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Optimization Based Characterizations of Cost Sharing

Methods

Eric J. Friedman�

Department of Economics, Rutgers University

New Brunswick, NJ 08903.

May 24, 1999

Abstract

We provide several new characterizations of well known cost sharing methods
(CSMs) as maxima of linear (or convex) functionals. For the Shapley-Shubik method
the characterization has an interpretation in terms of randomly ordered agents choos-
ing their most preferred CSM, while the characterizations of the Aumann-Shapley and
Serial methods have a very general character: any symmetric convex functional which
uniquely characterizes a scale invariant CSM must characterize the Aumann-Shapley
method, while the identical statement is true for the Serial method when scale invari-
ance is replaced by demand monotonicity.

1 Introduction

The problem of allocating costs among a group of agents is an important problem that arises

in a wide variety of economic (and noneconomic) settings.1 Since the are many ways to share

costs, it is important to distinguish between various cost sharing methods (CSMs). The most

common methods of comparing CSMs ares based either on normative criteria or strategic

criteria.2 In this paper, we introduce a third, which has aspects of both { optimization

�I would like to thank Herv�e Moulin, Rich Mclean, Yves Sprumont for helpful discussions. Email: fried-
man@econ.rutgers.edu. www: http://econ.rutgers.edu/home/friedman

1See, e.g., [13, 9] for a surveys and extensive bibliographies.
2Obviously, there is a great deal of overlap between these two. See [4] for further discussion on this topic.
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criteria.

We consider the characterization of a CSM as the optimal solution of a continuous func-

tional over a subset of the set of all CSMs. While this problem is generally intractable over

the set of all CSMs, surprisingly, it is often tractable over the set of additive CSMs (the class

most commonly studied) and speci�c further subsets of interest, such as the scale invariant

or demand monotonic CSMs. In particular, these problems become directly solvable when

the functional is convex and the problem is one of maximization. In that case, the solution

set must contain an extreme point, which has a very simple representation as a continuous

monotone path.

Using this representation, it is often straightforward to prove that a CSM is optimal for

a certain functional. We give examples of interesting functionals and prove the completeness

of the characterizations. We also discuss practical methods to solve particular examples and

then use this approach to provide optimization based characterizations of three important

CSMs: the Shapley-Shubik, Aumann-Shapley and Serial methods.

Our characterization of the Shapley-Shubik Method has the following interpretation:

assume that all goods are of the same type (complements or substitutes) and that agents are

ordered randomly. The agents are then asked, in some �xed order, to choose their optimal

CSM based on their own subjective beliefs about what the cost function will be. If the �rst

agent's choice is unique, then that method is chosen, if not, then the next agent gets to

choose her optima from the set of optima of the �rst. This procedure the continues through

all the remaining agents. Theorem 1 states that the outcome of this procedure for any order
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will be the incremental method with that order, and thus when we average over all orders

this produces the Shapley-Shubik method.3

Our characterizations of the Aumann-Shapley and Serial methods have a \universal char-

acter." In these, we consider the characterizations arising from symmetric functionals over

the set of scale invariant of demand monotonic methods. Theorem 2 says that if a symmet-

ric (and convex) functional characterizes unique scale invariant method then that method

must be the Aumann-Shapley method. Theorem 3 is identical for the Serial method when

scale invariance is replaced by demand monotonicity. Thus, if we are interested in sym-

metric methods, it is not possible to characterize any scale invariant method besides the

Aumann-Shapley method.

2 Optimization over the Additive Cost Sharing Meth-

ods

Let N = f1; 2; : : : ; ng be the set of agents. Each agent's demand is qi 2 <+ and the

cost of serving these demands is C(q) with C 2 C, where C is the set of nondecreasing,

continuously di�erentiable functions from <n+ to <+, satisfying C(~0) = 0.4 A cost sharing

mechanism provides a method for computing the cost shares allocated to each of the agents.

An additive cost sharing method (CSM) is de�ned as follows:

De�nition 1 An additive cost sharing method is a mapping, x : <n+ � C ! <N+ , satisfying:

1) E�ciency:
P
i2N xi(q;C) = C(q),

3Note the similarities between this characterization of that for the Shapley method, in which agents are
also randomly ordered, served in that order and charged their marginal costs, according to the order [12].

