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1. Introduction

For more than a decade now, nonlinear science has been contributing important insights in
a wide range of fields. The observation that many scalar mappings generate data with the
spectral density of white noise held open the possibility that apparently complex phenomena
had simple explanations. An earnest search for chaos in economic and financial data followed.

With this decade has come perspective. The majority of evidence suggests that economic
and financial data, while nonlinear, is not low dimensional chaos. Research is now centered
on understanding nonlinearities of any kind, regardless of whether they are chaotic.

Nonparametric statistical methods, because they require very weak population assump-
tions, have proven their versatility in this area, enabling the study of chaos and linear time
series models with the same tools. The correlation integral of Grassberger and Procaccia
(1984), a member of a class of nonparametric statistics known as U-statistics, has become
a standard tool in the analysis of dynamical systems. Brock, Dechert and Scheinkman
(BDS, 1987) cleverly adapted the correlation integral into a powerful test for independence
and identical distribution. The BDS test has become the benchmark by which to judge
alternative nonparametric testing procedures.

The weak population assumptions of the BDS come at a price. Typically, nonparametric
statistics converge at a slower rate than parametric statistics, with the rate of convergence
depending on dimension. I document this slow convergence of the BD.S in a series of Monte
Carlo exercises. The BDS, though asymptotically normal, has extremely high rates of Type
I error. With the uniform (0,1) distribution, for example, a nominal 5% test rejects about
22% of the time in a sample of 250 observations with a two dimensional test and 35% of the
time in a five dimensional test.

This paper reveals that a small amount of structural information can dramatically im-
prove the size and power of nonparametric tests for independence. I define local independence
of order p as the property that the unconditional probability z;1, of equals the conditional
probability of z,1, given x;. I then construct a distribution free test of this hypothesis for
any combination of p’s.

This new simple nonparametric test (SNT') has several distinct advantages. It is com-
putationally simpler. By testing for a specific type of dependence, the SNT helps the data
analyst in identifying the model; the BDS simply tells you that the data are not independent,
but it does not suggest any particular alternative.

Monte Carlo simulations reveal that the SNT has much lower rates of Type I error than
the BDS. These errors are also roughly equal across populations, while for the BD.S, they
vary as much as 50% or more between the normal and uniform distributions.

Once the test statistics are properly sized, the SNT frequently is a more powerful test
for nonlinear dependence. For 5 of the 7 data generating mechanisms studied by Brock,
Hsieh and LeBaron (1991), the SNT has better power. The test has also proved useful in
applications. Mizrach (1996) has used the test to determine the delay time to be used in a
phase space reconstruction.

The organization of the paper is as follows. In Section 1, I lay out the general theory of
U-statistics leading to a development of the correlation integral. From there, I present the
BDS test. Section 2 develops the SNT. Monte Carlo analysis of the size of the two tests is
in Section 3, and power is examined in Section 4. Section 5 contains the two applications.



Section 6 concludes with a view towards future research.

2. U-Statistics and the BDS Test

This section begins with the basic theory of U-statistics. I proceed with three examples, two
relatively straightforward, the third, quite complicated. The latter is the correlation integral
which underlies the test for independence proposed by Brock, Dechert and Scheinkman
(1987). Asymptotic theory for U-statistics is discussed in Section 2.2. I develop the BDS
test in Section 2.3.

2.1 An Introduction to U-Statistics

I begin with a definition of the generalized sample averages known as U-statistics.! Let {z;}
be a strictly stationary stochastic process taking on values in R™ with distribution function
F. Let {Xj,..., X,,} be a sample of size n. The components include a kernel, a symmetric
measurable function h : (R™)’ — R, where j and m are integers > 1, and the permutation

operator, X, j, which sums over the ;7 distinct combinations of j-elements in a sample

of size n. Define the canonical mapping,

U, =U(X1,Xo,.... Xp,) = 5, jh(X7, X2, ..., Xp). (2.1)
To demonstrate the breadth of the U-statistics, I begin with two simple examples from
-1
Serfling (1980, Ch.5). Let j = 1,m =1, h(z;) = =y, ( 711 ) = 1/n then
UXy, ., Xp) =1/nY " X;=X. (2.2)

n

3 ) = 2t = 1. o ) =

or just the sample mean. Now let j =2, m =1, (

(z; — x%)?/2, one now has,

—
n(n — 1) $=1<i<k
1

ey > XX, (2.3)

U(Xy,..,X,) = h(X; — Xy),

namely, the sample variance.
Our third example, which will lead us to the heart of the paper, requires a little more
notation. Define the vector m-history,

x;n = (xfn Lty -y xt+m71); (24)
and denote its joint distribution by F'(x}*). Introduce the kernel with j =2, h: R™ x R™ —
R,

!The seminal reference is Hoeffding (1948). My notation follows Serfling (1980).
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Wi, x) = Tlla}" — 2| < e = I(a]", 2 ), (2.5)

8 s

where I(.) is the indicator (or Heaviside) function, and take ||.||, for simplicity, to be the £,
norm on R™,

I(w?lv'x;n?e) = I [( max 1 |$t+i - $s+i|> < 5] . (26)

0<i<m—

The correlation integral is given by

C(m, ) = /X /X I(zP, 2™, &)dF (1) dF (z™). 2.7)

(2.7) is the expected number of m-vectors less than e away from any given m-vector. At
dimension 1, this simplifies to

C(1,e) = A [F(xy + ) — Fla; — )]dF (z1). (2.8)
A U-statistic,

2 N—1 =N m wm
C(m7 N7 6) = m Zt:l ZS=t+1 I(Xt ) Xs ) 6)7 (29)

is a consistent estimator of (2.8),where N =n —m + 1.

2.2 Asymptotic Theory for U-Statistics

The basic results in asymptotic theory for U-statistics in the time series case are due to
Denker and Keller (1983). To understand their work more clearly, we need to introduce
some additional notation.

Consider first a set of functions associated with each kernel, for 1 < ¢ <j —1,

he(z) = / / W2y, Ta,., 2e)dF (22)...dF (z0). (2.10)
(2.10) is just a conditional expectation for the kernel given X, ..., X,
EF[h(Xl,...,Xj)|x2 :XQ,...,.CL'C:XC]. (211)

It will be useful for our purposes to center around the unconditional mean, defining

0(F) = Ep[h(Xy, ..., Xj)]. (2.12)
Also define the conditional expectations centered about @,
he(z) = he(z) — O(F).

