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New Brunswick, NJ 08903.
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February 23, 1999

Abstract

We consider the social norms of repeated matching games in the presence of �nite
probability trembles and show that such norms must be subgame perfect along the
equilibrium path but need not be subgame perfect o� the equilibrium path.

This is consistent with the well known experimental results by Roth et. al. (1991)
in which subjects play subgame perfect equilibria in the market game but play non-
subgame perfect equilibria in the Ultimatum game, providing a simple and intuitive
explanation for this behavior in terms of societal norms, where societal norms are
simply the dominant play induced by the sequential equilibria arising in societal games.

Our analysis provides a fully rational explanation of behavior that has been typically
analyzed as arising from boundedly rational play. It also emphasizes the importance
of studying the e�ects of �nite tremble probabilities and population sizes directly, for
example both limits, very large, and very small populations yield misleading predictions
for the intermediate case.

1 Introduction

Experiments in extensive form games have led to many results which challenge the founda-

tions of rational game theoretic analysis. Play often contradicts the standard theory and

many authors have attempted to create a framework in which to understand these results.

�I would like to thank Rich Mclean, Paul Resnick and Larry Samuelson for helpful comments. email:
friedman@econ.rutgers.edu, www: http://econ.rutgers.edu/home/friedman
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For example, Roth et. al. (1991) ran a series of experiments on two related games:

the ultimatum game and a market game. Interestingly, the market game shows robust

and rapid convergence to the subgame perfect outcome, while in the ultimatum game non

subgame perfect outcomes seem to be robust. These results for the ultimatum game have

been veri�ed in a variety of settings (e.g., Guth and Tietz, 1990, and Slonim and Roth, 1998,

among others).

Various explanations have been suggested. Perhaps the most commonly accepted is the

idea of learning in the medium term (Roth and Erev, 1995, Erev and Roth, 1998). However,

another commonly cited explanation is the idea of social conventions (e.g., Kandori, 1992,

Camerer and Thaler, 1995, among many others). In this view, people develop notions

of fairness and proper behavior in their daily life which they then apply in experimental

situations, thus leading to behavior that appears irrational to the experimenters, but is

rational in the context of typical societal interactions.

In this paper we take this latter approach, and show that the results in these experiments

is consistent with the social norms of a larger \societal game' (see also, Kandori, 1992 and

Ellison, 1994). This provides a fully rational explanation for behavior that is commonly

considered to arise from boundedly rational play. In particular, we show that in anonymous

repeated matching games in which players tremble with `reasonable' probability the `robust'

sequential equilibria of these larger games leads to behavior in the stage games which is

consistent with experiments. This provides an alternative, and we believe complementary1,

1As we discuss in Section 6, we believe that there is a deep connection between robust social equilibria
and learning. A well known intermediate connection has been o�ered by Young (1993) and others which
study the evolution of social conventions in a process analogous to learning.
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explanation of experimental behavior.

This paper is organized as follows: in the next section we review the experimental results

and describe the games under study. Then in Section 3 we present our model of societal

interactions, while Section 4 presents our main results. We conclude in Section 5 with a

discussion.

2 Experiments on Extensive Form Games

Roth et. al. (1991) performed experiments in four di�erent countries on two seemingly

similar games, the market game and the ultimatum game. In all four countries play in the

market game converged rapidly and robustly to the subgame perfect Nash equilibrium, while

play in the ultimatum game converged rapidly to a nonsubgame perfect equilibrium in each

country, but each was slightly di�erent in the di�erent countries.

In the market game there are groups of 11 players, 10 buyers and 1 seller, where the

buyers bid on an object worth 1000 units (about US$10 or US$30), in 5 unit increments and

then the seller decides whether to accept the highest bid, or reject all the bids. If the seller

accepts a bid of b, then the player who made that bid receives 1000� b, the seller gets b and

all the other players get 0. (Ties are broken randomly.) If the seller rejects the bid then all

players get 0. Iin their experiments, the play very quickly converged to 995 or even 1000.

The describe the robustness of this result as \striking."