4Note that the generic vector of 0's will be denoted by 0 and the unit vector of 1's by 1, where the
dimension of these vectors will be obvious from the context.
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2) Additivity: for all C;D 2 C and all i 2 N the following holds: xi(q;C +D) = xi(q;C) +

xi(q;D);

3) Dummy: For any C 2 C and i 2 N such that @iC(p) = 0 8p 2 <n+, then xi(q;C) = 0 for

all q 2 <n+.

Let CS denote the set of all such CSMs. Note that we use the notation @iC(p) to

represent the partial derivative of C(q) with respect to qi evaluated at p. The set CS has

several useful properties:

Proposition 1 ([3]) The space CS is convex and compact in the topology of weak conver-

gence.

We now present our main tool, a representation theorem of CS, based on the path

methods.

De�nition 2 A path function  is a mapping  : <+ � <n+ ! <n+ satisfying the following

for each q 2 <n+:

1) (t; q) is continuous and nondecreasing in t.

2) (0; q) = ~0 and there exists a t̂ > 0 such that for all t � t̂, (t; q) = q.

Let the set of all such path functions be denoted �. Also, for each q 2 <n+, let �(q)

be the projection of � onto its second component, for �xed q. Given a path function, it is

straightforward to construct its related CSM.
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De�nition 3 Given a path  2 � the \path method generated by " is given by

xi (q;C) =
Z 1

t=0
@iC((t; q))di(t; q):

As proven in [5], a path method is a valid CSM. It is shown in [3] that any CSM can be

constructed as a convex combination of path methods. We will require only the following

weaker result:

Proposition 2 ([3]) x 2 ext(CS(q)) if and only if x = x for some  2 �(q).

Now, consider some optimization problem:

max
x(q;�)2CS(q)

V [x(q; �)] (OPT(V))

where V is convex. Our main tool is the following lemma about this optimization problem.

Lemma 1 Assume that V is a convex function on CS and let MAX(V ) be the set of

solutions to OPT (V ). Then:

i) MAX(V ) is nonempty, compact and convex.

ii) The extreme points of MAX(V ) are path methods.

Proof: Since V is convex it must be continuous and thus existence follows from the com-

pactness of CS. Since V is convex, standard arguments imply statement (ii). �

Note that this result only applies for �xed q; however, with additional constraints we can

extend this result to the case with varying q.
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2.1 Scale invariance and demand monotonicity

First, consider scale invariance, which is well known and was used in the classic axiomatiza-

tion of the Aumann-Shapley method [2, 7].

Given � 2 <N++, de�ne ��(q) by ��(q)i = �iqi for i 2 N and de�ne ��(C) by ��(C)(q) =

C(��(q)), for all C 2 C.

De�nition 4 (Scale Invariance) A CSM, x 2 CS, is scale invariant if x(��(q);C) =

x(q; ��(C)), for all � 2 <n++ and C 2 C.

We will also need a technical assumption:5

De�nition 5 A CSM, x 2 CS, is dummy continuous if for all C 2 C, i; j 2 N and q 2 <n+,

limq0

i
!0 xj(q�i; q

0
i;C) = xj(q�i; 0;C).

When combined with dummy consistency, the set of scale invariant CSMs are generated

by the scale invariant paths. De�ne �SI to be the set of paths such that (t; q) = �q((t; 1)).

Thus each component is i(t; q) = i(t; 1)qi. Let SI be the set of CSMs which are scale

invariant and dummy continuous. The characterization of this set was given in [3]. For our

purposes the following result will su�ce.

Proposition 3 ([3]) x 2 SI if and only if x = x for some  2 �SI .

Another important axiom is demand monotonicity [8, 5]. For technical reasons, we only

consider the case of bounded demands when studying demand monotonic CSMs. Thus,

5See [5] for a discussion on the need for this assumption and the changes that arise without it.
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whenever we discuss demand monotonicity we require that there exists some 0 < q <1 and

that q 2 [0; q]n.

