the standard methods satisfy this requirement. We construct

two new methods, which are generated by in�nite sums of paths, and show that

these satisfy strict marginality.

We then note that the minimum of any concave functional over the set of

cost sharing methods, either general, scale invariant, or demand monotonic,

must be path generated, and therefore can be computed using techniques from

the theory of optimal control. This allows us to provide a new characterization

of the Random Order methods as the methods which minimize a lexicographic

function of agents' payments according for supermodular cost functions. It may

also lead to new characterizations of other interesting methods.

�I would like to thank Kevin McCardle, Herv�e Moulin, Rich Mclean, Roger Myerson, and Nikos

Vettas for helpful conversations.
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1 Introduction

In this paper we provide a simple characterization of all additive cost sharing meth-

ods (CSMs) satisfying the dummy axiom.1 Our characterization is in terms of path

generated CSMs { CSMs which are constructed by integrating along a single path.

Such path generated methods are quite common. Many of the standard CSMs {

Aumann-Shapley (Billera and Heath 1982, Mirman and Tauman 1982), extremal

Random Order2 (Weber 1988), and Serial Cost (Moulin and Shenker 1992, Friedman

and Moulin, 1995) { are path generated. Our main result is that any additive CSM

can be expressed as a (possibly in�nite) sum of path generated methods, since the

path generated methods comprise the set of extreme points in the (convex) set of such

CSMs. We construct similar characterizations for the CSMs satisfying either scale

invariance or demand monotonicity. In these cases, the extreme CSMs are generated

from sets of paths which we construct.

The view of CSMs as sums of path generated CSMs allows one to simplify the

analysis of general CSMs and to more easily analyze various questions about CSMs in

general.3 This is because the extremal CSMs are much easier to analyze analytically

then general CSMs.4

1For motivation and detailed references to such CSMs we refer the reader to Friedman and Moulin

(1995).
2The Shapley-Shubik method (Shubik, 1962) is the average of all extremal Random Order

methods.
3Friedman and Moulin (1997) use the path generated CSMs to simplify the analyses of exten-

sions from homogeneous CSMs to general CSMs, and Friedman (1997) has applied these ideas to

understand consistency relationships among CSMs.
4See, e.g. Athey (1995), who has recently applied this idea to stochastic decision problems.
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Our �rst application of this theory is to the study of a strict version of marginality.

We show that none of the standard methods satis�es this requirement; in fact no

method which is constructed as a �nite sum of paths can satisfy it. We then construct

two new methods which satisfy strict marginality.

Our second application concerns the minimization of functionals over the set of

CSMs. Since the path generated methods are the set of extreme points of a convex set,

every concave functional on the set of CSMs is minimized by a path generated method.

(For example, the CSM most preferred by a particular agent can be represented as

the minimum of a linear functional.) This path can then be computed using standard

techniques from the theory of optimal control.

This raises an interesting question: what concave (or linear) functionals do the

standard CSMs minimize? We provide one such characterization for the extremal

Random Order methods, as the minimization of a lexicographic function of agents'

payments for supermodular cost functions. Such questions can also be asked about

the Aumann-Shapley method and the Serial Cost method, and (perhaps) lead to

interesting characterizations of these.

The paper is organized as follows. Section 2 presents the basic cost sharing prob-

lem and introduces the path generated methods. Section 3 the main representation

theorem, and Section 4 some specializations of it. Section 5 concludes with applica-

tions and open questions. Several more technical proofs are in the appendix.
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2 Additive Cost Sharing

Let C(q) be the cost of supplying commodity q 2 <n
+ (the set of nonnegative vectors),

where C 2 �(n), the space of nondecreasing once continuously di�erentiable functions

from <
n
+ ! <+. A cost sharing mechanism (CSM) is a (nonnegative) mapping

x : <n
+ � �(n) ! <

n
+ satisfying \budget balance,"

Pn
i=1 xi(q;C) = C(q), where

xi(q;C) is the costs allocated to agent i. We say that agent i is a dummy agent if

C(qi; q�i) is independent of qi. The following two standard assumptions are crucial

to our results and will be assumed throughout.5

Assumption 1 (Dummy) If agent i is a dummy for C 2 �(n) then xi(q; C) = 0.