Denker and Keller then show that under weak dependence assumptions?, and for a

2+6
bounded kernel h such that sup FE ‘h(xtl, s xtj‘
1>t >1

< 00, the statistic

2Denker and Keller (1983) assume that {x;} is an absolutely regular process with mixing coefficients 3(n)
satisfying B(n)%/(?+®) = O(n=%*%) for some ¢ > 0, and ¢ < 1/2,02 # 0. This condition is trivially satisfied
for an i.i.d. process.



U, — 0(F)

JOn

vn 4, N(0,1), (2.13)

where the variance is given by

on = 3° % (Be[(m(X0)2) +23 0, Brel(ha (X)) (X,)]) . (2.14)

The derivation of the BD.S statistic as well as the SNT" developed in section 3 will draw
heavily on this result.

2.3 The BDS Test

Brock, Dechert, and Scheinkman (1987) have developed a powerful test for independence
and identical distribution based on the correlation integral we first encountered in part 2. If
the sample is generated by an i.i.d. data generating mechanism, the joint distribution of a
vector m-history should factor into the m (identical) marginals.

Flap) =TI, Flow) = [F)™ (2.15)

By comparing C'(m, N, €) for different m’s, the BDS approach tests whether this factorization
is correct.

Intuitively, consider the event with m = 1, I [|x; — 24| < ¢]. Integrating with respect to
all 2’s, one has the unconditional probability of all such events, C'(1,¢). Using the ¢, norm,
it should then be m-times as unlikely that m events will all be less than ¢,

Prob. [( max |xy; — x8+2~|) < 5] = Prob. |z, — z¢| < g]™. (2.16)

0<i<m—1

More formally, define

S(m,N,e) =C(m,N,e) — C(1, N, e)™. (2.17)

Because the statistic (2.17) is the difference between two sample measures, the asymptotic
theory is more complicated. Denker and Keller’s theorem pertains only to the standard case
with one sample and one population moment, e.g. S(m,e) = C(m,N,e) — C(1,¢)™, and
cannot be applied directly.

Lacking knowledge of the population moment, BDS proceed using the “delta” method
described in Serfling (1980, Ch.3). Serfling shows that the asymptotic variance of (2.17) is
the same as its’ Taylor expansion®,

S(m,N,e) = C(m,N,e) — C(m,e) —mC(L,e)™ C(1,N,e) — C(L,¢)]. (2.18)

Using the linear combination of U-statistics in (2.18), BDS then showed that

$More generally, consider some vector of sample and population statistics z = (z1, ..., z) N(u, 2). Let
F(z) be some function with a non-zero differential for each component, and let D = [0F;/0z;|,—,| then F(z)
is distributed N(F(u), DX.D’)



VN2 Ne) 4 v ), (2.19)

where,
Var[S(m,N,e)] = 22::11 K™ C(1,N,2)% + K™+
(m —1)’C(1,N,e)*™ —m*KC(1, N,)*m=", (2.20)
with
K= [ [ [ 1@iwe) (@ wn,2)dF (@)dF(0,)dF () (2.21)
X

The statistic (2.19) has been widely applied! in the literature as a test for independence.
Given its ability to shrug off nuisance parameters®, the BDS has become a powerful port-
manteau statistic for model specification.

3. A Simple Nonparametric Test

In this section, I propose a simpler test for independence. It has several advantages. It
is computationally quicker, involving only calculations of order N, as opposed to N? for
the BDS. The variance of the U-statistic I derive is similar to that of a binomial random
variable. In Sections 3 and 4, I show that the simple test has much better size and power
than the BDS' in samples of less than 250 observations.

I will define a stochastic process to be locally independent of order p if the realization
x; provides no information about the process p periods ahead. Formally, this implies the
equality of the conditional and unconditional distributions. Let (pi,...,pm—1) be a set of
increasing integers on [1, L], L <n —m + 1. Local independence then implies

Prob. {:ctﬂgmfl CEy iy Ty <,y < e] = (Prob. [x; < g]))™. (3.1)

To estimate the joint, F'(z}*), and marginal, F'(z;), distributions in (3.1), introduce the
kernel function b : R — R,

1, ©f x; > ¢
h(zy) =1[z; <e| = { 0 O{hetrwise } = [(x,¢). (3.2)

The joint unconditional probability that m leads of the xz’s are less than ¢ is given by

B(m, ) = /X 17 Iy, e)dF (z,), (3.3)

where for notational convenience I set py = 0. A consistent estimator of (3.6) is the U-
statistic

4In private communication, Dee Dechert reports that nearly 200 articles have employed the BDS.
°The nuisance parameter results pertain to the ability to apply the test to residuals from linear filters.
See DeLima (1994).



0(m,N,e) =" TI" " I(Xeap,€)/N, (3.4)

where N = n — max[p;].
A simple test for local independence can then be constructed using consistent estimators
of the first two moments of this U-statistic.

Proposition: Let {z;} be locally independent for any p; € [1,L],i=1,...m—1, L < N,
then if 6(m,e) > 0,

N [0(m,N,e) —0(m —1,N,e)0(1, N,e)] L N(0.1) 35)
[0(m —1,N,e)0(1,N,&)(1 —0(m —1,N,¢))(1 —0(1,N,e)]*° I :

Proof: The proof can be stated as a corollary to Denker and Keller (1983) after using
the delta method to calculate the asymptotic variance. I will supress the €’s throughout to
conserve on notation. Taking the Taylor expansion around the means of the numerator in
(3.5) gives us the U-statistic,

(m, N) — MO(1, N) — Mof(m — 1, N) + M0(1) + Mof(m — 1) —0(1)(m — 1),  (3.6)

where Ay = 0(m — 1) and Ay = (1). As in BDS, we may think of (3.6) as a combination of
U-statistics with kernel,

h(u) = I(x]") — MI(x;) — Ao (z7). (3.7)

Because of the one-argument kernel (j = 1), the conditional expectations (2.10) take a
simple form,

hy(u) = I(z™) — M\ I(z}) = Mo I (™) + 6(m). (3.8)