De�nition 6 (Demand Monotonicity) A CSM in CS is demand monotonic if for all

q; q0 2 [0; q]n such that qi � q0i and q�i = q0�i and all C 2 C: xi(q;C) � xi(q0;C):

In this case, we also need a somewhat stronger technical assumption:6

De�nition 7 A CSM x 2 CS is dummy invariant if for all C 2 C such that agent i 2 N is

a dummy agent (@iC � 0), xj(q;C) is independent of qi for all j 2 N .

Now we de�ne the paths which will characterize the demand monotonic and dummy

invariant CSMs, denoted by DM . The extreme CSMs are constructed from a single path.

Let �(t) be a nondecreasing path de�ned on t 2 <+ with �(0) = ~0 such that there exists a

t̂ > 0 such that for all t > t̂, �(t) � q. Let �DM be the set of all such paths. Given � 2 �DM

de�ne � by �(t; q)i = min[�n(t); qi], for all i 2 N .

Proposition 4 ([3]) For any q <1 x 2 DM if and only if x = x for some  2 �DM .

Now, we have the analogous results to Lemma 1 for both scale invariant and demand

monotonic CSMs.

Consider some optimization problem:

max
x(�;�)2Y

V [x(�; �)] (OPTY (V ))

where V is convex, and Y is either SI or DM .

6This is a �xed population version of dummy consistency, introduced in [3].
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Lemma 2 Assume that V is a convex functional on Y where Y is either SI or DM and let

MAXY (V ) be the set of solutions to OPTY (V ), Then:

i) MAXY (V ) is nonempty, compact and convex.

ii) The extreme points of MAXY (V ) are path methods, x with  2 �Y .

3 Examples and Completeness of Characterizations

In this section we provide some economic motivation for the optimization of convex function-

als as a method of characterizing a CSM. Then we show that within this class it is possible

to characterize any CSM, thus showing that the characterization is complete, even when

restricted to an interesting class of functionals.

Consider a social planner who must choose a CSM to maximize some social welfare

function W (x(q;C)). The social planner knows the demands, q, but is uncertain about the

actual cost function that will arise. (Alternatively, assume that the CSM must be chosen in

advance and then used for a large number of cost functions.) The social planner has some

social welfare function for allocations which can be written W (x(q;C)). Given beliefs � over

C the social planner's problem would be to maximize V (x) = EC [W (x(q;C) j �].

For example, one possible preference for the planner could be to minimize agent 1's

payments, W (x(q;C)) = x1(q;C), which might be the case if agent 1 were the planner.

Similarly, the planner could maximize any weighted sum of expected payments,W (x(q;C)) =

P
i2N aixi(q;C). Note that in these cases V is linear and hence convex. Note also, that in this

case, the welfare function simpli�es since x is assumed to be linear, V (x) = EC [W (x(q;C)] =

W (x(q;E[C])).
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Thus, in this simple case, the social planner's problem is

max
x2CS(q)

X
i2N

aixi(q;E[C]);

which can be simpli�ed, using Lemma 1 to

max
2�(q)

X
i2N

aix

i (q;E[C]);

which is equal to the following

max


X
i2N

Z 1

0
ai@iE[C]((t; q))di(t; q);

where (0; q) = 0, (1; q) = q, (t; q) is nondecreasing and continuous in t. This is a problem

of optimal control and can be solved using standard techniques [6].

We can extend this to the case where both q and C are uncertain. In this case, if we

want to choose x 2 CS then the problem separates into one problem for each q, while if we

restrict to scale invariant (or demand monotonic) CSMs then using Lemma 2 we can reduce

the problem to a single optimal control problem of the type just discussed.

Another example arises from demand monotonicity. The main justi�cation of demand

monotonicity is as an incentive constraint; demand monotonicity helps deter agents from ar-

ti�cially inating their demands. Thus, we might be interested in �nding the \most demand

monotonic CSM," e.g., W (x(q;C)) =
P
i2N ai@

�
ixi(q;C), where we use the \�nite partial

derivative" @�i (f(q)) = [f(q)� f(qi(1� �); q�i)]=(qi�) since the true derivative may not exist.

