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Abstract

This paper describes the results of simulation experiments performed on a

suite of learning algorithms. We focus on games in network contexts. These

are contexts in which (1) agents have very limited information about the

game; users do not know their own (or any other agent's) payo� function,

they merely observe the outcome of their play. (2) Play can be extremely

asynchronous; players update their strategies at very di�erent rates. There

are many proposed learning algorithms in the literature. We choose a small

sampling of such algorithms and use numerical simulation to explore the

nature of asymptotic play. In particular, we explore the extent to which

the asymptotic play depends on three factors, namely: limited information,

asynchronous play, and the degree of responsiveness of the learning algorithm.



1 Introduction

While much of classical game theory is based on the assumption of common

knowledge, there are many contexts in which this assumption does not apply.

Correspondingly, in recent years there has been increased interest in the

process by which a set of initially naive agents learn through repeated play

of a game. The central question concerns the nature of asymptotic play;

what set of strategies do the agents learn to play in the long-time limit?

(The recent review by Fudenberg and Levine [21] provides an overview of

the literature.)

In this paper we focus our attention on learning that occurs in what

we call a network context. In network contexts, agents interact through the

common use of a resource, such as a communication link or a shared database,

which is accessed over a network. The interactions of Internet congestion

control algorithms where agents share network bandwidth, as described in

[37], is perhaps the most studied example of a repeated game in a network

context. As the Internet continues to grow, and more resources are shared by

remote users, we expect the network context to become increasingly common.

As discussed in [16], the network context di�ers from the traditional game-

theoretic context in four important ways.

I. First, agents have very limited a priori information. In general, agents

are not aware of the underlying characteristics of the shared resource. In

other words, they do not know the payo� structure of the game; they know

neither their own payo� function, nor that of the other players. In addition,

agents are not explicitly aware of the existence of other players. While agents

are aware that there may be other agents simultaneously using the shared

resource, they do not have any way of directly observing their presence and,

consequently, they know nothing about the number or the characteristics of

their opponents. In particular, this implies that players cannot observe the

actions of other players, a standard assumption in many classical models of

learning in economics.
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II. Second, the payo� function and the agent population are subject to

change over time. Shared resources like network links and computer servers

periodically crash, and often experience other unpredictable changes in their

capabilities, such as upgrades or route changes. In addition, users of these

shared resources come and go quite frequently. Thus, when an agent detects

a change in his payo� while keeping his own strategy �xed, the agent cannot

tell whether this change is due to changing strategies of the other players,

changes in the players themselves, or variations in the characteristics of the

shared resource.

III. Third, in many, but not all, cases, learning is actually carried out

by a computer algorithm, not by a human user. For instance, congestion

control algorithms (e.g., TCP) embedded in a computer's operating system

control the sharing of a network link. Similarly, automated algorithms can

control the retry behavior for query submission to a database. Thus, the

learning that takes place in these contexts is explicitly laid out in the form of

a well-de�ned algorithm. Moreover, these algorithms are intended to be quite

general in nature, and do not depend on the detailed speci�cs of a particular

situation. In particular, this means that Bayesian learning algorithms are

inappropriate, because the initial beliefs depend on the speci�c context. In

any event, the complexity of prior probabilities is such that it is not possible

to use Bayesian updating in any realistic setting.

IV. Fourth, in network contexts, games can be played in an asynchronous

fashion. There need not be any notion of de�nable \rounds of play"; users

can update their strategies at any time. Moreover, the rates at which agents

update their strategies can vary widely, although in general these rates are

determined by circumstances and are not a strategic variable. Due to the

geographic dispersion of users of the Internet, for example, there can be

varying communication delays to a shared resource, which in turn can lead

to updating rates that di�er by several orders of magnitude.1 In addition,

1As discussed in [16], standard control theoretic results imply that the frequency at

which strategies are updated should not be greater than the inverse of the round-trip
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automated agents can learn at very di�erent rates, depending on processor

speeds and the nature of the learning algorithms. Thus, asynchrony does

not arise from Stackelbergian-type strategic manipulation, but merely from

properties of communication and computation. Agents closer to the shared

resource, or those who have faster processors or smarter algorithms, have the

potential to learn more rapidly and e�ectively.

We focus on contexts that have these four properties: low information

content, non-stationary payo�s, automated learning, and asynchrony. We

are interested in what happens when a set of automated agents play a game

repeatedly in such a context, and we investigate this behavior empirically.

We consider a small sampling of learning algorithms, some of which have been

well-studied in the literature; for each algorithm we numerically simulate a

set of agents using that algorithm and we observe the set of strategies played

in the long-time regime. This work can be seen as a natural counterpart

to human economic experiments. In particular, Chen [6] investigates some

issues closely related to those considered here using human subjects rather

than automated learning algorithms.

We concentrate on the extent to which the asymptotic play depends on the

amount of information available to the agents, the degree of responsiveness

of the learning algorithm, and the level of asynchrony of play. Of particular

interest is the extent to which the asymptotic play is contained in the various

solution concepts such as Nash equilibria, the set of serially undominated

strategies (D1), and the less traditional concepts of serially unoverwhelmed

strategies (O1) and serially Stackelberg-undominated strategies (S1) which

are discussed below. Our �ndings suggest that the asymptotic play of games

in network contexts can be quite di�erent from that in standard contexts,

where play is typically contained in the serially undominated strategy set.

This paper has 6 sections. Section 2 presents the learning algorithms

used in this study, and discusses the relevant solution concepts. Section

communication delay to the shared resource; otherwise, instability may result.
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3 contains the simulation results for the sample games considered: several

simple two-player games, a class of externality games, and the congestion

game. In Section 4, we compare these results with the results of simulations

in non-network contexts. Section 5 describes related work, and we conclude

in Section 6 with a brief discussion of our results.

2 Background

2.1 Learning Algorithms

The literature is replete with learning algorithms, but but not all of them are

applicable in network contexts. Because knowledge of the payo� structure

and the other agents is extremely limited, games in a network context are,

from a single agent's perspective, most naturally modeled as games against

nature in which each strategy has some random (and possibly time-varying)

payo� about which the agent has no a priori knowledge. Consequently, in

contrast with belief-based approaches to learning (e.g., Bayesian updating)

adopted in much of the literature, learning algorithms for network contexts

typically utilize simple updating schemes that do not rely on any detailed

assumptions about the structure of the game. Instead, these algorithms

employ \trial-and-error" experimentation in an attempt to identify optimal

strategies.

The learning algorithms which we simulate are distinguished �rst of all by

their varying degrees of experimentation; we will, for convenience, denote this

level of experimentation by the parameter � 2 [0; 1). In static environments,

where the payo� structure and the set and characteristics of the other agents

is �xed, it may be reasonable to decrease the level of experimentation as

time progresses, with experimentation ceasing in the in�nite-time limit (i.e.,

�! 0 as t!1).2 Many learning algorithms proposed in the literature have

2This is apparent in decision problems such as classic bandit problems [22, 27]. It is

less transparent, however, in games with multiple players and strategies.
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this property. In network contexts, however, the environment is not static;

the underlying payo� structure, and the population of agents, are subject to

change at any time without explicit noti�cation. As a result, agents should

be prepared to respond to changing conditions at all times, and should do

so in a bounded amount of time. This requires that a non-zero level of

experimentation be maintained in the long-time limit, and that future play

be more heavily in
uenced by payo�s obtained in the recent, rather than the

distant, past. This second point can be achieved via a parameter 
 2 (0; 1]

which dictates the rate (and typically inverse accuracy) of learning. We

call the ability to respond to changes in the environment in bounded time

responsiveness, and posit that this property is fundamental to learning in

network contexts. As we shall see, responsiveness has important implications

for the resulting asymptotic play.