Now, using (3.8), calculate the leading term of the variance in (2.14),

Ehy(uf) = E[I(z}]") — 2\ I(z]") — 21 (2]
+B [N (@) + 20 h I (@) + N2 1) = 6°(m)],
— 9(m)[1—0(1) + 0(m — 1) — (m)]. (3.9)

For the covariance terms, because of the i.i.d assumption, we need only consider the m—1
overlapping terms of the m-vectors,

2B [ ha(u)hu(uw)| = 2B I() = M (1) = Aol (21) — 0(m)]
X[I(@}") = MI(w) = Ao ("],
= 20(m)[0(m) — O(m — 1)]. (3.10)



Combining (3.9) and (3.10) , we have

0(1)0(m — 1)[(1 — 0(m — 1))(1 — 6(1))]. (3.11)

This is of course just the denominator of (3.5) for large N. This completes the calculation
of the variance and the proof.O]

To provide some intuition, note that the expected number of m-chains with a value of 1
in a sample of size N is

N
p=NO(m,N,e)=> =z ( iv ) O(m,e)*(1 — 0(m,e))N = (3.12)
=0
The variance is given by
2 2 Y o N z N—z 2 2
Opy — HMHa— B = Zl’ T e(ma 5) (]‘ - 6(m7€)) - N Q(m,e) )
=0
= NO(m,e)(1 —0(m,e)). (3.13)

We see that the (3.13) is simply the variance of a pair of Bernoulli trials with probability
6(m,e) and 0(m — 1,¢). While there are many conceptual advantages for the statistic (3.4),
the principal advantage will be if the SNT can improve substantially over the BDS, (2.19),
in finite samples. I turn to that in the next section.

4. Finite Sample Properties of the Statistics

I compare the sizes of the BDS and the simple nonparametric test (SNT') using three
different distributions. In part 1, the data generating mechanism is independent normal
(0,1) noise. To replicate the leptokurtic distribution found in many financial asset returns,
I use, in part 2, a Student-t with 3 degrees of freedom. In part 3, I use a highly entropic
distribution, the uniform (0,1).

There are judgmental inputs that go into the tests that can dramatically alter the results
reported below. With the BDS, Brock, Hsieh, and LeBaron (1991) report that the size of
the test is generally best when ¢ is set to one sample standard deviation. For the SNT,
I found that setting € equal to the sample mean usually performed best. In all exercises,
I use sample sizes of n = 25,50,100 and 250, dimensions of m = 2,3,4 and 5, with 5,000
replications.

4.1 The Standard Normal Distribution

The most glaring feature of Table 1, which looks at the finite sample sizes of the BDS
statistic, is the enormous rate of Type I error. For n = 25, the statistic rejects more than
55% of the time at m = 2, and almost 60% of the time at m = 5, for a 10% test. Only at
n = 250 do Type I error rates fall below a 2:1 ratio. In general though, size improves as we
lower m for a given n, and as we raise n for a given m.



A closer look also reveals that the BD.S rejects more often in the left tail than the right.
Mizrach (1994) shows that this is due to bias in both the numerator and the denominator
of (2.19). Once recentered at the statistics’ negative sample mean, the BDS is also skewed
to the right. As a consequence, the convergence to normality is actually quicker in the left
tail than in the right.

The SNT rejects too often at dimensions m = 2, 3,and 4. With reference to Table 2 for
m = 2, a 10% test rejects 17.6% of the time. Conversely, at m = 5, the rejection rate is
4.3%. By n = 50, the overrejection at m = 2 has fallen under 13%, and the underrejection
has risen to 7% at m = 5. At n = 100, we are within sampling error of the appropriate
nominal sizes.

Compared to the BDS, the SNT is far more reliably sized. Using m = 2, the best for the
BDS, the chart for the SNT at n = 50 compares favorably to the BDS at n = 250. Since
the majority of economic data samples will pertain to the chart at n = 50, the SNT has a
much wider range of applicability. We’ll see whether this result carries over to distributions
other than the normal.

4.2 The Student-t Distribution with 3 Degrees of Freedom

The BDS and the SNT both perform better with the Student-t than with the normal. The
improvement with the BDS is somewhat larger. A 10% test at m = 2 rejects a little bit
more than 40% of the time in Table 3 at n = 25. This compares to a 55% rejection rate in
Table 1 with N(0,1) deviates. The convergence to normality is equally rapid. Because the
BDS starts at a lower rate of Type I error, by n = 250, the BD.S is within sampling error
of its nominal size.

The Student —t narrows the margin of victory, but, in sampling from a leptokurtic distri-
bution, the SNT is still the victor nonetheless. For the high dimensions, the underrejections
are less of a problem at m = 4 and 5, and the overrejections are reduced at m = 2 and 3,
but only slightly. In any case, the Student-t poses no special problem for the SNT'.

4.3 The Uniform (0,1) Distribution

When working with high dimensional stochastic data generating mechanisms, one often runs
into the so-called “curse of dimensionality.” It is simply very hard to learn something about
a high dimensional population from a small sample. The phase space X here is the unit
hypercube in R™. Even with a large ¢, the data can become quite sparse. The population
standard deviation for the uniform is 1/1/12 or 0.2886. With this choice of €, a hypercube of
that length will contain only (0.2886)™ of the sample. For m = 5, this is 0.20%. Conversely,
to find 28.86% of the sample, we would need a neighborhood that contains (0.2886)™ of
the range. For m = 5, this is 78% of the range.

This problem is clearly more pronounced the more entropic is the distribution. With
the normal, I numerically integrated (2.7) and found a value of 0.52 for C'(1,1.0). Here, the
“curse” would leave us with about 4% of the sample at m = 5. While we would find many
more data points with a larger ¢, size and (especially) power considerations favor a choice of
€ at one standard deviation.