In order to simplify the analysis we study a simpler version of this game. We assume

that there are only 2 buyers who are restricted to 2 possible o�ers, low (L) or high (H). If

a low o�er is accepted the seller gets 2 utils and the buyer 3 utils, while if a high o�er is
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accepted the payo�s are reversed. This simpli�cation does not a�ect either the equilibria

of the game or our results signi�cantly. (Although, an important subtlety in the analysis is

discussed in Section 4.3) In particular, the only subgame perfect strategy in this game is for

all the buyers to o�er H and for the seller to accept any o�er.

The second game studied was the ultimatum game. In this game there are 2 players, the

proposer and the responder. This game can be viewed as the market game with a single

buyer, the proposer. In this game the only subgame perfect Nash equilibrium is for the

proposer to o�er 0 (or 5) and the responder to accept any o�er. However, in the experiments

(Roth et. al., 1990) play converged rapidly to the case where the proposer made a fair o�er

(typically between 400 and 600 units) which the responder accepted, while the responder

would often (40-90

In this case our simpli�ed game has two o�ers (L;F ) where F is the `fair' bid. If the

proposer o�ers L then she gets a payo� of 9 and the responder gets 1, if the responder

accepts, while if she o�ers H and the responder accepts the payo�s are 5 for the proposer

and 5 for the responder. Once again, both players get 0 if the responder rejects.

As we will demonstrate in the following, these results have precise analogues in the social

equilibriumwhen embedded in a larger societal game; in particular, the nonoptimal behavior

observed in the ultimatum game arises quite naturally as equilibria in social settings.

3 Robust Social Equilibria and Norms

We consider the following model of societal interactions with a simple model of information

transfer. For ease of presentation we will discuss the set up for the market game, although
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the set up for the ultimatum game is analogous. Consider a population of M players,

where for simplicity assume that M is divisible by 3 and divided into 2 groups, buyers and

sellers. There are twice as many buyers as sellers. There are an in�nite number of periods,

T = 0; 1; 2; : : : in which players are divided up at random to play the market game, with

one seller and 2 buyers in each game. At the end of each period, the players receive their

payo�s for the game and then are rematched randomly in the following period. This model

is a standard one so far (see, e.g. Rosenthal 1979); however we add 2 nonstandard parts.

First, we want a simple model of information transfer, so we assume that the history of

play is public knowledge, but anonymous. Thus each player knows precisely what actions

were chosen in every game in every previous period, but does not know which players chose

those actions, since the information is anonymous. We will discuss this assumption in more

detail in the context of our results in the next section.2

Second, we want our model to be robust in the sense that if not all players play perfectly,

the analysis is still holds. To this end, we assume that players occasionally deviate from the

equilibrium strategy. In particular, we assume that each time a player chooses an (intended)

action, the player trembles with probability � > 0 and chooses a di�erent (unintended)

action, randomly from the remaining actions.3 The main complications in our analysis will

arise because, in contrast to the standard analyses with trembles we do not consider the

limit as � approached zero4, but will instead be interested in \reasonable" values of �. Note

2This assumption is also discussed in more detail in Friedman (1998) and Friedman and Resnick (1998).
The latter paper discusses examples from the Internet, in which such information is often kept by the
computer system and is publicly available in the form of history �le or publicly available archives.

3Note that evolutionary analyses of the prisoner's dilemma are dramatically altered by the presence of
trembles as in Nowak and Sigmund (1993).

4For example, trembling hand perfect equilibria (Selton , 1975) or in a closely related model to the one
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also, that one can also interpret � as a fraction of \stupid" or \malicious" players.

Lastly, to simplify the presentation we will assume that there is a public signal on which

players can coordinate their actions, qt. Where fqtg is a sequence of i.i.d. variables which

are each uniformly distributed on the interval [0; 1].

Let hti be player i's history at time t, which includes both the public history of actions,

public signals and the player's personal history which includes her own play and that of the

opponents against who she has been matched. A strategy in the societal game is a mapping

si from histories to mixtures over actions. A player's payo� in this game is Ui(si; s�i) =

E[
P
1

t=0 �
t�tijs; �] where the expectation is over both mixtures and trembles.