The learning algorithms we discuss also di�er in the particular criteria

that they are designed to satisfy. Perhaps the simplest criterion is that,

when playing a static game-against-nature, the algorithm rapidly learns to

play (with high probability) the strategy with the highest average payo�.3

When combined with responsiveness, and a certain monotonicity property,

this leads to the class of so-called reasonable learning algorithms introduced

in [16]. One example of such an algorithm is the stage learning algorithm.

Stage learners partition the game into stages, which consist of 1=
 rounds of

a game. At each round of play, a stage learner chooses its strategy at random

based on the probabilities, or weights, it has assigned to each of its strategies.

These weights are updated upon termination of each stage, with weight 1� �

assigned to the pure strategy that obtained the highest average payo�s during

the previous stage, and weight �=(n � 1) assigned to all other strategies.

Another example of a reasonable learning algorithm, so-called responsive

3The formal de�nition of probabilistic converge in �nite time is described in [16]. In

this paper we do not formally de�ne convergence, but take a more pragmatic approach

which is appropriate for simulations. That is, we say that play has converged when the

numerical properties are unchanged by additional iterations as evidenced by simulations.
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learning automata introduced in [15], is a responsive version of simple learning

automata (see, for example, Narendra and Thathachar [32]). This algorithm

updates weights after every round of play using quite a di�erent method.

Another reasonable learning algorithm (for certain choices of parameters) is

de�ned by Roth and Erev [9], and has been used to model human behavior

in game-theoretic experiments.

A second criterion, which is a worst-case measure of performance, involves

the concept of regret. Intuitively, a sequence of plays is optimal if there is

no regret for playing a given strategy sequence rather than playing another

possible sequence of strategies. Regret comes in two forms: external and

internal. A sequence of plays is said to exhibit no external regret if the

di�erence between the cumulative payo�s that are achieved by the learner

and those that could be achieved by any other pure strategy is insigni�cant.

The no internal regret optimality criterion is a re�nement of the no external

regret criterion where the di�erence between the performance of a learner's

strategies and any remapped sequence of those strategies is insigni�cant. By

remapped we mean that there is a mapping f of the strategy space into

itself such that for every occurrence of a given strategy s in the original

sequence the mapped strategy f(s) appears in the remapped sequence of

strategies. The learning procedures described in Foster and Vohra [12] and

Hart and Mas-Colell [25] satisfy the property of no internal regret. Early

no external regret algorithms were discovered by Blackwell [4], Hannan [24],

Banos [2], and Megiddo [29]; recently, no external regret algorithms appeared

in Cover [7], Freund and Schapire [13], and Auer, Cesa-Bianchi, Freund and

Schapire [1].

We investigate six learning algorithms: the reasonable learners discussed

above (see [15, 16, 9]), two based on external regret (see [1, 10]), and one

based on internal regret (see [25]). Some of these algorithms were initially

proposed for quite di�erent settings, in which responsiveness is not necessary

and the information level is signi�cantly higher (e.g., agents know their own

payo� function). We have extended these learning algorithms for use in
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network contexts.4 We call the versions designed for low-information settings

naive, and those designed for higher information contexts informed. We also

consider both responsive and non-responsive variants. Lastly, each agent has

a time-scale parameter A that determines the rate at which it updates its

strategies. A player updates its strategy (i.e., runs its learning algorithm)

only every A rounds, and treats the average payo� during those A rounds as

its actual payo�. We are interested in how the asymptotic play depends on

whether agents are responsive, whether they are informed, and on the degree

of asynchrony (di�erences in the A values) among the agents.

2.2 Solution Concepts

To describe the asymptotic play, we introduce several solution concepts. We

begin with some notation. We restrict our attention to �nite games. Let

N = f1; : : : ; Ng be a �nite set of players, where N 2 N is the number of

players. The �nite set of strategies available to player i 2 N is denoted by

Si, with element si 2 Si. The set of pure strategy pro�les is the Cartesian

product S =
Q

i Si. In addition, let S�i =
Q

j 6=i Sj with element s�i 2 S�i,

and write s = (si; s�i) 2 S. The payo� function �i : S ! R for player i is a

real-valued function on S.

Recall that strategy si 2 Si is strictly dominated for player i if there exists

some strategy s�i 2 Si such that �i(si; s�i) < �i(s
�
i ; s�i) for all s�i 2 S�i. Let

D1 denote the serially undominated strategy set: i.e., the set of strategies

that remains after the iterated elimination of strictly dominated strategies.

Milgrom and Roberts [30] show that the asymptotic play of a set of adaptive

learners { learners that eventually learn to play only undominated strategies

{ eventually lies within D1. In addition, it is shown in [15] that certain

responsive learners playing synchronously also converge to D1. The set D1

is widely considered to be an upper bound in terms of solution concepts; that

4Detailed descriptions of these algorithms, in both their original and modi�ed forms,

are contained in Appendix A.
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is, it is commonly held that the appropriate solution concept that arises via

learning through repeated play is a subset of the serially undominated set.5

This may indeed be true in standard game-theoretic contexts.

In [15, 16], however, it is shown that in network contexts, where there

is potentially asynchrony and responsive learning, play can asymptotically

remain outside the serially undominated set. A more appropriate solution

concept for such settings is based on the concept of overwhelmed strategies.

We say that a strategy si 2 Si is strictly overwhelmed if there exists some

strategy s�i 2 Si such that �i(si; s�i) < �i(s
�
i ; s

0
�i) for all s�i; s

0
�i 2 S�i. Let

O1 denote the set of strategies that remains after the iterated elimination

of strictly overwhelmed strategies. It is shown in [16] that the asymptotic

play of a set of reasonable learners lies within O1, regardless of the level

of asynchrony. However, it is conjectured that O1 is not a precise solution

concept, only an upper bound. A re�nement of O1, called S1 is de�ned in

[16]. 6 Because its de�nition is rather cumbersome, we do not present the

precise de�nition of S1, but will describe its realization in the games we

simulate. Note that D1 � S1 � O1.

Another result of interest, due to Foster and Vohra [12], is that a set of

no internal regret learners converges to a correlated equilibrium. Note that

the support of a set of correlated equilibria is a subset of D1; in other words,

correlated equilibria do not assign positive probabilities to strategies outside

D1, but neither do they necessarily converge to Nash equilibria. In contrast,

the asymptotic play of a set of no external regret learners need not remain

inside D1 7 [23].