To see how the curse of dimensionality influences nonparametric tests of independence,
I look at the uniform (0,1) distribution in Tables 5 and 6. For the BDS, the uniform
distribution is the most problematic. For n = 25 and m = 5, the BDS rejects 82% of the
time in a 10% test and 75% of the time in a 2% test. Even at n = 250, with m = 2, a 10%
test still rejects 33% of the time, and at m = 5, it still rejects 42% of the time. The size at
250 observations resembles the performance at 50 with normal variates. The SNT proves
its’ mettle with the uniform distribution. There are no appreciable differences between the
normal in Table 2 and the uniform in Table 6. The obvious question is whether this comes
at the cost of power. I turn to that in Section 5.

5. Power of the Simple Nonparametric Test vs. the
BDS

The power comparisons require a level playing field. The high rates of Type I error will make
the BDS seem more powerful than it actually is. The first step in conducting a comparison
of the power of the SNT and the BDS is to construct a set of finite sample critical values. In
performing the Monte Carlo exercises in Tables 1 and 2, I also compiled a set of critical values
that would give the BDS and the SNT' the appropriate nominal sizes in finite samples.

As can be seen in Table 7, the negative bias of the BD.S is very much in evidence in small
samples. A 95% confidence region, asymptotically sized at +1.96, is instead the interval [-
14.12,13.49]. At the high dimensions, the BDS produces what would be once in a lifetime
realizations from a true normal distribution.

Only at n = 250, our largest small sample, does the BDS begin to resemble a normal
distribution. A 95% confidence region has shrunk to [—2.15,2.24]. Note that the convergence
to normality after n = 25 is actually slower in the right tail than the left. Mizrach (1994)
shows that this is due to a positive skewness accompanying the negative bias.

The critical values in Table 8 for n = 25 look similar to those of the BDS for n = 100. At
n = 100, the critical values for the SNT are within sampling error of the standard normal.
There is still some marginal Type I error, especially at m = 2. I will use finite sample
corrections for both statistics throughout the power exercises.

5.1 The Data Generating Mechanisms

To facilitate comparisons with the Monte Carlo analysis of Brock, Hsieh and LeBaron (1991),
I will utilize the same 7 data generating mechanisms used therein. They are (1) an AR(1)
process; (2) an MA(1) process; (3) an ARCH(1) model; (4) a GARCH(1,1) model; (5) a
nonlinear MA(1) process; (6) a threshold autoregressive model; and (7) the so-called “tent
map.” To simplify the discussion, I only look at m = 2, where both tests are most powerful.
Solely for space reasons, I will talk about 5% tests. I will use standard normal disturbance
terms throughout, though it should be noted from Table 3, that this is heavily biased in
favor of the BDS.

10



5.1.1 First Order Autoregressive Process

The data generating mechanism is the AR(1) model.
xy = 0.5z, + 1, n, ~ NID(0,1). (5.1)

At all sample sizes in Table 9 the SNT is more powerful than the BDS. This is somewhat
surprising since the order of dependence here is infinite. The BD.S is not getting much power
from dependence at lags greater than p. In Section 5.2, I find that even with setting p = 2,
the power of the SNT is close to that of the BDS. Score after one round, 4 for the SNT,
0 for the BDS.

5.1.2 First Order Moving Average

The data generating mechanism is the MA(1) model.

x, = 0.75n,_ 1 +n, 0, ~ NID(0,1). (5.2)

Again, by confining the alternatives to dependence at lag 1, I get far superior power to the
BDS. With reference to Table 10, the advantage, in a 5% test for n = 50 is nearly 1.5 to
1 for the SNT; at n = 100, the advantage is about 30%. Both statistics are quite powerful
overall, with 100% rejections at n = 250. I break the tie at the 1% level where the SNT has
a modest advantage. Score: SNT -8, BDS - 0.

5.1.3 An ARCH Model

The autoregressive conditional heteroscedasticity (ARCH) model is a popular parametric
model for financial time series because it has a fat-tailed unconditional distribution. The
process can be written as:

xy = [1.0 +0.522_]%%n,, n, ~ NID(0,1). (5.3)

This is an interesting test because the data are linearly uncorrelated. With ¢ at the sample
mean, the SNT will have no power.

The obvious thing to do is take the squares of x, as these are correlated. In this form,
the SNT proved to be a powerful test. I was able to surpass the BD.S in the two smaller
samples in Table 11. In the larger samples, the BDS overtook the SNT'.

The use of the squared kernel reveals again that a small amount of information can
dramatically boost the power of the test. With rejections increasing substantially at p = 1
and with a squared kernel, this is a substantial step towards identifying the process. The
BDS, on the other hand leaves us nearly as ignorant as we were at the start. This was a
split, leaving the running score at SNT-10, BD.S-2;

5.1.4 The GARCH Model

The generalized autoregressive conditional heteroscedasticity (GARCH) model is the ARMA
version of the ARCH process. The squared residuals can now depend on both lagged squared
residuals and lagged conditional variances. It can be written as:

11



hy =[1.0 +0.12,_; + 0.8h7 ,]°°, ;= (he)*®n,, n, ~ NID(0,1). (5.4)

The results here were roughly similar to the ARCH case. The SNT wins easily in the
small sample, rejecting 22.3% of the time at n = 25. The SNT is marginally nosed out at
n = 100. Both tests reject nearly 100% of the time for n = 250. Running score, 12 for the
SNT, 4 for the BDS.

5.1.5 A Nonlinear Moving Average Process

Several types of nonlinear moving average processes have become popular. In particular, the
so-called bilinear model tries to capture the cross dependence of two moving average terms
at different lags. The process can be written as:

zp = 0.80_1M_o + 1y, n ~ NID(0,1). (5.5)

The power is not concentrated at one particular lag, and this proved problematic for the
SNT and the BDS. Using the squares of the x’s, the SNT' gains victories in the two small
samples, loses marginally at n = 100, and loses fairly sizably at n = 250. A split, leaving
the running score at SNT - 14, BDS - 6.

5.1.6 A Threshold Autoregressive Model

Another popular parametric model for nonlinear time series involves a data induced change
in regime. For these reasons, it is sometimes called a self-exciting threshold autoregressive
(SETAR) model. We can write it as:

{ —0.924_1 + My Zf Ti1>1
Tt =

04z 1 +mn, if 11 <1 } , M~ NID(0,1) (5.6)

While this model is technically of first order dependence, the actual order of dependence
can be much longer. The data may linger quite a while in a particular regime, until a shock
induces it to cross the threshold. Neither the BDS nor the SNT' does a particularly good
job in small samples, rejecting at 4.2% and 2.4% respectively for n = 25. See Table 14. The
BDS wins narrow victories at n = 50,100 and 250 as well. Score, SNT - 14, BDS - 10.