Assumption 2 (Additivity) For all C;C 0 2 �(n), xi(q; C + C 0) = xi(q; C) +

xi(q; C
0).

Let CS(q; n) be the set of CSMs satisfying dummy and additivity for n > 0; q 2

<
n
+. The following de�nitions and notations will be used: CS(n) =

T
q2<n+

CS(q; n),

CS(q) =
T
0<n<1 CS(q; n), and CS =

T
n2Z+ CS(n). Also we will denote the (multi-

dimensional) intervals by [0; q] which will be the set fp j 81 � i � n 0 � pi � qig

where the dimension will be implicitly understood to be the dimension of q.

2.1 Path Generated Methods

A path is a natural way to generate a CSM. A mapping  : [0; 1]�<+ ! [0; q] is an

admissible family of paths if for each q: i)(0; q) = 0, ii)(1; q) = q, and iii) (t; q)

5Dummy is a statement of basic equity, costless goods should not be charged, while additivity is

necessary for decentralizability of the CSM.
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is nondecreasing in t. Let � be the set of all admissible families of paths satisfying

these properties and �(q) be the specialization of � to a speci�c q.

Given a path  2 �(q), de�ne the CSM xi(q;C) 2 CS(q; n) as the Riemann-

Stieltjes integral

x

i (q;C) =

Z 1

0
@iC((t; q))di(t; q);

where n is the dimension of q. Friedman and Moulin (1995) have proven that path

generated methods are CSMs.

Three important examples are:6

1) Aumann-Shapley: i(t; q) = qit.

2) Serial Cost: i(t; q) = min[qi; qmaxt], where qmax = maxi qi.

3) Extremal Random Order method with order � 2 �(n), where �(n) is the set

of all permutations of f1; 2; : : : ; ng: j(t; q) = 0 if t � �(j � 1)=n, j(t; q) =

n(t� (�(j)� 1)=n)qj for t 2 ((�(j)� 1))=n; �(j)=n), and j(t; q) = qj otherwise.

Recall that the Shapley-Shubik method is obtained by averaging the extremal

Random Order methods over all orders, and a Random Order method is any convex

combination of extremal Random Order methods. More generally, given a sequence

of weights fwig with wi > 0, one can represent weighted versions of Aumann-Shapley

method (Mclean and Sharkey 1994) by i(t; q) = qit
wi, and the Serial Cost method

by i(t; q) = min[qi; qmaxt
wi ].

6These are discussed in detail in Friedman and Moulin (1995).
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Let CP (q; n) = fx j  2 �(q)g, the set of path generated CSMs.

3 A Representation for CS(q,n)

In this section we will describe and prove our key result, which says that all CSMs

can be constructed as sums of path generated methods.

Friedman and Moulin (1995) have shown that any cost sharing method in CS(q; n)

can be (uniquely) represented as

xi(q;C) =
Z
[0;q]

@iC(p)d�i(p; q);

where �i(�; q) is a (nonnegative) measure such that its projection (marginal) �̂i de�ned

on S � [0; qi] by �̂i(S; q) = �i([0; q�i]� S; q) is the Lebesgue measure.7

De�ne convergence inCS(q; n) by limj!1 xj(q; �) = x(q; �) if and only if limj!1 x
j
i (q;C) =

xi(q;C) for all C 2 �(n). This induces the topology of weak convergence on the set

of measures which generate CS(q; n). In particular, this space is metrizable.8 The

following lemma follows immediately.

Lemma 1 For all n; q, CS(q; n) is a closed compact convex subset of a metrizable

space.

Proof: Closure follows immediately, since any convergent sequence of CSMs satisfying

nonnegativity, budget balance, dummy and additivity clearly converges to a CSM.

7Friedman and Moulin provide a complete characterization which imposes constraints on a large

number of higher dimensional projections.
8Given any countable basis Ck of �(n) de�ne d(xi; yi) =

Pi

k=1
nfty(jxi(q;C

k) � yi(q;C
k)j=2k)

and d(x; y) = supid(xi; yi). See, e.g. Phelps (1980) or Billingsley (1968) for details.
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Metrizability and compactness follow since there is a natural mapping from CSMs to

a bounded and compact set of measures which is metrizable. �

Now we examine the extreme points of CS(q; n).