5Note that this also holds for one-shot games with common knowledge, as the set D1

contains all the rationalizable strategies [3, 33].
6In [16], a class of \Stackelberg" solution concepts is built from various primitives (such

as undominated strategies or correlated equilibria); however for the games studied in this

paper most of the \Stackelberg" solution concepts coincide.
7Note that this remark pertains only to the no external regret criterion, but says nothing

about the convergence properties of speci�c algorithms which are de�ned to satisfy this

criterion, such as those considered in this study.
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In the remainder of this paper, we present the result of simulations of

the six learning algorithms on various games. We ask, in particular, whether

the asymptotic play converges within the sets D1, S1, or O1. Recall that

the term convergence is used informally, both because of experimentation,

which precludes true convergence, and our interest in achieving results in

�nite time. We are interested in which of these concepts, if any, represents

an appropriate solution concept for games in network contexts.

3 Simulations in Network Contexts

We consider three sets of games: simple games (two players, few strategies),

the congestion game (two players, many strategies), and an externality game

(many players, two strategies). The simulations were conducted with varying

degrees of asynchrony, ranging from synchronous play to extreme asynchrony

with one player acting as the leader (i.e., we vary the value of A from 1 to

10,000 for the leading player and we set A = 1 for all other players). The

degree of responsiveness is determined by parameters � and 
; for each game,

we describe the particular parameter settings.

3.1 Simple Two-Player Games

This subsection presents the results of simulations of four simple two-player

games with either two or three strategies per player. The row player is taken

to be the leader. The parameter 
 was set to :01 for all algorithms, while

the degree of experimentation � was set to :025 for the reasonable learning

algorithms and :05 for the no regret algorithms. In addition, the no regret

algorithms depend on tuning parameters; for the mixing method, � = 100,

for multiplicative updating, � = 1, and for the no internal regret algorithm,

� = 2. The simulations described in this section were run for 108 iterations.
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3.1.1 Game D

The game depicted in Figure 1 is referred to herein as Game D since it is

D-solvable, but it is not S-solvable or O-solvable: i.e., D1 6= S1 = O1.

More speci�cally, the set D1 is a singleton that contains only the strategy

pro�le (T; L), which is the unique Nash equilibrium. On the other hand,

S1 = O1 = fT;Bg� fL;Rg. Note that (B;R) is a Stackelberg equilibrium

in which the row player is the leader.

T

B

1,2 3,0

2,10,0

RL1
2

Figure 1: Game D

The graph depicted in Figure 2 describes the overall results of simulations

of Game D, assuming responsive learning in a naive setting. In particular,

Figure 2 (a) plots the percentage of time in which the Nash equilibrium

solution arises as the degree of asynchrony varies. Asynchrony of 100, for

example, implies that the column player is learning 100 times as fast as

the column player; thus, the row player is viewed as the leader and the

column player the follower. Notice that when play is synchronous, all the

algorithms converge to the unique Nash solution. However, in the presence

of su�cient asynchrony, play does not converge to the Nash solution for

any of the algorithms studied. Instead, play converges to the Stackelberg

equilibrium, as depicted in Figure 2 (b). These results demonstrate that

D1 does not always contain the asymptotic play. Note that these results

are robust; in particular, the results are unchanged even when the game is

studied with \noisy" payo�s �̂i, where �̂i = �i � �, for � > 0.
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Figure 2: Convergence to Equilibria in Game D. (a) plots the percentage

of time in which Nash equilibrium arises as the degree of asynchrony varies,

while (b) plots the percentage of time in which Stackelberg equilibrium arises.
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Figure 3: Convergence to Equilibria in Game D for Hart's and Mas-Colell's

algorithm. (a) plots the weights of the Stackelberg equilibrium strategies over

time when A = 1; notice that play converges to Nash equilibrium. (b) plots

these same weights when A = 100; notice that play converges to Stackelberg

equilibrium.
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Recall that (B;R) is the Stackelberg equilibrium in Game D. Figure 3

plots the changing weights over time of strategy B for player 1, and strategy

R for player 2 for the no internal regret algorithm due to Hart and Mas-Colell.

Both the synchronous case, where play converges to Nash equilibrium, and

the asynchronous case for A = 100, where play converges to Stackelberg

equilibrium, are depicted. In the asynchronous case, the leader slowly learns

to prefer the Stackelberg solution, and as soon as the leader moves in this

direction, the follower, because he is responsive, follows soon after. This

behavior is representative of all the learning algorithms considered.

3.1.2 Game O

The next game that is studied in this section is depicted in Figure 4, and is

referred to as Game O, since it is O-solvable. In this game, f(T; L)g is the

unique Nash equilibrium and f(T; L)g = D1 = S1 = O1.

T

B

3,1

0,01,3

RL1
2

2,2

Figure 4: Game O

Simulations of all the algorithms, for levels of asynchrony ranging from

1 to 10,000, show that Nash equilibrium is played over 95% of the time. In

particular, play does not diverge from the Nash equilibrium solution in this

O-solvable game, as it did in Game D, regardless of the degree of asynchrony.

It has been established that, for reasonable learners, O1 is an upper bound

on the solution concept. Our data is consistent with the same result holding
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for the other classes of algorithms considered, although this is far short of a

proof that the O1 solution concept applies to them as well. The next game

addresses the question of whether the O1 solution concept might in fact be

too large a set.

3.1.3 Prisoners' Dilemma

This section presents the results of simulations of the repeated Prisoners'

Dilemma (see Figure 5). In this game, f(D;D)g is the unique Nash (and

Stackelberg) equilibrium, and f(D;D)g = D1 = S1 6= O1, since O1 is the

entire game. The Prisoner's Dilemma provides a simple test of the conjecture

that the outcome of responsive learning in network contexts is described by

the S1 solution concept, rather than the larger solution set O1.

Simulations of all the algorithms, for levels of asynchrony ranging from 1

to 10,000, show that in this game the Nash equilibrium is played over 95%

of the time. Since play does not diverge signi�cantly from the Nash (and

Stackelberg) equilibrium, the asymptotic play is not spread throughout O1;

instead, it is con�ned to S1.

C

D

2,2 0,3

1,13,0

DC1
2

Figure 5: Prisoners' Dilemma
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3.1.4 Game S

The last simple two-player game that is studied is a game in which the players

have three strategies. The game is depicted in Figure 6, and is referred to as

Game S. In Game S, D1 = fT; Lg; S1 = fT; Lg � fB;Rg; and O1 is the

entire game; thus, D1 6= S1 6= O1.

The results of simulations of Game S resemble the results of simulations

of Game D. 8 Figure 7 shows that the learning algorithms do not converge

to the Nash equilibrium solution of this game when there is asynchrony.

Instead, play converges to the Stackelberg equilibrium, as in Game D. This

game provides a second test of the conjecture that the outcome of responsive

learning in network settings is a strict subset of O1.

T 2,2 4,0

3,31,1

CL1
2

M

B 0,0 3,0 1,1

0,2

2,0

R

Figure 6: Game S

3.2 Externality Games

To test whether similar results apply to games with more than two players, we

experiment with externality games. An externality game, as de�ned in [17], is

one in which each agent can choose either to participate or not to participate

8Note that in these simulations, the reasonable learning algorithms utilized � = :1667.