5.1.7 The Tent Map

One of the prototypical chaotic maps of the interval is the so-called tent map. The tent map
is a remarkably good linear random number generator. I can write the tent map as:

_ 22,1, if x4 >0.5
" { 2—2x4 q, i1f xpq>0.5 } (5.7)

I seeded the map with a draw from a uniform random number generator on (0,1). Note that
there is a singularity at 0.5.

The SNT does not have power to determine whether or not z is locally independent at
the unconditional mean of ¢ = 0.5. To understand this, notice that x; will be less than 0.5
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when z;_; lies on the intervals [0.75,1.0] and [0.0,0.25]. Since these intervals are of equal
measure, it is equally likely that x; will be less than 0.5 when z;_; is above or below the
population mean.® I thus chose to set ¢ equal to the sample mean plus one-half the sample
standard deviation. The BD.S won victories at all four sample sizes, even at n = 25. This
left the final score at SNT - 14, BDS - 14.

5.2 Power When the Order of Dependence is Misspecified

The size and power advantages of the SNT clearly arise from specifying the order of de-
pendence. I take a brief look in this section at the consequences of choosing some p other
than the optimal. T first looked at the AR(1) process (5.1). In Table 16, I set p = 2 rather
than 1. The SNT still captures that the data are not i.i.d. 65% of the time in the sample
with n = 250. With the MA(1) process (5.2), there is no memory beyond last period. Here
the consequences are more dramatic. The rejection frequencies are much like those of white
noise in Table 4.

This reveals both the strength and weakness of the SNT. It is useful test only if you
take a stand on the order of dependence, but this information helps guide in the direction
of building a model. The BDS will rarely miss nonlinear dependence in large data samples,
but it is not as helpful in identifying the source of the rejection.

6. Summary of Size and Power Comparisons

Finite sample comparisons generally favor the simple nonparametric test (SNT') over the
statistic of Brock, Dechert and Scheinkman (BDS, 1987). The SNT is far closer to its’
nominal size in small samples. In the case of the uniform distribution, the advantage is
better than 5 to 1.

The size of the BDS also varies widely across populations. For the normal distribution,
an interval of [—14.23,13.49] provides a 95% confidence interval in a sample of 25. Mistakenly
using this interval on a uniformly distributed population would result in Type I errors of more
than 50%.The critical values for the SNT', on the other hand, are virtually indistinguishable
across populations.

Having to tabulate finite sample critical values for a very large set of distributions is
certainly a drawback for the BDS, but what is far more damaging is that the data analyst
must make parametric assumptions to utilize the test. If enough population information is
available to choose a particular table of critical values, an entirely different (and probably
parametric) approach could have been utilized at the outset.

All of my power exercises conservatively utilized normally distributed errors. Even grant-
ing the BDS this handicap, 14 of 28 power comparisons favor the SNT over the BDS. In
samples of 50 observations or less, the ratio is 9 to 5 in favor of the SNT'.

The simple nonparametric test offers two additional advantages. The first is computa-
tional. The SNT requires calculations of order N, as opposed to N2 for the BDS. Ordinarily
in this age of cheap computing power, this advantage might be heavily discounted. Using the

6T thank David Johnson for this argument. Johnson and Robert McClelland (1992) develop a procedure
in the spirit of Section 2 for testing the independence of regressors and disturbances.
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BDS in data analysis though will frequently require bootstrap or Monte Carlo simulations,
and it is here that the computational advantage will come into play.

The second advantage relates to inference. When the BDS rejects the null hypothesis
of i.i.d., it usually does not lead in the direction of a particular alternative. With the SNT,
the testing procedure tells you that dependence is present at the p™ lag of the data. This
could prove to be useful knowledge in identifying a statistical model.

The SNT is not the test statistic for all situations. The BDS’s resistance to nuisance
parameters makes it the preferred choice for specification tests. The BDS also worked
better with the chaotic tent map and the regime switching SETAR process at all sample
sizes. Two questions are left for future research. The SNT must now be compared with
other tests for nonlinear dependence. A second extension is to see whether a rich class of
parametric nonlinear models can capture types of dependence most often found in economic
and financial time series.
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Table 1
Monte Carlo Analysis of the BDS Statistic
N(0,1) i.i.d. Random Variates*

n=25 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33
m=2 23.94 28.19 32.67 23.35 21.09 18.25
m=3 24.26 28.82 33.22 24.08 21.68 18.72
m=4 2532 30.58 35.28 23.26 20.81 18.84
m
N

=5 27.05 32.62 37.86 22.33 20.55 18.47
(0,1) 1.00 2.50 5.00 5.00 2.50 1.00

=50 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33
2 942 14.44 19.36 14.44 11.32 7.92
3 9.98 15.02 20.28 14.68 11.66 8.76
=4 10.96 15.90 21.82 15.12 12.22 9.60
5 11.78 16.76 23.18 15.94 13.24 10.56

n=100 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m = 3.52 6.92 11.58 9.76 6.70 4.00
m = 3.68 7.7 12.38 10.80 6.76 4.16
m=4  3.78 8.00 13.28 10.20 7.36 4.94
m=95 4.70 8.52 13.74 10.78 7.86 5.68

n =250 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m = 1.36 3.64 7.30 6.88 3.80 2.08
m = 1.34 3.64 7.46 7.10 4.78 2.60
m=4 124 3.70 7.42 7.44 4.76 2.70
m=25 138 3.50 8.00 7.72 4.98 2.92

*n is the sample size and m is the embedding dimension. The simulations for n = 50,100 and 250 are
based on 5,000 replications. For n = 500 and n = 1,000, I used 2500 replications. I set ¢ equal to one sample
standard deviation throughout.
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Table 2
Monte Carlo Analysis of the Simple Nonparametric Test
N(0,1) i.i.d. Random Variates*

n=25 %<-233 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m=2 526 7.54 9.42 822 402 2.12
m=3 0.60 2.90 8.66 3.68 1.56 0.50
m=4 0.10 1.12 5.22 240  0.76 0.18
m=5 0.00 0.40 2.88 152 054 0.04
N(0,1) 1.00 2.50 5.00 5.00 2.50 1.00