De�nition 1 A point c 2 A (where A is convex) is an extreme point of A if whenever

a; b 2 A, and c = a=2+ b=2, then a = b. Let ext(A) be the set of extreme points of A.

Our �rst result is for the case where there are two agents.

Lemma 2 CP (q; 2) = ext(CS(q; 2)).

Proof: In Appendix.

Now we extend this to an arbitrary number of agents. De�ne the projection �̂ij

for any i; j 2 N and i 6= j on S � [0; (qi; qj)] by �̂ij(�i)(S; q) = �i(S � [0; qij]; q). It

is easy to see that �̂ij is a linear operator.

Since any CSM has a unique measure � associated with it we de�ne the projection

�ij : CS(q; n)! CS((qi; qj); 2) by allowing �̂ to act on the underlying measures. Note

that � inherits the linearity of �̂ and that � is onto CS(qij; 2).

Lemma 3 If x 2 ext(CS(q; n) then �(x) 2 ext(CS(qij; 2)).

Proof: Assume that �(x) = a=2+ b=2 where a; b 2 CS((qij; 2) and a 6= b. Choose any

a0; b0 such that �(a0) = a and �(b0) = b. Then by linearity a0=2+b0=2 62 ext(CS(q; n). �

Now we present our main result.

Theorem 1 ext(CS(q; n)) = CP (q; n).
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Proof: Let x 2 ext(CS(q; n)). Then for all i 6= j �ij(x) is extreme by the previous

lemma and therefore generated by some path. Now it is straightforward to see that if

a measure projects to paths for all i; j then it must itself be a path, as its support must

be a path. (See Friedman and Moulin (1995) Lemma 6 for the formal argument.) 2

Theorem 2 The following statements are equivalent:

i) x 2 CS(q; n).

ii)There exists a nonnegative measure � on CP (q; n) such that

x =
Z
2�(q)

xd�():

Proof: This is a direct application of Choquet's theorem. See, e.g. Phelps (1980). 2

Since the space CP (q; n) is metrizable, the above integration is well behaved, and

the following corollary is immediate.

Corollary 1 For any x 2 CS(q; n) there exists a sequence of CSMs, each generated

by a �nite sum of path generated methods, which converge to x.

4 CS(n), Scale Invariance, and DemandMonotonic-

ity

When there are no restrictions on the behavior of a CSM with respect to q, the space

of all CSMs, CS(n), is quite easy to analyze. De�ne (t; q) to be an admissible path

from 0 to q for any q and let �(n) be the set of all such paths in dimension n. Let

CP (n) = fx j  2 �(n)g.

8



Corollary 2 Let x 2 CS(n) then there exists a family of nonnegative measures �q

for each q on CP (q; n) such that

x(q;C) =
Z
2�(q)

xd�q():

While a general extreme point is quite complex { a di�erent path for every q, the

extreme points under two important axioms are much simpler, as shown below.

One of the most common restrictions imposed on a CSM is that of scale invariance.

Given � 2 <n
+ de�ne ��(q) by ��(q)i = �iqi and de�ne ��(C) by ��(C)(q) = C(��(q)).

De�nition 2 (Scale Invariance) For all � 2 <n
+ and all C a CSM is scale invari-

ant if x(��(q);C) = x(q; ��(C)).

Let SI(n) be the set of scale invariant CSMs in CS(n), and note that it is a convex

set. It is easy to characterize this set of scale invariant CSMs. De�ne �SI (n) to be the

set of paths such that (t; q) = �q((t; e)), thus each component is i(t; q) = i(t; e)qi,

where e represents unit vector (1; 1; : : : ; 1).

Theorem 3 ext(SI(n)) = fx j  2 �SI (n)g.

Proof: This follows upon noting that a scale invariant CSM is completely determined

by its behavior on any particular q, such as q = e. Thus SI(N) is isomorphic to

CS(e;N). 2

Another important axiom is demand monotonicity.