15



0

20

40

60

80

100

1 10 100 1000 10000

P
er

ce
nt

ag
e 

T
im

e 
at

 N
as

h 
E

qu
ili

br
iu

m

Asynchrony

Game S: Naive, Responsive

Stage Learner
Responsive LA
Roth and Erev

Foster and Vohra
Freund and Schapire
Hart and Mas-Colell

(a) Nash equilibrium

0

20

40

60

80

100

1 10 100 1000 10000

P
er

ce
nt

ag
e 

T
im

e 
at

 S
ta

ck
el

be
rg

 E
qu

ili
br

iu
m

Asynchrony

Game S: Naive, Responsive

Stage Learner
Reponsive LA
Roth and Erev

Foster and Vohra
Freund and Schapire
Hart and Mas-Colell

(b) Stackelberg equilibrium

Figure 7: Convergence to Equilibria in Game S. (a) plots the percentage

of time in which Nash equilibrium arises as the degree of asynchrony varies,

while (b) plots the percentage of time in which Stackelberg equilibrium arises.
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(in some joint venture) and where the payo�s obtained by a given player

depend only on whether that player participates and on the total number

of participating players. In this section, we study a related class of games

which are D-solvable, and moreover, for certain choices of the parameters,

the games in this class are S-solvable and O-solvable as well.

The class of games which we consider (class EG) is a discretization of the

non-atomic games discussed in [14]. The set of players N = f0; : : : ; N � 1g,
with i 2 N . The players have two possible strategies, namely 0 and 1,

where 1 corresponds to participation, and 0 corresponds to non-participation.

The number of participants, therefore, is given by �(s) =
P

i2N si, where si

denotes the strategic choice of player i. Payo�s are determined as follows.

The value to player i of participation is vi 2 R, and the cost of participation

is Ci(�), where Ci is a nondecreasing function of the externality. Thus, if

player i participates, then si = 1 and �i(1; s�i) = vi � Ci(�(s)). Otherwise,

if player i does not participate, then si = 0, and �i(s) = ��i(1; s�i), for

� 2 [0; 1). Intuitively, � measures the extent to which players can opt out of

the system.

Note that the parameter � does not a�ect the standard strategic elements

of a given game in this class, such as best-replies or dominated strategies. In

particular, if the game is D-solvable for � = 0 then it is D-solvable for all

� 2 [0; 1). Similarly, varying � does not change the set of Nash equilibria.

Moreover, it is straightforward to show that when � = 0, if the game is

D-solvable, then it must also be O-solvable (and therefore, also S-solvable).

In contrast, for � su�ciently close to 1, the game is not S-solvable (and

therefore, not O-solvable). Thus, by varying � we can create a class of games

which are D-solvable but not necessarily S-solvable and not O-solvable.9

In our simulations, we consider eight players (i.e., N = f0; : : : ; 7g), and
we set vi = i and Ci(�) = �=�, for � 2 R. In the �rst set of simulations,

we choose � = 1:9; we call this Game EG1:9. This game is D-solvable and

9Proofs of these claims appear in Appendix B for the class of games considered.
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therefore has a unique Nash equilibrium. Moreover, this implies that for

� = 0, this game must also be O-solvable; however, for � su�ciently close to

1, it is neither S-solvable nor O-solvable (see Appendix B). More speci�cally,

when � > 6=11 = :54, Game EG1:9 has a Stackelberg equilibrium with player

2 as the leader which di�ers from the Nash equilibrium: the Nash equilibrium

for all � 2 [0; 1) is s = (0; 0; 0; 1; 1; 1; 1; 1), while the Stackelberg equilibrium

(with player as the 2 leader and � > 6=11) is s = (0; 0; 1; 0; 1; 1; 1; 1).

Simulations of Game EG1:9 were conducted using the naive, responsive

variants of the no regret learning algorithms. The convergence results in the

asynchronous case (for A = 5; 000) are listed in Table 1, for � = :02 and


 = :002. 10 Simulations of all algorithms show rapid convergence (in the

empirical sense described earlier) to the Nash equilibrium (ne) for all values

of � in the synchronous case, and to the Stackelberg equilibrium (se) when

� = :6 and � = :9 in the asynchronous case. In particular, in Game EG1:9,

for certain choices of the parameters, the asymptotic play is not contained

in the set D1.

Algorithm � = 0 � = :5 � = :6 � = :9

Foster and Vohra ne ne se se

Freund and Schapire ne ne se se

Hart and Mas-Colell ne ne se se

Table 1: Game EG1:9 : 
 = :002; A = 5; 000

Another game which we simulated in the class EG is Game EG2:1, which

is identical to Game EG1:9, except that � = 2:1. Like Game EG1:9 this

game is D-solvable. This implies that for � = 0, this game must also be

O-solvable; however, for � su�ciently close to 1, this game is not O-solvable

(see Appendix B). Lastly, unlike Game EG1:9, Game EG2:1, is S-solvable (see

10In the algorithm due to Foster and Vohra, � = 1; 000; in the algorithm due to Freund

and Schapire, � = 1; �nally, in the algorithm due to Hart and Mas-Colell, � = 5.
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Appendix B). This game was simulated assuming all the same parameter

values as the previous set of simulations, as well as some additional choices

for 
. Selected results of these simulations appear in Table 4. Notice that

regardless of the values of 
 and �, and even in the presence of extreme

asynchrony, play converges to Nash equilibrium. Thus, as D1 = S1 6= O1,

this game provides further evidence for the conjecture that the asymptotic

play of learning in network contexts is contained in S1.

Algorithm � = 0 � = :5 � = :6 � = :9

Foster and Vohra ne ne ne ne

Freund and Schapire ne ne ne ne

Hart and Mas-Colell ne ne ne ne

Table 2: Game EG2:1 : 
 2 f:01; :005; :002; :001g; A = 10; 000

3.3 The Congestion Game

So far we have considered games with rather small strategy spaces. In this

section, we experiment with a larger strategy space, using an example that

arises in computer networks. Consider several agents simultaneously sharing

a network link, where each agent controls the rate at which she is transmitting

data. If the sum of the transmission rates is greater than the total link

capacity, then the link becomes congested and the agents' packets experience

high delays and high loss rates. The transmission rates are controlled by each

agent's congestion control algorithm, which vary the rates in response to the

level of congestion detected.

One can model the interaction of congestion control algorithms as a cost-

sharing game where the cost to be shared is the congestion experienced. That

is, we can model this as a game where the strategies are the transmission

rates ri and the outcomes are the pairs (ri; ci), where ci is the congestion
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experienced as function of the strategy pro�le r. The allocations must obey

the sum rule
P

i ri = F (
P

i ci) where F is a constraint function (i.e., the total

congestion experienced must be a function of the total load).

Most current Internet routers use a FIFO packet scheduling algorithm,

which results in congestion that is proportional to the transmission rate:

i.e., ci = [ri=
P

j rj]F (
P

j cj); this is called the average cost pricing (ACP)

mechanism. In contrast, the fair queueing packet scheduling algorithm can

be modeled as leading to allocations such that ci is independent of rj as long

as rj � ri (this condition, plus anonymity, uniquely speci�es the allocations).

This is called the Serial mechanism (see [37] for a detailed description).