=50 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

n
m=2 2.36 6.80 7.57 5.04 4.18 1.62
m=3 1.50 4.12 7.76 3.84 1.76 0.78
m=4 0.60 2.64 7.54 2.88 1.26 0.36
m=>5 0.60 0.80 3.42 2.38 1.02 0.28

n=100 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m = 2.00 5.12 7.52 5.26 3.78 1.54
m = 1.46 3.30 6.06 3.80 2.00 0.82
m=4 1.30 3.76 6.82 3.50 1.56 0.62
m=95 042 2.00 5.84 3.16 1.52 0.50

n=250 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m = 1.36 2.76 6.82 5.90 2.36 1.20
m = 1.42 2.92 5.68 5.00 2.18 0.78
m=4 1.18 3.08 6.30 4.16 1.96 0.70
m=5 130 3.10 6.92 3.40 1.76 0.72

*All exercises are based on 5,000 replications. n is the sample size and m is the dimension. ¢ is set equal
to the sample mean.
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Table 3
Monte Carlo Analysis of the BDS Statistic
Student-t with 3 Degrees of Freedom*

n=25 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33
m = 14.08 18.94 23.48 16.78 13.72 10.66

m=3 13.71 18.26 24.17 15.79 13.23 10.40
m = 13.82 19.12 25.02 15.94 12.82 10.56
m = 12.70 18.22 24.46 15.14 12.98 10.94
N(0,1) 1.00 2.50 5.00 5.00 2.50 1.00

n =50 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33
m=2 4.66 8.20 12.89 9.28 6.26 3.90
m=3 4.20 8.34 13.25 8.72 6.02 4.14
m=4 3.84 7.70 13.60 9.12 6.42 4.20
m=>5 3.82 7.54 13.32 9.34 7.14 4.90

n=100 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m=2  1.76 4.62 7.48 7.48 4.64 2.38
m = 1.78 4.36 8.78 6.88 4.48 2.48
m=4  1.38 4.36 8.78 7.10 4.36 2.38
m=5 130 3.80 7.92 7.00 4.34 2.76

n =250 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m = 1.08 3.34 6.40 5.80 2.92 1.14
m=3 1.06 3.32 6.08 5.82 3.08 1.50
m=4 094 2.74 6.20 5.76 3.18 1.66
m=25  0.90 2.72 5.80 6.04 3.62 1.60

*n is the sample size and m is the embedding dimension. The simulations use 5,000 repliations. I set ¢
equal to one sample standard deviation.
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Table 4
Monte Carlo Analysis of the Simple Nonparametric Test
Student-t with 3 Degrees of Freedom*

n=25 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m = 4.70 7.30 9.36 7.84 5.26 2.04
m=3 0.88 3.18 7.72 3.42 1.42 0.52
m = 0.40 1.74 5.40 2.06 0.70 0.22
m = 0.22 1.16 3.26 1.46 0.44 0.04
N(0,1) 1.00 2.50 5.00 5.00 2.50 1.00
n =50 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33
m=2 2.50 6.34 7.66 4.98 3.82 1.68
m=3 1.44 3.74 7.56 4.12 1.96 0.68
m=4 0.76 2,80 7.50 2.84 1.08 0.32
m=>5 0.24 1.18 3.96 2.42 1.04 0.30

n=100 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m=2  1.88 4.64 7.38 5.50 3.58 1.42
m = 1.18 3.44 6.04 3.78 1.88 0.80
m=4  1.22 3.26 6.80 3.76 1.60 0.58
m=25  0.56 2.12 5.80 2.94 1.38 0.56

n =250 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m = 1.34 3.04 6.64 5.52 2.30 1.06
m=3 140 3.26 5.76 4.70 2.22 0.76
m=4 1.10 3.06 6.20 4.16 2.08 0.78
m=95 1.16 3.16 6.84 3.46 1.80 0.78

*All exercises are based on 5,000 replications. n is the sample size and m is the dimension. ¢ is set equal
to the sample mean.
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Table 5
Monte Carlo Analysis of the BDS Statistics
Uniform (0,1)*

n=25 %<-233 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m=2 38.89 41.42 43.99 34.21 32.40 30.39
m=3 40.64 42.95 45.41 34.06 32.64 30.83
m=4 4274 44.90 47.12 33.84 32.46 31.14
m
N

=95 4543 47.55 49.59 32.51 31.21 30.19
(0,1) 1.00 2.50 5.00 5.00 2.50 1.00

n =50 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33
m=2 31.92 35.58 38.64 29.62 27.19 25.20
m=3 34.20 37.28 39.93 30.68 28.60 26.35
m=4 35.50 38.67 41.34 31.83 29.76 27.94
m=>5 37.43 40.38 42.77 32.35 30.67 28.95

n=100 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m = 20.56 24.62 29.04 24.14 20.94 17.94
m = 22.36 26.62 31.26 25.00 21.84 18.90
m=4  24.08 26.68 32.64 25.99 23.66 20.66
m=>5  27.50 31.34 35.16 28.08 25.32 22.56

n =250 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33
m=2 7.86 11.96 17.32 15.00 11.62 8.72
m=3 9.54 14.10 19.22 16.70 13.26 9.80

m =4 11.72 67.20 21.74 17.86 14.74 11.48
m=3>5 14.66 19.30 23.82 19.78 15.98 13.12