De�nition 1 A set of strategies in the societal game < �;A; �; �;M > which are part of a

sequential equilibrium will be denoted a social equilibrium.

As experimental observers, we are interested in the play in the stage game as part of a

social equilibrium. When play in a social equilibrium leads to a dominant mode of play in

the stage games we say that this is a \social norm."

De�nition 2 For any  2 [0; 1] a set of strategies for the stage game is a -social norm

if those strategies are played with probability greater than  in the stage games, where this

probability is taken with respect to trembles, player randomizations, and the public signal.

Note that since � > 0 every play path is possible, and thus our analysis is robust with

respect to the standard re�nements.

in this paper (Ellison, 1994)
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4 Results

We now study the relationship between the parameters of the societal game < �;A; �; �;M >

and the set of social equilibria and social norms. Our main argument will be that for

\reasonable choices of parameter values" we get social norms which agree with those found

in the experiments previously discussed; in particular we show that for reasonable parameter

values the only social norms of the societal market game is one in which players play the

subgame perfect equilibrium of the (one-shot) market game, while for similar parameter

values the observed \fair equilibrium" of the ultimatum game (which is not subgame perfect)

is a social norm.

4.1 The market game

The basic idea of our analysis, is that the set of social equilibria and norms depends crucially

on the expected total number of trembles per period, M�. This is because when players are

anonymous societal punishments must be meted out to the entire population, which is quite

costly, and in equilibrium will be triggered accidentally by trembles.5

For example, consider the following collusive set of strategies, which is the only other

Nash equilibrium of the stage game. In the normal phase, the buyers all o�er L and the

seller accepts all o�ers. If in any period some buyer deviates and o�ers the high amount H,

a myopically bene�cial deviation, then the players switch to a punishment phase, in which

5This is closely related to the paradox of trigger strategies in repeated games with imperfect monitoring
(Green and Porter, 1984) which is forcefully brought out in Rubinstein's (1979) model of criminal sanctions
in a world of rational citizens with imperfect monitoring. In equilibrium it is necessary to punish people
who appear to have violated the law, but are known (by the assumptions of rationality and equilibrium) to
be innocent.
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all buyers make high o�ers and the seller still accepts all o�ers. The punishment phase

continues until the �rst period when the exogenous signal qt is less than some threshold,

denoted by q̂.

Now we study the parameter values for which these strategies form a social equilibrium.

Since the seller never has any incentive to deviate we focus on the buyers. Let V (resp.

W ) be the expected future payo�s beginning in a normal (resp. punishment) phase. When

a player decides to deviate, she must weigh the immediate bene�t, which is approximately

2 � 3=2 = 1=2 (the expected payo� from bidding H minus the payo� from bidding L and

winning half of the time) against the expected loss which is roughly �(V � W )P where

P is the probability that no other buyer, in the entire society, has deviated. Note that

P = (1� �)M
0
�1, where M 0 = 2M=3 is the number of buyers in the entire society. Note that

when M� is large P is approximately e�M
0� and thus this probability depends roughly on

the value of M 0�.

First we compute all these quantities then we carefully choose q̂ so that buyers will be

indi�erent between deviating and note that this leads to the most collusive outcome in which

q̂(M; �) =
(1 + �)(1� �)�2M=3

�(2 + �)
:

(The detailed computations are in the appendix.) Since q̂ must be less than 1, there can be

no equilibrium when q̂(M; �) � 1. Fixing � we solve for Mmax which satis�es q̂(Mmax; �) = 1,

which yields

Mmax =
�
3

2

� ln(1+�
2+�

)� ln(�)

ln(1 � �)
:

This is the largest value for M such that the punishment strategies yield an equilibrium.
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For example, when � = :05 and � = :95 the equilibrium does not exist for M >

Mmax(:05) = 18:06 a fairly small population size. Even when M < Mmax play may still

not be far from the subgame perfect outcome and colluusive play not a social norm. For ex-

ample, when M = 12 then q̂(10; :05) = :81 which implies that punishment stages last about

5:3 periods on average. Since the probability of beginning a punishment period is approxi-

mately 0:34 we see that the expected time between punishment periods is approximately 2

periods. This implies that play is in a normal phase only about 27% of the time and thus

play is still predominantly at the subgame perfect outcome. Thus, for any  > 0:27 the col-

lusive equilibrium is not a -social norm. Note also that these calculations are only weakly

dependent on the discount factor, �. For example, when � = :99, then Mmax(:05) = 19:3

which is very close to the value when � = :99.