Chen [6] investigates the two-player congestion game with the following

properties: (1) linear utilities Ui(ri; ci) = �iri � ci, (2) quadratic congestion

F (x) = x2, and (3) a discrete strategy space Si = f1; 2; : : : ; 12g. For the

choice of parameters �1 = 16:1 and �2 = 20:1, the game de�ned by the

ACP mechanism is D-solvable, but it is not S-solvable or O-solvable. The

unique Nash equilibrium is (4; 8) and the Stackelberg equilibrium with player

2 leading is (2; 12). In contrast, the game de�ned by the Serial mechanism

is O-solvable, with the unique Nash equilibrium at (4; 6).

We conducted simulations of both the Serial and the ACP mechanism

using the naive, responsive variants of the no regret algorithms with degree

of experimentation � = :02. 11 The simulations were run for 108 iterations.

In our simulations of the Serial mechanism, all of the learning algorithms

concentrate their play around the Nash equilibrium. In the ACP mechanism,

when play is synchronous, the asymptotic behavior again centers around the

Nash equilibrium. However, given su�cient asynchrony (e.g., A = 5; 000,

when 
 = :002), play converges to the Stackelberg equilibrium.

11In the algorithm due to Foster and Vohra, � = 5; 000; in the algorithm due to Freund

and Schapire, � = 1; �nally, in the algorithm due to Hart and Mas-Colell, � = 2; 000.
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3.4 Discussion

Our results thus far indicate that when responsive learning algorithms play

repeated games against one another, their play can reach outside the serially

undominated set, given su�cient asynchrony. In our examples, however, the

outcome is either largely inside the serially undominated set, or with su�cient

asynchrony, converges to the Stackelberg equilibrium. The transition from

one behavior to the other is quite sudden. We did not observe more general

behavior, with probabilities spread over a wider set of strategies, although,

based on work by Foster and Vohra [12], we conjecture that such behavior

arises in more complex games.

4 Simulations in Non-network Contexts

Network contexts di�er from standard learning contexts considered in the

literature in three important ways: asynchronous play, limited information,

and responsive learning. In the previous sections we have looked at how

varying asynchrony a�ects the convergence properties of learners. In this

section, we brie
y consider the remaining two properties describing network

contexts.

First we augment the information structure by considering contexts in

which learners are informed, where such learners know the payo�s that would

have occurred had they chosen an alternative action. This typically arises

when players (i) know the payo� matrix, and (ii) can observe the actions

of the other players. Not surprisingly, in this setting play outside D1 does

not arise. Unfortunately in network contexts, informed learning is not an

option; the basic structure of the Internet is such that learning is inherently

uninformed.

Our second consideration, namely responsiveness, is not inevitable, but

instead re
ects a common (and appropriate) design choice on the Internet.

We �nd the behavior of naive and non-responsive learners, in the presence of
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asynchrony, to be complex and do not claim to understand such asymptotic

behavior; for example, we do not know whether play always converges to

D1. We demonstrate some of this complexity through simulations of the

Shapley game, a classic example for which �ctitious play does not converge.

Irrespective of these complexities, non-responsive learning is not viable in

network contexts due to the non-stationarity of the payo� functions.

The results of this section show that the seemingly obvious conjecture

that asynchrony alone leads to Stackelberg behavior is not true in general. In

our simulations, this conjecture only when we consider naive and responsive

learning algorithms, as are relevant for network contexts. If the algorithms

are informed, or non-responsive, we do not observe Stackelbergian behavior.

4.1 Informed Learning

Recall that the simulations that lead to asymptotic play outside D1 utilize

the responsive and naive variants of the set of learning algorithms. In our

simulations of Game D (see Figure 1), responsive but informed learning does

not lead to play outside D1, even in the presence of extreme asynchrony.

Speci�cally, for levels of asynchrony between 1 and 10,000, simulations of

all responsive and informed algorithms show that Nash equilibrium is played

over 95% of the time.12

Intuitively this occurs because the set of informed learning algorithms

compares the current payo� with the potential payo�s of the other possible

strategies, assuming that the other agents keep their strategies �xed. The key

to the Stackelberg solution is that the leader evaluates his payo� in light of

the probable responses of other agents. Naive learners, when learning at a

slow rate, do this implicitly; that is, they only receive their payo�s after the

other players respond to their play. The informed learning algorithms which

12The simulations of Game D discussed in this section and the next depend on the same

set of parameter values as in Section 3.1; speci�cally, 
 = :01 for all algorithms, while

� = :025 for the reasonable learning algorithms and � = :05 for the no regret algorithms.
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we consider do not take this reaction into account.

If informed and responsive learning algorithms do indeed converge to D1

in general, this might be seen as an argument to consider only informed

learning algorithms. However, in network contexts this is not an option; the

information about other payo�s is not available and so we are forced to use

naive learning algorithms. However, agents do have a choice as whether to

use responsive or non-responsive learning algorithms, a subject to which we

now turn.

4.2 Non-responsive Learning

We now consider naive but non-responsive learners. Simulations of Game

D (see Figure 1) using non-responsive algorithms, for levels of asynchrony

between 1 and 10,000, show that the Nash equilibrium is played over 99% of

the time for the set of informed algorithms and over 95% of the time for the

naive set. In particular, the behavior of informed but non-responsive learners

is similar to that of informed and responsive learners, in that they learn to

eliminate dominated strategies, resulting in convergence to D1. This seems

reasonable since the informed, non-responsive algorithms which we study are

approximately adaptive learners in the sense of Milgrom and Roberts [30],

who prove that such adaptive learners converge to D1.

The case of naive, non-responsive learners is slightly more complicated.

What appears to be happening is that while initially the follower responds

to the play of the leader, eventually the follower becomes less responsive

and therefore stops following, which causes the leader to lose its advantage.

Figure 8 depicts the weight over time of strategy B for player 1 and strategy

R for player 2 in simulations of the no internal regret learning algorithms due

to Hart and Mas-Colell with level of asynchrony 100. Note that values are

recorded only every 500 rounds. Notice that player 1 (the leader) is inclined

to increase his weight, but in the absence of a noticeable response from player

2 (the follower), player 1 is forced to settle at the Nash equilibrium.
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Figure 8: Asynchronous but Non-responsive Learning via Hart's and Mas-

Colell's algorithm in Game D. (a) plots the Stackelberg equilibrium strategy

weights in the informed case; notice that play immediately converges to Nash

equilibrium. (b) plots these same weights in the naive case; notice that play

again (eventually) converges to Nash equilibrium.
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While in our simulations of relatively simple games, the asymptotic play

of non-responsive learning algorithms is con�ned to D1, we have no proof

that non-responsive, naive learning algorithms in general remain inside D1;

in fact, the authors are divided as to whether this result holds in the presence

of asynchrony. This subject warrants further study. From the perspective

of network contexts, however, the analysis of such questions is moot, since

non-responsive learners are unsatisfactory for a much simpler reason: their

performance is sub-optimal in non-stationary settings.

4.2.1 Non-stationary Environments

Consider a simple, one-player two-strategy game where the payo�s initially

are 1 for strategy A and 0 for strategy B. We simulate a non-stationary

version of this game where the payo�s are reversed every 5,000 rounds.