*n is the sample size and m is the embedding dimension. The simulations use 5,000 repliations. I set ¢
equal to one sample standard deviation.
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Table 6
Monte Carlo Analysis of the Simple Nonparametric Test
Uniform (0,1)*

n=25 %<-233 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m=2 4.76 7.18 9.36 8.12 5.12 2.12
m=3 0.76 3.62 10.66 3.18 1.32 0.48
m=4 0.16 1.04 5.20 2.32 0.92 0.24
m=>5 0.00 0.58 2.86 1.44 0.30 0.06
N(0,1) 1.00 2.50 5.00 5.00 2.50 1.00
n =50 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33
m=2 2.14 6.44 7.28 4.58 3.54 1.06
m=23 1.42 3.54 7.26 3.36 1.74 0.64
m=4 0.62 2.72 7.50 2.90 1.46 0.42
m=>5 0.06 0.52 2.26 2.32 1.04 0.22

n=100 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33

m = 2.22 4.98 7.40 4.76 3.02 1.42
m = 1.40 3.56 6.72 344 1.62 0.52
m=4 1.18 3.82 7.48 3.22 1.54 0.56
m=25 0.36 1.84 5.66 2.98 1.22 0.50

n =250 %<-2.33 %<-1.96 %<-1.64 %>1.64 %>1.96 %>2.33
m=2 1.26 2.62 6.16 5.32 2.10 0.98
m=3 1.20 2.76 5.62 4.32 1.90 0.72
m =4 0.96 2.62 5.90 3.96 1.84 0.72
m=2>5 1.16 3.74 6.76 3.52 1.68 0.56

*All exercises are based on 5,000 replications. n is the sample size and m is the dimension. ¢ is set equal
to the sample mean.
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Table 7
Critical Values of the BDS Statistic
N(0,1) Random Variates*

n =25 0.005 0.025 0.050 0.950 0.975 0.995

m =2 -73.0595 -14.1237 -8.0341 7.7601 13.4925  57.9982
m =3 -87.9192 -15.8944  -8.5690 8.6918 16.7674  93.5086
m=4 -100.3838 -19.2087 -8.7500 9.5042 19.2857  92.2519
m=2>
N(0,1

-130.8905 -21.3401 -10.4344 10.7292 21.7927 110.0793
(0,1) -2.58 -1.96 -1.64 1.64 1.96 2.58

n=>50 0.005 0.025 0.050 0950 0975 0.995

m=2 -6.2303 -3.5823 -2.8964 2.9174 3.7507 5.7867
m=3 -6.5520 -3.6787 -3.1238 3.1383 3.9996 6.6066
m=4 -6.5871 -3.9201 -3.1328 3.3287 4.3240 6.8051
m=2>5 -6.6698 -4.0927 -3.1374 3.6838 4.7889 7.78384

n =100 0.006  0.025 0.050 0.950 0.975  0.995

m = -3.2091 -2.5096 -2.1630 2.1607 2.6403 3.6753
m = -3.2480 -2.5151 -2.1616 2.2227 2.7991 3.9959
m=4  -3.2436 -2.5700 -2.1821 2.2966 2.9293 4.2858
m=295  -3.4224 -2.5748 -2.2530 2.4914 3.1222 4.4838

n =250 0.0056 0.025 0.050 0.950 0.975  0.995

m = -2.6196 -2.1479 -1.8349 1.8327 2.2388 2.9627
m = -2.5776  -2.1140 -1.8227 1.9151 2.3497 3.1784
m=4 -2.0611 -2.0931 -1.8299 19133 2.4257 3.2927
m=25  -2.6547 -2.0984 -1.8178 1.9681 2.5199 3.5256

*n is the sample size and m is the embedding dimension. The simulations use 5,000 replications. I set ¢
equal to one sample standard deviation.
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Table 8
Critical Values for the Simple Nonparametric Test
N(0,1) Random Variables*

n=25 0.006 0.025 0.050 0.950 0.975 0.995

m=2 -3.3558 -2.4815 -2.3417 1.8898 2.2186 3.0239
m=3 -24612 -2.0498 -1.7974 1.4357 1.8061 2.2966
m=4 -22913 -1.7974 -1.6773 1.2550 1.5959 2.0498
m=295 -1.8209 -1.6773 -1.4285 1.2013 1.4285 1.9704
N(0,1) -2.58 -1.96 -1.64 1.64 1.96 2.58

=50 0.005 0.025 0.050 0.950 0.975  0.995
2 -2.9354 -2.2161 -2.0498 1.7466 2.1039 2.7223
3 -2.6017 -2.1448 -1.8584 1.5055 1.8107 2.4386

=4 -23685 -1.9676 -1.7915 1.4298 1.7259 2.2187
5 -2.0210 -1.7710 -1.5667 1.2813 1.6158 2.1052

n =100 0.006  0.025 0.050 0.950 0.975  0.995

m = -2.8465 -2.1332 -2.0275 1.6461 2.0545 2.4721
m = -2.7386 -2.1125 -1.7446 1.5155 1.8295 2.4600
m=4 -2.6085 -2.0992 -1.814 14771 1.7616 2.4582
m=>5  -2.2967 -1.8905 -1.6907 1.4183 1.7375 2.3140

n =250 0.006 0.025 0.050 0950  0.975 0.995

m = -2.7007 -1.9967 -1.6918 1.6577 1.9170 .26365
m = -2.6015 -2.0074 -1.7131 -1.6936 1.9152 24711
m=4  -2.6046 -2.0153 -1.7467 1.5414 1.8474 2.4543
m=>5  -2.5946 -2.0657 -1.7719 1.4637 1.7874 2.4993

*All exercises are based on 5,000 replications. m is the dimension of the test and n is the sample size. e
is set to the sample mean.
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Table 9
Power Against AR(1) DGM
BDS vs. SNT*

BDS 10% 5% 1%

n=25 1933 10.94 2.60

n=2>50 5096 39.96 20.84
n =100 86.02 80.14 65.78
n =250 99.86 99.69 99.12

SNT 10% 5% 1%

n=25 3254 2720 8.84

n=2>50 5856 54.56 33.24
n =100 93.10 86.94 76.70
n =250 99.94 99.90 99.10

*The statistics reported are percentage rejections in a two-sided test at the (1 — o)% confidence level
using the finite sample critical values in Tables 7 and 8. For the BDS, I set € equal to one sample standard
deviation, and for the SNT, I use the sample mean. For both tests, I use only m = 2. The order of
dependence for the SNT is p = 1. n is the sample size. The data generating mechanism (DGM) is the
AR(1) process: x; = 0.5z4_1 + 1y, 1, ~ NID(0,1).
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Table 10
Power Against MA (1) DGM
BDS vs. SNT*