One could then maximize this over the set of demand monotonic CSMs, or even over the set

of scale invariant CSMs.
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Lastly even in the limited set of functionals discussed above, it is possible to characterize

(almost) any CSM in ext(CS(q)). Given a continuously di�erentiable path  2 �(q) de�ne

B(p) = d(; p)2 where d(; p) = mint jj(t; q) � pjj, the Euclidean distance from p to the

path . The function B(p) is continuously di�erentiable, non-negative, and is equal to 0 if

p is on the path . Now de�ne C(p) =
R p1
0 B(t; p�1)dt. Let7 V (x) = �x1(q;C). Then the

x 2 CS(q) that maximizes this is by Lemma 1 a path method, and it is easy to see that

the original path maximizes the functional, since @iC(p) = B(p) which is 0 along the path

and strictly positive anywhere else. Thus, we have uniquely characterized  using a simple

linear functional. Note that this argument easily extends to the common case where the

path is continuously di�erentiable except at a �nite set of t's. Also, note that any path is

the pointwise limit of such paths and thus this argument can be used to approximate any

path to any degree of accuracy.

4 A Characterization of the Shapley-Shubik Method

In this section we provide a new characterization of the Shapley-Shubik method. This

characterization is an optimization based variant of a standard interpretation of this method.8

The standard interpretation is that an in�nite number of agents (one for each atom of

demand) arrive in random order, state their demands and are charged their cost, which

7(Formally, C(p) may not be monotone and therefore not an element of C; however, we can simply add
a term of the form

P
i2N

�(pi + p2
i
) where � is chosen su�ciently large to guarantee that the sume is

nondecreasing and the apply dummy and additivity to show that this additional piece does not change the
following argument.

8Another characterization of the Shapley-Shubik method is given in [5]. In that paper the Shapley-
Shubik method is shown to be the unique method satisfying Dummy, Additivity, Scale Invariance, Demand
Monotonicity and Symmetry.
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is the additional cost of serving their demand, conditional upon all the previous demands.

The new characterization is similarly based on having agents arrive randomly, but in this

case, the cost function is not yet known, and the agent requests the set of possible CSMs

based on her beliefs over the set of possible cost functions which may arise. If we allow

these set of beliefs to be arbitrary, except for the assumption that all goods complements,

then the expected costs of this procedure are precisely those given by the Shapley-Shubik

formula. (This result is unchanged if all agents believe that goods are substitutes instead of

complements.)

Let C+ be the subset of C, consisting of cost functions C for which all goods are strict

complements: for all i 2 N and p 2 <n+, @iC(p) is strictly increasing in p�i. Now assume

that each agent, has beliefs �i about the cost function which will be chosen from C+ and

that qi, the demand for each agent, is common knowledge. Each agent wants to minimize

their (subjective) expected payments Vi(x) = E[xi(q;C)j�i].

Consider an ordering of the agents,  2 	, where  is a bijection from N to f1; 2; : : : ; ng.

The Incremental method with order  , x is given by x i (q;C) = C(qS( ;i); 0�S( ;i)) �

C(qS( ;i)ni; 0�S( ;i)ni), where S( ; i) = fj 2 N j  (j) �  (i)g. Note that the Incremen-

tal method with order  is generated by the path,  , given by the path which connects the

points,  (i; q) = (qS( ;i); 0�S( ;i)) with straight lines in increasing order. We will now show

that the procedure described above leads to the Incremental method.

For �xed q 2 <n+, de�neARGMAX(V;B) to be the set of maximizers of V from the setB.

Now de�neB 
1 = ARGMAX(V (1); CS(q)) and inductively de�neB

 

k = ARGMAX(V (k); Bk�1)
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for 1 < k � n.

Theorem 1 For any  2 	, beliefs �i, and q 2 <n+, the set Bn consists of a single element,

x , the Incremental method with order  .

Proof: For notational simplicity consider the ordering  (i) = i. First considerARGMAX(V1; CS(q)).

This extreme points of this set consist of path methods by Lemma 1, and for any of these

path methods,

V1(x
) =

Z 1

0
@1C((t; q)d1(t; q):

Now, it is easy to see that if a path  does not �rst go along the line from 0 to (q1; 0�1) then

it leads to a higher payment then that path that does, since @1C(p) is strictly increasing in

p�1. Thus, B1 is the convex hull of all paths of this type. A similar argument then shows

that B2 is the convex hull of paths which go from 0 to (q1; 0�1) and then to (q1; q2; 0�f1;2g).