Figures 9 and 10 case (a) plot the cumulative percentage of time spent

playing the optimal strategy in simulations of sample reasonable learning

algorithms.13 All the reasonable learning algorithms { namely stage learning,

responsive learning automata, and the algorithm due to Roth and Erev {

spend over 90% of their time at the current optimal strategy in the simulated

quasi-static environment. In addition, the resulting 
uctuations in the weight

of strategy A in this game are depicted in (b); observe that the weight of

strategy A changes with the state of the environment.

In contrast to the reasonable learning algorithms, the non-responsive,

no regret algorithms (both the naive and informed versions) perform poorly

in non-stationary environments. Figure 11 plots the cumulative percentage

of time spent playing the Nash equilibrium for Freund's and Schapire's no

external regret algorithm, in both its responsive and non-responsive forms.14

Note that the non-responsive version of the algorithm spends only about

13The algorithmic parameters for the reasonable learning algorithms were chosen as

follows: � = 
 = :01.
14For simulation purposes, in the algorithm due to Freund and Schapire, � = 1, and in

the responsive case, 
 was set equal to .01.
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50% of its time playing the currently optimal strategy. This behavior is

representative of all the no regret algorithms studied. This is because the

non-responsive no regret algorithms �xate on one strategy early on { the

one that is initially optimal { and are unable to adjust to future changes in

environmental conditions.

Thus, the criterion of no regret, while perhaps appropriate for learning in

static environments, is apparently not su�cient for learning non-stationary

payo� functions. Since network contexts are typically non-stationary and

since this non-stationarity can be detected only via experimentation (one

cannot observe the change in the structure of the game directly), the learning

algorithms employed should be responsive.

4.2.2 Shapley Game

In this section, we compare the behavior of responsive and non-responsive

learners in a classic example. In particular, we consider the Shapley game

(see Figure 4.2.2), a well-known game in which �ctitious play, an informed

and non-responsive algorithm, does not converge. In this game, �ctitious

play results in cycling through the cells with 1's in them, namely cells 1, 2,

5, 6, 7, and 9 in Figure 4.2.2, with ever-increasing lengths of play in each

such cell [36]. One is led to conjecture that this fascinating behavior arises

because of the clear-cut choices made by �ctitious play { the strategy with

the highest expected payo� is chosen with probability 1, leading to abrupt

transitions in the trajectory of play.

Surprisingly, in our simulations,15 we observe behavior similar to that of

�ctitious play for all the non-responsive learning algorithms { both informed

(see Figures 13 (a) and 14 (a)) and naive (see Figure 13 (b) and 14 (b)) {

even though these algorithms do not induce discrete changes. In particular,

Figure 13 plots the cumulative percentage of time player 1 plays each of the

15The graphs present the results of simulations of the algorithm due to Foster and Vohra

with � = :03; however, the stated outcomes prevail regardless of the choice of algorithm.
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three strategies; although not depicted, the behavior patterns of player 2 are

identical. In addition, Figure 14 depicts the joint empirical frequencies of

the various strategy pro�les after 106 iterations, where the x-axis is labelled

1,. . . ,9 corresponding to the cells in Figure 4.2.2. Via this joint perspective,

we see that both informed and naive, non-responsive learners spend very

little time playing in cells without a 1 in them. Speci�cally, in the informed

case, the likelihood of play in cells 3, 4, and 8 approaches 0, and in the naive

case this likelihood approaches �=N .

In contrast, the responsive algorithms, while they do display the same

cycling behavior, the duration of play in each cell does not continue to grow.

Instead the responsive algorithms spend equal amounts of time in each of

the distinguished cells. This is depicted in Figure 15 (a) (the informed case)

and Figure 15 (b) (the naive case), which plot the cumulative percentage of

time player 1 spends playing each of the three strategies. Notice that these

graphs converge to 33% for all strategies. In addition, Figure 16 depicts the

joint empirical frequencies of the various strategy pro�les after 106 iterations.

One interesting feature of the set of responsive learning algorithms is that

their empirical frequencies converge to that of the fair and Pareto optimal

correlated equilibrium; in particular, both players have expected average

payo� of 1=2. This follows from the bounded memory of these algorithms.
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Figure 13: Non-Responsive Learning in the Shapley Game. The cumulative

percentage of time player 1 plays each of his three strategies assuming non-

responsive learning.
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Figure 14: Joint Empirical Frequencies of Strategy Pro�les in the Shapley

Game assuming Non-responsive Learning. The x-axis is labelled 1,. . . ,9,

which corresponds to the cells in Figure 4.2.2.
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Figure 15: Responsive Learning in Shapley Game. Cumulative percentage of

time player 1 plays each of his three strategies assuming responsive learning.
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Figure 16: Joint Empirical Frequencies of Strategy Pro�les in the Shapley

Game assuming Responsive Learning. The x-axis is labelled 1,. . . ,9, which

corresponds to the cells in Figure 4.2.2.
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5 Related Work

There is a vast literature on learning through repeated play of games, and

we make no attempt here to provide a detailed review; see the review by

Fudenberg and Levine [21] for a comprehensive discussion.

The work on learning falls roughly into two camps. The \high-rationality"

approach involves learning algorithms which aim to predict the strategies

of their opponents, and then optimize with respect to those predictions.

The prediction methods can be for example, Bayesian (as in Kalai and

Lehrer [28]), or calibrated (as in Foster and Vohra [12]), or consistent (as

in Fudenberg and Levine [20, 19]). Typically, the asymptotic play of such

algorithms is either a correlated or Nash equilibrium. Since these algorithms

depend on knowledge of the underlying structure of the game, however, they

are not applicable in the network contexts which we consider here.

In contrast, the \low-rationality" approaches to learning are concerned

with situations similar to that which we consider here; in particular, agents

have no information other than the payo�s which they receive. Examples

of such work include Roth and Erev [35], Erev and Roth [8], Borgers and

Sarin [5], Mookerji and Sopher [31], and Van Huyck et al. [26]; most of these

algorithms as they were initially proposed are not responsive, but as we

show in Appendix A, they can be made responsive with slight modi�cations.

The focus of these papers is typically on matching the results of human

experiments. Here we focus instead on the nature of the asymptotic play.

However, it is interesting to note that Chen [6] performed experiments (on the

congestion game discussed in Section 3.3) where she compared synchronous

and asynchronous play, as well as learning in full information one-shot games

(zipper design, where play is repeated, but is against di�erent opponents)

versus naive learning in repeated games.

It comes as no surprise that asynchrony can lead to play outside Nash or

correlated equilibria. For example, Stackelbergian behavior arises when there

are \patient players" [18], or the ability to make commitments Rosenthal [34],
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or the capacity to establish reputations [38]). In these prior analyses, the

Stackelberg leaders are seen as manipulating the system. The asynchrony

that we discuss here comes from a quite di�erent source: the underlying

speed of communication and computation of the agents.

6 Conclusion

This paper presented the results of experiments conducted using six learning

algorithms, embodying three distinct notions of optimality: one average-case

performance measure, and two worst-case performance measures, namely

no external and no internal regret. In the suite of relatively simple games

which were examined here, all the algorithms exhibited qualitatively similar

behavior. Thus, it seems that in network contexts, the key property is not

which type of optimality is achieved, but rather, responsiveness.