BDS 10% 5% 1%

n=25 1682 9281 1.01

n=>50 4864 36.82 16.62
n =100 83.80 78.60 61.40
n =250 100.00 100.00 99.20

SNT 10% 5% 1%
n=25 3740 13.80 3.00
n=2>50 6400 55.00 17.00
n =100 95.00 91.60 &3.40
n =250 100.00 100.00 100.00

*The statistics reported are percentage rejections in a two-sided test at the (1 — «)% confidence level
using the finite sample critical values in Tables 7 and 8. For the BDS, I set € equal to one sample standard
deviation, and for the SNT, I use the sample mean. For both tests, I use only m = 2. The order of
dependence for the SNT is p = 1. n is the sample size. The data generating mechanism (DGM) is the

MA(1) process: xy = 0.75m,_1 + 1y, 0, ~ NID(0,1).
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Table 11
Power Against ARCH(1) DGM
BDS vs. SNT*

BDS 10% 5% 1%

n=25 939 464 0.82
n=2>50 36.60 23.00 4.82
n =100 74.60 65.90 46.05
n =250 99.28 98.84 95.49

SNT 10% 5% 1%

n=25 1704 1148 3.66

n=2>50 3886 28.54 14.54
n =100 62.96 52.10 38.08
n =250 93.22 90.24 76.30

*The statistics reported are percentage rejections in a two-sided test at the (1 — «)% confidence level
using the finite sample critical values in Tables 7 and 8. For the BDS, I set € equal to one sample standard
deviation, and for the SNT, I use the sample mean. For both tests, I use only m = 2. The order of
dependence for the SNT is p = 1. n is the sample size. The data generating mechanism (DGM) is the
ARCH(1) process: z; = [1.0 + 0.527_,]%5n,, n, ~ NID(0,1).
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Table 12
Power Against GARCH(1,1) DGM

BDS vs. SNT*
BDS 10% 5% 1%
n=25 8.06 3.70 0.74
n=>50 56.84 41.10 10.44
n =100 96.20 92.40 78.00
n =250 100.00 100.00 100.00
SNT 10% 5% 1%
n=25 2984 2230 &894
n=>50 60.00 51.40 35.80
n =100 88.80 84.40 76.60
n =250 99.80 99.60 98.20

*The statistics reported are percentage rejections in a two-sided test at the (1 — «)% confidence level
using the finite sample critical values in Tables 7 and 8. For the BDS, I set € equal to one sample standard
deviation, and for the SNT, I use the sample mean. For both tests, I use only m = 2. The order of
dependence for the SNT is p = 1. n is the sample size. The data generating mechanism (DGM) is the

AR(1) process: x; = 0.5x¢_1 + 1, n, ~ NID(0,1).

27



Table 13
Power Against Nonlinear MA (1) DGM
BDS vs. SNT*

BDS 10% 5% 1%

n=25 082 046 0.10
n=950 1320 5.12 0.06
n =100 3732 26.78 10.82
n =250 74.62 66.16 48.74

SNT 10% 5% 1%

n=25 990 622 134
n=2>50 2130 13.68 5.36
n =100 32.10 23.00 13.22
n =250 59.30 49.20 26.98

*The statistics reported are percentage rejections in a two-sided test at the (1 — «)% confidence level
using the finite sample critical values in Tables 7 and 8. For the BDS, I set € equal to one sample standard
deviation, and for the SNT, I use the sample mean. For both tests, I use only m = 2. The order of
dependence for the SNT is p = 1. n is the sample size. The data generating mechanism (DGM) is the
nonlinear moving average process: x; = 0.81,_17,_o + 7y, 1y ~ NID(0,1).
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Table 14
Power Against SETAR DGM
BDS vs. SNT*

BDS 10% 5% 1%

n=25 887 587 0.86

n=950 21.71 13.52 10.88
n =100 39.04 29.92 15.26
n =250 7416 64.92 48.32

SNT 10% 5% 1%
n=25 11.72 262 0.08
n=050 1530 1.21 1.26
n =100 38.46 24.64 14.28
n =250 7042 60.52 32.86

*The statistics reported are percentage rejections in a two-sided test at the (1 — «)% confidence level
using the finite sample critical values in Tables 7 and 8. For the BDS, I set € equal to one sample standard
deviation, and for the SNT', I use the sample mean. For both tests, I use only m = 2. The order of dependence
for the SNT is p = 1. n is the sample size. The data generating mechanism (DGM) is the threshold
autoregressive model: z; = —0.5x, 1+, if 241 > 1, or 2y =04z 1 + 1, if 21 <1, 9, ~ NID(0,1).
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Table 15
Power Against Tent Map DGM
BDS vs. SNT*

BDS 10% 5% 1%

n=25 8991 80.58 38.71
n=2>50 100.00 99.96 99.80
n =100 100.00 100.00 100.00
n =250 100.00 100.00 100.00

SNT 10% 5% 1%

n=25 4924 44.34 12.50
n =250 80.10 76.56 59.54
n =100 93.74 93.18 84.82
n =250 99.98 99.96 99.60

*The statistics reported are percentage rejections in a two-sided test at the (1 — «)% confidence level
using the finite sample critical values in Tables 7 and 8. For the BDS, I set € equal to one sample standard
deviation, and for the SNT, I use the sample mean plus one-hlaf the sample standard deviation. For both
tests, I use only m = 2. The order of dependence for the SNT is p = 1. n is the sample size. The data
generating mechanism is the so-called “tent map”: xy = 2x¢_1,if x4 1 < 0.5, 0or xy =2—2x4 1, if zy_1 > 0.5.
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Table 16
Power When Order of Independence in Mis-Specified*

AR(1) 10% 5% 1%
n=25 1846 9.00 2.58
n=>50 2436 17.16 6.80
n=100 41.60 28.14 14.98
n=250 73.84 64.50 44.48

MA(1) 10% 5% 1%

n=25 11.84 5.54 1.10
n=2>50 11.76 7.84 2.74
n =100 12.60 6.82 1.98
n =250 13.00 7.00 1.66

*The statistics reported are percentage rejections in a two-sided test at the (1 — «)% confidence level
using the finite sample critical values in Table 8. The DGM’s are the same as used in Table 9 for the AR(1)
and Table 10 for the MA(1). I have “mistakenly” set p = 2 in each exercise. n is the sample size.
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