In order to understand these relationships, we take the Laurent expansion of Mmax near

� = 0. This yields Mmax � (3=2) ln(2�)=�, and thus we see that M� is the crucial parameter

which determines whether there is play that is not part of the subgame perfect outcome of

the market game.

Given these numerical results, we believe that it is quite reasonable to claim that for

reasonable tremble probabilities and population sizes the only reasonable outcome is the

subgame perfect equilibrium of the market game.6 Formally, we have shown the following:

Theorem 1 Consider the societal market game < �;A; �; �;M >. Then:

1) for � < :1 and M� < ln(2�) there exists a social equilibrium in which players do not play

6Friedman (1998) provides a similar analysis for the prisoner's dilemma; however in that game not only
is the static Nash equilibrium (defect, defect) the only social equilibrium, but the strategy defect always is
a dominant strategy in for the repeated game, and thus the only rationalizable strategy.
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the market equilibrium in every period.

2) for any  2 [0; 1) there exists a � > 0 such that for all � < :1 andM < �=� the collusive

stage game strategies are a -social norm.

The obvious weakness of the preceding argument is that we have only considered a speci�c

set of strategies, and that some other set of strategies might yield a non-subgame perfect

outcome, i.e, we have not proven the converse of the above theorem. However, the following

theorem shows that for M� su�ciently large the only social norm is the market equilibrium.

Theorem 2 Consider the societal market game < �;A; �; �;M >. Then:

for any  > 0:5, there exists � > 0 such that in any game with � < :1 and M > �=� the only

social norm is the market equilibrium.

4.2 The Ultimatum Game

Based on the analysis in the previous section, it might appear that the only social norms

for the ultimatum game consists of playing the subgame perfect outcome of the stage game.

This is true in the following sense:

Theorem 3 Consider the societal ultimatum game, < �;A; �; �;M >. Then:

in any game with � < :1 there exists some M > 0 such that for M > M the unique social

equilibrium is one in which the subgame perfect equilibrium of the stage game is (intended to

be) played in every period.

This immediately implies the analogous result for social norms:
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Corollary 1 Consider the societal ultimatum game, < �;A; �; �;M >. Then:

in any game with � < :1 there exists some M > 0 such that for M > M the unique -social

norm is the subgame perfect equilibrium of the stage game.

Thus, for �xed � > 0 there exists some population size for which we cannot get the fair

equilibrium as a social norm. However, this result is misleading as the following example

suggests.

Once again consider a trigger equilibrium, but this time instead of triggering when the

proposer for makes an `unfair' proposal, we only trigger when the responder accepts such a

proposal. Note that we are triggering on an action which is o� the equilibrium path. This

will make a signi�cant di�erence in the dependence of this strategy on the population size.

Formally, de�ne the trigger strategy as follows: In a normal phase the proposer o�ers F

and the responder accepts F but declines L. If the proposer trembles and o�ers L and the

responder trembles and accepts that o�er a punishment phase begins in which the proposer

o�ers L and the responder accepts all o�ers. The punishment phase ends in the �rst period

in which qt < q̂. As we will see the key aspect of this strategy is that it takes 2 mistakes to

trigger a punishment phase.