De�nition 3 (Demand monotonicity) For all q; q0 such that qi � q0i and q�i = q0
�i

and all C, a CSM is demand monotonic if xi(q;C) � xi(q
0;C).
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There are some technical di�culties involved with characterizing demand mono-

tonicity when the domain of q's is unbounded, since the limiting behavior of the class

of demand monotonic paths is not well behaved. Thus we will consider the class of

CSMs which are de�ned only on a bounded domain: let CS q̂(n) be the set of CSMs

de�ned for q � q̂.

Let DM q̂(n) be the set of demand monotonic CSMs in CS q̂(n). In this case the

extreme CSMs are constructed from a single in�nitely long path. Let !(s) be a path

de�ned on t 2 [0; 1) which is nondecreasing and !(1) � q̂. Let 
q̂(n) be the set of all

such paths. Given ! 2 
q̂(n) de�ne ! by !(t)i = min[!(t); qi].

Theorem 4 ext(DM q̂(n)) = fx! j ! 2 
q̂(n)g.

Proof: In Appendix.

Using these characterizations, it is quite easy to show that any scale invariant or

demand monotonic CSM is continuous in q, since one only needs to check continuity

at the extreme points.

Corollary 3 If x is scale invariant or demand monotonic then xi(q;C) is continuous

in q for �xed C.

Proof: We only need to show that for x which satis�es SI or DM, that the CSM

generated by a single path is continuous. This is true because paths in �SI (n) and

�DM (n) are continuous in q. 2
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5 Applications

5.1 Strict Marginality

A CSM is said to satisfy marginality (Young 1985b) if agent i's cost share depends

(monotonically) only on her marginal costs, @iC(�). For ordinary TU games, Young

(1985a) has shown that marginality essentially characterizes the Shapley value. For

general CSMs satisfying Additivity and Dummy no speci�c CSM is singled out9 since

they all satisfy marginality, as was noted in Friedman and Moulin 1995, and is obvious

from Theorem 1.

De�nition 4 A CSM is said to satisfy marginality if for all demands q and all cost

functions C;D 2 �(n) which satisfy @iC(p) � @iD(p) for all p 2 [0; q] then xi(q;C) �

xi(q;D).

Theorem 5 A CSM satisfying Additivity and Dummy also satis�es marginality.

Proof: This follows immediately from Theorem 1, since the cost share is computed by

integrating the marginal costs with a nonnegative measure, xi(q;C) =
R
p2[0;q] @iC(p)d�i(q)(p) �

R
p2[0;q] @iD(p)d�i(q)(p) = xi(q;D). 2

We now consider a stronger version of marginality, which requires that the cost

share of a player strictly increase when her marginal costs increase.

De�nition 5 A CSM is said to satisfy strict marginality if for all demands q and

all cost functions C;D 2 �(n) which satisfy @iC(�) � @iD(�) for all p 2 [0; q] and for

9Young (1985b) uses a stronger requirement, symmetric marginality, to characterize the Aumann-

Shapley method.
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some p 2 [0; q] @iC(p) > @iD(p) then xi(q;C) > xi(q;D).

Somewhat surprisingly, none of the standard CSMs satisfy strict marginality.

Theorem 6 None of the following methods satisfy strict marginality:

Aumann-Shapley, Random Order, Serial Cost, and weighted versions of these.

Proof: This follows immediately from the observation that each of these methods is

generated by a �nite set of paths and the following lemma. 2

Lemma 4 If x 2 CS(n) can be written as a �nite sum x =
P

a2A xa where jAj <1

and xa 2 �(n), then x does not satisfy strict marginality.

Proof: Given x as in the lemma, consider the measure which represents x in Theo-

rem 1, �i(q). It is easy to see that the support of �i(q) is contained in the set p's such

that p = (t; q) for some t. However, this set can not be dense in [0; q] as it is con-

structed from a �nite number of monotonic lines. Now consider C;D 2 �(n) where

@iC(p) = @iD(p) except in some small neighborhood B which is does not intersect

the support of �i(q), and @iC(p) � @iD(p) on B is strictly larger at some point of B.

By Theorem 1 xi(q;C) = xi(q;D) violating strict marginality. �

Thus for a method to satisfy strict marginality, it must be generated by an in�nite

sum of paths which `cover' the entire interval [0; q]. This is because any CSM satisfying

strict marginality must use all the marginal cost information. We now present two

interesting methods which satisfy strict marginality.
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Example: The \smoothed" weighted Aumann-Shapley methods.