In low-information settings, where learners are necessarily naive and thus

cannot detect changes in the structure of the game directly, algorithms should

be able to respond to environmental changes in bounded time. It is shown in

this paper that when such naive and responsive learning algorithms operate

in asynchronous environments, the asymptotic play need not lie within D1.

The question of whether play outside D1 arises for naive but non-responsive

players in asynchronous environments remains open, but presumably would

only arise in games with more players and larger strategy sets than have been

studied in this paper.

It has been established previously that for reasonable learning algorithms

the asymptotic play is contained within O1, and it was further conjectured

that such play is contained within the smaller set S1. Our experimental

results are consistent with this conjecture. While these results are suggestive,

they are in no way conclusive, and so we are left with the open question of

what the appropriate solution concept is for naive and responsive learning

algorithms in asynchronous settings.
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A Learning Algorithms

For completeness, this appendix describes the learning algorithms which were

simulated in this study: responsive learning automata, due to Friedman and

Shenker [15], responsive learning via additive updating, due to Roth and

Erev [9], multiplicative updating, due to Freund and Schapire [1], the mixing

method, due to Foster and Vohra [10], and �nally, learning via no internal

regret, due originally to Foster and Vohra [12], and simpli�ed by Hart and

Mas-Colell [25]. The algorithms are presented in several varieties, depending

upon whether they are applicable in informed or naive settings, and whether

or not they are responsive. In informed settings, the counterfactual is known

{ in other words, players are informed of the potential payo� which they

might have achieved had they employed any of their other strategies { while

in naive settings, the only information pertaining to the payo� structure

that is available at a given time is the payo� of the strategy that is in fact

employed at that time. Informally, an algorithm is responsive if it weights

recent information more heavily than past information and has a non-zero

lower bound on the level of experimentation. 16

A.1 Notation

The algorithms in this Appendix are described from the point of view of a

single player engaging in a game against nature. Note that this point of view

gives rise to notation which deviates from that of the main paper. The player

chooses strategic actions from a strategy set N = f1; : : : ; ng, for n 2 N . Let

i; j 2 N . The payo� awarded at time t by employing strategy i is denoted

�ti , and in general, the payo� function at time t is given by �t : N ! [a; b],

for a; b 2 R. Note that payo�s are assumed to be bounded. For all the types

of learning considered in this paper, the algorithm that determines strategic

choices is described in terms of a time-dependent vector of probabilities,

16The formal de�nition of responsiveness is given in [16].

37



namely pt = (pt1; : : : ; p
t
i; : : : ; p

t
n), where p

t
i denotes the probability of playing

strategy i at time t.

A.2 Responsive Learning Automata

Responsive learning automata (RLAs) are introduced in [15]. This algorithm

is designed for network contexts; it is applicable in naive settings and it is

are responsive, as the name suggests. It is known that RLAs are reasonable

learners, and therefore, RLAs converge to O1 [16]; moreover, in the case of

synchronous play, RLAs converge to D1 [15].

RLAs are a responsive extension of a simple learning automaton (for a

survey of the literature, see Narendra and Thathachar [32]). This simple

learning automata is constructed by letting p0i = 1=n and using the following

update rule when strategy i is played at time t:

pt+1i = pti + 
�ti(1� pti) (1)

pt+1j = ptj(1� 
�ti); 8j 6= i 2 N (2)

where 
 is a parameter that controls the tradeo� between learning rapidly (for


 close to 1) and accuracy (for 
 close to 0). This learning automaton is not

responsive. RLAs achieve responsiveness simply by imposing the requirement

that the probability of any strategy never fall below �=(n � 1) according to

the following update rules:

pt+1i = pti + 
�ti
X
j 6=i

atjp
t
j (3)

pt+1j = ptj(1� 
�tia
t
j); 8j 6= i 2 N (4)

where atj = min
�
1;

pt
j
��=(n�1)


�t
i
pt
j

�
.

The following two sections describe alternative learning mechanisms based

on additive updating due to Roth and Erev [9] and Foster and Vohra [12].

38



A.3 Simple Additive Updating

A second example of learning via additive updating is the naive learning

algorithm of Roth and Erev [9] which is reasonable, for certain choices of the

parameters. The updating scheme is as follows: pti = qti=
P

j2N qtj. If strategy

i is played at time t then the qi's are updated as follows:

qt+1i = (1� 
)qti + �ti(1� �) (5)

qt+1j = (1� 
)qtj + �ti(�=(n� 1)); 8j 6= i 2 N (6)

where 
 behaves as in the RLA. It is straightforward, although quite tedious,

to show that this algorithm is reasonable.

The following sections describe additive and multiplicative learning rules

that satisfy the no external regret optimality criterion.

A.4 Additive Updating Revisited

This section presents an additive updating rule due to Foster and Vohra,

known as the mixing method [10], which exhibits no external regret. The

mixing method was originally designed for use in informed settings, and

consequently updates weights according to the cumulative payo�s achieved

by all strategies, including the payo�s that would have been obtained by

strategies which were not played. The cumulative payo�s obtained at time t

by strategy i (notation �ti) is computed as follows: �ti =
Pt

x=0 �
x
i .

In the case of two strategies, say A and B, the mixing method updates

the weight of strategy i as follows:

wt+1
A = min

(
max

(
1

2
+
�(�tA � �tB)

2(�tA + �tB)
; 0

)
; 1

)
(7)

where the truncations ensure that the probability assigned to strategy A is

between 0 and 1. It is shown in Foster and Vohra [10] that the optimal

value of � is
p
T , where T is the number of iterations, at which point, the

mixing method exhibits no external regret. In general, when the number
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of strategies n > 2, the algorithm utilizes pairwise mixing of strategies via

Equation 7, followed by further mixing of the mixtures.

The mixing method can be modi�ed for use in naive settings by utilizing

an estimate of cumulative payo�s that depends only on the payo�s obtained

by the strategies that are actually employed and the weights associated with

those strategies. In particular, let �̂ti = (Iti=p
t
i)�

t
i where I

t
i is the indicator

function: Iti = 1 if strategy i is played at time t, and Iti = 0, otherwise. In

other words, �̂ti is equal to 0 if strategy i is not employed at time t; otherwise,

�̂ti is the payo� achieved by strategy i at time t scaled by the likelihood of

playing strategy i. Now estimated cumulative payo�s (notation �̂ti) are given

by: �̂ti =
Pt

x=0 �̂
x
i . The naive variant of the mixing method uses �̂ti in place of

�ti in Equation 7. This update procedure yields a set of weights which must

then be adjusted for use in naive settings, in order to ensure that the space

of possible payo�s be adequately explored. This is achieved by imposing an

arti�cial lower bound on the probability with which strategies are played. In

particular, let p̂ti = (1� �)pti + �=n, and compute �̂ti in terms of p̂ti.

Finally, the mixing method can be modi�ed to achieve responsiveness by

utilizing exponential smoothing. In the responsive variant of this algorithm

~�ti is substituted for either �ti or �̂ti, depending on whether the setting is

informed or naive. In particular, for 0 < 
 � 1, in informed settings and

naive settings, respectively, ~�t+1i = (1� 
)~�ti + �ti and ~�t+1i = (1� 
)~�ti + �̂ti .