Note that this strategy is consistent with the observed play in Roth et. al. (1990),

in which most proposers make the fair o�er, but occasionally proposers make lower o�ers,

which are often rejected by the responder. In fact, as mentioned earlier, they show that the

proposers are making the optimal o�ers conditional on the responder's (o� equilibrium in

our modeling) behavior.
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Thus, in a normal period if neither player actually deviates, the responder gets 5; if only

the proposer deviates then they both get 0; if only the responder deviates then both get 0,

while if they both deviate the responder gets 1. As in the previous example, we can compute

the conditions for these strategies to be an equilibrium. Note that the key di�erence is that

the probability of accidentally triggering a punishment phase is now (1 � �2)M=2 which is

approximately e�M�2=2 and now the crucial quantity is M�2 instead of M�. A calculation

yields (in the appendix):

q̂ =
(1 + �)(1� �2)�M=2

(5 � 3�)�
:

Then

Mmax = 2
ln( 1+�

�(5�3�)
)

ln(1� �2)
:

As before we compute the value of Mmax for various parameters. For example, for the

societal ultimatum game Mmax = 1181 when � = :95 and � = :05. This was only 14 for the

market game, with the same parameters. Thus we see that for reasonable error probabilities

and fairly large populations the nonsubgame perfect equilibrium of the ultimatum game can

arise as a social equilibria. Also, notice that the dependence on � is weak.

Now consider some `reasonable parameters'. Let M = 300, � = :95 and � = :05. In this

case q̂ = :26 and the fair outcome is an 80%-social norm. While for � = :95 and � = :01 for

any M < 3000 the fair outcome is an 80%-social norm.

Once again consider the �rst term of the Laurent expansion of Mmax. This is Mmax �

2 ln(5�)=�2 which implies that this equilibria can be sustained for (M�)� � 2 ln(5�), while

the analogous condition was M� � (3=2) ln(2�) for the market game. This is because the
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strategies are triggering on accidental o� equilibrium deviations which are far less likely than

accidental on equilibrium deviations.

To summarize, we have the following analogues to Theorems 1 and 2:

Theorem 4 Consider the societal ultimatum game < �;A; �; �;M >. Then:

1) for � < :1 and M < ln(2�)=� there exists a social equilibrium in which players do not play

the subgame perfect equilibrium in every period.

2) for any � < :1 and  > 0 there exists a � > 0 such that forM < �=�2 the "fair equilibrium"

strategies are a -social norm.

Theorem 5 Consider the societal ultimatum game < �;A; �; �;M >. Then:

for any  2 [0; 1], there exists � > 0 such that in any game with � < :1 and M > �=�2 the

only -social norm is the subgame perfect equilibrium of the stage game.

If we think of the proposer as the salesperson naming a price and the receiver deciding

whether or not to purchase, we see that this equilibrium corresponds to a social convention

in which salesman who overcharge are not socially sanctioned, but consumers who purchase

overpriced goods are, in the sense that salesmen learn that they can \get away" with making

low o�ers.

Lastly, note that this argument is unchanged for the ultimatum game when the o�er can

be anything between 0 and 20 units. In particular, any o�er greater than 0 can be sustained

as a social equilibria. Thus, it is not surprising that the modal o�er in di�erent countries

may be di�erent, as this is the case of selection of a social convention for which there is no
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distinction between the di�erent conventions.7 However, in every case the proposer's o�er

must be optimal with respect to the responders expected action, which need not be optimal,

as seen in Roth et. al. (1991).

4.3 A comment on the market game

At �rst it seems possible that a construction such as this could be used to construct a

nonsubgame perfect social norm in the market game. For example one possible approach

is to have the buyers o�er L and have the seller only accept low o�ers. This strategy is

triggering on o� equilibrium behavior and thus could be robust. However, the di�culty is

that the buyer is receiving the lowest possible payo�, and thus there is no way to punish

him for a deviation when this is a -social norm with  > :5.

One might think that this is related to the fact that we are considering a reduced action

set where there are only 2 possible o�ers. If there were 3, such as L < F < H then the buyers

could collude on F and switch to L if the seller accepts a high o�er. While this enforces the

sellers behavior in the normal phase, there is no way to maintain the punishment phase in a

-social norm for  > :5, as there is no further punishment to enforce the seller's behavior.

Notice that this result holds for any number of possible actions due to an unraveling

argument. It even holds when o�ers are continuous, since each punishment phase must be a

�nite distance below the previous o�er and even though the size of these steps can become

arbitrarily small as M� gets large, the unraveling argument still leads to the conclusion that

no non-market outcome is possible as a social norm.