Given w 2 <
n
++, let xw be the weighted Aumann-Shapley method corresponding to w.

De�ne xswas(q;C) =
R
w2(0;1) xw(q; c)�(w)dw where �(�) is a nonnegative probability

density on w 2 [0; e]. Thus, xsw is just an average over various weighted Aumann-

Shapley methods.

Example: The \almost at" method.

Since the key behind strict marginality is the support of the measures �i(q), the

simplest CSM satisfying strict marginality would be when �i(q) is \at" on [0; q], by

which we mean that it is proportional to the Lebesgue measure. However, it is not

possible to construct a CSM out of paths which is at for all i, and thus such a CSM

does not exist. Instead, we construct a CSM which for all i is at on the interior of

[0; q].

Given an ordering � 2 �(n) and an r 2 [0; q] de�ne �;r(�; q) to be the path

which is made up of 2n � 1 straight lines: �rst from 0 to (0��(1); r�(1)) then to

(0�(�(1);�(2)); r(�(1);�(2))) and continuing this process until it reaches r and then in

reverse order to (q�(n); r��(n)) to (q�(n);�(n�1); r�(�(n);�(n�1)) until it �nally reaches q.

Let

xaf =
1

n!

X
�2�(n)

Z
r2[0;q]

x�;r dr;

where the integration over dq�(n) is formally unnecessary since �;r(�; q) does not

depend on r�(n).
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We can evaluate this CSM as follows:

x
af
i =

1

n!

X
�2�(n)

Z
(ri;r��(i)

)2[0;(qi;q��(i)
)]
[C(ri; r��(i); 0�+(i))� C(0i; r��(i); 0�+(i))

+ C(qi; r�+(n); q�+(n))� C(ri; r�+(n); q�+(n))];

where ��(i) = fj j ��1(j) < ��1(i)g and �+(i) = fj j ��1(j) > ��1(i)g. This formula

can be further simpli�ed into one with only 2n�1 terms (instead of n!) by considering

partitions of f1; 2; : : : ; ng. In particular, when n = 2,

xaf1 =
Z q2

0
dp2[C(q1; p2)� C(0; p2)] +

Z q1

0
dp1[C(q1; q2)� C(p1; q2) + C(p1; 0)]:

Theorem 7 Both xsw and xaf satisfy strict marginality.

Proof: In both cases the representing measure �i(q) has full support on [0; q]: This is

obvious for the almost at method by construction since �;r passes through r, and

easy to see for the \smoothed" AS method after noting that for any p 2 [0; q] it is

possible to choose t; w such that for all i, pi = qit
wi. Thus if C;D 2 �(n) satisfy

@iC(p) � @iD(p) for all p 2 [0; q] and for some p 2 [0; q] @iC(�) > @iD(�) for some p 2

[0; q] we can compute x(q;C) =
R
p2[0;q] @iC(p)d�i(q)(p) >

R
p2[0;q] @iD(p)d�i(q)(p) =

xi(q;D) where the inequality is strict because @iC(�) > @iD(�) on a set of positive

measure by the continuity of D(�). 2

5.2 Concave Minimization and a Characterization of Extremal

Random Order Methods

One important result from the theory of convex sets, is that the minimumof a concave

(or linear) functional on a convex set, always has extreme point solutions. Thus, any

14



concave minimization over CSMs yields a path generated method.

Lemma 5 Let B be either CS(n; q), SI(n), or DM q̂(n), for some q̂. If f : B ! <+

is concave and upper-semicontinuous then

minff(x) j x 2 Bg

exists and the set of x 2 B which attains this minimum contains some x 2 ext(B).

Proof: This follows from Aubin Theorem ? (p.??) (1979) since all three spaces are

nonempty compact convex subspaces of a locally convex Hausdor� space. �

Example: Consider the case where we want to choose a CSM that minimizes agent

1's expected payments over a set of possible cost functions �, for q �xed. Thus

f(x) = �E[xi(q;C)], and by linearity, f(x) = �xi(q; Ĉ) where Ĉ = E[C]. By The

above corollary this problem is equivalent to

min


Z 1

0
@1C((t))d1(t)

subject to (t) is continuous and nondecreasing, (0) = 0 and (1) = q. This can be

solved using the techniques of optimal control.