Proceeding inductively proves the result. 2

Recall that the Shapley-Shubik method is given by xSS = (n!)�1
P
 2	 x

 . Then the

characterization of the Shapley-Shubik method is obtained by averaging over all possible

orderings.

Corollary 1 Assume that  2 	 is chosen randomly, with uniform probability. For any

beliefs �i, and q 2 <n+, the expected payment of agent i, conditional on any realization of

C 2 C, is given by xAS(q;C), when the method is chosen with the same procedure as in

Theorem 1.
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Note that the result is unchanged when the set C+ is replaced by the set C�, the set

of all cost functions for which all goods are strict substitutes. Also, this procedure can be

elegantly summarized as the maximazation of a lexicographical social choice function, for

which the agents are exogenously (but randomly) ordered.

5 Universal Characterizations of the Aumann-Shapley

and Serial Methods

In this section we provide \universal" characterizations of the Aumann-Shapley and Serial

methods. We will show that for any symmetric and convex functional on the space of

scale invariant (resp. demand monotonic) CSMs that have a unique maximizer, that this

maximizer must be the Aumann-Shapley (resp. Serial) method. Thus, any strict symmetric

characterization over scale invariant (resp. demand monotonic) CSMs can only yield the

Aumann-Shapley (resp. Serial) method.

We now describe this result formally. First we recall that the Aumann-Shapley method

[1], xAS, is generated by the path (t; q) = tq while the Serial method [10, 5], xSER, is

generated by the path given by i(t; q) = min[t; qi]. Let x 2 Y where Y 2 fSI;DMg and

for any permutation of N ,  2 	(N), de�ne  (x) by  (x)(q;C) = x( (q); �1(C)) where

 (q)i = q (i) and  
�1(C)(p) = C( �1(p)).

De�nition 8 A functional V on Y where Y 2 fSI;DMg is symmetric if for all  2 	(N)

and x 2 Y , V ( (x)) = V (x)

Thus, a functional V is symmetric if it is invariant to a relabeling of the agents. Now we
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present our result:

Theorem 2 If V is symmetric and jMAXY (V )j = 1 for Y 2 fSI;DMg, then MAXY (V )

is either the Aumann-Shapley method, xAS, (if Y = SI) or the Serial method, xSER, (if

Y = DM).

Proof: By Lemma 2, since jMAXY (V )j = 1 we must have that MAXY (V ) = x with

 2 �Y . By assumption, V ( (x)) = V (x), but note that  (x) = x () where  ()(t; q)i =

 (i)(t; (q)) and thus we must have  (x) = x. For Y = SI, assume that q = ~1, then the

only way this equality can hold is if (�;~1) =  ()(�;~1) which is only true when (�;~1) is

the straight line from ~0 to ~1. By scale invariance, this restricts the path to be, in general,

the straight line from 0 to q, which is the path that generates the Aumann-Shapley method.

When Y = DM the analogous argument holds by applying symmetry to the cases when q is

on the line t 7! t~1. This uniquely determines � as the that line, �(t) = t~1 (up to a monotone

transformation of t), which generates the Serial method. 2

6 Concluding Comments

Characterizing a CSM as the maximum of a functional, V , is an extremely general procedure

and can encompass normative approaches, where V is social welfare function to be maxi-

mized, strategic, where V is the indicator function for certain strategic requirements, or even

traditional approaches from mechanism design, where e.g., V is the principal's pro�t arising

from a certain CSM. However, our analysis does not encompass these methods as we are

restricted to additive CSMs and convex functionals; nonetheless, our analysis does apply to
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some interesting functionals and provides a new perspective on characterization problems.

The procedure we propose can be viewed either from Rawlsian perspective [11] in which

the social planner is behind a veil of ignorance about the cost function that will arise, or a

more regulatory perspective in which the regulator must choose the CSM before the speci�c

details of a project are known. This can also model the situation in which a group of �rms,

or people, determine the process of sharing costs of a joint project before the details are

known.
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