7For more on the selection of social conventions see, e.g., Young (1993, 1995), and references therein.
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5 Extensions

One can formalize the concept of distance from the equilibriumpath in terms of the number of

deviations needed to reach a subtree of the stage game, and show that stage game equilibria

in which the only pro�table deviations are k deviations away from the equilibrium path

depend on the quantity, M�k, and thus typically can be supported as social norms for large

population sizes. For example, any nonsubgame perfect equilibrium in the market game, has

a pro�table deviation on the equilibrium path and thus k = 0, while the fair equilibrium in

the ultimatum game has k = 1 and is more `robust.'

For another example, consider the alternating bargaining game (Rubinstein, 1982). If

there are r alternating o�ers then there are nonsubgame perfect strategies for which the only

pro�table deviations are distance k = 2r � 1 from the equilibrium path. For example, when

r = 2 and the payo�s are chosen to be identical to the ultimatum game we studied above,

nonsubgame perfect equilibria can exist as -social norms for quite large � and M , e.g. when

� = :01, Mmax � 400; 000 while even for � = :1, Mmax � 4; 000.

In fact, in the in�nite stage alternating bargaining game, for any � < :1, M > 0 and

� > :9 there exist nonsubgame equilibria of the stage game which are -social norms for any

size population and value of  2 [0; 1); however, these norms only di�er slightly (along the

equilibrium path) from the unique subgame perfect equilibrium.
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6 Summary and Concluding Comments

To summarize we present the following table which compares the parameters under which

non subgame perfect outcomes can arise (for � = :95).

Market Game Ultimatum Game

Non SPE exist? Non SPE exist?

� M q̂ Equil. Norm % non SPE q̂ Equil. Norm % non SPE
.05 30 - No No - .23 Yes Yes 98
.05 300 - No No - .26 Yes Yes 82
.05 3000 - No No - - No No -
.01 30 .57 Yes No 84 .21 Yes Yes 99.9
.01 300 - No No - .21 Yes Yes 99
.01 3000 - No No - .3 Yes Yes 93
.01 30000 - No No - .38 Yes No 43

Table 1: Existence and properties of nonsubgame perfect outcomes from

trigger strategy equilibria.

Thus, it seems reasonable to claim that the market outcome should be observed in the

market game, while the fair outcome is reasonable in the ultimatum game. Thus, the distinc-

tion between enforcement on and o� the equilibrium path is an important factor in robust

social equilibria, and perhaps other types of robust solution concepts.8.

On important general insight from this analysis, is that limiting behavior of models may

be misleading. In Kandori's (1990) analysis, � = 0, � 2 (0; 1) was �xed and the limit of

M ! 1 was taken, while in Ellison (1994), M > 0 and � 2 (0; 1) were chosen carefully,

while the limit � ! 0 was taken. In the early stages of this work we considered the case

8For example, this distinction has been noticed in models of learning and appears to be closely related to
the idea of self-con�rming equilibria (Fudenberg and Kreps, 1995. Fudenberg and Levine, 1993).
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where � > 0 and � 2 (0; 1) were �xed and the limitM !1 was taken. All three would lead

to misleading conclusions on at least one of these two games.

Only by carefully analyzing the actual parameter values, before taking limits, do we get

the answers presented in this paper, which we believe are the reasonable outcomes of the

model and also agree with the behavior observed in experiments, and perhaps more generally

in society.

A Appendix

A.1 Theorems 1 and 4

In this section we provide a sketch of the analysis used to compute the equilibrium conditions

in the examples.9 The main complication is the explicit consideration of trembles.

First note that in a normal period, the immediate expected payo� is

�norm = (1� �) ((1� �) (3=2 � 3=2 �) + � (2� �)) ;

where we have conditioned on all possible combination of trembles. Similarly in a punishment

period we have

�punishment = (1 � �)
�
(1 � �) (1 + �) + 3=2 �2

�
:

In a normal period the probability of there being a deviation which starts a punishment

phase is Pdev = 1� (1 � �)2M=3 and the probability of a punishment phase ending is 1� q. If

we let v be the expected normalized discounted payo�s (payo�s multiplied by 1� �) starting

in a normal phase and w the analogous quantity starting in a punishment phase, then these

9The detailed computations were done using Maple c and are available directly from the author upon
request.
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quantities must satisfy the following equations:

v = (1� �)�norm + (1� Pdev)�v + Pdev�w

w = (1 � q)v+ q((1� �)�punishment + �w);

This gives us equations for v;w in terms of M; �; �; q.