Example: We can extend the previous example if there is also a distribution over

the possible demand vectors q and we were interested in �nding a scale invariant

(resp. demand monotonic) method which minimizes player 1's expected cost. In this

case f(x) = �E[xi(q; Ĉ)] where the expectation is taken over q and Ĉ = E[C]. Once
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again this problem can be reduced to the simpler one of optimal control using the

characterization of SI(n) (resp. DM q̂(n)) in Theorem 3 (resp. Theorem 4).

Example: In Friedman and Moulin (1995), demand monotonicity is motivated as

a weak incentive constraint. Using the above techniques we can compute the `most'

demand monotonic CSM by de�ning f(x) = �E(@xi(q;C)
@q1

) where the expectation is

taken over both a set of cost functions and a set of possible demands, and then

minimizing over the set of general or demand monotonic CSMs.

Example: A characterization of Extremal Random Order Methods

Now we show that the extremal Random Order methods minimize a lexicographic

ordering for any set of cost functions which are supermodular.10 Recall that a function

C(�) is supermodular if for all i, @iC(q) is nondecreasing in q�i, and let �s(n) be the

subset of �(n) which are supermodular.

Given an ordering �(�) 2 �(n), a probability measure over q 2 [0; q̂] and a set

of cost functions C�(�) 2 �s(n) for � 2 A with a probability measure de�ned on A.

de�ne the ��lexicographic ordering among CSMs x; y 2 CS(n; q) as follows: de�ne

I(x; y) = minjfj j E[xj(C; q)] 6= E[yj(C; q)] then we say that CSM x is less than

CSM y with respect to �, written x �� y, if E[x�(I(x;y)(C; q)] � E[y�(I(x;y)(C; q)].

Theorem 8 Given the above conditions, the CSM which is minimal with respect

to the �-lexicographic ordering over any of the sets CS(q);DM q̂(q) or SI(q) is the

extremal Random Order method with order �.

10Moulin (1989) has studied other properties of supermodular functions for cost allocation

problems.
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Proof: To simplify notation we consider the natural order, �(i) = i and de�ne Ĉ(q) =

E�2A[C�(q)]. We now argue by contradiction. Consider the extremal Random Order

method x� generated by �(�), and any other path generated method x and assume

that x <� x
�. Then

x

1(q; Ĉ)� x�1(q; Ĉ) =

Z 1

0
[@1Ĉ((t))� @1Ĉ(1(t); 0�1)]d1(t)

and note that [@1Ĉ((t))�@1Ĉ(1(t); 0�1)] � 0 by supermodularity (integrate Ĉ from

(1(t); 0�1) to (t)) this implies that x1(q; Ĉ) � x�1 (q; Ĉ). If this inequality is strict

then we have a contradiction. If not, then consider

x

2(q; Ĉ)� x�2(q; Ĉ) =

Z 1

0
[@2Ĉ((t))� @2Ĉ(1(t); 0�1)]d1(t)

and once again it is easy to see that x2(q; Ĉ) � x�2(q; Ĉ). Repeating the argument

(at most n times) completes the proof. 2

Thus, when C(�) is supermodular we can characterize an extremal Random Order

method, as one that minimizes some lexicographic ordering of agents' payments.

We end this paper with an interesting (and unsolved) question: What linear

functional is minimized by the various CSMs such as Aumann-Shapley or Serial Cost?

One might expect that these would lead to useful characterizations.

A Appendices

A.1 Proof of Lemma 2

Given a set of measures f�ig de�ne the semi-projected measures by �̂ip
�i
(Si) =

�i(Si � [0; p�i]), where Si is a measurable subset of [0; pi]. (These are essentially
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the conditional probabilities.) Note that �̂iq
�i

is Lebesgue measure and thus �̂ip
�i

is

dominated by Lebesgue measure and therefore has a well de�ned density (in the L1

sense). Let �i(p) be this density which we will call the `potential', and let � be the

set of all pairs of potentials which generate a CSM.11

Lemma 6 If (�1; �2) 2 � then �1(p) + �2(p) = 1 a.e.