A.5 Multiplicative Updating

This section describes an algorithm due to Freund and Schapire [13] that

achieves no external regret in informed settings via multiplicative updating.

The development of the variants of the multiplicative updating algorithm is

analogous to the development of additive updating.

The multiplicative update rule is computed in terms of the cumulative

payo�s achieved by all strategies (namely �ti) including the surmised payo�s

of those strategies which are not played. In particular, the weight assigned
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to strategy i at time t + 1, for � > 0, is given by:

pt+1i =
(1 + �)�

t
iP

j2N(1 + �)�
t
j

(8)

The multiplicative updating rule given in Equation 8 can be modi�ed

in a manner identical to the mixing method, using �̂ti and p̂ti to become

applicable in naive settings, and using ~�ti to achieve responsiveness. A naive

variant of this multiplicative updating algorithm which achieves no external

regret appears in Auer, Cesa-Bianchi, Freund, and Schapire [1].

A.6 No Internal Regret

This section describes an algorithm due to Foster and Vohra [12] that achieves

no internal regret in informed environments, and a simple implementation

due to Hart and Mas-Colell [25]. In addition, the appropriate naive and

responsive modi�cations are presented. Note that learning via no internal

regret algorithms converges to correlated equilibrium [11, 25], and therefore

converges inside the set D1.

Regret can be interpreted as a feeling of remorse over something that

happened as a result of one's own actions. Formally, the regret felt by player

i at time t is formulated as the di�erence between the payo�s obtained via

strategy i and the payo�s that could have been achieved had strategy j been

played whenever i had been played in the past: i.e., rt
i!j = Iti[�

t
j � �ti ].

Cumulative regret is given by: cr
t
i!j =

Pt
x=0 r

x
i!j and internal regret is

de�ned as irt
i!j = (crt

i!j)
+, where X+ = maxfX; 0g.

Consider the case of a 2-strategy game, with strategies A and B. The

components of the weight vector, namely pt+1A and pt+1B , are updated via the

following formulae, which re
ect cumulative feelings of regret:

pt+1A =
ir

t
B!A

ir
t
A!B + ir

t
B!A

and pt+1B =
ir

t
A!B

ir
t
A!B + ir

t
B!A

(9)
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If there is signi�cant regret for having played strategy B rather than strategy

A, then the algorithm updates weights such that the probability of playing

strategy A is increased. This algorithm is due to Foster and Vohra [12]. In

general, if strategy i is played at time t,

pt+1j =
1

�
ir

t
i!j and pt+1i = 1�X

j 6=i

pt+1j (10)

for � > 0. This algorithm is due to Hart and Mas-Collell [25].

In a naive setting, it is necessary to compute an estimate of internal

regret. Recall that the regret at time t for having played strategy i rather

than playing strategy j is given by: rt
i!j = Iti[�

t
j��ti ]. An estimated measure

of expected regret r̂
t
i!j is given by: r̂

t
i!j = pti[I

t
j�̂

t
j � Iti�̂

t
i ]. Note that the

expected value of this estimated measure of regret is the expected value

of the actual measure of regret. Now an estimate of cumulative internal

regret is given by îr
t
i!j = (

Pt
x=0 r̂

x
i!j)

+. Finally, weights are updated as in

Equation 10, with îr
t
i!j used in place of irt

i!j.

Like the additive and multiplicative updating algorithms, the no internal

regret learning algorithm is made responsive via exponential smoothing of the

payo�s. In the informed case, notice that the expected value of cumulative

regret is pti[�
t
j � �ti]. Thus, it su�ces to use ~�ti and ~�tj as de�ned previously

when computing internal regret.

This concludes the discussion of the learning algorithms that were selected

for simulation in this study. While this appendix is primarily a survey of

the literature, it also includes extensions to the algorithms for applicability

in network contexts. In future work, we hope to extend the scope of our

simulations by considering additional related algorithms.

B Results on the Class EG

In this appendix, we discuss the claims that are made in Section 3.2 that

pertain to Game EG1:9 and Game EG2:1. First of all, we note that for � = 0,
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both of these games are D-solvable. This can be shown via the general

technique of analyzing the best-reply (Cournot) dynamics of the relevant

class of games as in [14]; however it can also be shown directly for these

simple examples.

Consider Game EG1:9 for a set of 8 players. For player 7, even when

� = 8, �7 = 7� 8=1:9 > 0. Thus, participation dominates non-participation

for player 7, and similarly for players 5 and 6, implying that � � 3. Now,

given that players 5, 6, and 7 eliminate their dominated strategies, for players

0, 1, and 2, non-participation dominates participation. For example, if player

2 participates, then �2 � 2 � 4=1:9 < 0. Thus, given that players 0, 1,

and 2 eliminate participation because it is dominated, continuing this line

of reasoning, we �nd that non-participation is dominated for players 3 and

4. Finally, the unique outcome via the iterated elimination of dominated

strategies is s = (0; 0; 0; 1; 1; 1; 1; 1). By an analogous argument, we note

that Game EG2:1 is also D-solvable with outcome s = (0; 0; 0; 1; 1; 1; 1; 1).

The above argument also shows that Game EG1:9 and Game EG2:1 are

D-solvable, for � 2 (0; 1), since dominated strategies are unchanged for these

values of �. Moreover, these games are alsoO-solvable, for � = 0, since in this

case one can show that any dominated strategy is also overwhelmed using

the monotonicity properties of the payo� functions. However for � close to

1, neither game is O-solvable. In particular, participation sometimes yields

a higher payo� than non-participation, but sometimes this e�ect is reversed,

depending on the strategies of the other players. For example, consider player

7 in Game EG1:9, when � = :9. Participation with seven other players yields

payo�s of �7 = 2:79; but non-participation with no other participants yields

�7 = 5:83, while non-participation with seven participants yields �7 = 2:51.

In fact, no strategies are overwhelmed either game for � close to 1.

While both Game EG1:9 and Game EG2:1 are D-solvable, and neither

are O-solvable, these games di�er in terms of S-solvability. In particular,

Game EG2:1 is S-solvable, while Game EG1:9 is not. Consider �rst Game

EG1:9; in particular, consider the possible payo�s of player 2 as the leader.
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If player 2 participates, then player 3 does not, which results in payo�s of

�2(1) = 2�5=1:9; on the other hand, if player 2 opts out, then player 3 does in
fact participate, which yields payo�s of �2(0) = �(2� 6=1:9). Consequently,

player 2 participates when � > 6=11, since this implies that �2(1) > �2(0).

Therefore, there exists a Stackelberg equilibrium in Game EG1:9 with player

2 as leader which di�ers from the Nash equilibrium. Now consider Game

EG2:1. In this game, regardless of whether or not player 2 participates,

player 3 participates, since �3 = 3� 6=2:1 > 0. Consequently, player 2 only

participates when �2(1) = 2� 6=2:1 > �(2� 6=2:1) = �2(0) which cannot be

satis�ed for any � < 1. A more detailed argument can be used to show that

this game is indeed S-solvable.
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