Now we choose q to be as small as possible while maintaining the strategies as an equi-

librium. The gain from choosing to deviate, for a buyer, is �norm � �punishment while the

loss from future payo�s is v � w multiplied by the probability of their deviation trigger-

ing a punishment phase, which wouldn't have been triggered by another player, which is

Ptrig = (1� �)(2M=3). Thus, the equilibrium condition is

�norm � �punishment = (1� �)(2M=3)(v � w)

from which we solve for q̂.

Then, the condition q̂ = 1 is solved to �nd Mmax. Lastly we compute the expected

time in a normal phase as �n = 1=(1 � q̂), and the expected time in a normal phase which

is �p = 1=Pdev � 1 and compute the percentage time in the normal phase as �n=(�n + �d),

completing the analysis.

The identical analysis is used for the bargaining game, but the values of �norm; �punishment

and the various probabilities di�er.

A.2 Proofs of Theorem 2, 3 and 5

First we consider Theorem 2:
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Let � = c��=(1��), where c will be de�ned below and assume that � < :1 andM > �=�:

Let s be a social equilibria of this societal market game. Given any history ht let  (ht)

be the expected fraction of players choosing action L conditional on ht. First we prove the

following:

Lemma 1 For every history ht,  (ht) > :9 or  (ht) < :1.

Proof: Assume that  (ht) 2 (:1; :9). Then it is never optimal for a seller to reject all o�ers.

This is because the immediate loss from rejecting an o�er is at least 1 while the gain is at most

the expectation of future payo�s conditional on declining the o�er minus the expectation of

future payo�s conditional on declining the o�er. However, as shown in Friedman and Resnick

(1998) Lemma 1, for c su�ciently large this quantity can be made to be less than 1, since

the probability distribution of the public history (and most private histories) are very close

to each other under defection and non-defection (see also, Sabourian, 1990). Since sellers

are accepting all o�ers, it is always optimal for a buyer to bid H, for the same reason, the

immediate gain outweighs the expected loss, for su�ciently large c. However, this violates

the assumption that  (ht) 2 (:1; :9), proving the lemma by contradiction. �

Lemma 2 For every history ht:

1) if  (ht) > :9 then  (ht) = 1 and sellers accept the high o�er. 1) if  (ht) < :1 then

 (ht) = 0 andplay at stage t has both buyers (intending to) bid L and the seller only accepting

the low o�er.

Proof: If  (ht) > :9 then the probabilistic argument from the previous lemma implies that

sellers must accept o�ers of the type L. Combining this with the probabilistic argument
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requires that sellers must also reject o�ers of the type H; otherwise, the buyers would deviate

and o�er H, and then this implies that all buyers o�er L. Similarly if  (ht) > :9 then the

probabilistic argument implies that sellers must accept H o�ers , and then all buyers must

o�er H. �

Proof of Theorem 2: Thus, in any equilibrium, play in every period consists either of

all buyers o�er H or all o�er L. Now we note that in a L-period (in which all buyers o�er

L) it is possible for the strategies to condition on whether a seller accepts a high o�er, as

these need not be rare under the assumptions, i.e., although M=� is `large', M=�2 could be

small. However, the future payo�s if a seller so deviates must be su�ciently less than those

when no seller deviates, in order to prevent a seller from deviating on a buyer's tremble and

increasing her immediate pro�t. However, since we are assuming that  > :5 this implies

that more than half of the periods must be L-types. However, the only way to prevent sellers

from deviating in a L-period is to reward them with an H-period, but this implies that there

must be more than one H-period following every L-period (since the gain from deviating

is 2, while the di�erence in payo�s from an L-period and an H-period is 1 for the seller)

contradicting the assumption that L type periods are a :5 social norm. 2

The proofs of Theorems 3 and 5 are analogous.
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