Proof: Assume that �i(p) has a density �i(p). Choose any arbitrary nonnegative

continuous function f(p) which is zero on the boundary of [0; q] and let C(p) =

R
[0;p] f(z)dz. Then

xi(q;C) =
Z
[0;q]

@iC(p)�i(p)dp;

which upon integration by parts yields

xi(q;C) = C(q)�
Z
[0;q]

f(p)�i(p)dp;

since in the di�erentiable case �i(p) =
R q
�i

0 �i(qi; t)dt:

Then budget balance requires that 2C(q)�
R
[0;q] f(p)[�1(p) + �2(p)]dp = C(q); or

R
[0;q] f(p)[�1(p)+�2(p)�1]dp = 0: Since f is arbitrary this implies that �1(p)+�2(p) =

1 a.e.

Since � is well de�ned, and any measure can be approximated in the weak topol-

ogy by one with a density, a straightforward approximation argument completes the

proof. �

11Super�cially, it appears that our `potential' could be related to those in Mclean, Pazgal, and

Sharkey (1994) which are the generalizations of the potential found in Hart and Mas-Colell (1989) to

cost sharing methods with divisible goods. However, our use of the term is based on the \potential

theory" of di�erential geometry, since the semi-projected measures and their natural generalizations

to n dimensions are the closed n-forms which generate the measure under exterior di�erentiation. Us-

ing this idea it should be possible to construct a direct proof of Theorem 1 without using projections.
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Now we note some properties of �1.

Lemma 7

i) �1(p1; 0) = 0, a.e.

ii) �1(p1; q2) = 1, a.e.

iii) �1(p) is nonincreasing in p1 and nondecreasing in p2, a.e.

Proof: i) This is true by the de�nition of �1.

ii)This is true since the projection of �1 is Lebesgue measure.

iii) That �1(p) is increasing in p1 follows from its de�nition. It is decreasing in p2

since �2(p) is increasing in p2 and �1 + �2 = 1. �

Since, �(p) is de�ned as an element of L1 and is always less than 1 (since it is

dominated by Lebesgue measure), we can always choose a representation in which all

three parts of the previous lemma hold everywhere; we will assume this throughout

the remainder of the proof.

Given a path  let � be the potential who's �rst component is 0 for any p below

 and 1 above and on , a.e. Clearly � 2 �. Let �̂ be the set of such potentials.

Lemma 8 ext(�) = �̂.

Proof: Assume that � 62 �̂. Then there must exist some 0 < � < 1 such that

�(fp 2 [0; q] j 0 < �(p) < �g > 0. De�ne �+(p) = (max[�(p); �] � �)=(1 � �) and

��(p) = (min[�(p); �])=�. Then �� 6= � (a.e.) and ��=2 + �+=2 = � proving that �

is not an extreme point. The proof of the converse is straightforward. �
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Now we complete the proof of the theorem. Let � be the space of potentials. Let

� the mapping from CS(2) to �. It is easy to see that � is a linear bijection, thus

� (ext(�)) = ext(CS(2)). By the previous lemma one can show that if � 2 ext(�)

where there exists some  such that � = � then ��1(�) is x. 2

B Proof of Theorem 4

The proof of Corollary parallels that of Theorem 1. Once we show that the extreme

CSMs in the set of two agent demand monotonic CSMs are path generated, a projec-

tion argument analogous to that in the proof of Theorem 1 completes the proof. We

present the �rst part below, and leave the second part to the reader.

Lemma 9 Let DM q̂(2) be the set of two agent demand monotonic CSMs de�ned for

q � q̂. Then ext(DM q̂(2)) = fx! j ! 2 
q̂(2)g.

Proof: Combining the above de�nitions with Theorem 1 shows that

x(q̂) =
Z
!2
q̂(2)

x!d�
q̂(!)

and this induces a pair of measures on [0; q̂] which we denote by �(q̂). Friedman and

Moulin (1995), have shown that for two player demand monotonic methods when

q � q̂, �i(q̂) and �i(q) are equivalent measures on [0; q]. Denoting the restriction of a

path ! to [0; q] by �q(!) we get the following,

x(q) =
Z
!2
q̂(2)

xpiq(!)d�
q̂(!);

proving the lemma. �.
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